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Abstract

Modern computers enable methods for design optimization that account for
uncertainty in the system—so-called optimization under uncertainty. We
propose a metric for OUU that measures the distance between a designer-
specified probability density function of the system response (the target) and
system response’s density function at a given design. We study an OUU for-
mulation that minimizes this distance metric over all designs. We discretize
the objective function with numerical quadrature and approximate the re-
sponse density function with a Gaussian kernel density estimate. We offer
heuristics for addressing issues that arise in this formulation, and we apply
the approach to a CFD-based airfoil shape optimization problem. We quali-
tatively compare the density-matching approach to a multi-objective robust
design optimization to gain insight into the method.

Keywords: optimization under uncertainty, robust design optimization,
reliability-based design optimization, density-matching

1. Introduction

Modern computing power opens the possibility for industrial-scale design
optimization with high-fidelity numerical simulations of physical systems.
Simulation-based design is found in aircraft Abbas-Bayoumi and Becker (2011),
engine Shahpar et al. (2014), automotive Chandra et al. (2011) and ship-
ping Papanikolaou (2010) industries, among many others. To optimize, de-
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signers must precisely specify operating scenarios and manufactured produc-
tion. Off-design operation and manufacturing tolerances are typically in-
corporated afterward. A more complete perspective on design optimization
accounts for these uncertainties, e.g., by employing statistical performance
metrics within the design optimization. This perspective leads to optimiza-
tion under uncertainty (OUU).

The computational engineering literature is chock full of formulations and
approaches for OUU. Allen and Maute Allen and Maute (2004) give an ex-
cellent overview that broadly categorizes these formulations as either robust
design optimization (RBO) or reliability-based design optimization (RBDO).
The essential idea behind RBO formulations is to simultaneously maximize
a statistical measure of the system performance (e.g., the mean) while min-
imizing a statistical measure of system variability (e.g., the variance), thus
improving robustness to variability in operating conditions. The optimiza-
tion is often formulated with multiple objective functions (e.g., maximize
mean and minimize variance), which leads to a Pareto front of solutions
representing a trade-off between robustness and performance. Alternative
formulations treat performance as the objective function and robustness as
a constraint or vice versa. Some applications of RBO include the design of
Formula One brake ducts Axerio-Cilles (2012), compressor blades Seshadri
et al. (2014b), compression systems Ghisu et al. (2011), airfoils Tachikawa
et al. (2012), and structures Doltsinis and Kang (2004). The RBDO for-
mulations seek designs that satisfy reliability criteria, such as maintaining a
sufficiently small probability of failure, while minimizing a cost function of
the design Frangopol and Maute (2003). Estimating the failure probabilities
within the optimization with randomized methods (e.g., Monte Carlo) can
be prohibitively expensive for large-scale models; several methods exist for
approximating regions of low failure probability Bichon et al. (2008). En-
gineering examples of RBDO include transonic compressors Lian and Kim
(2005), aeroelasticity Missoum et al. (2010), structures Allen and Maute
(2004), and vehicle crash worthiness Youn et al. (2004).

The statistical measures in the RDO and RBDO objective functions and
constraints are typically low-order moments—e.g., mean and variance—or
probabilities associated with the system response. The chosen statistical
measures affect the optimal design, so they must be chosen carefully for each
specific application.

In this paper, we propose an alternative statistical measure that can be
used in the RDO and RBDO formulations. We assume the designer has de-
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scribed the desired system performance as a full probability density function
(pdf), which we call the target pdf, and we seek to minimize the distance
between the design-dependent response pdf and the target pdf. Mathemat-
ically, we treat the target pdf as given; it is not a tunable parameter. In
any real-world scenario, this pass-the-buck attitude places tremendous re-
sponsibility on the designer to devise the perfect target pdf. We expect
that a practical methodology including the proposed statistical measure will
involve some back and forth between designer and optimizer to devise the
most appropriate target pdf. Using a designer-specified response pdf has
some precedent in the OUU literature. Rangavajhala and Mahadevan Ran-
gavajhala and Mahadevan (2011) assume a designer-specified pdf in their
optimum threshold design, which finds thresholds that satisfy the given joint
probability while allowing for preferences among multiple objectives.

We present a single-objective OUU formulation where the distance be-
tween target and response pdfs is the objective function. We explore some in-
teresting properties of this optimization problem, namely how the objective’s
gradient behaves when the two pdfs are not sufficiently large on the same
support (section 2). We propose a convergent discretization of the objective
function—based on numerical quadrature and kernel density estimation—
that produces a continuous approximation well-suited for gradient-based op-
timization (section 3). Our prior work uses histograms to approximate the
response pdf, which leads to a less scalable optimization problem with integer
variables Seshadri et al. (2014a). There are some drawbacks to the density-
matching formulation, and offer heuristics for addressing these drawbacks in
section 4. In section 5, we test the formulation on an algebraic test problem
and a shape optimization problem with the NACA0012 airfoil. In the latter
case, we qualitatively compare the optimal designs to those generated by a
multi-objective RDO strategy.

