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1. Introduction

Given an equivariant oriented cohomology theory h over a base field k, a split
reductive group G over k, a maximal torus T in G and a parabolic subgroup P
containing T , we explain how, as a ring, hT (G/P ) can naturally be identified with
an algebraic object D⋆

Ξ introduced in [CZZ2], and which is the dual of a coalgebra
defined using exclusively the root datum of (G, T ), a set of simple roots Ξ defining P
and the formal group law F of h. In [CZZ2], we studied the properties of this object
and of some related operators by algebraic and combinatorial methods, without
any reference to geometry. The present paper is to be considered as a companion
paper to [CZZ2], that justifies the definitions of D⋆

Ξ and of other related algebraic
objects or operators by explaining how to match them to equivariant cohomology
rings endowed with operators constructed using push-forwards and pull-backs along
geometric morphisms.

This kind of algebraic description was first introduced by Demazure in [Dem73,
Dem74] for (non-equivariant) Chow groups and K-theory, and then extended to
the respective T -equivariant settings by Kostant and Kumar [KK86, KK90]. While
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the non-equivariant case can easily be recovered out of the equivariant one by base
change, the big advantage of the equivariant setting is that the pull-back to T -fixed
points injects hT (G/P ) in a very simple ring: a direct product of a finite number
of copies of hT (pt), where pt is Spec(k). This important property was already
apparent in Atiyah-Bott [AB84] in the topological context of singular cohomology of
complex varieties. With this observation, the goal of so-called “Schubert calculus”
becomes the identification of the image of this injection, and a good description of
classes of geometric interest in this image, i.e. Schubert varieties. Some operators
are also important and we want to describe them too: if P ′ is a parabolic subgroup
contained in P , we want to understand pull-back and push-forward maps between
hT (G/P

′) and hT (G/Q), associated to the natural projection G/P ′ → G/P .

Our main results are:

(a) Theorem 8.11, identifying D⋆
Ξ with hT (G/P ), within the fixed points ring

S⋆
W/WΞ

, a direct product of copies of hT (pt);

(b) Theorem 9.2, giving an intrinsic characterization of the image in the Borel
case;

(c) Diagram (8.3), describing the push-forward operator mentioned above;
(d) Theorem 9.1, identifying the image of the injective pull-back map hT (G/P )→

hT (G/B) (B is a Borel subgroup) as the subring hT (G/B)WΞ of fixed elements
under the parabolic Weyl group WΞ corresponding to P ;

(e) Lemma 7.6, describing the algebraic elements corresponding to Bott-Samelson
classes, i.e. fundamental classes of desingularized Schubert varieties.

(f) Theorem 9.3, proving that the pairing defined by product and push-forward
to hT (pt) is non-degenerate;

(g) Theorem 10.2, providing a Borel style presentation hT (pt)⊗hT (pt)W hT (pt) ≃
hT (G/B) (under some conditions).

We do not prove these results in that order, though. First, we state the properties
that we use from equivariant oriented cohomology theories, in section 2. Then,
in section 3, we describe hT (pt) as the formal group ring S = R[[M ]]F of [CPZ,
Def. 2.4]. In section 4, we compute the case of hT (P

1) when the action of T on
P1 = A2/Gm is induced by a linear action of T on A2. It enables us to identify the
pull-back of Bott-Samelson classes to T -fixed points in the Borel case, in section
7. By localization, some of these classes generate hT (G/B) and this lets us prove
the Borel case of (a). The parabolic cases are then obtained in the remaining
sections, as well as the Borel style presentation. In the last section, we explain how
equivariant groups under subgroups of T (and in particular the trivial group which
gives the non-equivariant case) can be recovered out of the equivariant one.

