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Abstract

Recently, greedy algorithm has received much attention @ssteffective means to reconstruct the
sparse signals from compressed measurements. Much obpsawiork has focused on the investigation
of a single candidate to identify the support (index set afzavo elements) of the sparse signals. Well-
known drawback of the greedy approach is that the choseridzteds often not the optimal solution due
to the myopic decision in each iteration. In this paper, weppse a greedy sparse recovery algorithm
investigating multiple promising candidates via the trearsh. Two key ingredients of the proposed
algorithm, referred to as the matching pursuit with a treenprg (TMP), to achieve efficiency in the
tree search are thee-selection to put a restriction on columns of the sensing matrix to bestigated
and thetree pruning to eliminate unpromising paths from the search tree. In @ufgpmance guarantee
analysis and empirical simulations, we show that TMP isctiffe in recovering sparse signals in both

noiseless and noisy scenarios.

Index Terms

Compressive sensing, greedy tree search, sparse signakrgcrestricted isometry property.
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. INTRODUCTION

In recent years, compressive sensing (CS) has received attarftion as a means to recover sparse

signals in underdetermined system [L]Z[13]. Key findingh&f €S paradigm is that one can recover signals
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Fig. 1.

residual is larger than the threshald

lllustration of the proposed TMP algorithm. Pathhwitotted box is pruned from the tree since the magnitude of the

with far fewer measurements than traditional approachesassong as the signals to be recovered are
sparse and the sensing mechanism roughly preserves thgy exiesignals of interest.
It is now well known that the problem to recover the sparegtalix using the measuremengs= ®x

is formulated as thé,-minimization problem

subject toy = ®x Q)

min ||x]|o
X

where® € RM*N s often called sensing matrix. Since solving this problsntémbinatoric in nature
and known to be NP-hard|[1], early works focused on theelaxation method, such as Basis Pursuit
(BP) [1], BP denoising (BPDN)_[14] (also known as Lassb [&)d Dantzig selector [6]. Another line
of research receiving much attention in recent years is edyrapproach. In a nutshell, greedy algorithm
attempts to find the support (index set of nonzero entrieghirterative fashion, returning a sequence of
estimates of the sparse input vector. Although the greeglyrithm, such as orthogonal matching pursuit
(OMP) [7], is relatively simple to implement and also congtignally efficient, performance is in general
not so appealing, in particular for the noisy scenario.

The aim of this paper is to introduce an efficient tree seatgbrithm to recover the sparse signal
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referred to as thenatching pursuit with a tree pruning (TMP). Our approach significantly reduces
the computational burden of the exhaustive search yet aehiexcellent recovery performance in both
noiseless and noisy scenarios. Two key ingredients of th® Elgorithm accomplishing this mission
are thepre-selection to put a restriction on columns ap to be investigated and theee pruning to
eliminate unpromising paths from the search tree. In thesplection stage, we choose a small number
of promising columns in the sensing matrix using a convemigreedy algorithm. If we denote the set
of column indices obtained in the pre-selection stag®athen we setV > |0| > K where K is the
sparsity of the input vectot|k||o = K). When we construct the tree for the search, we only use eltsme
of © as a child node in the branching process so that relentlesgtiyiof the tree can be prevented. In
our empirical results, we show that TMP achieves near bafipeance only with|©| ~ 2K. Once the
pre-selection is finished, a tree search is performed to fasd dstimate of support using the pre-selected
set®. As mentioned, when we select the child node (new estimatieofsupport element), we only
consider the elements 6. As a result, the number of all possible paths in the treedsced from(})

to (‘2'). While this reduction is phenomenal, searching all of thissstill computationally demanding,
in particular for largeN and nontrivial K. In order to alleviate computational burden and at the same
time maintain the effectiveness of the search, we introducaggressive tree pruning strategy by which
unpromising paths are removed from the tree. Note that tfoperthe tree pruning, we need to compare
the cost function/(A) = |ly — ®axal|2 of the full-blown candidate\ (||Alo = K) against a pruning
threshold. However, direct evaluation #fA) is not possible in the middle of search due to the causality
of the search process so that we combine already selectegsnhenceforth dubbed as theusal ser)

and roughly estimated indicesocausal set). If this roughly estimated cost function is greater than the
deliberately designed pruning thresheldi.e., J(A) > ¢), further investigation of the path is hopeless
and hence we prune the path from the tree immediately.

In our analysis, we show that the proposed method can aetyidentify the support ofK-sparse
signal and hence reconstruct the original sparse signalraiedy in the noiseless setting if the sensing
matrix satisfies the property so called restricted isompngperty (RIP) (Theorerh 3.9). In the noisy
setting, we show that the accurate identification of supjsopssible if the signal power is sufficiently
larger than the noise power (Theorem 3.18). In our empisallations, we confirm that TMP performs

close to an ideal estimaﬂ)(often called Oracle estimatdr [15]) in the high SNR regime.

1The estimator that has a prior knowledge on the support fwbiznponent of the sparse vector is zero or not) is oftendalle

Oracle estimator.
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TABLE |

THE TMP ALGORITHM

Input: measuremeny, sensing matrix®, sparsity K, initial thresholde;
Output: Estimated signak

Initialization: i := 0, S° := ()

O = foreselectiony, ®, p) (preselection)
while ¢ < K do
=1+ 1, S = 0, €41 := €&
for [ =1to |S°!| do
0:=0\510)
for j =1 to |0 do
=51 u{si(h)} (update j-th path)
if 5% ¢ S° then (check the duplicated path)

K =arg max | @i 63' 2 (support estimation)
sCi2,

|s|=K—i
s =351 uUsk,, rox = Pj_,‘fy
if ||r§{< |2 < €; then (pruning decision)
Sti=5tu s, If =5
if ||[r7= ]2 < €41 then
€ir1 = ||rr ||, (update pruning threshold)
end if
end if
end if
end for
end for
end while

return X" = <I>J}*y (signal reconstruction)

The foreseleciiof -) IS @ function to choose multiple promising indices (see iBadi.A).