2. Mathematical formulation

Consider a function f = f(s, ω) that represents the response of a physical
model with design variables s ∈ S ⊆ Rn and random variables ω ∈ Ω ⊆ Rm;
the random variables represent the uncertainty in the physical system. The
space S encodes the application-specific constraints on the design variables,
e.g., bounds or linear inequality constraints. We assume that ω are defined
on a probability space with sample space Ω and probability density function
p = p(ω), which encode all available knowledge about the system’s uncer-
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tainties.1 We assume that f is scalar-valued, f ∈ F ⊆ R, though this can
be generalized. We also assume that f is continuous in both s and ω. For
a fixed s ∈ S, let qs : F → R+ be a probability density function of f(s, ω);
we assume that f(s, ω) admits a square-integrable pdf for all values s in the
design space S. The shape of qs will be different for different values of s.

The given target pdf expresses the designer’s desired system performance
accounting for uncertainty in operating conditions. Denote the target pdf by
t : R→ R+, which we assume is square-integrable. To find the values of the
design variables s that bring the system’s response as close as possible to the
designer’s target, we pose the following optimization problem:

s∗ = argmin
s∈S

d(t, qs), (1)

where d(·, ·) is a distance metric between two comparable probability density
functions. The values s∗ correspond to the optimal design under uncertainty.

A few comments on this optimization problem are in order. Since d is a
distance metric, d ≥ 0. However, d(t, qs) is not generally a convex function of
s. Therefore, s∗ may not be unique, and the optimization problem may need
a regularization term to make it well-posed (e.g., Tikhonov regularization).

The minimum value of the objective function d(t, qs∗) measures how well
the optimal design meets the designer’s specifications. A non-zero value at
the minimum means that the model can be improved, e.g., by incorporating
more controls or otherwise modifying the relationship between the design
variables and the system behavior. If the minimizing design is deemed too
far from the target, then the designer may request a radical redesign of the
system; by introducing additional design variables or increase their ranges,
that allows the model to get closer to her specifications.

The formulation in (1) uses d as the sole objective function, and (1) has
no constraints that depend on the uncertainties. We study this formulation
because of its simplicity. One could use the metric d as a one objective in a
multi-objective RDO formulation or as a measure of reliability in an RBDO
formulation. We do not pursue these ideas in this paper.

There are many possible choices for the distance metric d; Gibbs and
Su Gibbs and Su (2002) review several metrics and the relationships be-

1The final results depend on Ω and p(ω). If multiple probability density functions
are consistent with the available information, then one should check the sensitivity of the
results to perturbations in these quantities.
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tween them. To enable efficient, scalable gradient-based methods for the
optimization (1), we choose the differentiable squared L2-norm,

d(t, qs) =

∫ ∞
−∞

(t(f)− qs(f))2 df. (2)

This integral is finite by the square-integrability assumption on t and qs.

2.1. The trouble with non-overlapping response and target pdfs

Something peculiar happens to d from (2) when the supports of t and qs do
not overlap—i.e., t is zero if qs is positive and vice versa. Expanding the
integrand in (2),

d(t, qs) =

∫ ∞
−∞

t(f)2 df − 2

∫ ∞
−∞

t(f) qs(f) df +

∫ ∞
−∞

qs(f)2 df. (3)

Since the target t is independent of the design variables s, the minimizer of
d is the same as the minimizer of d′ defined as

d′(t, qs) :=

∫ ∞
−∞

qs(f)2 df − 2

∫ ∞
−∞

t(f) qs(f) df (4)

If the supports of t and qs do not overlap, then the second term in (4)
vanishes, and

d′(t, qs) =

∫ ∞
−∞

qs(f)2 df. (5)

In words, when t and qs do not overlap, the objective function has no in-
formation from the target t. The gradient of d′ with respect to the design
variables s may point in a direction that decreases d′, but there is no guar-
antee that a step along that direction in the design space moves qs closer (by
the distance metric) to the target t. The following example illustrates this
issue.

Example 1. Let f(s, ω) = s + ω, where ω is a random variable distributed
uniformly on [0, 1] and s ∈ [0, 2]. The response pdf qs(f) is a uniform density
function on the interval [s, s+1]. Let the target pdf t(f) be a uniform density
on the interval [2, 3]. The minimizer of (1) is s∗ = 2, and d(t, qs∗) = 0.
However, for s ∈ [0, 1), the first and second derivatives of d(t, qs) with respect
to s are zero. Thus, a gradient-based optimization method would stop at any
candidate minimizer in the interval [0, 1).
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The overlap issue forces us to make the following assumption to ensure that
the minimizer from a gradient-based method applied to (1) with distance
metric (2) produces a response pdf with some relationship to the given target
pdf.

Assumption 1. Assume that for all s ∈ S, the intersection of the support
of the target pdf t(f) and the support of the design-dependent response pdf
qs(f) is non-empty.

