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Greedy Sparse Signal Recovery with Tree

Pruning
Jaeseok Lee, Suhyuk Kwon, Jun Won Choi, and Byonghyo Shim

Abstract

Recently, greedy algorithm has received much attention as acost-effective means to reconstruct the

sparse signals from compressed measurements. Much of previous work has focused on the investigation

of a single candidate to identify the support (index set of nonzero elements) of the sparse signals. Well-

known drawback of the greedy approach is that the chosen candidate is often not the optimal solution due

to the myopic decision in each iteration. In this paper, we propose a greedy sparse recovery algorithm

investigating multiple promising candidates via the tree search. Two key ingredients of the proposed

algorithm, referred to as the matching pursuit with a tree pruning (TMP), to achieve efficiency in the

tree search are thepre-selection to put a restriction on columns of the sensing matrix to be investigated

and thetree pruning to eliminate unpromising paths from the search tree. In our performance guarantee

analysis and empirical simulations, we show that TMP is effective in recovering sparse signals in both

noiseless and noisy scenarios.

Index Terms

Compressive sensing, greedy tree search, sparse signal recovery, restricted isometry property.

I. INTRODUCTION

In recent years, compressive sensing (CS) has received muchattention as a means to recover sparse

signals in underdetermined system [1]–[13]. Key finding of the CS paradigm is that one can recover signals
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Fig. 1. Illustration of the proposed TMP algorithm. Path with dotted box is pruned from the tree since the magnitude of the

residual is larger than the thresholdǫ.

with far fewer measurements than traditional approaches use as long as the signals to be recovered are

sparse and the sensing mechanism roughly preserves the energy of signals of interest.

It is now well known that the problem to recover the sparest signalx using the measurementsy = Φx

is formulated as theℓ0-minimization problem

min
x

‖x‖0 subject toy = Φx (1)

whereΦ ∈ R
M×N is often called sensing matrix. Since solving this problem is combinatoric in nature

and known to be NP-hard [1], early works focused on theℓ1-relaxation method, such as Basis Pursuit

(BP) [1], BP denoising (BPDN) [14] (also known as Lasso [5]),and Dantzig selector [6]. Another line

of research receiving much attention in recent years is a greedy approach. In a nutshell, greedy algorithm

attempts to find the support (index set of nonzero entries) inan iterative fashion, returning a sequence of

estimates of the sparse input vector. Although the greedy algorithm, such as orthogonal matching pursuit

(OMP) [7], is relatively simple to implement and also computationally efficient, performance is in general

not so appealing, in particular for the noisy scenario.

The aim of this paper is to introduce an efficient tree search algorithm to recover the sparse signal
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referred to as thematching pursuit with a tree pruning (TMP). Our approach significantly reduces

the computational burden of the exhaustive search yet achieves excellent recovery performance in both

noiseless and noisy scenarios. Two key ingredients of the TMP algorithm accomplishing this mission

are thepre-selection to put a restriction on columns ofΦ to be investigated and thetree pruning to

eliminate unpromising paths from the search tree. In the pre-selection stage, we choose a small number

of promising columns in the sensing matrix using a conventional greedy algorithm. If we denote the set

of column indices obtained in the pre-selection stage asΘ, then we setN ≫ |Θ| > K whereK is the

sparsity of the input vector (‖x‖0 = K). When we construct the tree for the search, we only use elements

of Θ as a child node in the branching process so that relentless growth of the tree can be prevented. In

our empirical results, we show that TMP achieves near best performance only with|Θ| ≈ 2K. Once the

pre-selection is finished, a tree search is performed to find best estimate of support using the pre-selected

setΘ. As mentioned, when we select the child node (new estimate ofthe support element), we only

consider the elements ofΘ. As a result, the number of all possible paths in the tree is reduced from
(

N
K

)

to
(|Θ|
K

)

. While this reduction is phenomenal, searching all of theseis still computationally demanding,

in particular for largeN and nontrivialK. In order to alleviate computational burden and at the same

time maintain the effectiveness of the search, we introducean aggressive tree pruning strategy by which

unpromising paths are removed from the tree. Note that to perform the tree pruning, we need to compare

the cost functionJ(Λ) = ‖y − ΦΛx̂Λ‖2 of the full-blown candidateΛ (‖Λ‖0 = K) against a pruning

threshold. However, direct evaluation ofJ(Λ) is not possible in the middle of search due to the causality

of the search process so that we combine already selected indices (henceforth dubbed as thecausal set)

and roughly estimated indices (noncausal set). If this roughly estimated cost function is greater than the

deliberately designed pruning thresholdǫ (i.e., J(Λ) > ǫ), further investigation of the path is hopeless

and hence we prune the path from the tree immediately.

In our analysis, we show that the proposed method can accurately identify the support ofK-sparse

signal and hence reconstruct the original sparse signal accurately in the noiseless setting if the sensing

matrix satisfies the property so called restricted isometryproperty (RIP) (Theorem 3.9). In the noisy

setting, we show that the accurate identification of supportis possible if the signal power is sufficiently

larger than the noise power (Theorem 3.18). In our empiricalsimulations, we confirm that TMP performs

close to an ideal estimator1 (often called Oracle estimator [15]) in the high SNR regime.

1The estimator that has a prior knowledge on the support (which component of the sparse vector is zero or not) is often called

Oracle estimator.

November 27, 2024 DRAFT



4

TABLE I

THE TMP ALGORITHM

Input: measurementy, sensing matrixΦ, sparsityK, initial thresholdǫ1

Output: Estimated signal̂x

Initialization: i := 0, S0 := ∅

Θ = fpreselection(y, Φ, p) (preselection)

while i < K do

i := i+ 1, Si := ∅, ǫi+1 := ǫi

for l = 1 to |Si−1| do

θ := Θ \ ŝi−1
1 (l)

for j = 1 to |θ| do

ŝi1 := ŝi−1
1 (l) ∪ {si(j)} (update j-th path)

if ŝi1 6∈ Si then (check the duplicated path)

s̃Ki+1=arg max
s⊂Ω,

|s|=K−i

‖Φ′
srŝi

1
‖2 (support estimation)

s̄K1 = ŝi1 ∪ s̃Ki+1, rs̄K
1

= P⊥

s̄K
1

y

if ‖rs̄K
1
‖2 ≤ ǫi then (pruning decision)

Si := Si ∪ ŝi1, I∗ := s̄K1

if ‖rI∗‖2 ≤ ǫi+1 then

ǫi+1 := ‖rI∗‖2 (update pruning threshold)

end if

end if

end if

end for

end for

end while

return x̂∗ = Φ
†
I∗y (signal reconstruction)

The fpreselection(·) is a function to choose multiple promising indices (see Section II.A).

The rest of this paper is organized as follows. In Section II,we introduce the proposed TMP algorithm.

In Section III, we analyze the recovery condition under which TMP identifies the support accurately in

the noiseless and noisy scenarios. In Section IV, we providethe empirical results and then conclude the

paper in Section V.