The rest of this paper is organized as follows. In Sedtibwé,introduce the proposed TMP algorithm.
In SectionTll, we analyze the recovery condition under WhidMP identifies the support accurately in
the noiseless and noisy scenarios. In Sedtidn IV, we praideempirical results and then conclude the

paper in Section V.

Il. MATCHING PURSUIT WITH A TREE PRUNING

The proposed TMP algorithm consists of two steps: pre-Sele@and tree search. We first describe

the pre-selection process and then discuss the efficieatigreee search.
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A. Pre-selection: A First Stage Pruning

The purpose of the pre-selection is to estimate indicesafealiighly likely to be the elements of support
T. Alternatively put, we do our best guess to choose columrsensing matrix that are associated with
nonzero elements of the sparse vector. Denoting the sedafeis aso, then the search set is reduced
from Q = {1,2,--- ,N} to ©, a small subset of). When we perform the tree search, we only use
elements of the pre-selected &etis a new element in the child paths so that we can limit the eumb
paths in the tree and eventually reduce the search compléxithe construction 08, one can basically
use any sparse recovery algorithm returning more tRaindices. Well-known examples include the

OMP algorithm running more than K-iteratioris [16] or the gealized OMP algorithm [17].

B. Tree Search with Pruning

Once the pre-selection is finished, we perform the tree baardentify the support. In this setting, the
tree has a maximum dep#i, and the goal is to find a path with dep#h (i.e., candidate with cardinality
K) that has the smallest cost functioitA) = ||y — ®axa|2. This cost function is often referred to as
lo-norm of the residuaty, =y — ®,x,. In each iteration, new child path is generated by adding new
element to the existing path. If we denote the Bahlayer (iterationy assi, thensd} = {sq,s2, - s;} is
the causal set chosen in the fifsterations. Since visiting all possible child nodes to find the optimal
solution is clearly prohibitive, we introduce an aggresgivuning strategy to remove unpromising paths
from the tree. This pruning decision is done by comparingdbs function of the path and the pruning
threshold chosen by the smallest cost function of all patbised.

It is worth mentioning that in contrast to typical tree séaproblems, it is not easy, and in fact
not possible, to decide the pruning of a path using the casetabnly. We note that in many tree
search problems, the cost function of the pattreases monotonically with the iteration (e.g., Viterbi
decoding algorithm for maximum-likelihood detection) [2f20]. Therefore, if a path whose partial
cost function generated by the contributions of causal patly exceeds the cost function of already
visited full-blown path, the path under investigation canbe the solution of the problem and hence
can be pruned immediately from the tree (see Eig. 3). Thimipgustrategy, unfortunately, cannot be
applied to the problem at hand since the partial cost functichich corresponds to the magnitude of

the residual, is anonotonic decreasing function of the iteraticHl To make a proper decision, therefore,

2In this paper, we use path and candidate interchangeabparticular, we denote a full-blown pa@f by candidate.

3|f §21 C §§+1, then||r§§ Hz > ||I‘§i+1 ||2
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Fig. 2. The pruning operation of TMP in thieth layer wherej is the index of column ir®\ 5°~'. Note that TMP investigates

each paths! and performs the pruning of the path||if§§U§g<+] |2 > e

we have no way but to consider the cost function of full-blopath and hence need a noncausal set
§{i1 = {Si+1, Si+2, -, Sk} in the pruning process. This noncausal éﬁtl is temporarily needed for
the pruning operation and can be easily obtained by chodsingi indices of columns irf2\ 8¢ whose

magnitude of the correlation with the residugl is maximzﬂ. That is,

K /
§;h1 = arg max ||P.rs 2
1+1 gsCQ\§§, H 7511192 ( )
|s|=K—1
where
rg = y— PgXg,
.ot
For example, ifK —i =2, Q\ & ={5,7,9,11,--- }, and
/ / / /
|97rsi| > |Qhirs| > |d5Ts| > |dors| > -+,

“Instead of a single-shot process choosltig-i indices simultaneously, noncausal §t, can be chosen by running multiple

iterations for better judgement.
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final cost function of path 2 so that path1l carban optimal of path2, it does not necessarily mean that tiag fiost
solution. function path1 is smaller than that of path 2.

Fig. 3. Cost function of the path: (a) conventional tree gleand (b) proposed tree search.

then the noncausal set i, = {7,11}.

Onceroughly estimated candidatef = s U §{i1 is obtained, we compute the residugk =y —
Porxgr (Xgx = ¢;¥y) to decide whether to prune this path or not. To be specifithaf/o-norm of
the residual is greater than the threshel@.e., [r;x[[2 > ¢), then the path has little hope to survive
and hence is pruned immediately (see Eig. 1). Note that theipg threshold: is initialized to a large
number and whenever the search of a layer is finished, updatie@ minimum/s-norm of the residual
among all survived paths & min ||r;x|2). Once the search is finished, a path with the minimum cost

function is chosen as the final output of TMP. We summarizeptioposed TMP algorithm in Tablé I.