Assumption 1 is sufficient but not necessary; it can be relaxed to (i) the ini-
tial design point produces a response pdf whose support overlaps the target’s
support and (ii) all iterates of the optimization method produce response pdfs
whose supports overlap the target’s support. For computation, we exploit
choices in the kernel density estimates to ensure that Assumption 1 is sat-
isfied. This approach also suggests a heuristic to accelerate the numerical
optimization; see section 4.1.

One final comment on the number of components in f : in principle, our
construction can be extended to f ’s that return a vector of responses from the
system. However, this situation necessitates (i) a joint probability density
for the target, (ii) a multivariate density estimation method for the response
pdf, and (iii) multivariate integration to compute the distance metric. Thus,
the approach suffers the dreaded curse of dimensionality as the number of
components in f increases. However, it worthwhile to note that it is unlikely
that designers would have more than a handful of objectives to optimizer over.
For such cases, existing approaches such as RDO—with a multi-objective
mean-variance form—lead to multiplication of objectives, rendering a more
complex optimization problem. Our strategy on the other hand, still remains
a ‘simple’ distance minimization problem.

3. Discretization and computation

Next we turn to the computational aspects of solving the optimization prob-
lem (1) using the distance metric (2). There are two main issues to address:
(i) discretizing the integral in the distance metric and (ii) estimating the
response density qs.

3.1. Discretizing the distance metric
To avoid issues with numerical integration on unbounded domains, we assume
that f(s, ω) is bounded for all s and ω,

f` ≤ f(s, ω) ≤ fu, s ∈ S, ω ∈ Ω. (6)
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This implies that the support of qs(f) is always finite. Such an assumption
is not terribly restrictive. For a particular design point, qs may have a long
tail, but any computer representation of this long tail necessarily imposes
finite bounds. The bounds f` and fu need not be tight. But finite bounds
helps us devise a practical discretization. The bounds imply

d(t, qs) =

∫ fu

f`

(t(f)− qs(f))2 df +

∫ f`

−∞
t(f)2 df +

∫ ∞
fu

t(f)2 df. (7)

Since the target pdf t is independent of the design variables s, the optimiza-
tion can ignore the last two terms in (7).

We choose an N -point numerical quadrature rule on the interval [f`, fu]
with points γi ∈ [f`, fu] and associated weights wi with i = 1, . . . , N . The
number N of points in the integration rule can be very large (O(106)) without
a large computational burden. We need to evaluate the given target pdf t
and an estimate of the response pdf qs at each quadrature node, but this is
very cheap. The discretized objective function is

d̂(t, qs) =
N∑
i=1

(t(γi)− qs(γi))2wi = (t− qs)
TW (t− qs), (8)

where

W =

w1

. . .

wN

 , t =

 t(γ1)...
t(γN)

 , qs =

 qs(γ1)...
qs(γN)

 . (9)

The resolution of the points {γi} should be fine enough to resolve both the
target t and the response pdf qs for all s ∈ S. In an extreme example of
insufficient resolution, the support of t may be entirely inside an interval de-
fined by two neighboring quadrature nodes. In such a case, t does not affect
the discretized objective d̂ in (8). If the support of t or a particular qs is very
small relative to the interval [f`, fu], then one might consider a non-uniform
distribution of quadrature nodes to properly resolve the pdfs. However, as
noted, an extremely fine grid does not greatly increase the cost of evalu-
ating the discretized objective function. So resolution—and, consequently,
discretization error in the integral from (2)—is not a primary concern.

The choice of quadrature rule depends on the smoothness of the target t
and the response qs (or, its estimate) Davis and Rabinowitz (2007). If these
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pdfs are very smooth on the interval [f`, fu], then one could use high-order,
interpolatory quadrature rules like Gaussian quadrature or Clenshaw-Curtis
quadrature Trefethen (2008). However, say the target is a uniform density
on a small interval. Then a low-order method like the trapezoidal rule may
be more appropriate. We prefer a highly resolved trapezoidal rule in general;
recent analysis shows that it compares well to high-order methods for smooth
functions Trefethen and Weideman (2014).

3.2. Estimating the response density

For a fixed design point s ∈ S, the density qs is, in general, not a known
function of f and must be estimated. We propose to use a kernel density
estimate for qs, which has several advantages. We draw a set ofM points {ωj}
independently according to the given density p(ω) on the random variables
representing uncertainty. Define the functions

fj(s) = f(s, ωj), j = 1, . . . ,M. (10)

For a bandwidth parameter h and a radial kernel K(·) that depends on h,
we approximate qs by

qs(f) ≈ q̂s(f) =
1

M

M∑
j=1

K(f − fj(s)). (11)

We approximate the vector qs from (8) as

qs ≈ q̂s = Ke, K ∈ RN×M , (12)

where

Kij =
1

M
K(γi − fj(s)), i = 1, . . . , N, j = 1, . . . ,M, (13)

and e is an M -vector of ones. For computation, we replace qs by q̂s in the
approximate objective function d̂ in (8).