II. M ATCHING PURSUIT WITH A TREE PRUNING

The proposed TMP algorithm consists of two steps: pre-selection and tree search. We first describe

the pre-selection process and then discuss the efficient greedy tree search.
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A. Pre-selection: A First Stage Pruning

The purpose of the pre-selection is to estimate indices thatare highly likely to be the elements of support

T . Alternatively put, we do our best guess to choose columns ofsensing matrix that are associated with

nonzero elements of the sparse vector. Denoting the set of indices asΘ, then the search set is reduced

from Ω = {1, 2, · · · , N} to Θ, a small subset ofΩ. When we perform the tree search, we only use

elements of the pre-selected setΘ as a new element in the child paths so that we can limit the number of

paths in the tree and eventually reduce the search complexity. In the construction ofΘ, one can basically

use any sparse recovery algorithm returning more thanK indices. Well-known examples include the

OMP algorithm running more than K-iterations [16] or the generalized OMP algorithm [17].

B. Tree Search with Pruning

Once the pre-selection is finished, we perform the tree search to identify the support. In this setting, the

tree has a maximum depthK, and the goal is to find a path with depthK (i.e., candidate with cardinality

K) that has the smallest cost functionJ(Λ) = ‖y −ΦΛx̂Λ‖2. This cost function is often referred to as

ℓ2-norm of the residualrΛ = y −ΦΛx̂Λ. In each iteration, new child path is generated by adding new

element to the existing path. If we denote the path2 at layer (iteration)i asŝi1, thenŝi1 = {s1, s2, · · · si} is

the causal set chosen in the firsti iterations. Since visiting all possible child nodes to find out the optimal

solution is clearly prohibitive, we introduce an aggressive pruning strategy to remove unpromising paths

from the tree. This pruning decision is done by comparing thecost function of the path and the pruning

threshold chosen by the smallest cost function of all paths visited.

It is worth mentioning that in contrast to typical tree search problems, it is not easy, and in fact

not possible, to decide the pruning of a path using the causalset only. We note that in many tree

search problems, the cost function of the pathincreases monotonically with the iteration (e.g., Viterbi

decoding algorithm for maximum-likelihood detection) [18]–[20]. Therefore, if a path whose partial

cost function generated by the contributions of causal pathonly exceeds the cost function of already

visited full-blown path, the path under investigation cannot be the solution of the problem and hence

can be pruned immediately from the tree (see Fig. 3). This pruning strategy, unfortunately, cannot be

applied to the problem at hand since the partial cost function, which corresponds to the magnitude of

the residual, is amonotonic decreasing function of the iteration3. To make a proper decision, therefore,

2In this paper, we use path and candidate interchangeably. Inparticular, we denote a full-blown path̄sK1 by candidate.

3If ŝi1 ⊂ ŝi+1
1 , then‖rŝi

1
‖2 ≥ ‖r

ŝ
i+1
1

‖2.
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Fig. 2. The pruning operation of TMP in thei-th layer wherej is the index of column inΘ\ ŝi−1
1 . Note that TMP investigates

each patĥsi1 and performs the pruning of the path if‖rŝi
1
∪s̃K

i+1
‖2 > ǫ.

we have no way but to consider the cost function of full-blownpath and hence need a noncausal set

s̃Ki+1 = {si+1, si+2, · · · , sK} in the pruning process. This noncausal sets̃Ki+1 is temporarily needed for

the pruning operation and can be easily obtained by choosingK − i indices of columns inΩ \ ŝi1 whose

magnitude of the correlation with the residualrŝi1 is maximal4. That is,

s̃Ki+1 = arg max
s⊂Ω\ŝi1,
|s|=K−i

∥

∥Φ′
srŝi1

∥

∥

2
(2)

where

rŝi1 = y −Φŝi1
x̂ŝi1

,

x̂ŝi1
= Φ

†
ŝi1
y.

For example, ifK − i = 2, Ω \ ŝi1 = {5, 7, 9, 11, · · · }, and

|φ′
7rŝi1 | > |φ′

11rŝi1 | > |φ′
5rŝi1 | > |φ′

9rŝi1 | > · · · ,

4Instead of a single-shot process choosingK−i indices simultaneously, noncausal sets̃Ki+1 can be chosen by running multiple

iterations for better judgement.
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Fig. 3. Cost function of the path: (a) conventional tree search and (b) proposed tree search.

then the noncausal set is̃sKi+1 = {7, 11}.

Onceroughly estimated candidatēsK1 = ŝi1 ∪ s̃Ki+1 is obtained, we compute the residualrs̄K1 = y −
Φs̄K1

x̂s̄K1
(x̂s̄K1

= Φ
†
s̄K1

y) to decide whether to prune this path or not. To be specific, ifthe ℓ2-norm of

the residual is greater than the thresholdǫ (i.e., ‖rs̄K1 ‖2 > ǫ), then the path has little hope to survive

and hence is pruned immediately (see Fig. 1). Note that the pruning thresholdǫ is initialized to a large

number and whenever the search of a layer is finished, updatedto the minimumℓ2-norm of the residual

among all survived paths (ǫ = min ‖rs̄K1 ‖2). Once the search is finished, a path with the minimum cost

function is chosen as the final output of TMP. We summarize theproposed TMP algorithm in Table I.

III. PERFORMANCEANALYSIS

In this section, we analyze the recovery conditions under which TMP can accurately identifyK-sparse

signals in noiseless and noisy scenarios. In our analysis, we use the restricted isometry property (RIP)

of the sensing matrix.

Definition 3.1: The sensing matrixΦ is said to satisfy the RIP of orderK if there exists a constant

δ(Φ) ∈ (0, 1) such that

(1− δ(Φ))‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ(Φ))‖x‖22

for anyK-sparse vectorx.
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In particular, the minimum of all constantsδ(Φ) satisfying Definition 3.1 is called the restricted isometry

constant (RIC) and denoted byδK(Φ). In the sequel, we useδK instead ofδK(Φ) for brevity.

In our analysis, we use the generalized OMP (gOMP) as a pre-selection algorithm. The gOMP algorithm

choosesL (> 1) indices in each iteration and henceLK indices are chosen in total. Due to the selection

of multiple indices, more than one true indices (indices in the support) can be chosen in each iteration

and the chance of identifying the support increases substantially [17].

The following lemmas are useful in our analysis.

Lemma 3.2: (Lemma 3 in [2]): If the sensing matrixΦ satisfies the RIP of both ordersK1 andK2,

thenδK1
< δK2

for anyK1 < K2.

Lemma 3.3: (Consequences of RIP [2], [9]): If 0 < δ|I| < 1 exists forI ⊂ Ω, then for any vector

x ∈ R
|I|,

(

1− δ|I|
)

‖x‖2 ≤ ‖Φ′
IΦIx‖2 ≤

(

1 + δ|I|
)

‖x‖2,
1

1 + δ|I|
‖x‖2 ≤ ‖

(

Φ′
IΦI

)−1
x‖2 ≤

1

1− δ|I|
‖x‖2.