We would like to point out several places where the case of an oriented coho-
mology theory with an arbitrary formal group law is significantly more complicated
than the two classical cases of the additive law (Chow groups) and the multiplica-
tive one (K-theory). First of all, in these two classical cases, the formal group law
is polynomial and furthermore given by very simple polynomials; it is easy to con-
ceive that the computations increase in complexity with other formal group laws
given by powers series with an infinite number of nonzero coefficients. Secondly, in
both of these classical cases, the (non-equivariant) cohomology ring of a point is Z,
which is a regular ring, while in general, this base ring can be arbitrary; in the work
of Kostant and Kumar, the fraction field of the T -equivariant cohomology ring of
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the point is used as a crucial tool, but we are forced to invert less elements and use
a more subtle localization process, for fear of killing everything in some cases (see
the definition of Q from S in section 5). The positive aspect of this extra difficulty
is that it forces us to distinguish what really comes from geometry from artifacts of
particular cohomology theories. Thirdly, as Bressler and Evens have shown [BE90],
additive and multiplicative formal group laws are the only formal group laws for
which the elements XIw and YIw (see after Def. 5.2) are independent of the choice
of a reduced decomposition Iw of w. Geometrically, this translates as the fact that
for Chow groups or K-theory, the class of a Bott-Samelson desingularization cor-
responding to the reduced decomposition Iw only depends on w, and actually is
the class of the (possibly singular) Schubert variety corresponding to w in Chow
groups and the class of its structural sheaf in K-theory. For an arbitrary oriented
cohomology theory, for example for algebraic cobordism, this is simply not true:
different desingularizations of the same Schubert variety give different classes. This
combinatorial/geometric independence is used as a key ingredient in the literature
on Chow groups and K-theory. For example, see [Dem73, Thm. 1] and how it is
used in [Dem74, §4]; see also [KK86, Prop. 4.2] and its corollary Prop. 4.3. We
conjecture that it is the discovery by Bressler and Evens that it does not hold in
general that deterred further development of the Demazure-Kostant-Kumar line
of ideas (see the first paragraph on p. 550 in [KK90]) until [CPZ], in which this
non-independence is overcome. The situation is now approximately as follows: in
the two classical cases, key objects, such as the cohomology of G/B or the alge-
bra D, are naturally equipped with a canonical basis indexed by elements of the
Weyl group W , while in general, there are many possible bases, corresponding to
different choices of reduced decompositions for every element ofW . It increases the
complexity of the combinatorics involved, but it is still manageable.

Let us mention some of the literature on cohomology theories that go beyond
Chow groups or K-theory. In [HHH], Harada, Henriques and Holm prove the injec-
tivity of the pull-back to fixed points map and the characterization of its image in
the topological context of generalized cohomology theories, under an assumption
that certain characteristic classes are prime to each other. Our Theorem 9.2 gives
the precise cases when this happens (and, as all of our statements and proofs, it
only relies on algebro-geometric methods, with no input from topology).

In [KiKr13, Thm. 5.1], a Borel style presentation of equivariant algebraic cobor-
dism is obtained after inverting the torsion index. The improvement of our Theo-
rem 10.2 is that it applies to any oriented cohomology theory, and that, even over a
field of characteristic zero, over which algebraic cobordism is the universal oriented
cohomology theory, it gives a finer result than what one would get by specializing
from cobordism, as one can see in the case ofK-theory: the Borel style presentation
will always hold in the simply connected case, without inverting the torsion index.

2. Equivariant oriented cohomology theory

In the present section we recall the notion of an equivariant algebraic oriented co-
homology theory, essentially by compiling definitions and results of [Des09], [EG98],
[HM13], [KiKr13], [Kr12], [LM07], [Pa09] and [To99]. We present it here in a way
convenient for future reference.
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In this paper, k is always a fixed base field, and pt denotes Spec(k). By a variety
we mean a reduced separated scheme of finite type over k. Let G be a smooth
linear algebraic group over k, abbreviated as algebraic group, and let G-Var be the
category of smooth quasi-projective varieties over k endowed with an action of G,
and with morphisms respecting this action (i.e. G-equivariant morphisms). The
tangent sheaf TX of any X ∈ G-Var is locally free and has a natural G-equivariant
structure. The same holds for the (co)normal sheaf of any equivariant regular
embedding of a closed subscheme.