For a sufficiently small h, the asymptotic mean-squared error in the ker-
nel density estimate decreases as the number M of samples increases (Scott,
2014, Chapter 6). In practice, one can increase the bandwidth parameter
h to create smooth estimates that compensate for too few samples. Such
heuristics are appropriate, since our goal is not perfect representation of the
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response density qs. Our goal is to find a design point s∗ whose correspond-
ing response pdf is sufficiently close to the given target pdf. Nevertheless,
if the number n of components in ω is large, then one might be concerned
that M is not large enough to represent the system response over the high-
dimensional space Ω, resulting in a poor approximation of qs—potentially
poor enough to adversely affect the optimization. This concern is valid when
evaluating f is computationally expensive, e.g., if the system involves com-
plex computational fluid dynamics model, thus limiting M . In this case, we
might construct a response surface of f(s, ω) as a function of ω to sample in
place of the true system response. We discuss the benefits and drawbacks of
response surfaces in section 4.2.

We propose a Gaussian kernel for the density estimate,

K(r) =
1√
2π

exp
(
−(r/h)2/2

)
. (14)

There are two main advantages to using a Gaussian kernel. First, it is differ-
entiable at all points in its infinite domain, so we can take the derivative of
the density estimate without worrying about non-differentiability at kernel
support boundaries; many compactly supported kernels do not enjoy such
an advantage. Second, the infinite support of the kernel implies that, at
least mathematically, we can address the non-overlapping issue discussed in
section 2.1. It might seem inconsistent to use a kernel with infinite support
when we assume that the support of qs is bounded according to (6). But
approximating compactly supported densities with Gaussian kernel density
estimates is common; we can control the error in the tails to keep it from
heavily influencing the objective function in (8). In section 4.1, we propose
a heuristic that exploits the freedom in the bandwidth parameter to help
ensure that the qs’s kernel estimate is sufficiently large on the target pdf’s
support.

3.3. Computing the gradient

We can compute the gradient of the approximate objective d̂ with respect to
the design variables s. For the kth component of s, denoted sk,

∂d̂

∂sk
= 2 (t− q̂s)

T W

(
∂q̂s

∂sk

)
. (15)
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Note that
∂q̂s
∂sk

=
1

M

M∑
j=1

K ′(f − fj(s))
∂fj
∂sk

, (16)

where K ′ is the derivative of the kernel with respect to its argument, which
is easily computed from (14). To reiterate, the partial derivative ∂fj/∂sk
is the derivative of the response f(s, ω), with ω = ωj, with respect to the
kth design variable sk. This partial derivative is a function of the design
variables. Define

f ′k =


∂f1
∂sk
...

∂fM
∂sk

 , K ′
ij =

1

M
K ′(γi − fj(s)). (17)

Then we can concisely write the derivative of d̂ from (8) with respect to the
kth component of s as

∂d̂

∂sk
= 2 (t−Ke)T W K ′ f ′k. (18)

Define the M × n matrix F ′ by

F ′ =


∂f1
∂s1

· · · ∂f1
∂sn

...
. . .

...
∂fM
∂s1

· · · ∂fM
∂sn

 . (19)

We can write the gradient of the objective function—oriented as a row
vector—as

∇sd̂ = 2 (t−Ke)T W K ′ F ′. (20)

The elements of K, K ′, and F ′ all depend on s. Recall the dimensions of
the terms in (20). The gradient vector ∇sd̂ has n components, which is the
number of random variables describing the system’s uncertainty. The vector
t has N components, which is the number of quadrature nodes from (8); we
expect this to be a very large number. The matrix K has size N ×M , where
M is the number of randomly chosen points in Ω used to estimate the pdf
qs. If evaluating the response is cheap, or if the response is approximated by
a response surface, then M may also be very large. The vector e of ones has
length M . The diagonal matrix W has N nonzero elements on the diagonal.
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The matrix K ′ has size N ×M , and the matrix F ′ has size M × n. Our
numerical studies have not needed special methods to evaluate the matrix-
vector products in (20). However, with a Gaussian kernel, we could perform
extremely large computations (i.e., large M and N) with a fast Gaussian
transform Greengard and Strain (1991).

3.4. Interfaces and cost

In terms of interfaces to the simulation code, we need to evaluate (i) f given
s and ω, and (ii) the gradient ∇sf given s and ω—similar to a determinis-
tic optimization. In this sense, the approach is non-intrusive. If we use a
gradient-based optimization algorithm, such as a sequential quadratic pro-
gram (Nocedal and Wright, 2006, Chapter 16), then each iteration uses M
evaluations of f and its gradient with respect to s.

4. Computational heuristics

In this section, we discuss two heuristics for the optimization in (1). The
first is an approach to the kernel bandwidth selection that alleviates the non-
overlapping issue discussed in section 2.1. The second is the use of response
surfaces in place of the true response for expensive simulations. We end this
section with a short discussion of some implementation details.

