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Abstract

We consider the minimal super-solution of a backward stochastic differential equa-

tion with constraint on the gains-process. The terminal condition is given by a function

of the terminal value of a forward stochastic differential equation. Under boundedness

assumptions on the coefficients, we show that the first component of the solution is

Lipschitz in space and 1

2
-Hölder in time with respect to the initial data of the forward

process. Its path is continuous before the time horizon at which its left-limit is given

by a face-lifted version of its natural boundary condition. This first component is actu-

ally equal to its own face-lift. We only use probabilistic arguments. In particular, our

results can be extended to certain non-Markovian settings.

Key words: Backward stochastic differential equation with a constraint, stability, regu-

larity.
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1 Introduction

The aim of this paper is to establish new stability results for the minimal super-solution

(Ŷζ , Ẑζ) of a backward differential equation of the form

Ut = g(Xζ
T ) +

∫ T

t

f(Xζ
s , Us, Vs)ds −

∫ T

t

VsdWs, t ≤ T,

satisfying the constraint

Ẑζσ(Xζ)−1 ∈ K dt⊗ dP−a.e.
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In the above, W is a d-dimensional Brownian motion and Xζ solves a forward stochastic

differential equation with volatility parameter σ, indexed by the initial conditions ζ =

(t, x) ∈ [0, T ] × Rd: Xζ
t = x.

Estimates on the regularity can be of important use in many applications, in particular

in the design of probabilistic numerical schemes which, to the best of our knowledge, are

missing for such constrained backward differential equations.

When K = Rd, i.e. there is no constraint, and the coefficients are Lipschitz continuous, it

is well-known that Ŷζ has continuous path and that the (deterministic) map (t, x) 7→ Ŷ
(t,x)
t

is 1/2-Hölder in time and Lipschitz in space:

|Ŷ
(t,x)
t − Ŷ

(t′,x′)
t′ | ≤ C (|t− t′|

1
2 + |x− x′|). (1.1)

See e.g. [9]. This basically follows from standard estimates using Itô’s and Gronwall’s

Lemma.

In the general case, such a minimal super-solution solves an equation of the form

Ŷζt = g(Xζ
T ) +

∫ T

t

f(Xζ
s , Ŷ

ζ
s , Ẑ

ζ
s )ds −

∫ T

t

Ẑζ
s dWs + K̂ζ

T − K̂ζ
t , t ≤ T,

in which K̂ζ is an adapted non-decreasing process, see [6, 10]. Because little is known

on the regularity of this process, the technics used in the unconstrained case can not be

reproduced.

Nevertheless, it is well-known that such a minimal super-solution can be approximated

by a sequence of penalized unconstrained stochastic backward differential equations, see

[6, 10]. It is therefore tempting to use the estimates associated to each element of the

approximating sequence and to pass to the limit. Unfortunately, the Lipschitz continuity

coefficients of the approximating sequence blow-up.

Another way to proceed consists in using the dual formulation of [5, 6]. In their repre-

sentation, the component Ŷζ is identified to the value of the optimal control problem of a

family of backward stochastic differential equations written under a suitable set of equiva-

lent probability measures, see Section 4.1. The main difficulty is that it is singular: each

of the controls is bounded, but the bound is not uniform.

In this paper, we essentially make use of this dual formulation, but we use a strong

version: the controls are directly incorporated in the dynamics rather than through changes

of measures. See Section 3. Space stability is essentially obvious for this strong version,

while it is not in its original ’weak’ form. Still, the singularity of the optimal control

problem makes estimates on the stability in time quite delicate a-priori.

The key idea of this paper is to use the fact that the solution is automatically ’face-lifted’

in the sense of Proposition 3.3 below. This ’face-lifting’ phenomenon is well-known as far

as the terminal condition is concerned, this goes back to [4] in the specific setting of math-

ematical finance, see also [3, 7] and the references therein. We use probabilistic arguments

to show that it holds also in the parabolic interior [0, T ) × Rd of the domain, which can

be guessed in the setting of [3, 7] from their pde characterization. This ’face-lifting’ phe-

nomenon allows to absorb the singular control, and to extend (1.1) to the constrained case.

See Theorem 2.1.
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The paper is organized as follows. The setting and the main results are stated in Section

2. Comments on our assumptions and possible extensions are discussed at the end in Sec-

tion 5. Section 3 is dedicated to the strong version of the dual formulation for which our

estimates are established. This part contains the main ideas of this paper. In Section 4, we

show that the strong dual formulation coincides with its weak version, and that the latter

actually provides (as well-known when the driver is convex) the first component Ŷζ of the

constrained backward stochastic differential equation.

Notations: All over this paper, we let Ω = C([0, T ],Rd), d ≥ 1, T > 0, be the canonical

space of continuous d-dimensional functions ω on [0, T ] such that ω0 = 0. It is endowed

with the Wiener measure P. We let W be the coordinate process, Wt(ω) = ωt, and we

denote by F = (Ft)t≤T the augmentation of its raw filtration under P. Random variables

are defined on (Ω,FT ,P). For the expectation under P, we simply use the symbol E, while

we write EQ if it is taken under a different measure Q. Given a probability measure Q,

G ⊂ FT , p ≥ 1 and A ⊂ Rn, we denote by Lp(A,Q,G) the set of G-measurable A-valued

random variables whose p-moment under Q is finite. We let S2(Q) (resp. H2(Q))be the

set of Rn-valued progressively measurable processes V such that EQ[supt≤T |Vt|
2] < ∞

(resp. EQ[
∫ T

t
|Vt|

2dt] < ∞), in which |v| denotes the Euclydian norm of v ∈ Rn and n is

given by the context. The set of stopping times with values in [0, T ] is T , while Tτ is the

set of stopping times a.s. greater than τ ∈ T . Finally, D2(Q) denotes the set of couples

(τ, ξ) ∈ T ×L2(Q,R
d,FT ) such that ξ is Fτ -measurable. For ζ ∈ D2, we write (τζ , ξζ) = ζ.

In all these definitions, we omit the arguments that can be clearly identified by the context.

When nothing else is specified, inequalities between random variables or convergence of

sequences of random variables hold in the P-a.s. sense.

2 Main regularity and stability results

As a first step of analysis, we concentrate on a Markovian setting with rather stringent

boundedness assumptions. Possible extensions will be discussed in Section 5 at the end of

this paper. They include another type of constraint, certain non-Markovian settings and

optimal control problems.

The forward component is the unique strong solution Xζ on [0, T ] of the stochastic dif-

ferential equation

Xζ
t∨τζ

= ξζ +

∫ t∨τζ

τζ

bs(X
ζ
s )ds +

∫ t∨τζ

τζ

σs(X
ζ
s )dWs, (2.1)

in which the initial data ζ ∈ D2, and the parameters (b, σ) : [0, T ] × Rd 7→ Rd × Rd×d are

measurable maps. They are assumed to be bounded, and Lipschitz in their space variable,

uniformly in their time argument. We also assume that σ is invertible with bounded inverse.