Lemma 3.4: (Lemma 2.1 in [4]): Let I1, I2 ⊂ Ω andI1 ∩ I2 = ∅. If 0 < δ|I1|+|I2| < 1 exists, then

‖Φ′
I1
ΦI2x‖2 ≤ δ|I1|+|I2|‖x‖2.

A. Recovery from Noiseless Measurements

In this subsection, we analyze a condition ensuring that TMPrecovers the original sparse signal

accurately from the noiseless measurements. As mentioned,TMP consists ofpre-selection andtree search.

In our analysis, we show that the recovery condition of TMP isnot much different from the condition

of the pre-selection only and in fact guaranteed under more relaxed RIP bound (see Theorem 3.9).

In order to ensure the accurate identification of the support, TMP should satisfy the following two

conditions:

1) At least one support index should be selected in the pre-selection process (i.e.,T ∩Θ 6= ∅).

2) At least one true path5 should be survived in the tree pruning process.

The following Theorem describes the condition ensuring that at least one support is identified by the

pre-selection stage.

5If ŝi1 is a true path, it contains indices only inT (ŝi1 ⊂ T ).
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Theorem 3.5 (Recovery condition in first iteration for noiseless scenario [17]): The gOMP algorithm

identifies at least one support index in the first iteration ifthe sensing matrixΦ satisfies

δL+K <

√
L√

L+
√
K

. (3)

We next analyze the condition ensuring that the final candidate s̄K1 of the tree search equals the support

T . In order to guaranteēsK1 = T , at least one true path should be survived in each layer and further a

true index should be added to this path.

Before we proceed, we provide definitions useful in our analysis. Letλi be the smallest correlation in

magnitude between the residualrŝi1 and columns associated withcorrect indices. That is,

λi = min
u∈T\ŝi1

∣

∣φ′
urŝi1

∣

∣ .

Further, letγi be the largest correlation in magnitude betweenrŝi1 and columns associated withincorrect

indices. That is,

γi = max
u∈T c

∣

∣< φu, rŝi1 >
∣

∣ .

In the following lemmas, we provide a lower bound ofλi and an upper bound ofγi.

Lemma 3.6: Suppose a patĥsi1 is contained inT (i.e., ŝi1 ⊂ T ), then

λi ≥ 1− δK − δM

1− δK

∥

∥xT\ŝi1
∥

∥

2
. (4)

Proof: See Appendix A.

Lemma 3.7: Suppose a patĥsi1 is contained inT , then

γi ≤ δK+1

1− δK

∥

∥xT\ŝi1
∥

∥

2
. (5)

Proof: See Appendix B.

As mentioned, in order to recover the original sparse signals, at least one true path should be survived

in each layer. In other words, when a pathŝi1 is contained inT (ŝi1 ⊂ T ), then the noncausal sets̃Ki+1

should also be contained inT (i.e., s̃Ki+1 ⊂ T ) and further this path should not be pruned for the accurate

reconstruction of the sparse signals. That is,

‖rŝi1∪s̃Ki+1
‖ = ‖rT ‖ < ǫ. (6)

Since‖rT ‖2 = 0 for the noiseless scenario, the condition (6) always holds for any positiveǫ. Thus, what

we essentially need is a condition ensuring that the noncausal set chosen from (2) is contained inT (i.e.,

s̃Ki+1 ⊂ T ).
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1
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associated withT c. One can observe that, ifλi > γi, then the noncausal sets̄K1 is contained inT (s̄K1 = T \ ŝi1).

Theorem 3.8: If the causal patĥsi1 contains correct indices only, then the noncausal sets̃Ki+1 of TMP

consist only of correct ones under

δM <
1

3
. (7)

for any i (0 ≤ i ≤ K − 1). In other words,̄sK1 (= ŝi1 ∪ s̃Ki+1) = T underδM < 1
3 .

Proof: Since the indices of columns highly correlated withrŝi1 are chosen as elements ofs̃Ki+1 (see

(2)), if λi is larger thanγi, then the noncausal sets̃Ki+1 is contained inT (s̃Ki+1 = T \ ŝi1). In other words,

s̄K1 = T under

λi > γi. (8)

Using Lemma 3.6 and 3.7, (8) holds under

1− δK − δM

1− δK

∥

∥xT\ŝi1
∥

∥

2
>

δK+1

1− δK

∥

∥xT\ŝi1
∥

∥

2
,

and henceδK + δK+1 + δM < 1. Further, using Lemma 3.2, we have3δM < 1, which is the desired

result.

If Theorem 3.5 and 3.8 are jointly satisfied,s̃Ki+1 ⊂ T for any true patĥsi1 (ŝi1 ⊂ T ) so thats̄K1 =

ŝi1 ∪ s̃Ki+1 = T and thusŝi1 will not be pruned from the tree (we recall that‖rs̄K1 ‖2 = 0 < ǫ for any
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positive ǫ). Therefore, overall recovery condition of TMP for the noiseless scenario can be obtained by

combining Theorem 3.5 and 3.8.

Theorem 3.9 (Recovery condition of TMP): The TMP algorithm identifies the support of anyK-sparse

signal fromy = Φx accurately if the sensing matrixΦ satisfies the RIP with

δQ <
1

3
if K < 4L, (9)

δQ <

√
L√

L+
√
K

otherwise (10)

whereQ = max{M,L+K}.

Proof: The conditions (9) and (10) are obtained by choosing stricter condition between Theorem

3.5 and 3.8. Specifically,

if

√
L√

L+
√
K

>
1

3
→ δQ <

1

3

otherwise → δQ <

√
L√

L+
√
K

,

which is the desired result.

Recall that the exact recovery condition of the original gOMP algorithm is [17]

δLK <

√
L√

L+ 2
√
K

. (11)

From (9)-(11), it is clear that TMP provides more relaxed upper bound for anyL < K since
√
L√

L+2
√
K

<

min{1
3 ,

√
L√

L+
√
K
}. Even if L = K, TMP is effective since the exact recovery conditions of gOMP and

TMP are

δK2 <
1

3

and

δmax{M,2K} <
1

3
,

respectively. One can observe that in the large dimensionalsystem satisfyingK2 > M , recovery condition

of TMP is better (more relaxed) than the condition of gOMP. Similar argument holds for other sparse

recovery algorithm (e.g., CoSaMP [9]).

B. Reconstruction from Noisy Measurements

Now, we turn to the noisy scenario and analyze the condition of TMP to accurately identify the support

in the presence of noise. Even though the details are a bit cumbersome, main architecture of the proof is
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reminiscent of the argument in the noiseless scenario. In fact, two requirements of TMP to identify the

support are 1) at least one support element should be chosen in the pre-selection process (i.e.,T ∩Ω 6= ∅),

and 2) true path (̄sK1 = T ) should be survived in the pruning process.

Before we proceed, we provide useful definitions in our analysis. First, letρ be the largest correlation

(in magnitude) between the observationy and the columns associated with true indices. That is,

ρ = max
j∈T

|φ′
jy|.