4.1. Bandwidth parameter and the overlap problem

There is a great deal of work on the proper bandwidth choice in kernel density
estimation (Scott, 2014, Chapter 6). In most statistical inference, the data
determines the bandwidth parameter Sheather and Jones (1991). Our goal
is somewhat different. Indeed, we want a reasonable estimate of the response
pdf qs at a design point s, where we can treat the set of scalars {fj(s)} as
data. However, we can also use the bandwidth parameter to help ensure
sufficient overlap between the estimate q̂s and the target pdf t, thus aiding
the optimization. Mathematically, by using the Gaussian kernel in (14) with
infinite support, the kernel estimate q̂s is strictly positive over the the entire
support of t. Numerically, the value of q̂s may be too small on t’s support to
produce a useful gradient.

If t’s support resides in q̂s’s tail, then increasing the bandwidth h increases
q̂s over t’s support. Loosely speaking, we can use a large h to help the
response pdf find the target pdf. The large h produces estimates of qs that
are too smooth with large halfwidths. But the large width produces useful
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gradients for the optimizer to help bring the response pdf closer (in terms
of the L2 distance) to the target. For unimodal response pdfs, this leads to
more overlap between the target and the response. Once the optimizer has
found a region of the design space S where there is sufficient overlap, we
reduce h to data-driven values to better estimate qs.

For a kernel estimate of a Gaussian pdf using a Gaussian kernel, the
optimal bandwidth is

hopt =

(
4

3M

)1/5

σ, (21)

where σ is the Gaussian’s standard deviation. The formula (21) is known
as Scott’s rule Bowman and Azzalini (1997); Scott (2014). In the first few
optimization iterations, we use an initial bandwidth h = (fu − f`)/5. Once
we are satisfied that the design point s yields an estimate of qs whose support
sufficiently overlaps t, we reduce the bandwidth to h = hopt. The results in
section 5.2 use this heuristic.

4.2. Response surfaces

When the simulation is expensive, the number m of random variables is
sufficiently small, and the response f(s, ω) is a sufficiently smooth func-
tion of ω, it may be more efficient to use a response surface when approx-
imating the pdf qs. Response surfaces for approximating pdfs are common
in uncertainty quantification (Smith, 2013, Chapter 13). Popular response
surface constructions include polynomial approximations (Xiu, 2010, Chap-
ter 7)(Le Mâıtre and Knio, 2010, Chapter 3) and radial basis approxima-
tions Wendland (2005). The essential idea is, for a fixed design point s,
evaluate f(s, ω) at a few points ωk ∈ Ω with k = 1, . . . , P , where P is
smaller than the number of points needed to accurately estimate the pdf qs;
let fk(s) = f(s, ωk). Most response surface constructions are linear models
of the data,

f(s, ω) ≈ f̃(s, ω) =
P∑

k=1

ak(ω) fk(s), (22)

where the coefficients ak(ω) depend on type of response surface. The ap-
proximation can be cheaply sampled by computing the coefficients ak(ω) at
the M points in Ω needed to estimate qs. This approximation introduces
additional error in the estimate of qs, and one should validate that f̃ is suffi-
ciently accurate—e.g., that P is large enough to produce a good approxima-
tion. Asymptotically, an L2-convergent response surface implies convergence
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in distribution, i.e., the pdf of f̃ converges to the pdf of f (Durrett, 2005,
Chapter 2). However, this well-known result does not account for the finite
sampling used to estimate the pdfs, and asymptotic results do not always
give confidence in the case when P is small.

The airfoil example in section 5.2 has a smooth response that is a function
of one parameter representing uncertainty, and the system uses a relatively
expensive CFD solver in two spatial dimensions. We use a response surface—
validated several points in the design space—for both the response and its
partial derivatives with respect to the design variables.

4.3. Implementation details

In this section, we collect the pieces needed to implement a numerical solver
for the optimization (1). This summarizes the method and provides some
details about the choices we make in implementation.

Optimization package. From MATLAB’s Optimization Toolbox, we use the
fmincon function with Algorithm option set to sqp (sequential quadratic
program). An open source alternative is SciPy’s minimize function from its
Optimization package with the method set to SLSQP (sequential least-squares
quadratic program). We provide subroutines for computing the objective
function, implemented as (8) with the approximation (12), and the objec-
tive’s gradient, implemented as (20).

Numerical integration. We hand code a trapezoidal rule to evaluate the ob-
jective function (8). This includes forming the the diagonal matrix W in (8)
and (20).

Kernel density estimation. From MATLAB’s Statistics and Machine Learn-
ing Toolbox, we use the ksdensity function for kernel density estimation.
The default kernel is the Gaussian as in (14), and the interface takes an
optional bandwidth parameter argument, which we use to implement the
heuristic described in section 4.1. We hand code the gradient of the Gaus-
sian kernel to compute K ′ in (20). An open source alternative is SciPy’s
gaussian kde function, which also accepts a user-specified bandwidth pa-
rameter.