Namely, there exists L > 0 such that

|(bt, σt)(x) − (bt, σt)(x
′)| ≤ L|x− x′| and (|bt|+ |σt|+ |σ−1

t |)(x) ≤ L, (2.2)

for all (t, x, x′) ∈ [0, T ] × Rd × Rd.
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The backward equation is defined by two measurable maps f : [0, T ]×Rd ×R×Rd 7→ R

and g : Rd 7→ R such that, for all (t, x, θ), (t, x′, θ′) ∈ [0, T ]× Rd × (R ×Rd),

|ft(x, θ)− ft(x
′, θ′)| ≤ L (|x− x′|+ |θ − θ′|) , |ft(x, θ)| ≤ L(1 + |θ|) , (2.3)

|g(x)| ≤ L, and g is lower-semicontinuous. (2.4)

A supersolution of BSDE(f, g, ζ) is a process (U, V ) ∈ S2 ×H2 satisfying

Ut∨τζ ≥ Ut′∨τζ +
∫ t′∨τζ
t∨τζ

fs(X
ζ
s , Us, Vs)ds −

∫ t′∨τζ
t∨τζ

VsdWs, t ≤ t′ ≤ T.

UT = g(Xζ
T ).

(2.5)

The constraint on the V coordinate is associated to a family (Kt)t≤T of closed convex sets

of Rd:

V σ(Xζ)−1 ∈ K dt⊗ dP−a.e on [[τζ , T ]]. (2.6)

When it is satisfied, we say that (U, V ) is a super-solution of BSDEK(f, g, ζ). This super-

solution is said to be minimal if U ′
s∨τζ

≥ Us∨τζ for all s ≤ T and any other super-solution

(U ′, V ′) ∈ S2 ×H2 of BSDEK(f, g, ζ).

We require that

0 ∈ Kt for all t ≤ T (2.7)

∪t≤TKt is bounded, (2.8)

and that, for all u ∈ Rd,

t ∈ [0, T ] 7→ δt(u) := sup{ k⊤u, k ∈ Kt} is left-continuous at T , (2.9)

and non-increasing. (2.10)

Remark 2.1. The conditions (2.8)-(2.10) are equivalent to : the family (Kt)t≤T is non-

increasing and K0 is bounded.

Note that our standing assumptions (2.3)-(2.4)-(2.7) ensure that BSDEK(f, g, ζ) admits

a trivial super-solution

(yt, zt) = ((1 + (T − t))L, 0), (2.11)

which is bounded. In particular, [10, Theorem 4.2] implies that BSDEK(f, g, ζ) admits a

minimal super-solution. We denote it by (Ŷζ , Ẑζ), and let K̂ζ be the non-decreasing process

defined on [0, T ] by

K̂ζ
τζ

= 0 and Ŷζ·∨τζ = g(Xζ
T ) +

∫ T

·∨τζ

fs(X
ζ
s , Ŷ

ζ
s , Ẑ

ζ
s )ds −

∫ T

·∨τζ

Ẑζ
s dWs + K̂ζ

T − K̂ζ
·∨τζ .

We do not impose any Lipschitz continuity assumption on g, although it is used in the

unconstrained case K = Rd to obtain the Lipschitz continuity of the map ξ 7→ Ŷ
(τ,ξ)
τ .

Instead, we assume that the map

ĝ : x ∈ Rd 7→ sup
u∈Rd

(g(x+ u)− δT (u)) , x ∈ Rd is L-Lipschitz continuous. (2.12)
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This map is usually referred to as the ’face-lift’ of g for the constraint KT , compare with

e.g. [4, 3, 7]. We shall see below that it provides the correct time-T boundary condition for

our constrained backward differential equation. Intuitively, this means that assuming that

g is Lipschitz is useless, whenever ĝ is, which is a weaker condition 1.

Our main result shows that the map ζ ∈ D2 7→ Ŷζτζ satisfies similar regularity properties

in time and space as in the unconstrained case. It also shows that the non-decreasing

process K̂ζ is continuous on [0, T ) with a final jump of size (ĝ − g)(Xζ
T ). In particular,

ŶζT− = ĝ(Xζ
T ) on {τζ < T}.

From now on, we denote by CL a generic constant which depends only on L, and may

change from line to line.

Theorem 2.1. The following holds for all ζ, ζ ′ ∈ D2:

(a) If τζ ≤ τζ′< T , then

|Ŷζτζ − Eτζ [Ŷ
ζ′

τζ′
]| ≤ CL

(

Eτζ [|τζ′ − τζ |]
1
2 + Eτζ [|ξζ′ − ξζ |]

)

. (2.13)

(b) If τ := τζ = τζ′< T , then

−δτ (ξζ′ − ξζ) ≤ Ŷζτ − Ŷζ
′

τ ≤ δτ (ξζ − ξζ′). (2.14)

(c) If τζ < T , then K̂ζ
·∧ϑ has continuous path for each stopping time ϑ < T . Moreover, if

(ϑn)n≥1 is a sequence of stopping times with values in [τζ , T ) such that ϑn → T , then

Ŷζϑn → ĝ(Xζ
T ).

Sections 3 and 4 are devoted to the proof of these results. In view of Proposition 4.1 and

Theorem 4.1: (a) is a consequence of Corollary 3.1 and Proposition 3.4, (b) follows from

Proposition 3.3, and Proposition 3.5 implies (c).

3 Estimates via the strong dual formulation

As explained in the introduction, the constrained backward differential equation BSDEK(f,

g, ζ) admits a dual representation which is formulated as an optimal control problem on a

family of unconstrained backward stochastic differential equations written under a suitable

family of equivalent laws, see Section 4 for a precise formulation. Although, each uncon-

strained backward stochastic differential equation satisfies the usual Hölder and Lipschitz

regularity properties, this does not seem to allow one to obtain the estimates of Theorem

2.1. The reason is that the optimal control problem is of singular type: constants may blow

up when passing to the supremum.

The main idea of this paper is to start with a strong version of this dual optimal control

problem. Strong meaning that the probability measure is fixed, but we incorporate the

control directly in the dynamics. It turns out to be much more flexible. In particular,

1The fact that ĝ inherits the Lipschitz–continuity property from g is by construction, whereas the converse

is not valid: for d = 1, K = R+ and g : x ∈ R+ 7−→ 1{x<1}, we have ĝ : x ∈ R+ 7−→ 1.
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space stability is essentially trivial in this setting, see Corollay 3.1. More importantly,

we can show that the corresponding value process is itself automatically ’face-lifted’, see

Proposition 3.3 below. This will be the key result to obtain the time regularity estimates

of Proposition 3.4.

3.1 The strong dual formulation

Let U denote the collection of Rd-valued bounded predictable processes. Note that δ(ν) is

bounded for each ν ∈ U , see (2.8). To each (ζ, ν) ∈ D2 × U , we associate the stochastic

driver

f ζ,ν : (t, y, z) ∈ [0, T ] × R×Rd 7→
(

ft(X
ζ,ν
t , y, z)− δt(νt)

)

1[[τζ ,T ]](t)

where Xζ,ν is the solution of

Xζ,ν = ξζ +

∫ ·∨τζ

τζ

(

bs(X
ζ,ν
s ) + νs

)

ds +

∫ ·∨τζ

τζ

σs(X
ζ,ν
s )dWs. (3.1)

Given τ ∈ Tτζ , ϑ ∈ Tτ and G ∈ L2(Fϑ), we set

Eζ,ντ,ϑ [G] := Uτ

where (U, V ) ∈ S2 ×H2 is the solution of

U = G+

∫ ϑ

·∨τζ

f ζ,νs (Us, Vs)ds −

∫ ϑ

·∨τζ

VsdWs on [0, T ]. (3.2)

In the special case where ϑ ≡ T and G = g(Xζ,ν
T ), the solution of (3.2) is denoted by

(Y ζ,ν, Zζ,ν). In particular,

Y ζ,ν
· = Eζ,ν·,T [g(X

ζ,ν
T )].