[1l. PERFORMANCEANALYSIS
In this section, we analyze the recovery conditions undectviiMP can accurately identifjx -sparse
signals in noiseless and noisy scenarios. In our analysisyse the restricted isometry property (RIP)

of the sensing matrix.
Definition 3.1: The sensing matriXp is said to satisfy the RIP of ordek if there exists a constant

d(®) € (0,1) such that
(1= a(®@)xl3 < |®x]3 < (1+ 8(2))lI13

for any K-sparse vectok.
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In particular, the minimum of all constanié®) satisfying Definitior 3.1 is called the restricted isometry
constant (RIC) and denoted By (®). In the sequel, we us&s instead ofdx (®) for brevity.

In our analysis, we use the generalized OMP (gOMP) as a peetim algorithm. The gOMP algorithm
choosed. (> 1) indices in each iteration and henfé indices are chosen in total. Due to the selection
of multiple indices, more than one true indices (indiceshie support) can be chosen in each iteration
and the chance of identifying the support increases sutiestgr17].

The following lemmas are useful in our analysis.

Lemma 3.2: (Lemma 3 in [2]): If the sensing matrix® satisfies the RIP of both ordefs; and K>,
thendx, < dk, for any K1 < K.

Lemma 3.3: (Consequences of RIP [2], [9]): If 0 < ¢ < 1 exists forl C , then for any vector

x € RHI,

(1=6) lIxll2 < | @7 rx]l2 < (1+ 1) 1|2,

-1
[xll2 < || (®7®1)  xl2 < . [1x]]2-

1
1+ (5|]| — 5|I|
Lemma 3.4: (Lemma 2.1 in [4]): LetI, Is C QandI; NIy = 0. If 0 < dj7,4 5, < 1 exists, then

17, @ 1,x|2 < 01,412

A. Recovery from Noiseless Measurements

In this subsection, we analyze a condition ensuring that Tid€overs the original sparse signal
accurately from the noiseless measurements. As mentidh&@,consists opre-selection andtree search.
In our analysis, we show that the recovery condition of TMmRd@s much different from the condition
of the pre-selection only and in fact guaranteed under melexed RIP bound (see Theoréml3.9).

In order to ensure the accurate identification of the supfaviP should satisfy the following two
conditions:

1) At least one support index should be selected in the gestsen process (i.e1 N O # ().

2) At least one true pﬁmhould be survived in the tree pruning process.
The following Theorem describes the condition ensuring Htaleast one support is identified by the

pre-selection stage.

SIf 5% is a true path, it contains indices only i (5 C 7).
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Theorem 3.5 (Recovery condition in first iteration for noiseless scenario [17]): The gOMP algorithm

identifies at least one support index in the first iteratiothé sensing matrixp satisfies

VL

Otk < m 3)

We next analyze the condition ensuring that the final caneigfa of the tree search equals the support
T. In order to guarantegl’ = T, at least one true path should be survived in each layer atidefua
true index should be added to this path.

Before we proceed, we provide definitions useful in our asialyLet\; be the smallest correlation in

magnitude between the residugl and columns associated witlrrect indices. That is,

A= min

/
Tai|.
weET\8 PuTs)

Further, lety’ be the largest correlation in magnitude betwegnand columns associated withcorrect

indices. That is,

7' = max | < Gus T5i >‘.

ueTe
In the following lemmas, we provide a lower bound X¥fand an upper bound of'.

Lemma 3.6: Suppose a path; is contained inT" (i.e., 3 C T), then

N> % ersc [, - (4)
Proof: See AppendiX_A. [
Lemma 3.7: Suppose a path’ is contained inT’, then
P ey ®)
— UK
Proof: See AppendixB. [

As mentioned, in order to recover the original sparse sgradlleast one true path should be survived
in each layer. In other words, when a pathis contained inT" (3} c T), then the noncausal séﬁl
should also be contained ff (i.e., §fi1 C T) and further this path should not be pruned for the accurate

reconstruction of the sparse signals. That is,

‘|r§iU5ﬁ1H = [rr| <e. (6)

Since||rr||2 = 0 for the noiseless scenario, the conditibh (6) always hadsify positivec. Thus, what
we essentially need is a condition ensuring that the notaes chosen fron {2) is containeddh(i.e.,

sk, cT).
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Fig. 4. Comparison betweexi and~* for the true path! (i.e., 3 C T). \; is the smallest correlation (in magnitude) between
the residualrgg, and columns associated wiffi\ 51 and~’ is the largest correlation (in magnitude) betwegg and columns

associated with'®. One can observe that, ¥ > ~¢, then the noncausal s&f is contained inl" (35 = 7'\ §%).

Theorem 3.8: If the causal pattsi contains correct indices only, then the noncausak&gt of TMP
consist only of correct ones under
1

5M< g (7)

for anyi (0 <i < K —1). In other words 5§ (= i UK ,) =T underdy, < 1.