Response surfaces. The variety of response surface types and application
scenarios make it difficult to create a general purpose toolbox for response
surfaces. For the specific experiment in this paper, we use a hand-coded
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least-squares-fit 5th degree global polynomial approximation for the univari-
ate response. Since the airfoil application has only a single parameter rep-
resenting uncertainty, we are able to visually validate the response surface
quality with two-dimensional plots.

5. Numerical examples

We study two numerical examples to explore the characteristics of the pro-
posed density-matching OUU approach. The first is a simple response func-
tion that produces surprisingly complex behavior in the optimization. The
second is an airfoil shape optimization problem with uncertainty in the
freestream mach number.

5.1. Simple response function

Consider the model
f(s, ω) = sω + 3.5, (23)

where s ∈ R and ω is a standard normal random variable, so f is a normal
random variable with mean 3.5 and standard deviation s. The goal is to
find s that minimizes the L2-norm distance between the pdf of f(s, w) and
a uniform target pdf

t(f) =

{
1, for f ∈ [3, 4],
0, elsewhere.

(24)

The pdf of f is

qs(f) =
1√
2πs

exp

(
− (f − 3.5)2

2s2

)
. (25)

The objective function is

d(t, qs) =

∫ ∞
−∞

(t(f)− qs(f))2 df

=

∫ 3

−∞
qs(f)2 df +

∫ ∞
4

qs(f)2 df +

∫ 4

3

(1− qs(f))2 df.

(26)

Figure 1 plots the two densities and their squared difference. The red density
is the target pdf and the blue dashed line is the response pdf. The yellow-
shaded region is the squared difference in (26). Figure 1 shows the effect of
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Figure 1: Response (23) with different values of the design parameter s. The red rectangle
is the uniform target pdf and the blue dashed line is the response pdf. The goal is to
minimize the yellow area in the figures.

varying s on the yellow region, with s = 0.3467 yielding the smallest area
under the curve, minimizing the distance (26). Note the complexity of the
integrand. Table 1 shows the effect of varying the number of quadrature
points. Above 1000 points the error in the optimal s is in the fourth deci-
mal place. Table 2 repeats this study with kernel density estimates for the
response pdf.

5.2. Airfoil design

Next we apply the density matching scheme to the design of an airfoil un-
der uncertainty. MATLAB and Python codes used for this numerical study
can be found at https://github.com/psesh/density-matching. The air-
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Table 1: Effect of the number of quadrature points for the simple problem (23).

Number of quadrature points Optimal s Minimum distance
10 0.3531 0.00670
100 0.3556 0.017385
1000 0.3469 0.016048
10000 0.3467 0.016022
100000 0.3467 0.016023

Table 2: Effect of the number of quadrature points and kernel density estimate (KDE)
samples for the simple problem (23).

Number of quadrature points Optimal s Minimum distance Number of samples
10 0.3488 0.006759 105

10 0.3505 0.006729 106

100 0.3513 0.01743 105

100 0.3537 0.01741 106

1000 0.3464 0.01610 105

1000 0.3465 0.01610 106

10000 0.3466 0.01608 105

10000 0.3467 0.01605 106
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Table 3: Hicks-Henne bump function heights and locations as a proportion of chord. The
heights and locations are shown for the upper surface; the lower surface has the same
parameterization.

Location Bump amplitude
0.05 ±0.0007
0.15 ±0.0030
0.30 ±0.0090
0.40 ±0.0090
0.55 ±0.0090
0.65 ±0.0060
0.75 ±0.0030
0.90 ±0.0007

foil used in this example is a NACA0012 at a Reynolds number of 106 and
an angle of attack of 5◦. The uncertainty is in the inlet Mach number,
which is characterized by a β(2, 2) distribution between Mach numbers of
0.66 and 0.69. Flow computations for this airfoil are carried out by solv-
ing the compressible Euler equations using Stanford University’s SU2 flow
solver Aerospace Design Lab (2011). The airfoil is parameterized with 16
Hicks-Henne bump functions: 8 on the upper surface and 8 on the lower sur-
face. The design space is the height of each bump; a point in the design space
produces a perturbation from the NACA0012 shape. The height ranges and
locations for the bumps are shown in Table 3.

For a point in the design space, the airfoil mesh is deformed using a
torsional spring analogy. The flow solver runs on the new mesh producing
the lift-to-drag ratio L/D, which is the response of interest. To connect to
the notation in Sections 2 and 3, the response f is L/D, the design variables
s are the 16 Hicks-Henne bump heights, and the random variable ω is the
Mach number with a β(2, 2) density on the interval [0.66, 0.69].