We next define our optimal control problem

Yζτ = ess sup{Y ζ,ν
τ , ν ∈ U , ν1[[0,τ ]] ≡ 0} , ζ ∈ D2, τ ∈ Tτζ . (3.3)

Note that Yζτ = Y
(τ,Xζ

τ )
τ since Xζ,0 = Xζ .

Remark 3.1. The conditions (2.2)-(2.3)-(2.4) imply that Y ζ,ν is bounded in L∞ uniformly

in ζ ∈ D2, for all ν ∈ U , see Lemma A.1. Moreover, Y ζ,ν ≤ y defined in (2.11), for all ν ∈ U ,

see Lemma A.2. In particular, Y ζ,0 ≤ Yζ ≤ y, so that Yζ is bounded in L∞ uniformly in

ζ ∈ D2. The bound depends only on L.

3.2 Terminal face-lift and space stability

The first result of this section concerns the face-lift of the terminal condition. It shows

that g can be replaced by ĝ in (3.3). Apart from being of self-interest, this property will

be used latter on in the proof of the space stability in our setting where ĝ is assumed to be

Lipschitz while g may not be. It will also be used to characterize the limit limt↑T Yζt .

Proposition 3.1. Yζτζ = ess sup{Eζ,ντζ ,T [ĝ(X
ζ,ν
T )], ν ∈ U} on {τζ < T}, for all ζ ∈ D2.
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Proof. Since ĝ ≥ g by construction, one inequality is trivially deduced from Lemma A.2.

We therefore concentrate on the difficult inequality. Fix ζ := (τ, ξ) ∈ D2. For sake of

simplicity, we assume that τ < T a.s., the general case is handled by using the fact that

{τ < T} = ∪n≥1{τ ≤ T − n−1}. For ν ∈ U , and u ∈ L∞(FT−ε◦), for some ε◦ > 0, we then

define

τε := (T − ε) ∨ τ , νε := ν1[[τ,τε]] +
u

T − τε
1]]τε,T ]], 0 < ε < ε◦.

Then, (3.3) combined with the tower property for non linear expectations imply that

Yζτ ≥ Eζ,ντ,τε

[

Y ζ,νε

τε

]

.

We claim that, after possibly considering a subsequence,

lim inf
ε→0

Eζ,ντ,τε

[

Y ζ,νε

τε

]

≥ Eζ,ντ,T

[

g(Xζ,ν
T + u)− δT (u)

]

. (3.4)

By arbitrariness of ε◦ > 0 and u ∈ L∞(FT−ε◦), this implies that

Yζτ ≥ ess sup
u∈L∞(FT−)

Eζ,ντ,T

[

g(Xζ,ν
T + u)− δT (u)

]

.

Since the map (x, u) ∈ Rd×Rd 7→ g(x+ u)− δT (u) is Borel, it follows from [1, Proposition

7.40, p184], that, for each ι > 0, we can find a universally measurable map x ∈ Rd 7→ ũι(x)

such that ĝ(x) = sup{g(x+u)−δT (u), u ∈ Rd} ≤ g(x+ ũι(x))−δT (ũι(x))+ι for all x ∈ Rd.

By [1, Lemma 7.27, p173], we can find a Borel measurable map x ∈ Rd 7→ ûι(x) such that

ûι(X
ζ,ν
T ) = ũι(X

ζ,ν
T ) a.s. Since Xζ,ν

T ∈ L2(FT−) by left-continuity of its path, this implies

that

Yζτ ≥ Eζ,ντ,T

[

ĝ(Xζ,ν
T )1

{|ûι(X
ζ,ν
T

)|≤n}
− ι+ g(Xζ,ν

T )1
{|ûι(X

ζ,ν
T

)|>n}

]

,

for each n ≥ 1 and ι ∈ (0, 1). The required result then follows from the stability principle,

see Lemma A.2, by sending first n→ ∞ and then ι→ 0.

It remains to prove our claim (3.4). We first deduce from Lemma 3.1 stated at the end

of this section that, after possibly passing to a subsequence,

Xζ,νε

T → Xζ,ν
T + u a.s. as ε→ 0,

and therefore

lim inf
ε→0

g(Xζ,νε

T ) ≥ g(Xζ,ν
T + u),

by lower-semicontinuity of g. Moreover, if (Hε)ε>0 is a sequence of positive processes such

that sup[τε,T ]H
ε → 1 a.s. as ε→ 0, then

lim inf
ε→0

∫ T

τε

Hε
s

(

fs(X
ζ,νε

s , 0)− δs(ν
ε
s)
)

ds ≥ − lim
ε→0

(T − τε)
−1

∫ T

τε

Hε
sδs(u)ds

≥ −δT (u)

7



since t 7→ δt(u) is left-continuous at T and f(·, 0) is bounded. We can then combine Lemma

A.1 and Lemma A.3 to obtain

lim inf
ε→0

Y ζ,νε

τε
≥ g(Xζ,ν

T + u)− δT (u) =: G,

after possibly passing to a subsequence. Now observe that Eζ,ν·,τε [Y
ζ,νε

τε ] coincides with the

first component of the backward differential equation which driver is f ζ,ν1[[0,τε]] and which

terminal condition is Y ζ,νε

τε at T . It is constant on [[τε, T ]]. Then, by the stability and

comparison principles in Lemma A.2, we obtain

Eζ,ντ,τε

[

Y ζ,νε

τε

]

≥ Eζ,ντ,T

[

Y ζ,νε

τε

]

− C1Eτ

[
∫ T

τε

|f ζ,νs (Y ζ,νε

τε
, 0)|2ds

]

1
2

≥ Eζ,ντ,T [G]− C2



Eτ

[
∫ T

τε

|f ζ,νs (Y ζ,νε

τε , 0)|2ds

]

1
2

+ Eτ

[

{(Y ζ,νε

τε −G)−}2
]

1
2



 ,

in which the constants C1 and C2 do not depend on (u, ε), see Remark 3.1. Since ν ∈ U ,

it follows from Lemma A.1 together with (2.2) and (2.3) that (Y ζ,νε

τε , f ζ,ν(Y ζ,νε

τε , 0)1[[τε,T ]])

is bounded in L2 × S2 uniformly in ε > 0. Then, combining the above shows that, along a

subsequence if necessary, the right-hand side term in the last inequality converges to 0 as

ε ↓ 0. Hence, the claim (3.4) holds, which completes the proof. ✷

Since ĝ is assumed to be Lipschitz continuous, the stability in space is now an easy

consequence of the representation given in Proposition 3.1

Corollary 3.1.
∣

∣

∣Y
ζ1
τ − Yζ2τ

∣

∣

∣ ≤ CL|ξζ1 − ξζ2 |, for all ζ1, ζ2 ∈ D2 with τ := τζ1 = τζ2< T .