An equivariant oriented cohomology theory over k is an additive contravariant
functor hG from the category G-Var to the category of commutative rings with
unit for any algebraic group G (for an equivariant morphism f , the map hG(f) is
denoted by f∗ and is called pull-back) together with

• a morphism f∗ : hG(X) → hG(Y ) of hG(Y )-modules (called push-forward)
for any projective morphism f : X → Y in G-Var (here hG(X) is an hG(Y )-
module through f∗)
• a natural transformation of functors resφ : hH → hG ◦Resφ (called restric-
tion) for any morphism of algebraic groups φ : G→ H (here Resφ : H -Var→
G-Var simply restricts the action of H to an action of G through φ)
• a natural transformation of functors cG : KG → h̃G (called the total equi-
variant characteristic class), where KG(X) is the K-group of G-equivariant
locally free sheaves over X and h̃G(X) is the multiplicative group of the
polynomial ring hG(X)[t] (the coefficient at ti is called the i-th equivariant
characteristic class in the theory h and is denoted by cGi )

that satisfy the following properties

A 1 (Compatibility for push-forwards). The push-forwards respect composition and
commute with pull-backs for transversal squares (a transversal square is a fiber
product diagram with a nullity condition on Tor-sheaves, stated in [LM07, Def.
1.1.1]; in particular, this condition holds for any fiber product with a flat map).

A 2 (Compatibility for restriction). The restriction respects composition of mor-
phisms of groups and commutes with push-forwards.

A 3 (Localization). For any smooth closed subvariety i : Z → X in G-Var with
open complement u : U →֒ X, the sequence

hG(Z)
i∗−→ hG(X)

u∗

−→ hG(U)→ 0

is exact.

A 4 (Homotopy Invariance). Let p : X × An → X be a G-equivariant projection
with G acting linearly on An. Then the induced pull-back hG(X)→ hG(X ×An) is
an isomorphism.

A 5 (Normalization). For any regular embedding i : D ⊂ X of codimension 1 in
G-Var we have cG1 (O(D)) = i∗(1) in hG(X), where O(D) is the line bundle dual to
the kernel of the map of G-equivariant sheaves O → OD.

A 6 (Torsors). Let p : X → Y be in G-Var and let H be a closed normal subgroup
of G acting trivially on Y such that p : X → Y is a H-torsor. Consider the quo-
tient map ı : G → G/H. Then the composite p∗ ◦ resı : hG/H(Y ) → hG(X) is an
isomorphism.
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In particular, if H = G we obtain an isomorphism h{1}(Y ) ≃ hG(X) for a
G-torsor X over Y .

A 7. If G = {1} is trivial, then h{1} = h defines an algebraic oriented cohomology
in the sense of [LM07, Def. 1.1.2] (except that h takes values in rings, not in graded
rings) with push-forwards and characteristic classes being as in [LM07].

A 8 (Self-intersection formula). Let i : Y ⊂ X be a regular embedding of codimen-
sion d in G-Var. Then the normal bundle to Y in X, denoted by NY/X is naturally

G-equivariant and there is an equality i∗i∗(1) = cGd (NY/X) in hG(Y ).

A 9 (Quillen’s formula). If L1 and L2 are locally free sheaves of rank one, then

c1(L1 ⊗ L2) = c1(L1) +F c1(L2),

where F is the formal group law of h (here G = {1}).

For anyX ∈ G-Var consider the γ-filtration on hG(X), whose i-th term γi hG(X)
is the ideal of hG(X) generated by products of equivariant characteristic classes of
total degree at least i. In particular, a G-equivariant locally free sheaf of rank
n over pt is the same thing as an n-dimensional k-linear representation of G, so
γi hG(pt) is generated by Chern classes of such representations. This can lead to
concrete computations when the representations of G are well described.

We introduce the following important notion

Definition 2.1. An equivariant oriented algebraic cohomology theory is called
Chern-complete over the point for G, if the ring hG(pt) is separated and complete
with respect to the γ-filtration.

Remark 2.2. Assume that the ring hG(pt) is separated for all G, and let hG(pt)
∧

be its completion with respect to the γ-filtration. We can Chern-complete the
equivariant cohomology theory by tensoring with − ⊗hG(pt) hG(pt)

∧. In this way,
we obtain a completed version of the cohomology theory, still satisfying the axioms.
Note that this completion has no effect on the non-equivariant groups, since in h(pt),
the Chern classes are automatically nilpotent by [LM07, Lemma 1.1.3].

Here are three well-known examples of equivariant oriented cohomology theories.

Example 2.3. The equivariant Chow ring functor hG = CHG was constructed by
Edidin and Graham in [EG98], using an inverse limit process of Totaro [To99]. In
this case the formal group law is the additive one F (x, y) = x + y, the base ring
CH(pt) is Z, and the theory is Chern-complete over the point for any group G by
construction.