Next, let η be theL-th largest correlation (in magnitude) between the observation y and the columns

associated with incorrect indices. Thenη is expressed as

η = min
j∈IL

|φ′
jy|.

whereIL = arg max
|I|=L,I⊂T c

‖Φ′
IrΛ‖2.

In the following lemmas, we provide the lower bound ofρ and the upper bound ofη.

Lemma 3.10: ρ satisfies

ρ ≥ 1√
K

[

(1− δK) ‖xT ‖2 −
√

1 + δK‖v‖2
]

(12)

Proof: See Appendex C.

Lemma 3.11: η satisfies

η ≤ 1√
L

[

δL+K‖xT ‖2 +
√

1 + δL‖v‖2
]

. (13)

Proof: See Appendex D.

The following theorem provides the condition ensuring thatat least one support element is identified

by the pre-selection stage.

Theorem 3.12: The gOMP algorithm identifies at least one support element ifthe nonzero coefficients

of the original sparse signalx satisfy

min
j∈T

|xj | >
(
√
K +

√
L)

√

1 + δL+K√
L(1− δK)−

√
KδL+K

‖v‖2. (14)

Proof: From definitions ofρ andη, it is clear that gOMP selects at least one true index in the first

iteration if

ρ > η. (15)

Using the lower bound ofρ and the upper bound ofη, we obtain the sufficient condition of (15) as

1√
K

[

(1− δK) ‖xT ‖2 −
√

1 + δK‖v‖2
]

>
1√
L

[

δL+K‖xT ‖2 +
√

1 + δL‖v‖2
]

. (16)
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After some manipulations, we have

‖xT ‖2 >
(
√
K +

√
L)

√

1 + δL+K√
L(1− δK)−

√
KδL+K

‖v‖2. (17)

Since‖xT ‖2 ≥ min
j∈T

|xj |, (17) is guaranteed under

min
j∈T

|xj | >
(
√
K +

√
L)

√

1 + δL+K√
L(1− δK)−

√
KδL+K

‖v‖2, (18)

which completes the proof.

We next analyze the condition under which the true path is survived by the tree pruning stage. In

order to meet this requirement, 1) under the condition that acausal set is true (ŝi1 ⊂ T ), corresponding

noncausal set should also be true (s̃Ki+1 ⊂ T ) and further 2) this true path should not be removed by the

tree pruning (i.e., if̄sK1 = T , then‖rs̄K1 ‖2 < ǫ).

Before we proceed, we introduce two useful definitions in ouranalysis. Letβi be the smallest correlation

in magnitude betweenφj (j ∈ T \ ŝi1) andrŝi1 :

βi = arg min
j∈T\ŝi1

|φ′
jrŝi1 |.

Similarly, let αi be the largest correlation in magnitude betweenφj (j ∈ T c) and the residualrŝi1 :

αi = argmax
j∈T c

|φ′
jrŝi1 |.

The following two lemmas provide the lower and upper bounds of βi andαi, respectively.

Lemma 3.13: If ŝi1 contains true indices exclusively, thenβi satisfies

βi ≥
(

1− δM − δK+1δK

1− δK

)

‖xT\ŝi1‖2 −
√

1 + δM‖v‖2 (19)

Proof: See Appendix E.

Lemma 3.14: If ŝi1 contains true indices exclusively, thenαi satisfies

αi ≤
(

δK+1 +
δK+1δK

1− δK

)

‖xT\ŝi1‖2 +
√

1 + δM‖v‖2 (20)

Proof: See Appendix F.

Using these lemmas, we can identify the condition guaranteeing that the noncausal set̃sKi+1 of a true

path (̂si1 ⊂ T ) is also true.

Lemma 3.15: Suppose a causal patĥsi1 consists of true indices exclusively (i.e.,ŝi1 ⊂ T ), then the

noncausal set̃sKi+1 also contains the true ones (s̃Ki+1 = T \ ŝi1) under

min
j∈T

|xj | >
2(1 − δK)

√
1 + δM

1− δK − δK+1 − δM
‖v‖2. (21)
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Proof: One can easily show that the noncausal set of any true pathŝi1 contains only true indices if

βi > αi. (22)

Using Lemma 3.13 and 3.14, we obtain the sufficient conditionof (22) as
(

1− δM − δM δK

1− δK

)

‖xT\ŝi1‖2 −
√

1 + δM‖v‖2

>

(

δK+1 +
δK+1δK

1− δK

)

‖xT\ŝi1‖2 +
√

1 + δM‖v‖2. (23)

After some manipulations, we have

‖xT\ŝi1‖2 >
2(1 − δK)

√
1 + δM

1− δK − δK+1 − δM
‖v‖2. (24)

Since‖xT\ŝi1‖2 ≥ min
j∈T

|xj|, we get the desired result.

Next, we turn to the analysis of the condition under which themagnitude ofrT becomes the minimum

among all combinations ofK indices.

Lemma 3.16: The candidate whose residual is minimum (in magnitude) becomes the support if

min
j∈T

|xj | >
2(1 − δK)

1− 3δ2K
‖v‖2. (25)

In other words,‖rT ‖2 < ‖rs̄K1 ‖2 for any s̄K1 6= T under (25).

Proof: One can notice that the hypothesis is satisfied if the upper bound of ‖rT ‖2 is smaller than

the lower bound of‖rs̄K1 ‖2. First, we obtain the upper bound of‖rT ‖2 as

‖rT ‖2 = ‖P⊥
T y‖2

= ‖P⊥
T (ΦTxT + v) ‖2

= ‖P⊥
T v‖2

≤ ‖v‖2 (26)

whereP⊥
T = I−ΦT (Φ′

TΦT )
−1

Φ′
T is the projection onto the orthogonal complement ofT and (26) is

becauseP⊥
TΦTxT = 0.

Next, we obtain the lower bound of‖rs̄K1 ‖2. For anys̄K1 6= T , we have

‖rs̄K1 ‖2 = ‖P⊥
s̄K1

y‖2

= ‖P⊥
s̄K1

(Φx+ v)‖2

= ‖P⊥
s̄K1

(Φs̄K1
xs̄K1

+ΦT\s̄K1 xT\s̄K1 + v)‖2

= ‖P⊥
s̄K1

(ΦT\s̄K1 xT\s̄K1 + v)‖2 (27)

≥ ‖P⊥
s̄K1

ΦT\s̄K1 xT\s̄K1 ‖2 − ‖P⊥
s̄K1

v‖2 (28)
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where the inequality in (27) is becauseP⊥
s̄K1

Φ⊥
s̄K1

x⊥
s̄K1

= 0 and the inequality in (28) is due to the triangle

inequality. The first term in the right-hand side of (28) is lower bounded as

‖P⊥
s̄K1

ΦT\s̄K1 xT\s̄K1 ‖2 = ‖(I −Φs̄K1
(Φ′

s̄K1
Φs̄K1

)−1Φ′
s̄K1

)ΦT\s̄K1 xT\s̄K1 ‖2

≥ ‖ΦT\s̄K1 xT\s̄K1 ‖2 − ‖Φs̄K1
(Φ′

s̄K1
Φs̄K1

)−1Φ′
s̄K1
ΦT\s̄K1 xT\s̄K1 ‖2 (29)