Proof. We simply use the fact that
∣

∣

∣
Yζ1τ − Yζ2τ

∣

∣

∣
≤ ess sup

ν∈U

∣

∣

∣
Eζ1,ντ,T [ĝ(Xζ1,ν

T )]− Eζ2,ντ,T [ĝ(Xζ2,ν
T )]

∣

∣

∣

by Proposition 3.1. The right-hand side is bounded by |ξζ1 − ξζ2 | up to a multiplicative

constant under our Lipschitz continuity assumptions (2.2)-(2.3)-(2.12), see Lemma A.2. ✷

We conclude this section with the technical lemma that was used in the proof of Propo-

sition 3.1. The proof is trivial under (2.2) and we omit it. It is not difficult to see that

it remains correct without the boundedness assumption on (b, σ), they only need to be

Lipschitz continuous in space, uniformly in time (but then the constant appearing in the

bound depends on (u, ζ) as well).

Lemma 3.1. Fix ζ ∈ D2, ϑ ∈ Tτζ and u ∈ L∞(Rd,Fτζ ). Set ν := ε−1u1{ε>0}1[[τζ ,ϑ]], with

ε := ϑ− τζ . Then,

sup
t≤T

Eτζ

[

∣

∣

∣
Xζ,ν
t∨τζ∧ϑ

− ξζ − ε−1u(t ∨ τζ ∧ ϑ− τζ)1{ε>0}

∣

∣

∣

2
]

≤ CLEτζ [ε].
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3.3 Dynamic programming and face-lifting on [0, T )

We first recall the dynamic programming principle for the optimal control problem (3.3).

It will be used later on in this section to prove that the value process is automatically

face-lifted, see Proposition 3.3.

Proposition 3.2. For all ζ ∈ D2 and ϑ ∈ Tτζ ,

Yζτζ = ess sup
ν∈U

Eζ,ντζ ,ϑ[Y
(ϑ,Xζ,ν

ϑ
)

ϑ ].

Proof. The proof is standard. Since Y ζ,ν
τζ = Eζ,ντζ [Y

(ϑ,Xζ,ν
ϑ

),ν

ϑ ] ≤ Eζ,ντζ [Y
(ϑ,Xζ,ν

ϑ
)

ϑ ] by the

tower property for non-linear expectations and by the comparison principle, see Lemma

A.2, one inequality is trivial. As for the reverse inequality, we observe that the family

{Y
(ϑ,Xζ,ν

ϑ
),ν′

ϑ , ν ′ ∈ U} is directed upward. Then [8, Proposition VI.1.1] ensures that we can

find a sequence (ν ′n)n≥1 ⊂ U such that Y n
ϑ := Y

(ϑ,Xζ,ν
ϑ

),ν′n
ϑ ↑ Y

(ϑ,Xζ,ν
ϑ

)

ϑ =: Yϑ a.s. as n→ ∞.

Since, Y 1
ϑ and Yϑ are bounded in L2, see Remark 3.1, the convergence holds in L2 as well.

Moreover, we can find a constant C > 0 which does not depend on n and such that

Eζ,ντζ ,ϑ[Y
n
ϑ ] ≥ Eζ,ντζ ,ϑ[Yϑ]− C Eτζ [|Y

n
ϑ − Yϑ|

2]
1
2 ,

see Lemma A.2. The latter combined with (3.3) implies that

Yζτζ ≥ Eζ,ντζ ,ϑ[Yϑ]− lim
n→∞

C Eτζ [|Y
n
ϑ − Yϑ|

2]
1
2 = Eζ,ντζ ,ϑ[Yϑ],

and we conclude by arbitrariness of ν ∈ U . ✷

We can now show that ξ ∈ L2(Fτ ) 7→ Y
(τ,ξ)
τ is itself automatically face-lifted in the

following sense.

Proposition 3.3. For all ζ ∈ D2,

Yζτζ = ess sup
u∈L∞(Rd,Fτζ

)

(Y
(τζ ,ξζ+u)
τζ − δτζ (u)) a.s. on {τζ < T}. (3.5)

Proof. Take ζ := (τ, ξ) ∈ D2. One inequality follows from the fact that δτ (0) = 0. Fix

u ∈ L∞(Fτ ), ε > 0, and set τε := (τ + ε)∧ T and νε := ε−1u1[[τ,τε]]. It follows from Lemma

3.1 that

Eτ [|X
ζ,νε

τε
− ξ − u|2]

1
2 ≤ CL ε

1
2 .

Then, by appealing to Proposition 3.2, Lemma A.1, (2.3) and Corollary 3.1 successively,

we can find a family of non-negative continuous processes (Hε)ε>0, uniformly bounded in

S2, such that Hε
τε → 1 in L1 as ε→ 0 and

Yζτ ≥ Eτ

[

Hε
τε
Y

(τε,X
ζ,νε

τε )
τε +

∫ τε

τ

Hε
sf

ζ,νε

s (0)ds

]

≥ Eτ

[

Hε
τεY

(τε,X
ζ,νε

τε )
τε −

∫ τε

τ

Hε
sδs(ν

ε
s)ds

]

−CLε

≥ Eτ

[

Hε
τε
Y(τε,ξ+u)
τε

− ε−1

∫ τε

τ

Hε
sδs(u)ds

]

− CLε
1
2 .
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Since Hε ≥ 0, we can use (2.10) and Remark 3.1 to obtain

Yζτ ≥ Eτ

[

Hε
τε
Y(τε,ξ+u)
τε

− δτ (u)ε
−1

∫ τε

τ

Hε
sds

]

− CLε
1
2

≥ Eτ

[

Y(τε,ξ+u)
τε

− δτ (u)ε
−1

∫ τε

τ

Hε
sds

]

− CL(ε
1
2 + Eτ [|H

ε
τε
− 1|])

where ε−1
∫ τε
τ
Hε
sds and Hε

τε converge to 1 in L1, so that

Yζτ ≥ lim inf
ε→0

Eτ

[

Y(τε,ξ+u)
τε

]

− δτ (u).

It remains to show that

lim inf
ε→0

Eτ

[

Y(τε,ξ+u)
τε

]

≥ E
(τ,ξ+u),ν
τ,T [ĝ(X

(τ,ξ+u),ν
T )]. (3.6)

Then, the arbitrariness of ν ∈ U will allow one to conclude by appealing to Proposition 3.1.

In order to alleviate notations, we set Ŷ τ1,ξ1
τ2 := E

(τ1,ξ1),ν
τ2,T

[ĝ(X
(τ1,ξ1),ν
T )] for any τ1, τ2 ∈ T

and ξ1 ∈ L2(Fτ1). By Proposition 3.1,

Eτ [Y
(τε,ξ+u)
τε ] ≥ Eτ [Ŷ

τε,ξ+u
τε ] = Ŷ τ,ξ+u

τ + Eτ [Ŷ
τε,ξ+u
τε ]− Ŷ τ,ξ+u

τ .

We now observe that

Eτ [Ŷ
τε,ξ+u
τε ]− Ŷ τ,ξ+u

τ = Eτ [Ŷ
τε,ξ+u
τε − Ŷ

τε,X
(τ,ξ+u),ν
τε

τε ]

+ Eτ [Ŷ
τε,X

(τ,ξ+u),ν
τε

τε ]− E(τ,ξ+u),ν
τ,τε [Ŷ

τε,X
(τ,ξ+u),ν
τε

τε ]

in which, by Lemma A.2 combined with (2.2)-(2.3)-(2.12),

lim
ε→0

Eτ [Ŷ
τε,ξ+u
τε

− Ŷ
τε,X

(τ,ξ+u),ν
τε

τε ] = 0.