Example 2.4. Equivariant algebraic K-theory and, in particular, K0 was con-
structed by Thomason [Th87] (see also [Me05] for a good survey). The formal
group law is multiplicative F (x, y) = x + y − xy, the base ring K0(pt) is Z, and
the theory is not Chern complete: for example, (K0)Gm(pt) ≃ Z[t, t−1] with the γi

generated by (1 − t)i. Observe that (K0)G(pt) consists of classes of k-linear finite
dimensional representations of G.

Example 2.5 (Algebraic cobordism). Equivariant algebraic cobordism was defined
by Deshpande [Des09], Malgón-López and Heller [HM13] and Krishna [Kr12]. The
formal group law is the universal one over Ω(pt) = L the Lazard ring. The equi-
variant theory is Chern complete over the point for any group G by construction.
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By Totaro’s process one can construct many examples of equivariant theories,
such as equivariant connective K-theory, equivariant Morava K-theories, etc. More-
over, in this way one automatically obtains Chern-complete theories.

3. Torus-equivariant cohomology of a point

In the present section we show that the completed equivariant oriented cohomol-
ogy ring of a point hT (pt), where T is a split torus, can be identified with the formal
group algebra R[[M ]]F of the respective group of characters M (see Theorem 3.3).

Let M be a finitely generated free abelian group. Let T be the Cartier dual of
M , soM is the group of characters of T . Let X be a smooth variety over k endowed
with a trivial T -action. Consider the pull-back p∗ : hT (pt) → hT (X) induced by
the structure map. Let γipt hT (X) denote the ideal in hT (X) generated by elements

from the image of γi hT (pt) under the pull-back. Since any representation of T
decomposes as a direct sum of one dimensional representations, γi hT (pt) is gener-
ated by products of first characteristic classes cT1 (Lλ), λ ∈M . Since characteristic
classes commute with pull-backs, γipt hT (X) is also generated by products of first
characteristic classes (of pull-backs p∗Lλ).

Let F be a one-dimensional commutative formal group law over a ring R. We
often write x +F y (formal addition) for the power series F (x, y) defining F . Fol-
lowing [CPZ, §2] consider the formal group algebra R[[M ]]F . It is an R-algebra
together with an augmentation map R[[M ]]F → R with kernel denoted by IF , and
it is complete with respect to the IF -adic topology. Thus

R[[M ]]F = lim
←−
i

R[[M ]]F/I
i
F ,

and it is topologically generated by elements of the form xλ, λ ∈M , which satisfy
xλ+µ = xλ +F xµ. By definition (see [CPZ, 2.8]) the algebra R[[M ]]F is universal
among R-algebras with an augmentation ideal I and a morphism of groups M →
(I,+F ) that are complete with respect to the I-adic topology. The choice of a basis
of M defines an isomorphism

R[[M ]]F ≃ R[[x1, . . . , xn]],

where n is the rank of M .

Set R = h(X). Then hT (X) is an R-algebra together with an augmentation
map hT (X)→ R via the restrictions induced by {1} → T → {1}. The assignment
λ ∈ M 7→ cT1 (Lλ) induces a group homomorphism M → (I,+F ), where I is the
augmentation ideal. Therefore, by the universal property of R[[M ]]F , there is a
morphism of R-algebras

φ : R[[M ]]F/I
i
F → hT (X)/γipt hT (X).

We claim that

Lemma 3.1. The morphism φ is an isomorphism.

Proof. We proceed by induction on the rank n of M .
For n = 0, we have T = {1}, R = hT (X), IiF = γipt hT (X) = {0} and the map φ

turns into an identity on R.
For rank n > 0 we choose a basis {λ1, . . . , λn} of M . Let {L1, . . . , Ln} be the

respective one-dimensional representations of T . This gives isomorphisms M ≃ Zn
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and T ≃ Gn
m and Gn

m acts on Li by multiplication by the i-th coordinate. Let
Gn

m act on Ai by multiplication by the last coordinate. Consider the localization
sequence (A3)

hGn
m
(X) −→ hGn

m
(X × Ai) −→ hGn

m
(X × (Ai \ {0})) −→ 0.