≥
√

1− δ|T\s̄K1 |‖xT\s̄K1 ‖2

−
√

1 + δ|s̄K1 |‖(Φ′
s̄K1

Φs̄K1
)−1Φ′

s̄K1
ΦT\s̄K1 xT\s̄K1 ‖2 (30)

≥
√

1− δ|T\s̄K1 |‖xT\s̄K1 ‖2 −
√

1 + δ|s̄K1 |
1− δ|s̄K1 |

‖Φ′
s̄K1

ΦT\s̄K1 xT\s̄K1 ‖2 (31)

≥
√

1− δ|T\s̄K1 |‖xT\s̄K1 ‖2 −
√

1 + δ|s̄K1 |δK+|T\s̄K1 |
1− δ|s̄K1 |

‖xT\s̄K1 ‖2 (32)

>
√

1− δ2K‖xT\s̄K1 ‖2 −
√
1 + δKδ2K

1− δK
‖xT\s̄K1 ‖2 (33)

where (30) is from Definition 3.1, (31) is from from Lemma 3.3,and (32) and (33) are from Lemma 3.4

and 3.2, respectively. Using this together with‖P⊥
s̄K1

v‖2 ≤ ‖v‖2, we have

‖rs̄K1 ‖2 >
√

1− δ2K‖xT\s̄K1 ‖2 −
√
1 + δKδ2K

1− δK
‖xT\s̄K1 ‖2 − ‖v‖2. (34)

for any s̄K1 6= T . Since‖rT ‖2 < ‖rs̄K1 ‖2 always holds if the upper bound of‖rT ‖2 is smaller than the

lower bound of‖rs̄K1 ‖2, it is clear from (26) and (34) that the hypothesis is satisfied under

‖xT\s̄K1 ‖2 >
2(1 − δK)

1− 3δ2K
‖v‖2. (35)

Noting that‖xT\s̄K1 ‖2 ≥ min
j∈T

|xj |, we get the desired result.

Thus far, we investigated the condition under which the noncausal set is true when the causal path is

true (Lemma 3.15) and the condition ensuring that the true path has the minimum residual (in magnitude)

and hence survives during the tree pruning (Lemma 3.16). Recalling that the pruning threshold is updated

by the minimum value of the residual (in magnitude) in each layer (ǫ = min ‖rs̄K1 ‖2) and a path whose

residual magnitude is larger thanǫ is pruned, the supportT will never be pruned if the conditions of

Lemma 3.15 and 3.16 are jointly satisfied. Formal description of our findings is as follows.

Theorem 3.17: The true patĥsi1 ⊂ T survives in the pruning process for anyi under

min
j∈T

|xj | > max(µ, ω)‖v‖2 (36)

whereµ = 2(1−δK)
1−3δ2K

andω = 2(1−δK )
√
1+δM

1−δK−δK+1−δM
.

Proof: Immediate from Lemma 3.15 and 3.16.
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By combining the results of pre-selection (Theorem 3.12) and tree search (Theorem 3.17), we obtain

the main result for the noisy setting.

Theorem 3.18: The TMP algorithm accurately identifies the support from thenoisy measurementy =

Φx+ v under

min
j∈T

|xj | > γ‖v‖2 (37)

γ = max(ν, µ, ω) andµ = 2(1−δK)
1−3δ2K

, ω = 2(1−δK )
√
1+δM

1−δK−δK+1−δM
, andν =

(
√
K+

√
L)
√

1+δL+K‖v‖2√
L(1−δK)−

√
KδL+K

.

Proof: Immediate from Theorem 3.12 and 3.17.

It is worth noting that under (37), which essentially corresponds to the high signal-to-noise ratio (SNR)

regime, we can identify the exact support information so that we can simply remove all non-support

elements (zero entries inx) and columns associated with these from the system model. Indoing so, we

can obtain theoverdetermined systemy = ΦTxT + v and the reconstructed signal becomes equivalent

to the output of the best possible estimator referred to as Oracle estimator̂x = Φ
†
Ty.

Using the part of analysis we obtained, we can also show the stability of the TMP algorithm. By

stability, we mean that theℓ2-norm of the estimation error‖x− x̂s̄K1
‖2 = ‖x−Φ

†
s̄K1

y‖2 is upper bounded

by the constant multiple of the noise power.

Theorem 3.19: The outputx̂s̄K1
of the TMP algorithm satisfies

∥

∥x− x̂s̄K1

∥

∥

2
< τ‖v‖2 (38)

whereτ = (γ+1)(1−δK )+2γδ2K
(1−δK)

√
1−δ2K

.

Proof: From Definition 3.1, it is clear that

‖x− x̂s̄K1
‖2 ≤

‖Φ(x− x̂s̄K1
)‖2

√

1− δ|T∪s̄K1 |
. (39)
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Sincex− x̂ is at most2K-sparse, we further have

‖x− x̂s̄K1
‖2 ≤ ‖Φ(x− x̂s̄K1

)‖2
√

1− δ|T∪s̄K1 |

=
‖Φ(x− (Φ′

s̄K1
Φs̄K1

)−1Φ′
s̄K1

y)‖2√
1− δ2K

=
‖Φx−Φs̄K1

(Φ′
s̄K1

Φs̄K1
)−1Φ′

s̄K1
(Φx+ v)‖2√

1− δ2K

=
‖P⊥

s̄K1
ΦT\s̄K1 xT\s̄K1 −Ps̄K1

v‖2√
1− δ2K

≤
‖P⊥

s̄K1
ΦT\s̄K1 xT\s̄K1 ‖2 + ‖Ps̄K1

v‖2√
1− δ2K

≤
‖P⊥

s̄K1
ΦT\s̄K1 xT\s̄K1 ‖2 + ‖v‖2√

1− δ2K
(40)

wherePs̄K1
= Φs̄K1

(Φ′
s̄K1

Φs̄K1
)−1Φ′

s̄K1
. Also,

‖P⊥
s̄K1

ΦT\s̄K1 xT\s̄K1 ‖2 = ‖(I −Φs̄K1
(Φ′

s̄K1
Φs̄K1

)−1Φ′
s̄K1

)ΦT\s̄K1 xT\s̄K1 ‖2

≤ ‖ΦT\s̄K1 xT\s̄K1 ‖2 + ‖Φs̄K1
(Φ′

s̄K1
Φs̄K1

)−1Φ′
s̄K1
ΦT\s̄K1 xT\s̄K1 ‖2 (41)

≤
√

1 + δ|T\s̄K1 |‖xT\s̄K1 ‖2

+
√

1 + δ|s̄K1 |‖(Φ′
s̄K1

Φs̄K1
)−1Φ′

s̄K1
ΦT\s̄K1 xT\s̄K1 ‖2 (42)

≤
√

1 + δ|T\s̄K1 |‖xT\s̄K1 ‖2 +
√

1 + δ|s̄K1 |
1− δ|s̄K1 |

‖Φ′
s̄K1

ΦT\s̄K1 xT\s̄K1 ‖2 (43)