By the same assumptions combined with Lemma A.1,

lim
ε→0

Eτ [Ŷ
τε,X

(τ,ξ+u),ν
τε

τε ]− E(τ,ξ+u),ν
τ,τε

[Ŷ
τε,X

(τ,ξ+u),ν
τε

τε ] = 0.

This proves (3.6) and completes the proof. ✷

3.4 Stability in time

We now turn to the proof of the stability in time. The lower estimate trivially follows

from the dynamic programming principle of Proposition 3.2. The second one is much

more delicate. It is obtained by a suitable use of the face-lifting phenomenon observed in

Proposition 3.3. It allows one to absorb the singularity due to the control when passing to

the supremum over U , see (3.8) below.

Proposition 3.4. For all ζ ∈ D2 and ϑ ∈ Tτζ
∣

∣

∣Yζτζ − Eτζ [Y
(ϑ,ξζ)
ϑ ]

∣

∣

∣ ≤ CL Eτζ [ϑ− τζ ]
1
2 .
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Proof. 1. By Proposition 3.2, Remark 3.1, (2.3) and Lemma A.1

Yζτζ ≥ Eζ,0τζ ,ϑ[Y
(ϑ,Xζ,0

ϑ
)

ϑ ] ≥ Eτζ [Y
(ϑ,Xζ,0

ϑ
)

ϑ ]− CLEτζ [ϑ− τζ ]
1
2 ,

while Corollary 3.1 and (2.2) imply

Eτζ [Y
(ϑ,Xζ,0

ϑ
)

ϑ ] ≥ Eτζ [Y
(ϑ,ξζ )
ϑ ]− CLEτζ [ϑ − τζ ]

1
2 .

2. We now turn to the reverse inequality. Set ζ = (τ, ξ) and let U ζ,ν := βY ζ,ν
·∨τ −

∫ ·∨τ
τ

βsδs(νs)ds, where βs := eL(s−τ)
+
, recall (2.3). Then,

U ζ,νt1 = U ζ,νt2 +

∫ τ∨t2

τ∨t1

βs

(

fs(X
ζ,ν
s , Y ζ,ν

s , Zζ,νs )− LY ζ,ν
s

)

ds−

∫ τ∨t2

τ∨t1

βsZ
ζ,ν
s dWs

for t2 ≥ t1. Since y ∈ R 7→ f(·, y, ·) − Ly is non-increasing by (2.3), and δ ≥ 0 by (2.7), it

follows that

U ζ,νt1 ≤ U ζ,νt2 +

∫ τ∨t2

τ∨t1

(

βsfs(X
ζ,ν
s , β−1

s U ζ,νs , Zζ,νs )− LU ζ,νs

)

ds −

∫ τ∨t2

τ∨t1

βsZ
ζ,ν
s dWs. (3.7)

On the other hand, we can use (3.3), the fact that δ ≥ 0 is sublinear and β ≥ 1, (2.10),

Remark 3.1 and Proposition 3.3 to deduce that

U ζ,νϑ ≤ βϑY
(ϑ,Xζ,ν

ϑ
)

ϑ −

∫ ϑ

τ

βsδs(νs)ds

≤ CL(βϑ − 1) + Y
(ϑ,Xζ,ν

ϑ
)

ϑ − δϑ

(
∫ ϑ

τ

νsds

)

≤ CL(βϑ − 1) + Y
(ϑ,Xζ,ν

ϑ
−
∫ ϑ

τ
νsds)

ϑ . (3.8)

The last inequality combined with (3.7), Lemma A.1 and (2.3) leads to

Y ζ,ν
τ = U ζ,ντ ≤ Eτ

[

Ĥτ
ϑ

(

CL(βϑ − 1) + Y
(ϑ,Xζ,ν

ϑ
−
∫ ϑ

τ
νsds)

ϑ + CL (ϑ− τ)

)]

in which

Ĥτ
ϑ := sup

[τ,ϑ]
e
∫ ·
τ
(κ1s−2−1|κ2s|

2)ds+
∫ ·
τ
κ2sdWs

for some predictable processes κ1, κ2 that are uniformly bounded by a constant which only

depends on L. We next use Corollary 3.1 together with standard estimates, recall (2.2), to

deduce from the above that

Y ζ,ν
τ − Eτ

[

Ĥτ
ϑY

(ϑ,ξ)
ϑ

]

≤ CL

(

Eτ

[

Ĥτ
ϑ |Xζ,ν

ϑ −

∫ ϑ

τ

νsds− ξ|

]

+ Eτ [(ϑ− τ)]
1
2

)

≤ CL Eτ [(ϑ− τ)]
1
2 .

Then, Remark 3.1 implies that

Eτ

[

Ĥτ
ϑY

(ϑ,ξ)
ϑ

]

− Eτ

[

Y
(ϑ,ξ)
ϑ

]

≤ CLEτ

[

|Ĥτ
ϑ − 1|

]

≤ CLEτ [(ϑ− τ)]
1
2 .
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Combining the two last inequalities and using the arbitrariness of ν ∈ U leads to the re-

quired result. ✷

For later use, we state the following corollary of Proposition 3.4 and Corollary 3.1, recall

(2.2).

Corollary 3.2. For all ζ ∈ D2 and ϑ ∈ Tτζ
∣

∣

∣

∣

Yζτζ − Eτζ [Y
(ϑ,Xζ

ϑ
)

ϑ ]

∣

∣

∣

∣

≤ CL Eτζ [ϑ− τζ ]
1
2 .

3.5 Path continuity and boundary limit

The following is deduced from Proposition 3.1 and Corollary 3.2.

Proposition 3.5. Fix ζ ∈ D2 such that τζ < T . Then, Yζ is continuous on [0, T ) and

satisfies

YζT− := lim
s↑T,s<T

Yζs = ĝ(Xζ
T ) .

In particular, the process Yζ1[0,T ) + ĝ(Xζ
T )1{T} is continuous.

Proof. 1. We first show that Yζ is right-continuous. Fix ϑ ∈ Tτζ and let (ϑn)n≥1 ⊂ Tϑ

be such that ϑn ↓ ϑ. Since Yζϑ = Y
(ϑ,Xζ

ϑ
)

ϑ , Yζϑn = Y
(ϑn,X

ζ
ϑn

)

ϑn
, and Xζ

ϑn
= X

(ϑ,Xζ
ϑ
)

ϑn
, it follows

from Corollary 3.2 applied to the time intervalle [ϑ, ϑn] that

Yζϑ = lim
n→∞

Eϑ[Y
ζ
ϑn
]. (3.9)

We claim that lim supn→∞ Yζϑn = lim infn→∞ Yζϑn a.s. Then, the above combined with

Remark 3.1 and the dominated converge theorem implies that

Yζϑ = lim
n→∞

Yζϑn .

It remains to prove our claim. Let us first define

η̄ := lim sup
n→∞

Yζϑn and η := lim inf
n→∞

Yζϑn .

Assume on the contrary that the set

A := {η̄ > η} has positive probability.