Proof: Since the indices of columns highly correlated with are chosen as elements iij (see
@), if A" is larger tham, then the noncausal s&k , is contained inl” (55, = 7'\ §}). In other words,
55 =T under

N> At (8)

Using Lemmd_3J6 and 3.7,1(8) holds under

1—90x — 0y
1—-90x

5
2> 1o g I

[ESa¥ .

and henc&y + dx+1 + oy < 1. Further, using Lemma_3.2, we hagé,; < 1, which is the desired
result. [ |
If Theorem[3.5 and 318 are jointly satisfieif{fkl C T for any true pathéi (5i c T) so thatsk =

§1 UK, = T and thuss} will not be pruned from the tree (we recall thii.« |2 = 0 < € for any

November 27, 2024 DRAFT



11

positive €). Therefore, overall recovery condition of TMP for the redéss scenario can be obtained by
combining Theorerh 3|5 and 3.8.
Theorem 3.9 (Recovery condition of TMP): The TMP algorithm identifies the support of ahysparse

signal fromy = ®x accurately if the sensing matri® satisfies the RIP with

5Q<§ if K <AL, )
VL .
0g < ———— otherwise (20)
O VI VE

where@ = max{M, L + K}.
Proof: The conditions[(9) and_(10) are obtained by choosing strictedition between Theorem
3.5 and_3.B. Specifically,

LS S N
VL+VEK = 3 3
otherwise — g < L,
VL +VK
which is the desired result. [ |

Recall that the exact recovery condition of the original g@&lgorithm is [[17]

Ok < % (11)
From [9)-[11), it is clear that TMP provides more relaxed emppound for anyl. < K since f\/;\ﬁ
min{g, \/_+\/_} Even if L = K, TMP is effective since the exact recovery conditions of gOihd
TMP are
1
Or2 < 3
and
1

0 <5
max{M,2K} 3’

respectively. One can observe that in the large dimensgysaém satisfying<? > M, recovery condition
of TMP is better (more relaxed) than the condition of gOMRNi&ir argument holds for other sparse

recovery algorithm (e.g., CoSaMP| [9]).

B. Reconstruction from Noisy Measurements

Now, we turn to the noisy scenario and analyze the conditfoFMP to accurately identify the support

in the presence of noise. Even though the details are a bibetsome, main architecture of the proof is
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reminiscent of the argument in the noiseless scenario.dn fao requirements of TMP to identify the
support are 1) at least one support element should be chosiea pre-selection process (.80 # 0),
and 2) true path< = T') should be survived in the pruning process.

Before we proceed, we provide useful definitions in our asialyFirst, letp be the largest correlation

(in magnitude) between the observatiprand the columns associated with true indices. That is,
— ' vl
p = max|¢jy|

Next, letn be the L-th largest correlation (in magnitude) between the obdiEmway and the columns

associated with incorrect indices. Theris expressed as
. /
= min Y.
7 = min [o

wherel, = arg max | ®)ral2.
\I|=L,ICT*

In the following lemmas, we provide the lower boundo&nd the upper bound of.

Lemma 3.10: p satisfies

1

> |(1— _
p2 = (1= lperl = T+ v (12)
Proof: See AppendekIC. [ |

Lemma 3.11: n satisfies
1

1< = [rarlerlls + VIF LIV (13)
Proof: See AppendekD. [ |

The following theorem provides the condition ensuring thiateast one support element is identified
by the pre-selection stage.
Theorem 3.12: The gOMP algorithm identifies at least one support elemethieifnonzero coefficients

of the original sparse signal satisfy

. ) (\/E+\/E)\/1+5L+K
min |z;| > VI or) \/EsHK”VHQ' (14)

Proof: From definitions ofp andn, it is clear that gOMP selects at least one true index in tls¢ fir

iteration if
p>n. (15)

Using the lower bound of and the upper bound of, we obtain the sufficient condition df (IL5) as

1
72 [0 =80 el = VI SIVIR] > = [nelberls + v+ 812 (16)

November 27, 2024 DRAFT

1
v



13

After some manipulations, we have
(VK +VL)\/1+ 611k
VL(1 - 6k) —VKér1 k¢

Since ||xr||2 > mi,? |z;|, (L7) is guaranteed under
J€

%z ll2 >

[v]l2- (17)

VK L)\/1+6

iy ;| > R EVEVI sy, (18
JET \/f(l—éK)—chSHK

which completes the proof. |

We next analyze the condition under which the true path isiged by the tree pruning stage. In
order to meet this requirement, 1) under the condition thedwsal set is trues{ c T), corresponding
noncausal set should also be tr&éﬁ( C T) and further 2) this true path should not be removed by the
tree pruning (i.e., ifsl =T, then|rsx ]2 < ).

Before we proceed, we introduce two useful definitions inamalysis. Lef3’ be the smallest correlation

in magnitude between; (j € T'\ 8}) andrg;:

B! =arg min |¢,ry
jeT\§§| I

Similarly, leta’ be the largest correlation in magnitude betweger(j € 7¢) and the residuat;; :

T / )
o' = arg grggl%rgg

The following two lemmas provide the lower and upper bountdgioand o, respectively.

Lemma 3.13: If &% contains true indices exclusively, thet satisfies

wzQ—w—?jgymWM—m+mwm (19)

Proof: See AppendiXE. [ |
Lemma 3.14: If 3 contains true indices exclusively, thei satisfies

ol < (5K+1 + 5{<115i§<> Ixpsill2 + v/ 1+ darllvil (20)

Proof: See AppendixF. [ |

Using these lemmas, we can identify the condition guaramgethat the noncausal séffrl of a true
path ¢ C T) is also true.