≤
√

1 + δ|T\s̄K1 |‖xT\s̄K1 ‖2 +
√

1 + δ|s̄K1 |δK+|T\s̄K1 |
1− δ|s̄K1 |

‖xT\s̄K1 ‖2 (44)

≤
√

1 + δK‖xT\s̄K1 ‖2 +
√
1 + δKδ2K

1− δK
‖xT\s̄K1 ‖2 (45)

<
√

1 + δ2K‖xT\s̄K1 ‖2 +
√
1 + δKδ2K

1− δK
‖xT\s̄K1 ‖2 (46)

<
1− δK + 2δ2K

1− δK
‖xT\s̄K1 ‖2 (47)

where (42) is from Definition 3.1, and (43) and (44) are from Lemma 3.3 and 3.4, respectively. Plugging

(47) into (40), we have

‖x− x̂s̄K1
‖2 <

(1− δK + 2δ2K)‖xT\s̄K1 ‖2
(1− δK)

√
1− δ2K

+
‖v‖2√
1− δ2K

. (48)

Note that when the support is chosen accurately,s̄K1 = T and thus

‖xT\s̄K1 ‖2 = 0. (49)
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Whereas, ifs̄K1 6= T , then by the contraposition of Theorem 3.186, we have

‖xT\s̄K1 ‖2 ≤ γ‖v‖2. (50)

for any s̄K1 6= T . By combining (49) and (50), we obtain the desired result.

IV. SIMULATION AND DISCUSSIONS

A. Simulation Setup

In this section, we observe the performance of sparse recovery algorithms including TMP through

empirical simulations. In our simulations, we generateK-sparse vectorx whose nonzero locations and

coefficients are randomly chosen and the sensing matrixΦ of size 100 × 256 whose entries are from

the independent Gaussian distributionN (0, 1
M
). In each point of the individual recovery algorithm, we

perform at leastn = 5, 000 independent trials. In the noiseless setting, we use the exact recovery ratio

(ERR) as a performance measure. In the noisy setting, we use the mean squared error (MSE) of the

recovery algorithms which is defined as

MSE =
1

n

n
∑

ℓ=1

‖x(ℓ) − x̂(ℓ)‖2
N

wherex̂(ℓ) is the estimate of the original sparse signalx(ℓ).

We test simulations on the following algorithms:

1) OMP algorithm [7]

2) BP algorithm [5]: we use BP in noiseless setting and basis pursuit denoising (BPDN) in noisy

setting.

3) CoSaMP algorithm [9]: we set the maximal number of iterations to40.

4) gOMP algorithm [17]: we choose two indices (L = 2) in each iteration.

5) TMP: we use gOMP (L = 2) in the pre-selection stage.

6) TMP with limited branching: we set the maximum number of branches in each layer (Nmax = 10

and100).

B. Simulation Results

We first compare the ERR performance of sparse recovery algorithms in the noiseless setting. Main

purpose of this simulation is to observe how much performance gain can be achieved by the tree search.

6Here, we need to use slightly modified version of Theorem 3.18, which says that if‖xs̄K
1
‖2 > γ‖v‖2, then s̄K1 = T .
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Fig. 5. ERR performance as a function of the sparsityK in the noiseless setting. We measure the performance beforethe tree

search (pre-selection) and after the tree search (TMP).

Since we use the conventional sparse recovery algorithm in the pre-selection process, effectiveness of

the proposed TMP algorithm can be checked by comparing the recovery performance before the tree

search (pre-selection only) and after the tree search. In Fig. 5, we plot the ERR of TMP with various

pre-selection algorithms as a function of the sparsityK. Overall, we observe that the addition of tree

search process provides substantial gain in performance. In particular, whenK is large, performance

gain obtained by the tree search stage is noticeable. When OMP is used as a pre-selection algorithm, for

example, the ERR of TMP before and after the tree search atK = 35 are0.23 and0.89, respectively.

In Fig. 6, we plot the MSE performance of the sparse recovery algorithms as a function of signal-to-

noise ratio (SNR) in the noisy setting. Note that the decibel(dB) scale of SNR is defined as SNR=
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Fig. 6. MSE performance of sparse recovery algorithms (K = 20) in 100× 256 system.

10 log10
‖Φx‖2

‖v‖2 . In this test, we set the sparsity level toK = 20 so that8% of entries in the input vector

are nonzero. Overall, we observe that the performance gain of TMP improves with SNR. While the

performance gap between the conventional sparse recovery algorithms and Oracle estimator is maintained

across the board, the performance gap between TMP and Oracleestimator gets smaller as SNR increases.

In Fig. 7, a similar simulation as before but with largeK is performed. In this simulation, we setK = 30

so that12% of entries are nonzero. In this case, we clearly see that TMP outperforms conventional sparse

recovery algorithms and the performance gain improves withSNR. For example, the gain atMSE = 10−2

is around2 dB but the gain atMSE = 10−3 is more than10 dB. Also, as it can be seen from the figure

and also in accordance with Theorem 3.18, the performance ofTMP is asymptotically optimal in high

SNR regime in the sense that it approaches the MSE performance of Oracle estimator.
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Fig. 7. MSE performance of sparse recovery algorithms in thenoisy setting (K = 30).

Fig. 8 shows the running time complexity of the sparse recovery algorithms as a function of the sparsity

level K. All algorithms under test are coded by MATLAB software package and run by a personal

computer with Intel Core i5 processor and Microsoft Windows7 environment. As seen in the figure,

among greedy algorithms under test, OMP exhibits the smallest running time. Since TMP performs tree

search to investigate multiple promising paths, it is no wonder that the running time complexity of TMP

is higher than the rest of greedy algorithms. However, by limiting the number of branching operations,

computational burden of TMP can be reduced dramatically. Due to the reduction in number of investigated

paths, we can observe that the running time complexity of TMPwith limited branching is much smaller

than that without limitation. In particular, ifNmax = 10, TMP achieves two order of magnitude reduction

over the original TMP algorithm with only slight loss in performance.
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Fig. 8. Average running time of sparse signal recovery algorithms in 100 × 256 system.

V. CONCLUSIONS

In this paper, we proposed a tree search based sparse signal recovery algorithm referred to as matching

pursuit with a tree pruning (TMP). In order to overcome the shortcoming of greedy algorithm in choosing

short-sighted candidates, the TMP algorithm performs the tree search and investigates multiple promising

candidates. The complexity overhead caused by the tree search is controlled by the pre-selection and tree

pruning. In our empirical simulation, we observed that TMP provides excellent recovery performance

in both noiseless and noisy scenarios. While TMP is promising algorithm in terms of the recovery

performance, its complexity is a bit higher than existing greedy algorithms and further study is needed.