Note that A ∈ Fϑ, by right-continuity of the filtration. Then, define k̄1 = k1 = 1 and

k̄n+1 := min{k > k̄n : Yζϑk ≥ 2η̄/3 + η/3}

kn+1 := min{k > kn : Yζϑk ≤ η̄/3 + 2η/3}

for k ≥ 1, and set ϑ̄n := ϑk̄n1A + ϑn1Ac and ϑn := ϑkn1A + ϑn1Ac for n ≥ 1. It follows

from the definition of A that ϑ̄n, ϑn are well-defined. They decrease to ϑ. Applying (3.9)

12



to the two sequences (ϑ̄n)n≥1 and (ϑn)n≥1 and recalling the uniform bound of Remark 3.1

leads to

(2η̄/3 + η/3)1A ≤ lim
n→∞

Eϑ[Y
ζ

ϑ̄n
]1A = Yζϑ1A = lim

n→∞
Eϑ[Y

ζ
ϑn
]1A ≤ (η̄/3 + 2η/3)1A,

a contradiction.

2. It follows from Proposition 3.2 that Yζ is a f ζ,0-supermartingale in the strong sense in

the terminology of [10]. Since it is right-continuous, it follows from [10, Theorem 3.3] that

it admits left-limits. It is clear from Corollary 3.2 that it can not have jumps on [0, T ).

3. We finally prove the limit behavior at T . It follows from Proposition 3.1, Lemma

A.1, (2.12) and the fact that Yζ is làg without positive jumps, see 1. and 2. above, that

YζT− ≥ ĝ(Xζ
T ). On the other hand, since g(Xζ

T ) ≤ ĝ(Xζ
T ) and ĝ(X

ζ
T + u)− δT (u) ≤ ĝ(Xζ

T )

by construction and the fact that δT is sub-linear, we can follow the arguments of the proof

of Proposition 3.4 to deduce that

Yζ
τζ∨(T−ε)

≤ Eτζ∨(T−ε)

[

ĝ(Xζ
T )
]

+ CL ε
1
2 .

By continuity of the filtration, this implies that YζT− ≤ ĝ(Xζ
T ). ✷

4 Weak versus strong formulation of the dual problem

The aim of this section is to prove that Yζ as defined in (3.3) actually provides the min-

imal super-solution of BSDEK(f, g, ζ). Then, the statements of Theorem 2.1 will be a

consequence of the results obtained in Section 3. To this purpose, we first introduce the

weak formulation associated to the optimal control problem (3.3) and show that the value

coincides. Then, we use standard arguments to show that this weak formulation actu-

ally provides the minimal super-solution of our constrained backward stochastic differential

equation.

4.1 Weak formulation

Given ν ∈ U and ζ ∈ D2, we define the equivalent probability measure Pζ,ν by

dPζ,ν

dP
= e

− 1
2

∫ T

τζ
|σ−1

s (Xζ
s )νs|

2ds+
∫ T

τζ
σ−1
s (Xζ

s )νsdWs
.

Recall that σ−1 is bounded by assumption. Then,

W ζ,ν := W −

∫ τζ∨·

τζ

σ−1
s (Xζ

s )νsds (4.1)

is a Pζ,ν-Brownian motion.

Given ϑ ∈ Tτζ and G ∈ L2(P
ζ,ν,Fϑ), we set

Ẽζ,νt,ϑ [G] := Ut∨ϑ

13



in which (U, V ) ∈ S2(P
ζ,ν)×H2(P

ζ,ν) satisfies

Ut∨τζ = G+

∫ ϑ

t∨τζ

[

fs(X
ζ
s , Us, Vs)− δs(νs)

]

ds−

∫ ϑ

t∨τζ

VsdW
ζ,ν
s , t ≤ T. (4.2)

We finally define for τ ∈ Tτζ

Ỹζτ := ess sup{Ẽζ,ντ,T [g(X
ζ
T )] : ν ∈ U , ν1[[0,τ ]] ≡ 0} . (4.3)

4.2 Equivalence of the strong and weak formulations

Proposition 4.1. Ỹζτζ = Yζτζ , for each ζ ∈ D2.

Proof. We write ζ = (τ, ξ). For sake of simplicity, we restrict to the situation τ = 0 so

that x0 := ξ ∈ Rd. The general case is obtained by a conditioning argument. Let U simple

denote the set of processes ν ∈ U of the form

ν = σ(Xζ,ν)

n−1
∑

i=0

φi1(ti,ti+1] (4.4)

in which 0 = t0 < · · · < tn = T and φi ∈ L∞(Fti) for i ≤ n. Note that (ν,Xζ,ν) is

well-defined for any (φi)i≤n ⊂ L∞ satisfying the previous measurability condition. This

follows from (2.2).

We define accordingly Ũ simple as the set of processes ν ∈ U of the form

ν = σ(Xζ)
n−1
∑

i=0

φi1(ti,ti+1] (4.5)

in which 0 = t0 < · · · < tn = T and φi ∈ L∞(Fti) for i ≤ n.

1. We first show that for each ν ∈ U simple we can find ν̃ ∈ U such that

Eζ,ντ,T [g(X
ζ,ν
T )] = Ẽζ,ν̃τ,T [g(X

ζ
T )].

Let ν ∈ U simple be as in (4.4) and note that we can identify φi to a Borel measurable map

ω ∈ Ω 7→ φi(ω) = φi(ω·∧ti), up to P-null sets. Let us define ν̃ by

ν̃(ω) = σ(Xζ)φi

(

ωφ·∧ti

)

on (ti, ti+1]

where ωφ is defined recursively by

ωφs := ωs −

j−1
∑

k=0

(tk+1 − tk)φk(ω
φ
·∧tk

)− (s− tj)φj(ω
φ
·∧tj

) for s ∈ (tj , tj+1],

with ωφ0 = 0. Then, for t ∈ (ti, ti+1],

Xζ,ν
t = Xζ,ν

ti
+

∫ t

ti

(bs(X
ζ,ν
s ) + σs(X

ζ,ν
s )φi(W·∧ti))ds +

∫ t

ti

σs(X
ζ,ν
s )dWs

14



where W is a Brownian motion under P, while

Xζ
t = Xζ

ti
+

∫ t

ti

(bs(X
ζ
s ) + σs(X

ζ
s )φi(W

ν̃
·∧ti))ds +

∫ t

ti

σs(X
ζ
s )dW

ν̃
s

where W ν̃ is a Brownian motion under Pζ,ν̃. This implies that the law of (Xζ,ν , ν) under

P is the same as the law of (Xζ , ν̃) under Pζ,ν̃. In view of Lemma A.4, Eζ,ν0,T [g(X
ζ,ν
T )] and

Ẽζ,ν̃0,T [g(X
ζ
T )] can be approximated by the same sequence of real numbers and are therefore

equal.

2. The fact that for each ν̃ ∈ Ũ simple we can find ν ∈ U such that

Eζ,ντ,T [g(X
ζ,ν
T )] = Ẽζ,ν̃τ,T [g(X

ζ
T )]

follows from similar arguments.

3. To conclude the proof it remains to show that

Yζτ = sup{Eζ,ντ,T [g(X
ζ,ν
T )], ν ∈ U simple} and Ỹζτζ = sup{Ẽζ,ν̃τ,T [g(X

ζ
T )], ν̃ ∈ Ũ simple}.