Lemma 3.15: Suppose a causal pa#f consists of true indices exclusively (i.&% C T, then the
noncausal sef’ | also contains the true ones/(; = T\ 5}) under

2(1 = 0x)V1+0um

1 -0 — 041 —Oum

[vll2. (21)

min |z;| >
JET
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Proof: One can easily show that the noncausal set of any true §jatbntains only true indices if
B> al. (22)
Using Lemmd 3.13 anld 3.114, we obtain the sufficient condiib@2) as

opmo
<1 — oy — ;;) [x\s:ll2 — V1 +mlvl2

1-—
0K 110
<5K+ ML K) sy (23)
After some manipulations, we have
2(1 =946 1+9
> 2L OOVIY oy, %)
1 -0k —0Kk41—0um
Since|lxp\s: [|2 > I_nijr} |z;|, we get the desired result. [ |
J€

Next, we turn to the analysis of the condition under which rttegnitude ofr, becomes the minimum
among all combinations oK indices.

Lemma 3.16: The candidate whose residual is minimum (in magnitude) iesothe support if
1-— 6
wip | > 22 (25)

JET 1-—
In other words,|[rr||2 < |[rsx|2 for any i # T under [(Z!S)
Proof: One can notice that the hypothesis is satisfied if the uppandaf ||rr||2 is smaller than

the lower bound of|r;«||2. First, we obtain the upper bound pfr||» as
lerllz = [Pryll
= Pz (Brxr +v) |2

P72

IN

[[vIl2 (26)

whereP7 =1 — & (<I>’T<I>T)_1 &/, is the projection onto the orthogonal complemenfoénd [26) is
becauseP#®rxr = 0.

Next, we obtain the lower bound dffrsx ||2. For anys] K 4T, we have
Ieglls = 1Pyl
= P& (@x+v)[l2
= HPgl]K (<I>§{<x§{< + P\ s X\ 55 + v)||2
= |[Pac(®pysrxpse + v)ll2 (27)

> |[Pax®pysxxpsiclla — [Paivila (28)
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where the inequality i (27) is becauE’eL <I>_Kx = = 0 and the inequality in[(28) is due to the triangle
inequality. The first term in the right-hand side bf](28) isver bounded as

HPé_IK‘I’T\gﬁxT\g{‘ 2 = [[(T— Py (‘Pégi’gf)_@’g{«)@ﬂg?xﬂg{( Il2
> (| aexpsxllz — | Paxc (R Paxe) ™ e B s xp s 2 (29)
> 1= O [xrysr 2
1 +(5|§{<‘H(‘béfq)gf)_l@%xq)T\gkxT\gk”2 (30)

\% + Bl

> /1= lIxpsrell2 — 7‘\\‘1’ s Pperxperll2 (31)
vV +551 5K—i—T sK

2 /1= Orap s 2 = i nle (32

> V1= b llxp\srll2 — 5 ——IIxp\sxll2 (33)

where [30) is from Definition 311[ (31) is from from Lemmal3a®d [32) and(33) are from Lemrha 3.4
and[3.2, respectively. Using this together witR; vH2 < |Iv]|2, we have

[rsxll2 > /1= 0ok [|xp\sx |2 — 5 ————|Ixp\sxll2 = V]l (34)

for any s{* # T Since||rp|]z < ||rsx |2 always holds if the upper bound ¢z, is smaller than the

lower bound off[r;« |2, it is clear from [26) and(34) that the hypothesis is satisfiader

2(1 - dk)
l[xp\s2¢ |2 > ﬁ\lvllz (35)
Noting that||xz\ s [|2 > mi,? |z;|, we get the desired result. [ |
1 je

Thus far, we investigated the condition under which the aosal set is true when the causal path is
true (Lemma_3.15) and the condition ensuring that the trile ppas the minimum residual (in magnitude)
and hence survives during the tree pruning (Lerhmal 3.16)alRag that the pruning threshold is updated
by the minimum value of the residual (in magnitude) in eagletde = min [|r;«x||2) and a path whose
residual magnitude is larger thanis pruned, the suppoff will never be pruned if the conditions of
Lemmal3.1b an@ 3.16 are jointly satisfied. Formal descriptibour findings is as follows.

Theorem 3.17: The true pathéi C T survives in the pruning process for anyinder

min ;| > max(,) V]2 (36)

2(1—=8x)VI+0m

1-0x—0x+1—0nm "

Proof: Immediate from Lemma_3.15 and 3116. [ |

wherey = 212%) andy =
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By combining the results of pre-selection (Theofem 13.12) tee search (Theoreim 3117), we obtain
the main result for the noisy setting.
Theorem 3.18: The TMP algorithm accurately identifies the support from rilbesy measurement =

dx + v under

min |z5] > ~l[vll2 (37)

2(1—0x 2(1—65)VIHonr (VE+VL) /1461 1k ||v]l2

v = max(v, u,w) and y = 1(_352K)’ W= 1£5K_5)K+1—5M- andv = \/z(l_(;K)_\/ﬁgHK -
Proof: Immediate from Theoreiin 3.112 ahd 3.17. [ |

It is worth noting that undef (37), which essentially copmsds to the high signal-to-noise ratio (SNR)
regime, we can identify the exact support information sd tha can simply remove all non-support
elements (zero entries ix) and columns associated with these from the system modeloihg so, we
can obtain thewverdetermined systemy = ®rxr + v and the reconstructed signal becomes equivalent
to the output of the best possible estimator referred to axl®mrestimatok = <I>r}y.

Using the part of analysis we obtained, we can also show thuailisy of the TMP algorithm. By
stability, we mean that thé-norm of the estimation errdfx — Xz« [|2 = [[x — ‘I’;{(yug is upper bounded
by the constant multiple of the noise power.