5.3. Robust design optimization

We begin our investigation with a multi-objective RDO. There are three aims
of this exercise:

1. estimate the cost of an RDO for an unconstrained 16 parameter prob-
lem,

2. illustrate some limitations of RDO objectives,

17



Table 4: NSGA-II algorithm parameters used for RDO

Parameters Value
Population size 100
Number of generations 35
Crossover probability 0.9
Mutation probability 0.0625
Crossover distribution index 20
Mutation distribution index 20

3. generate a Pareto front to qualitatively compare with density-matching
results.

The RDO problem is

minimize
s∈S

(E [L/D])−1 and Var [L/D] , (27)

where E[·] is the mean and Var[·] is the variance. These two moments both
depend on the design variables s that parameterize the airfoil shape. We use
the genetic algorithm NSGA-II Deb et al. (2002) to estimate the Pareto front
for (27). The default parameters for NSGA-II are shown in Table 4.

We use a population size of 100 with 35 generations, yielding a total
of 3500 function calls from the optimizer. Each function call uses 21 CFD
computations to fit a least-squares 5th degree polynomial response surface,
which is used to estimate the objectives in (27). Thus, the RDO study used
a total of 3500× 21 = 73, 500 CFD runs.

Figure 2 plots the moments from each computation. The mean is plotted
on the horizontal and the variance on the vertical on a logarithmic scale. The
nominal NACA0012 design has a mean L/D ratio of 27.2356 and a variance
of 7.4615. Figure 2 indicates the skewness values of individual designs by
the marker color. Negatively skewed designs are blue while positively skewed
designs are red. The RDO took approximately two days to run on an 8-core
workstation.

5.4. Density-matching with a designer-specified target

We begin with some details of the density-matching optimization applied
to the airfoil design. The initial design for all cases is the NACA0012 air-
foil. To compute the response pdf’s kernel density estimates, we draw 105
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Figure 2: Results the RDO airfoil design problem. Mean and log-variance of L/D are
plotted on the horizontal and vertical axes, respectively. Individual designs are colored by
their skewness values as shown on the color bar legend.
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Figure 3: Initial (NACA0012) design pdfs and the uniform target. The initial design is
shown with bandwidth parameter values of 1 and 50.

independent samples from a least-squares-fit 5th degree polynomial response
surface of L/D as a function of Mach number. We fit the response surface
with P = 21 flow computations at uniformly spaced Mach numbers between
0.66 and 0.69; the 21 independent runs were executed in parallel. The nomi-
nal design (the NACA0012 airfoil) produces an estimated response pdf such
that the three targets reside in the tails; see Figure 3. We use the two-stage
heuristic discussed in Section 4.1. We ran 3 iterations of the SQP solver
with a large bandwidth of h = 50. The remaining iterations used a band-
width h = 1—slightly larger than hopt in (21). We use a trapezoidal rule
with N = 2500 quadrature points on the interval [−100, 150] in the objec-
tive function (8). The negative lower bound on L/D accommodates kernel
density estimates with large bandwidths. We tested larger values of N , but
they did not lead to substantial improvement in the optimized design.

The gradient in (20) includes the matrix of kernel evaluations K, their
derivatives K ′, and design parameter sensitivities in the matrix F ′. Entries
of K and K ′ are computed using the Gaussian kernel (14). The size of these
matrices are determined by the number of quadrature points and the number
of random samples used to estimate the pdfs. Both K and K ′ have dimen-
sions 2500 × 105. We used SU2’s adjoint capabilities at the P = 21 Mach
numbers to compute partial derivatives of L/D with respect to 16 bump
heights. We used a least-squares-fit 5th degree polynomial response surface
to approximate the partial derivatives at all the sample points needed to
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Figure 4: Polynomial response surfaces and adjoint-based partial derivatives of L/D with
respect to Mach number for a random design point.

compute the elements of F ′ in (19). The response surfaces for all 16 partial
derivatives are shown in Figure 4 for a perturbed NACA0012. From these
and other similar plots, we determined that the polynomial response was
sufficiently accurate. We used least-squares to avoid interpolating noisy par-
tials, such as parameter 12 in Figure 4. Table 5 summarizes the parameters
used in the optimization.

We assume that the designer has provided us with three target pdfs for
the response L/D:

1. a uniform density in the interval [75, 80],

2. a Gaussian density with mean 50 and variance 10,

3. a β(1.5, 3.5) density on the interval [50, 80].

In what follows, we describe the results for each of these three cases.