Our future work will address the complexity reduction issueof greedy tree search algorithm to achieve

better tradeoff between complexity and performance.
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APPENDIX A

PROOF OFLEMMA 3.6

Let ŝi1 ⊂ T andλi = min
j∈T\ŝi1

|φ′
jrŝi1 |, then by using the triangular inequality, we have

|φ′
jrŝi1 | = ‖φ′

jrŝi1‖2 (51)

= ‖φ′
jP

⊥
ŝi1
y‖2 (52)

= ‖φ′
jP

⊥
ŝi1
ΦT\ŝi1xT\ŝi1‖2 (53)

≥ ‖φ′
jΦT\ŝi1xT\ŝi1‖2 − ‖φ′

jPŝi1
ΦT\ŝi1xT\ŝi1‖2 (54)

whereP⊥
ŝi1

= I−Φŝi1
(Φ′

ŝi1
Φŝi1

)−1Φ′
ŝi1

. From Definition 3.1, we have

‖φ′
jΦT\ŝi1xT\ŝi1‖2 ≥

√

1− δM‖ΦT\ŝi1xT\ŝi1‖2 (55)

≥
√

1− δM

√

1− δ|T\ŝi1|‖xT\ŝi1‖2. (56)

Also,

‖φ′
jPŝi1

ΦT\ŝi1xT\ŝi1‖2 = ‖φ′
jΦŝi1

(Φ′
ŝi1
Φŝi1

)−1Φ′
ŝi1
ΦT\ŝi1xT\ŝi1‖2 (57)

≥ δ|ŝi1|+1‖(Φ′
ŝi1
Φŝi1

)−1Φ′
ŝi1
ΦT\ŝi1xT\ŝi1‖2 (58)

≥
δ|ŝi1|+1

1− δ|ŝi1|
‖Φ′

ŝi1
ΦT\ŝi1xT\ŝi1‖2 (59)

≥
δ|ŝi1|+1δK

1− δ|ŝi1|
‖xT\ŝi1‖2 (60)

where (56) is from Definition 3.1, (55) and (60) are from Lemma3.4, and (59) is from Lemma 3.3.

Using (54), (56), and (60), we have

|φ′
jrŝi1 | ≥ ‖φ′

jΦT\ŝi1xT\ŝi1‖2 − ‖φ′
jPŝi1

ΦT\ŝi1xT\ŝi1‖2

≥
√

1− δM

√

1− δ|T\ŝi1|‖xT\ŝi1‖2 −
δ|ŝi1|+1δK

1− δ|ŝi1|
‖xT\ŝi1‖2. (61)

Since (61) holds for anyj ∈ T \ ŝi1 and0 ≤ i ≤ K, we have

λi ≥
√

1− δM

√

1− δ|T\ŝi1|‖xT\ŝi1‖2 −
δ|ŝi1|+1δK

1− δ|ŝi1|
‖xT\ŝi1‖2 (62)

≥
√

1− δM
√

1− δM‖xT\ŝi1‖2 −
δK+1δK

1− δK
‖xT\ŝi1‖2 (63)

≥
(

1− δM − δM δK

1− δK

)

‖xT\ŝi1‖2 (64)

=
1− δK − δM

1− δK
‖xT\ŝi1‖2, (65)

which is the desired result.
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APPENDIX B

PROOF OFLEMMA 3.7

Let ŝi1 ⊂ T andγi = max
j∈T c

|φ′
jrŝi1 |, then by using the triangle inequality, we have

|φ′
jrŝi1 | = ‖φ′

jrŝi1‖2 (66)

= ‖φ′
jP

⊥
ŝi1
y‖2 (67)

= ‖φ′
jP

⊥
ŝi1
ΦT\ŝi1xT\ŝi1‖2 (68)

≤ ‖φ′
jΦT\ŝi1xT\ŝi1‖2 + ‖φ′

jPŝi1
ΦT\ŝi1xT\ŝi1‖2. (69)

Sincej ∈ T c, we have

‖φ′
jΦT\ŝi1xT\ŝi1‖2 ≤ δ|T\ŝi1|+1‖xT\ŝi1‖2 (70)

where (70) is from Lemma 3.4. Also,

‖φ′
jPŝi1

ΦT\ŝi1xT\ŝi1‖2 = ‖φ′
jΦŝi1

(Φ′
ŝi1
Φŝi1

)−1Φ′
ŝi1
ΦT\ŝi1xT\ŝi1‖2 (71)

≤ δ|ŝi1|+1‖(Φ′
ŝi1
Φŝi1

)−1Φ′
ŝi1
ΦT\ŝi1xT\ŝi1‖2 (72)

≤
δ|ŝi1|+1

1− δ|ŝi1|
‖Φ′

ŝi1
ΦT\ŝi1xT\ŝi1‖2 (73)

≤
δ|ŝi1|+1δK

1− δ|ŝi1|
‖xT\ŝi1‖2 (74)

where (72) and (74) are from Lemma 3.4 and (73) is from Lemma 3.3. Using (69), (70), and (74), we

have

|φ′
jrŝi1 | ≤ ‖φ′

jΦT\ŝi1xT\ŝi1‖2 + ‖φ′
jPŝi1

ΦT\ŝi1xT\ŝi1‖2 (75)

≤
(

δ|T\ŝi1|+1 +
δ|ŝi1|+1δK

1− δ|ŝi1|

)

‖xT\ŝi1‖2 (76)

≤
(

δK+1 +
δK+1δK

1− δK

)

‖xT\ŝi1‖2 (77)

=
δK+1

1− δK
‖xT\ŝi1‖2, (78)

which is the desired result.
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APPENDIX C

PROOF OFLEMMA 3.10

From the definition ofρ in (12), we have

ρ = max
j∈T

|φ′
jy| (79)

= ‖Φ′
Ty‖∞ (80)

≥ 1
√

|T |
‖Φ′

Ty‖2 (81)

=
1√
K

‖Φ′
T (ΦTxT + v)‖2 (82)

≥ 1√
K

(

‖Φ′
TΦTxT ‖2 − ‖Φ′

Tv‖2
)

(83)

where (81) is from the inequality‖u‖∞ ≥ 1√
‖u‖0

‖u‖2 for any vectoru. Note that

‖Φ′
TΦTxT ‖2 ≥ (1− δK)‖xT ‖2 (84)

and

‖Φ′
Tv‖2 ≤

√

1 + δK‖v‖2 (85)

and thusρ is lower bounded as

ρ ≥ 1√
K

[

(1 − δK)‖xT ‖2 −
√

1 + δK‖v‖2
]

, (86)

which is the desired result.

APPENDIX D

PROOF OFLEMMA 3.11

From the definition ofη in (12), we have

√
Lη ≤

√

∑

j∈IL
|φ′

jy|2 = ‖Φ′
ILy‖2 (87)

whereIL = arg max
|I|=L,I⊂T c

‖Φ′
Iy‖2. Using the triangle inequality, we have

‖Φ′
ILy‖2 = ‖Φ′

IL(ΦTxT + v)‖2 (88)

≤ ‖Φ′
ILΦTxT ‖2 + ‖Φ′

ILv‖2. (89)

SinceIL andT are disjoint (IL ⊂ T c), we have

‖Φ′
IL
ΦTxT ‖2 ≤ δL+K‖xT ‖2 (90)
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and

‖Φ′
IL
v‖2 ≤

√

1 + δL‖v‖2. (91)

Using (90) and (91), we have

‖Φ′
IL
y‖2 ≤ δL+K‖xT ‖2 +

√

1 + δL‖v‖2 (92)

and since‖Φ′
IL
y‖2 ≥

√
Lη, we have

η ≤ 1√
L

[

δL+K‖xT ‖2 +
√

1 + δL‖v‖2
]

, (93)

which is the desired result.