Theorem 3.19: The outputx;x of the TMP algorithm satisfies

[ = %, < 7lvll2 (38)

— FD(=0k) 42982k
(1=0k)V1=02rc

Proof: From Definition[311, it is clear that
[®(x — Xg5) |2

V4 5|TU§{<\ .

wherer

[x — Xz l2 < (39)
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Sincex — x is at most2 K -sparse, we further have
[P (x — X55) |2

vV 1- 5|TU§{<\

|®(x — (‘I);{<‘I’§{<)_1‘I’253")|’2

% =%l <

V1= ok
[®x — <I>§{<(<I>’§{<<I>§{<)_1<I>’§{< (@x+v)|2
B V1—dok
B ||P§'{<‘I’T\§{<XT\§{< - P§{<V||2
V1=
_ 1P gic @\ sse x5 |2 + [Pz v 2
- V1—dog
[P o s X sx¢ [l + [ V]2
< K ET\s1 2T\51 (40)
V1=t
Poc®psexpisrlls = 11— @ (B ®i) ™ ) By s X 12

< | @psexpsx o 4 | @ (D axe) T Rl B X s 2 (41)
< /1 + 0 [[xpsel2

+4/1 + dj5x] H(@%K‘I’gK)_l‘b/gK‘bT\ngT\gf 2 (42)
< 1 dmer|lIxpsxlle + ——— Isl H‘I’—K‘ﬁT\sKXT\sKlb (43)

\/1+ 5 5K T\sK
< O xesrell2 + St 15‘ A e e o (44)
S v 1+6KHXT\5K”2 e - H T\SKH2 (45)
V1+ 0K

<¢H@mem+jj%ﬂwmmz (46)

1— 0K + 202k

1 on |37\ sx[]2 (47)

where [42) is from Definition 311, an@ (43) arid|(44) are frorminea[3.8 an@ 314, respectively. Plugging
47) into [40), we have

1 -6+ 20 5K
I — g < 220t vl ®)
(1 —=0r)V1— ok V31— 9k
Note that when the support is chosen accuratly= 7 and thus
[x7\sx [l2 = 0. (49)
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Whereas, ifsX # T, then by the contraposition of Theorém :a;La/e have

s ll2 < vVl (50)

for any 55 # T. By combining [49) and{30), we obtain the desired result. [ |

IV. SIMULATION AND DISCUSSIONS
A. Simulation Setup

In this section, we observe the performance of sparse regalgorithms including TMP through
empirical simulations. In our simulations, we generatesparse vectok whose nonzero locations and
coefficients are randomly chosen and the sensing mdiriaf size 100 x 256 whose entries are from
the independent Gaussian distributiaf(0, ﬁ). In each point of the individual recovery algorithm, we
perform at leask = 5,000 independent trials. In the noiseless setting, we use thet ezaovery ratio
(ERR) as a performance measure. In the noisy setting, wehgsenean squared error (MSE) of the

recovery algorithms which is defined as

1 () %O
MSE=2D

wherex(¢) is the estimate of the original sparse sigrél).

We test simulations on the following algorithms:

1) OMP algorithm|[[7]

2) BP algorithm [[5]: we use BP in noiseless setting and bagisyit denoising (BPDN) in noisy
setting.

3) CoSaMP algorithm [9]: we set the maximal number of itenadi to40.

4) gOMP algorithm[[17]: we choose two indices & 2) in each iteration.

5) TMP: we use gOMPI{ = 2) in the pre-selection stage.

6) TMP with limited branching: we set the maximum number dadrwhes in each layeV,.x = 10
and 100).

B. Simulation Results

We first compare the ERR performance of sparse recoveryitilger in the noiseless setting. Main

purpose of this simulation is to observe how much perforraagain can be achieved by the tree search.

®Here, we need to use slightly modified version of Theofeml3a8ch says that f|xzs [l2 > yl[v]l2, then 5 =T.
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o
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[ep)
T
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o
(&)}

0.4}
- & -OMP
0.3 | —&— TMP (OMP)
— © - CoSaMP
0.2 | —e— TMP (CoSaMP)
- B - gOMP
011 | —p— TMP (gOMP, P|=2K) |
0 1 1 1 0 ]
15 20 25 30 35 40

Fig. 5. ERR performance as a function of the sparsityn the noiseless setting. We measure the performance bifereee

search (pre-selection) and after the tree search (TMP).

Since we use the conventional sparse recovery algorithrhanpte-selection process, effectiveness of
the proposed TMP algorithm can be checked by comparing tbaeveey performance before the tree
search (pre-selection only) and after the tree search.dn3;iwe plot the ERR of TMP with various
pre-selection algorithms as a function of the spargity Overall, we observe that the addition of tree
search process provides substantial gain in performamceatticular, whenK is large, performance
gain obtained by the tree search stage is noticeable. WhelR ®Msed as a pre-selection algorithm, for
example, the ERR of TMP before and after the tree seardki at35 are(0.23 and0.89, respectively.

In Fig.[8, we plot the MSE performance of the sparse recoviggrighms as a function of signal-to-

noise ratio (SNR) in the noisy setting. Note that the dec{d&) scale of SNR is defined as SNR
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20

MSE

F| = = =Oracle LS
| —a— BPDN

| ——owmP

| —©— CoSaMP
10_4 - —_—l— gOMP

| —a—TMP (O1=2K,N__ =10)
| ——TMP (O=2K,N__ =100)
| —p— TMP (|0]|=2K) 3
10 .........................................................................