We only prove the first identity, the second one being derived similarly. One inequality is

trivial. Conversely, given any predictable and bounded process φ, we can find a bounded

sequence of simple adapted processes (φn)n≥1 such that E[
∫ T

0 |φns − φs|
2ds] → 0. By (2.2)-

(2.8), νn := σ(Xζ,νn)φn ∈ U . In particular, it follows from (2.2) that Xζ,νn converges in S2

to Xζ,ν in which ν := σ(Xζ,ν)φ. Hence, after possibly passing to a subsequence,

lim inf
n→∞

g(Xζ,νn
T ) ≥ g(Xζ,ν

T )

since g is assumed to be lower-semicontinuous. By the comparison principle, Lemma A.2,

we have

Eζ,ν
n

τ,T [g(Xζ,νn

T )] ≥ Eζ,ν
n

τ,T [g(Xζ,ν
T ) ∧ g(Xζ,νn

T )]

in which g(Xζ,ν
T ) ∧ g(Xζ,νn

T ) → g(Xζ,ν
T ) a.s. and in L2 by dominated convergence, recall

(2.4). We also have

E

[
∫ T

τ

|δs(νs)− δs(ν
n
s )|

2ds

]

→ 0

since (δt)t≤T is equi-Lipschitz by (2.8). Then, Lemma A.2 implies that

lim inf
n→∞

Eζ,ν
n

τ,T [g(Xζ,νn

T )] ≥ lim
n→∞

Eζ,ν
n

τ,T [g(Xζ,ν
T ) ∧ g(Xζ,νn

T )] = Eζ,ντ,T [g(X
ζ,ν
T )].

✷

4.3 Connection with the reflected backward stochastic differential equa-

tion

We now show that Ỹζ identifies as the first component of the minimal super-solution of the

backward stochastic differential equation with constraint BSDEK(f, g, ζ).

Theorem 4.1. For all ζ ∈ D2, there exists Z̃ζ ∈ H2 such that (Ỹζ , Z̃ζ) is the minimal

supersolution of BSDEK(f, g, ζ).
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Proof. The proof is standard and written in the spirit of [6, Proof of Proposition 2.5].

1. Similar arguments as in the proof of Proposition 3.2 show that Ỹ satisfies a dynamic

programming principle: for all ϑ1 ≤ ϑ2 ∈ T , such that τζ ≤ ϑ1, we have

Ỹζϑ1 = ess sup
ν∈U

Ẽζ,νϑ1,ϑ2 [Ỹ
ζ
ϑ2
]. (4.6)

We also observe that Ỹζ is càd. This follows from Proposition 4.1 and Proposition 3.5.

Then, the non linear Doob-Meyer decomposition of [10, Theorem 3.3] implies the existence

of Z̃ζ,ν ∈ H2(P
ν,ζ) and of a càdlàg non-decreasing adapted process K̃ζ,ν such that

Ỹζϑ = g(Xζ
T ) +

∫ T

ϑ

(

fs(X
ζ
s , Ỹ

ζ
s , Z̃

ζ,ν
s )− δs(νs)

)

ds−

∫ T

ϑ

Z̃ζ,ν
s dW ζ,ν

s + K̃ζ,ν
T − K̃ζ,ν

ϑ , ϑ ≥ τζ .

By identification of the Itô decomposition under each Pζ,ν, we obtain Z̃ζ,ν = Z̃ζ,0 =: Z̃ζ .

Moreover, (4.1) implies that for any ν ∈ U and ϑ ∈ Tτζ

K̃ζ,0
T −K̃ζ,0

ϑ = K̃ζ,ν
T −K̃ζ,ν

ϑ +

∫ T

ϑ

(Z̃ζ
sσ

−1(Xζ
s )νs− δs(νs))ds ≥

∫ T

ϑ

(Z̃ζ
sσ

−1(Xζ
s )νs− δs(νs))ds ,

since K̃ζ,ν is non-decreasing. By using a similar measurable selection argument as in the

proof of Proposition 3.1, this shows that

inf
|u|=1

(δ(u) − Z̃ζσ−1(Xζ)u) ≥ 0 dt⊗ dP-a.e. ⇔ Z̃ζσ−1(Xζ) ∈ K dt⊗ dP-a.e.,

see e.g. [11]. Since K̃ζ,0 is non-decreasing, writing the above for ν = 0 implies that (Ỹζ , Z̃ζ)

is a super-solution of BSDEK(f, g, ζ).

2. We now prove the minimality property. If (U, V ) is a super-solution of BSDEK(f, g, ζ),

then it follows from the definition of δ and (4.1) that it is also a super-solution of (4.2)

with G = g(Xζ
T ), for each ν ∈ U . In particular, U ≥ Ẽζ,ν·,T [g(X

ζ
T )], and we conclude by

arbitrariness of ν ∈ U . ✷

5 Possible extensions

In order to focus on the main ideas, we have restricted ourselves to a rather stringent

framework. Some of the conditions used in this paper can certainly be weakened on a case

by case basis. We discuss here some straightforward extensions or variations.

5.1 Invertibility condition

We have assumed that σ is invertible but all our arguments go through if we add a compo-

nent Xo to X which has a dynamic of the form

dXo
t = bot (X

o
t ,Xt)dt

with bo Lipschitz and bounded in space, uniformly in time. Then Xζ,ν has to be replaced

by X̄ζ,ν = (Xo,ζ,ν ,Xζ,ν) with dynamics

dX̄ζ,ν
t =

(

bot (X̄
ζ,ν
t )

bt(X̄
ζ,ν
t ) + νt

)

dt+

(

0

σt(X̄
ζ,ν
t )

)

dWt.
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The face-lift of g is defined accordingly

ĝ(xo, x) := sup
u∈Rd

(g(xo, x+ u)− δT (u)) ,

and so on.

The case of a general non-invertible coefficient σ can be treated along the lines of [3], in

which it is explained how the face-lift should then be performed.

5.2 Direct constraint on the gains-process

The contraint (2.6) is motivated by financial applications in which the component V can be

interpreted as the number of risky assets X held in an hedging portfolio for the contingent

claim g(Xζ
T ), see [4]. It can be replaced by

V ∈ K dt⊗ dP−a.e on [[τζ , T ]], (5.1)

when σ does not depend on x.

In this case, Xζ,ν must be taken of the form

dXζ,ν
t =

(

bt(X
ζ,ν
t ) + σtνt

)

dt+ σtdWt.

If one assumes that t 7→ σt is right-continuous on [0, T ) and left-continuous at T , then

(2.12)-(3.5) become

ĝ(x) = sup
u∈Rd

(g(x+ σTu)− δT (u))

Yζτζ = ess sup
u∈L∞(Rd,Fτζ

)

(Y
(τζ ,ξζ+στζu)
τζ − δτζ (u)) a.s. on {τζ < T}.

The change of measure for the weak formulation is

dPζ,ν

dP
= e

− 1
2

∫ T

τζ
|νs|2ds+

∫ T

τζ
νsdWs

.

In particular, we do not need σ to be invertible anymore.

The results of Theorem 2.1 are obtained by following step by step the arguments used in

this paper up to the modifications described above.

Moreover, the boundedness condition (2.8) can then be weakened. Indeed, it can be

avoided by using (2.9)-(2.10) in all our proofs, except in the proof of Proposition 4.1 in

which it is used twice. First to ensure that the controls ν constructed from the families

(φi)i≤n satisfy δ(ν) < ∞. But in the case (5.1), the ν’s are of the form
∑n−1

i=0 φi1(ti,ti+1].

Taking δti(φi) < ∞ is then enough. It is also used in the approximation argument of Step

3, as it implies that (δt)t≤T is equi-Lipschitz, but for the constraint (5.1), it suffices to

assume, for instance, that the domain of δt does not depend on t, which means that the

directions in which Kt is bounded do not depend on t. This is not enough when ν is of the

form used in the proof of Proposition 4.1 because of the transformation through the matrix

σ, unless additional assumptions are made on it.