5.4.1. Uniform target

For the uniform target, we repeat the density-matching optimization four
times to see the effects of the random sampling used to estimate the re-
sponse pdf at each optimization iteration. The four independent trials pro-
duced nearly identical results. The results with the uniform target are shown
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Table 5: Density-matching parameters

Quantity Definition Value
N quadrature points 2500
M random samples 105

n design parameters 16
hstage 1 stage 1 bandwidth parameter 50.0
hstage 2 stage 2 bandwidth parameter 1.0
f` lower bound for L/D -100
fu upper bound for L/D 150
Kh kernel function Gaussian

in Figure 5. Figure 5(a) compares the kernel density estimate for the initial
design with bandwidth h = 50 (blue), the uniform target (green), and the
final designs from stage 1 of the optimization using bandwidth h = 50 across
all four independent trials (red). Using the final stage 1 designs with band-
width h = 1.0 produces the red density estimates shown in Figure 5(b); these
are the initial designs for stage 2 using bandwidth h = 1. The final optimized
designs from stage 2 produce the black density estimates in Figure 5(b). We
plot the final designs from both stages in Figure 5(c) to compare them with
the RDO designs obtained in section 5.3. In this case, the results from both
stage 1 and stage 2 lie well beyond the Pareto front obtained from NSGA-2.

Optimization convergence histories for all four tests are shown in Figure
5(d). All objective function values are normalized by the initial objective
value. Stage 1 for this target took an average of 1 hour and 34 minutes while
stage 2 took an average of 3 hours and 36 minutes. While there are some
differences in the convergence histories, the differences in the final designs
are very minor across the four independent trials. The final designs from
stage 2 are plotted in Figure 5(e) with a close-up in Figure 5(f).

5.4.2. Gaussian target

Figure 6 shows results with the Gaussian target similar to Figure 5. In this
case, we ran a single test instead of four independent trials. Figure 6(a)
shows the initial and final designs from stage 1, and Figure 6(b) shows the
initial and final designs for stage 2. Note that the final design for stage 1 is
the initial design for stage 2. The final design is extremely close to matching
the target. Figure 6(d) shows that changes in the objective function value
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Figure 5: Uniform target results: (a) stage 1 (h = 50), (b) stage 2 (h = 1), (c) comparison
with RDO designs, (d) stage 1 and stage 2 convergence plots, (e) stage 2 optimal designs
with a close-up in (f).
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are negligible after 12 optimization calls in the second stage. Here stage 1
took 46 minutes while stage 2 took 5 hours and 12 minutes.

5.4.3. Beta target

With beta density, we examine a case where the target is positively skewed.
For this case, we use only one trial as in the Gaussian target case. The results
are shown in Figure 7. The target has mean 59.0 and variance 31.5. The
initial designs are shown in Figure 7(a), the final designs in Figure 7(b), and
the convergence history in Figure 7(e). Stage 1 used 7 function calls with 3
major iterations, while stage 2 used 26 with 7 major iterations. For the beta
target, stage 1 took 1 hour and 24 minutes while stage 2 took 5 hours and 8
minutes.

In the final result, we find that the optimizer tried to get as close as
possible to the positively skewed target and produced a design whose density
estimate has skewness -0.08. Neighboring solutions in the Pareto front—with
similar means and variances—exhibited large negative skewness; see Figure
7(c) and a closeup in Figure 7(d). This illustrates two key points. First, it
demonstrates a limitation of using only the first two moments in RDO. At the
same time, this highlights the strength of density matching. Using a simple
L2-norm distance metric, we push the optimizer to match not moments but
the full pdf. This leads to a better match in all the moments of the response.
The final design is shown in Figure 7(f).

6. Conclusions and Future Directions

We present an alternative metric for optimization under uncertainty (OUU).
We assume that the designer has provided a target pdf of the system re-
sponse, and we minimize the distance between the design-dependent response
pdf and the given target over possible designs. We study the differentiable
L2-norm between the response and target pdfs, though other distance met-
rics may be employed. One drawback of the L2-norm is that if the target
and response pdfs are not sufficiently large on the same support, then the
objective function’s gradient may not be useful for the OUU. We present a
particular discretization of the L2-norm objective function that uses a nu-
merical integration rule and a kernel density estimate for the response pdf.
The kernel density estimate with the Gaussian kernel has a simple form for
the discretized objective’s gradient. We offer two computational heuristics:
(i) a two-stage strategy in the bandwidth choice for the kernel estimate that
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alleviates the support issue and (ii) a response surface approach for compu-
tationally expensive system responses. We apply this approach in two ex-
amples: (i) a simple function that produces a Gaussian response pdf whose
variance is the design parameter and (ii) a CFD-based airfoil shape optimiza-
tion. We show that the proposed pdf distance metric is a useful metric for
OUU.

Future work may explore the properties of different distance metrics for
the response and target pdfs. We suspect that our study of the L2-norm
would translate easily to the Hellinger distance, which is a more common
metric for comparing two pdfs. Also, it is possible to bound differences in
moments by the Hellinger distance, which may enable more extensive and
quantitative comparison with common RDO formulations.

Another avenue for research may be to employ a maximum likelihood
estimate on the sampled data to yield design pdfs with respect to an assumed
distribution. Our process can still be applied in such a scenario. Moreover,
in such cases the integrations can be performed analytically. An extension
of this idea would be to use only Gaussian distributions, by estimating the
mean and variance for all designs. This could atleast in theory lead to a more
‘classical’ recovery of RDO for certain corner cases.
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