10 15 20 25 30 35 40
SNR (dB)

Fig. 6. MSE performance of sparse recovery algorithifiis= 20) in 100 x 256 system.

101log;g ”ﬁ/’ﬁ!z. In this test, we set the sparsity level 6 = 20 so that8% of entries in the input vector

are nonzero. Overall, we observe that the performance daifivi® improves with SNR. While the
performance gap between the conventional sparse recolgemjtms and Oracle estimator is maintained
across the board, the performance gap between TMP and @staieator gets smaller as SNR increases.
In Fig.[4, a similar simulation as before but with larieis performed. In this simulation, we s&t = 30

so that12% of entries are nonzero. In this case, we clearly see that TiMpeoforms conventional sparse
recovery algorithms and the performance gain improves 8NR. For example, the gain &fSE = 102

is around2 dB but the gain af\/ SE = 10~3 is more thanl0 dB. Also, as it can be seen from the figure
and also in accordance with Theorém 3.18, the performandeM#t is asymptotically optimal in high
SNR regime in the sense that it approaches the MSE perfoemain®racle estimator.
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Fig. 7. MSE performance of sparse recovery algorithms innibisy setting £ = 30).

Fig.[8 shows the running time complexity of the sparse regoakgorithms as a function of the sparsity
level K. All algorithms under test are coded by MATLAB software pagk& and run by a personal
computer with Intel Corebi processor and Microsoft Windows environment. As seen in the figure,
among greedy algorithms under test, OMP exhibits the sstallsmning time. Since TMP performs tree
search to investigate multiple promising paths, it is no @arthat the running time complexity of TMP
is higher than the rest of greedy algorithms. However, bytiilg the number of branching operations,

computational burden of TMP can be reduced dramaticallg ©uhe reduction in number of investigated

21

paths, we can observe that the running time complexity of iR limited branching is much smaller

than that without limitation. In particular, iV, = 10, TMP achieves two order of magnitude reduction

over the original TMP algorithm with only slight loss in permance.
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[ —=—BPDN

10° |- —— OMP

| —©— CoSaMP

B— —#— gOMP

= A -TMP(©=2K,N__ =10)
| - % - TP (@l=2k, N__ =100)| ¥~

Average Running Time

Fig. 8. Average running time of sparse signal recovery dlgms in 100 x 256 system.

V. CONCLUSIONS

In this paper, we proposed a tree search based sparse sgoeéry algorithm referred to as matching
pursuit with a tree pruning (TMP). In order to overcome therstoming of greedy algorithm in choosing
short-sighted candidates, the TMP algorithm performs the tree searchraregiigates multiple promising
candidates. The complexity overhead caused by the treetsisacontrolled by the pre-selection and tree
pruning. In our empirical simulation, we observed that TMvides excellent recovery performance
in both noiseless and noisy scenarios. While TMP is promisfgorithm in terms of the recovery
performance, its complexity is a bit higher than existingegly algorithms and further study is needed.
Our future work will address the complexity reduction issifggreedy tree search algorithm to achieve

better tradeoff between complexity and performance.
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APPENDIXA

PrROOF OFLEMMA [3.6

Let 3 c T and\' = J?Tl\rél (ﬁ;rgi , then by using the triangular inequality, we have
[Pirail = [ldfrsle (51)
= |¢PLyl- (52)
= [|¢jP5 Prsixpsi (53)
> (05 ®r\sixmsill2 — [|9P s Prsi X5t ll2 (54)

wherePé%i =1 & (P, ®;)" ' ®/,. From Definition31L, we have

7
1

¢ @rsixmsills > V1= 6arl|®rysi x5 l2 (55)
> /1= 0y /1 = s g - (56)
Also,
10/ Ps @psixpsilla = [|¢)®si (B Psy) ' @ By sixpsi 12 (57)
> st 41 |(®% Bs) T RL s xat 12 (58)
> 16|_§§54|r; [1®%; @i X741 12 (59)
75;2;1 iTHXT\gg 2 (60)

where [56) is from Definition 311 (55) anfd (60) are from Lem@d, and [(5B) is from Lemma_3.3.
Using (54), [(56), and (60), we have

(@] > (| P s X si 12 — |05P 51 P i X g1 |2
0j3i|+19K
> V1 =0y /1 = draillxsi ll2 — WHXT\Q 2. (61)

Since [61) holds for any € 7'\ 8} and0 < i < K, we have

Ojsi|+10K

Ai > 1—5M 1—5T st XT 8t 2—7HXT sill2 (62)
Y% V1= Oy [y )
OK110
> \/1 — 6M\/1 — 5M”XT\§§ 9 — 11{1_16;{ ”XT\gl1 2 (63)
oMok
> <1 —0p — m) (|37 51 ]2 (64)
1—90g — oy
= 15 Ikl (65)

which is the desired result.
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APPENDIX B

PrROOF OFLEMMA 3.1

Let 3¢ ¢ T andy! = max ‘(b;rg”, then by using the triangle inequality, we have
JET*

|@rsi| = llghrsll (66)
= | ¢[Payll (67)
= ||¢;P§Lg P75 (68)
< || @y g X s s Prysi X\l (69)
Sincej € T¢, we have
[¢;@maixmaille < dmsipllxms |2 (70)

where [70) is from LemmB_3.4. Also,

[07Ps ®raixmalls = [|0;Pa (R4 Ps)” I‘I’/gg‘I’T\éng\éﬂb (71)
SRIPIIEY [C AT FORRL JAL AP (72)
58] +1
< 1'_—5|8H<1>’ (B g X1l (73)
5§§ +15K
% x50 |2 (74)

where [72) and[(74) are from Lemrhal3.4 ahdl (73) is from Lerhma Bsing [69), [(7D), and(T4), we

have

[@irsi] < (9@ & (75)