Our arguments are not valid if σ depends on x because the coefficients driving Xζ,ν are

no more Lipschitz uniformly in the control. This is crucial for Corollary 3.1.
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5.3 Optimal control of constrained BSDEs

One can allow the coefficients b, σ and f to depend on an additional control α in a set A of

predictable processes with values in a compact set A ⊂ Rd. Then, all our proofs go through

whenever the conditions (2.2)-(2.3) are uniform with respect to this additional control, and

the coefficients are continuous in this additional variable. The arguments used in Section

3 do not change. It is the same for Section 4.3, for α ∈ A given. However, a continuity

assumption on the coefficients with respect to the control will be required to prove the

counterpart of Proposition 4.1: the approximation by step constant processes has to be

applied to (ν, α) in place of ν.

5.4 Random coefficients with delay

One can also assume that the coefficients b, σ and f are random, satisfying the usual

predictability condition, whenever the conditions (2.2)-(2.3) are uniform in ω. Again, the

arguments of Section 3 and Section 4.3 do not change. However, the proof of Proposition

4.1 can not be adapted unless the dependence holds with a fixed delay: there exists ι > 0

such that, for all t ≤ T , bt, σt, ft depends on ω only through (ωs)s≤t−ι. With this condition,

Steps 1. and 2. remain correct for simple processes associated to a time grid {ti, i ≤ n} such

that max{ti+1− ti, i ≤ n−1} ≤ ι. As in the optimal control case, Step 3 also requires some

continuity of the coefficient in ω, e.g. uniform continuity for the usual sup-norm topology.

A Auxiliary results

We collect here some standard results that have been used all over this paper.

In this section, we denote by Db the set of measurable maps ψ : Ω× [0, T ]×Rd ×R 7→ R

such that (ψt(y, z))t≤T is progressively measurable for all (y, z) ∈ R× Rd 7→ R and

|ψ(y, z) − ψ(0)| ≤ Lψ(|y|+ |z|) for all (y, z) ∈ R× Rd, dt⊗ dP− a.e.

for some constant Lψ > 0. Given (ϑ,G) ∈ D2 and τ ∈ T such that τ ≤ ϑ, we set

Eψτ,ϑ(G) := Uτ where (U, V ) ∈ S2 ×H2 is the solution of

Ut∨τ = G+

∫ ϑ

t∨τ
ψs(Us, Vs)ds −

∫ ϑ

t∨τ
VsdWs, t ∈ [0, T ]. (A.1)

Lemma A.1. Fix ψ ∈ Db and (ϑ,G) ∈ D2. Then, for all τ ∈ T such that τ ≤ ϑ:

(a) We have

Eψτ,ϑ(G) = Eτ [H
τ
ϑG+

∫ ϑ

τ

Hτ
sψs(0)ds]

where Hτ solves

Hτ = 1 +

∫ ·

τ

κYt H
τ
t dt+

∫ ·

τ

κZt H
τ
t dWt

for some predictable processes κY and κZ that are bounded by a constant which only

depends on Lψ.
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In particular, if there exists a constant c > 0 such that E[|G|2] ≤ c and |ψ(0)| ≤ c

dt⊗ dP, then

|Eψτ,ϑ(G)− Eτ [G]| ≤ C Eτ [ϑ− τ ]
1
2 ,

for some C > 0 which depends only on c and Lψ.

(b) If (U, V ) ∈ S2 ×H2 satisfies

Ut∨τ ≤ G+

∫ ϑ

t∨τ
ψs(Us, Vs)ds−

∫ ϑ

t∨τ
VsdWs, t ∈ [0, T ],

then

Uτ ≤ Eτ [H
τ
ϑG+

∫ ϑ

τ

Hτ
sψs(0)ds]

where Hτ is defined as in (a).

Proof. This follows from a standard linearization argument, see e.g. [9, Proof of Theorem

1.6]. ✷

Lemma A.2. Fix ψ1, ψ2 ∈ Db and (ϑ,G1), (ϑ,G2) ∈ D2.

(a) Assume that there exists a process κ such that

|ψ1 − ψ2|(θ) ≤ κ dt⊗ dP

for all θ ∈ R×Rd. Then, for all τ ∈ T such that τ ≤ ϑ,

|Eψ
1

τ,ϑ(G1)− Eψ
2

τ,ϑ(G2)| ≤ CEτ

[

|G1 −G2|
2 +

∫ T

τ

|κs|
2ds

]

1
2

where C > 0 is a constant which depends only on Lψ1 and Lψ2 .

(b) Assume that G1 ≤ G2 and ψ1(θ) ≤ ψ2(θ) dt⊗ dP for all θ ∈ R×Rd. Then, Eψ
1

τ,ϑ(G
1) ≤

Eψ
2

τ,ϑ(G
2) for all τ ∈ T such that τ ≤ ϑ.

Proof. The first assertion follows from [9, Theorem 1.5]. The second one is [9, Theorem

1.6]. ✷

Lemma A.3. Let (Gε)ε>0 be a family of random variable, uniformly bounded in L1, and

let G ∈ L1 be such that lim infε→0Gε ≥ G. Let (τε)ε>0 be a sequence of stopping times such

that limε→0 τε = τ ∈ T . Then, there exists a sequence (εn)n≥1 ⊂ (0, 1) such that

lim inf
n→∞

Eτεn [Gεn ] ≥ Eτ [G] and lim
n→∞

εn = 0.

Proof. We write

Eτε [Gε] = Eτε [G] + Eτε [Gε −G] ≥ Eτε [G]− Eτε [(Gε −G)−].

The first term on the right-hand side converges a.s. to Eτ [G] by the continuity of the

martingales in a Brownian filtration. The second term converges in L1 to 0, and therefore

a.s. along a subsequence. ✷
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Lemma A.4. Fix ψ ∈ Db, G ∈ L2(FT ). Set tni := iT/n for i ≤ n, n ≥ 1, and define

recursively for i = n− 1, . . . , 0

Untni = Etni [U
n
tni+1

+

∫ tni+1

tni

ψs(U
n
tni
, V n

tni
)ds] , V n

tni
= (tni+1 − tni )

−1Etni [U
n
tni+1

(Wtni+1
−Wtni

)]

in which UnT := G. Then, Un0 → Eψ0,T [G] as n→ ∞.

Proof. It suffices to repeat the argument of [2, Proof of Theorem 3.1] and observe that their

estimate contained in [2, Lemma 3.2] is not needed if we are not interested by the speed

of convergence. Indeed, one can simply use the fact that, if (U, V ) denotes the solution of

(A.1) with τ = 0, then

max
1≤i≤n

E[ sup
tni−1≤t≤t

n
i

|Ut − Utni−1
|2] +

n
∑

i=1

E[

∫ tni

tni−1

|Vt − V̄ n
tni−1

|2dt] → 0,

in which

V̄ n
tn
i−1

:= (tni − tni−1)
−1Etni−1

[

∫ tni

tni−1

Vtdt].

The convergence of the left-hand side term is standard, it follows from the continuity of

the path of U which belongs to S2. The convergence of the second term is also clear since

V̄ n provides the best approximation of V in L2(dt ⊗ dP) by a step constant process on

{tni , i ≤ n}. ✷
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