APPENDIX E

PROOF OFLEMMA 3.13

Supposêsi1 ⊂ T andβi = min
j∈T\ŝi1

|φ′
jrŝi1 |, then

|φ′
jrŝi1 | = ‖φ′

jrŝi1‖2 (94)

= ‖φ′
jP

⊥
ŝi1
y‖2 = ‖φ′

jP
⊥
ŝi1
(ΦTxT + v)‖2 (95)

= ‖φ′
jP

⊥
ŝi1
ΦT\ŝi1xT\ŝi1 + φ′

jP
⊥
ŝi1
v‖2 (96)

= ‖φ′
jΦT\ŝi1xT\ŝi1 − φ′

jPŝi1
ΦT\ŝi1xT\ŝi1 + φ′

jP
⊥
ŝi1
v‖2 (97)

≥ ‖φ′
jΦT\ŝi1xT\ŝi1‖2 − ‖φ′

jPŝi1
ΦT\ŝi1xT\ŝi1‖2 − ‖φ′

jP
⊥
ŝi1
v‖2. (98)

where (94) is because‖φ′
jrŝi1‖2 =

√

|φ′
jrŝi1 |2 = |φ′

jrŝi1 | and (98) is from the triangle inequality. Since

(98) is satisfied for anyj ∈ T \ ŝi1, we have

‖φ′
jΦT\ŝi1xT\ŝi1‖2 ≥

√

1− δM

√

1− δ|T\ŝi1|‖xT\ŝi1‖2, (99)

‖φ′
jPŝi1

ΦT\ŝi1xT\ŝi1‖2 = ‖φ′
jΦŝi1

(Φ′
ŝi1
Φŝi1

)−1Φ′
ŝi1
ΦT\ŝi1xT\ŝi1‖2 (100)

≤ δ|ŝi1|+1‖(Φ′
ŝi1
Φŝi1

)−1Φ′
ŝi1
ΦT\ŝi1xT\ŝi1‖2 (101)

≤
δ|ŝi1|+1

1− δ|ŝi1|
‖Φ′

ŝi1
ΦT\ŝi1xT\ŝi1‖2 (102)

≤
δ|ŝi1|+1δK

1− δ|ŝi1|
‖xT\ŝi1‖2 (103)

and

‖φ′
jP

⊥
ŝi1
v‖2 ≤

√

1 + δM‖P⊥
ŝi1
v‖2 (104)

≤
√

1 + δM‖v‖2. (105)
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where (99) and (104) are from Definition 3.1, (101) and (103) are from Lemma 3.4, and (102) is from

Lemma 3.3. Finally, since (98) is satisfied for anyj ∈ T \ ŝi1, we have

βi = min
j∈T\ŝi1

|φ′
jrŝi1 | (106)

≥ ‖φ′
jΦT\ŝi1xT\ŝi1‖2 − ‖φ′

jPŝi1
ΦT\ŝi1xT\ŝi1‖2 − ‖φ′

jP
⊥
ŝi1
v‖2 (107)

≥
(

√

1− δM

√

1− δ|T\ŝi1| −
δ|ŝi1|+1δK

1− δ|ŝi1|

)

‖xT\ŝi1‖2 −
√

1 + δM‖v‖2 (108)

≥
(

1− δM − δK+1δK

1− δK

)

‖xT\ŝi1‖2 −
√

1 + δM‖v‖2 (109)

where (109) is from Lemma 3.2.

APPENDIX F

PROOF OFLEMMA 3.14

Supposêsi1 ⊂ T and letαi = max
j∈T c

|φ′
jrŝi1 |, then

|φ′
jrŝi1 | = ‖φ′

jrŝi1‖2 (110)

= ‖φ′
jP

⊥
ŝi1
y‖2 = ‖φ′

jP
⊥
ŝi1
(ΦTxT + v)‖2 (111)

= ‖φ′
jP

⊥
ŝi1
ΦT\ŝi1xT\ŝi1 + φ′

jP
⊥
ŝi1
v‖2 (112)

= ‖φ′
jΦT\ŝi1xT\ŝi1 − φ′

jPŝi1
ΦT\ŝi1xT\ŝi1 + φ′

jP
⊥
ŝi1
v‖2 (113)

≤ ‖φ′
jΦT\ŝi1xT\ŝi1‖2 + ‖φ′

jPŝi1
ΦT\ŝi1xT\ŝi1‖2 + ‖φ′

jP
⊥
ŝi1
v‖2 (114)

where (110) is because‖φ′
jrŝi1‖2 =

√

|φ′
jrŝi1 |2 = |φ′

jrŝi1 |, Pŝi1
= Φŝi1

(Φ′
ŝi1
Φŝi1

)−1Φ′
ŝi1

in (113), P⊥
ŝi1

=

I−Pŝi1
, and (114) follows the triangle inequality. Sincej ∈ T c, we have

‖φ′
jΦT\ŝi1xT\ŝi1‖2 ≤ δ|T\ŝi1|+1‖xT\ŝi1‖2, (115)

‖φ′
jPŝi1

ΦT\ŝi1xT\ŝi1‖2 = ‖φ′
jΦŝi1

(Φ′
ŝi1
Φŝi1

)−1Φ′
ŝi1
ΦT\ŝi1xT\ŝi1‖2 (116)

≤ δ|ŝi1|+1‖(Φ′
ŝi1
Φŝi1

)−1Φ′
ŝi1
ΦT\ŝi1xT\ŝi1‖2 (117)

≤
δ|ŝi1|+1

1− δ|ŝi1|
‖Φ′

ŝi1
ΦT\ŝi1xT\ŝi1‖2 (118)

≤
δ|ŝi1|+1δK

1− δ|ŝi1|
‖xT\ŝi1‖2. (119)

Also,

‖φ′
jP

⊥
ŝi1
v‖2 =

√

1 + δM‖P⊥
ŝi1
v‖2 (120)

=
√

1 + δM‖v‖2. (121)
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Using (115), (119), and (121), we have

|φ′
jrŝi1 | ≤ ‖φ′

jΦT\ŝi1xT\ŝi1‖2 + ‖φ′
jPŝi1

ΦT\ŝi1xT\ŝi1‖2 + ‖φ′
jP

⊥
ŝi1
v‖2 (122)

≤
(

δ|T\ŝi1|+1 +
δ|ŝi1|+1δK

1− δ|ŝi1|

)

‖xT\ŝi1‖2 +
√

1 + δM‖v‖2 (123)

≤
(

δK+1 +
δK+1δK

1− δK

)

‖xT\ŝi1‖2 +
√

1 + δM‖v‖2. (124)
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