031 |+10K
< <5|T\§;+1+1'%> x (76)

— Y8

) 6
< (Gwnr+ P I @
)

1 I_{+i{ ||XT\s1 ||27 (78)

which is the desired result.
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APPENDIXC

ProOOF OFLEMMA [3.10

From the definition ofy in (12), we have

— /
p = rjr.leajzd(b]y! (79)
= 27yl (80)
1
> ——|®ryll (81)
\/\T!
= \/——H‘I’T(‘I’TXTJFV)M (82)
1
> — (||®@F®rx — || @)V 83
> \/F(II 1®rx72 — |87 V]2) (83)
where [(81) is from the inequalitiju||,, > \/”—Hqu for any vectoru. Note that
@7 ®rxr|2 > (1 = dK)||x7]l2 (84)

and

[®7v]2 < V1 +dk]v]2 (85)

and thusp is lower bounded as

= [ a0 lerlls — VI oxlvla] (86)

%\

which is the desired result.

APPENDIXD

ProOOF OFLEMMA [3.11

From the definition of; in (12), we have

Ly< > 1¢hyl> =97, yll (87)
jel

wherel;, = arg‘ . nL1 H(I) y|l2. Using the triangle inequality, we have
1@yl = (27, (Rrxr +V)|2 (88)
< [|®], @rxrl2 + |27, V]2 (89)

Sincel;, andT are disjoint {;, C T°), we have
127, @rxr2 < otk [x7l2 (90)
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and

@7, vl < V1+dr|v]2. (91)
Using [90) and[(91), we have

17, yll2 < drsxlxrll2 + V14 0]Vl (92)

and since||® yl2 > vLn, we have

1
1< = [Bundberle + VIF GV (93)

which is the desired result.

APPENDIX E

PrROOF OFLEMMA [3.13

Supposes| C T andf = min |¢rs|, then

JET\3
[@irsi] = l¢hrsille (94)
= /P52 = [1¢/P5 (®rxr + v)l|2 (95)
= [¢/Ps ®rsixs + ¢P5 vl (96)
= ¢ ®rsixrsi — OGP s Py giXp g1 + ¢9P§l§VH2 (97)
> [|¢h P sixrsill2 — 195Psi @i X s ll2 — H%Pglg"”? (98)

and [98) is from the triangle inequality. Since

where [94) is becaus@prsi|l2 = |/|¢)rg > = |djra

@8) is satisfied for any € 7'\ 8}, we have

165@ s xmsilla > V1= 0my/1 =0 lIxmsi 2, (99)

167Ps Brisyxrsilla = [10)8s; (P Bsy) ™ B Brysy X2 (100)
< st 41 (B Bs) T RL P st 12 (101)

O)3i|+1
< 1'_85|Ai||‘1’/§g‘I’T\§§XT\§§||2 (102)

S1

051|410k
< Ik 103
and

I67PEvll2 < V1+0umPEv]s (104)

IN

VIE Ve (105)
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where [99) and[ (104) are from Definitign B.L, (101) ahd {10®) faom Lemmd 314, and (1D2) is from
Lemmal3.8. Finally, sincé (98) is satisfied for ang 7'\ 3}, we have

L= 106
8 ngl{ll (2o (106)
> @i ®rsixpsillz — [|97Ps Brsixpsill2 — ||¢;'P§L3VH2 (107)
O12i1210
|81 +1°K

> (V1-— — i gi| — T —+/

> < L =0yl =0ray) — 7= . ) 1+ 0nlvll2 (108)
) )

> <1 — O — fj%}f) ”XT\gg 2 — V14 dm|vl2 (209)

where [108) is from Lemm@a_3.2.

APPENDIX F

ProOOF OFLEMMA [3.14

Supposes} C T and leta’ = max |¢.r |,
jET* J S

|@irsi] = [ldrs (110)
= |[¢[Paylla = [¢/P5 (@rxr + V)2 (111)
= | ¢[Pa®rsixns + #Px Vo (112)
= ¢ ®raxms — ¢;P§§ P\ s X7\50 + ¢;P§lgv||2 (113)
< || @y g X 51 5 P\ 5 X\ 51 5Vl (114)

where [1ID) is becauspyry: [la = |/|drsi|? = |¢)rail, Po = @gi(@’ﬂ@gi)—lé’gi in @),Pg =
I - P, and [114) follows the triangle inequality. Singec 7, we have

10 ®\s5 < O\sifl (115)
[0/ Ps ®rsixpsilla = [|¢®si (B Ps) ' B Prss (116)
SENIPIIEY [C AT FORRL JAL AP (117)

81+1
= 1'_7%”‘1” (s xs 2 (118)

0151|410k
< gl 119
B 1 —5‘§§| HXT\51H2 ( )

Also,

167P5 vl = V1+0u|Pg vl (120)

VIE Ve (121)
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Using (11%), [(11B), and_(121), we have

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

|| < (@@ sixmsill2 + |05 P s P si X si |2 + |’¢;P§V\‘2 (122)
d)gi |4+10K
< <5T\§§+1 + 1|+5”|> ”XT\§§ 2+ V140Vl (123)
1) )
< <5K+1 + Kji%}f) [x7sill2 + V1 + darl[v]|2. (124)

1
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