After identifying

hGn
m
(X)

∼
→ hGn

m
(X × Ai) and h

G
n−1
m

(X × Pi−1)
∼
→ hGn

m
(X × (Ai \ {0}))

via (A8) and (A6), we obtain an exact sequence

hGn
m
(X)

c1(Ln)
i

−→ hGn
m
(X) −→ h

G
n−1
m

(X × Pi−1) −→ 0.

where the first map is obtained by applying self-intersection (A5) and homotopy
invariance (A4) properties.

By definition, all these maps are R-linear, and the action of Gn−1
m on X × Pi−1

is the trivial one. Since the last map is given by pull-back maps and restrictions
(although not all in the same direction), and since equivariant characteristic classes
commute with these, one checks that it sends c1(Li) to c1(Li) for any i ≤ n−1 and
c1(Ln) to c1(O(1)); this last case holds because O(1) on Pi−1 goes (by restriction
and pull-back) to the equivariant line bundle on Ai \ {0} with trivial underlying
line bundle, but where Gn

m acts by λn on fibers.
By the projective bundle theorem, we have R′ := h(X × Pi−1) ≃ R[y]/yi with

c1(O(1)) = y. By induction, we obtain for any i an isomorphism

h
G

n−1
m

(X × Pi−1)/γipt ≃ R
′[[M ′]]F/(I

′
F )

i,

where M ′ = Zn−1 and I ′F is the augmentation ideal of R′[[M ′]]F . Using the iso-
morphisms R[[M ]]F ≃ R[[x1, . . . , xn]] and R

′[[M ′]]F ≃ R′[[x1, . . . , xn−1]] induced by
the basis of M , we are reduced to checking that

R[[x1, . . . , xn]]/IiF −→ (R[y]/yi)[[x1, . . . , xn−1]]/J

xi 7−→

{

xi if i ≤ n− 1

y if i = n.

is an isomorphism, when J = (I ′F )
i+ y · (I ′F )

i−1 + · · ·+ yi. The latter then follows
by definition. �

Remark 3.2. Similar statements can be found in [HM13, 3.2.1] or [Kr12, 6.7], but
we gave a full proof for the sake of completeness.

We obtain a natural map of R-algebras

hT (pt)→ lim
←−
i

hT (pt)/γ
i
hT (pt) ≃ lim

←−
i

R[[M ]]F/I
i
F = R[[M ]]F

and, therefore, by the lemma

Theorem 3.3. If h is (separated and) Chern-complete over the point for T , then
the natural map hT (pt) → R[[M ]]F is an isomorphism. It sends the characteristic
class cT1 (Lλ) ∈ hT (pt) to xλ ∈ R[[M ]]F .
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4. Equivariant cohomology of P1

In the present section we compute equivariant cohomology hT (P(V1 ⊕ V2)) of a
projective line, where a split torus T acts on one-dimensional representations V1
and V2 by means of characters λ1 and λ2.

Assumption 4.1. For the rest of the paper we assume that the equivariant coho-
mology of the point hT (pt) is (separated and) complete for the γ-filtration in the
sense of Definition 2.1.

Let X be a smooth T -variety. By section 3, the ring hT (X) can be considered as
a ring over S := R[[M ]]F via the identification S ≃ hT (pt) of Theorem 3.3 and the
pull-back map hT (pt)→ hT (X). By convention, we’ll use the same notation for an
element u of S and the element u · 1 ∈ hT (X), where 1 is the unit of hT (X). Thus,
for example, xλ = cT1 (Lλ) in hT (X).

Given a morphism f : X → Y in T -Var, the pull-back map f∗ is a morphism
of rings over S and the push-forward map f∗ (when it exists) is a morphism of
S-modules by the projection formula.

Remark 4.2. Note that we are not claiming that S injects in hT (X) for all X ∈
T -Var; it will nevertheless hold when X has a k-point that is fixed by T , as most
of the schemes considered in this paper have.

Lemma 4.3. Let p : X → Y be a morphism in G-Var, with a section s : Y → X.
Then for any u ∈ hG(Y ), one has

(a) s∗s∗(u · v) = u · s∗s∗(v) if s is projective.
(b) p∗(s∗(u)

n) = u · s∗s∗(u)n−1 for any n ≥ 1 if furthermore p is projective.

Proof. Part (a) follows from

s∗s∗(u · v) = s∗s∗
(

s∗p∗(u) · v
)

= s∗
(

p∗(u) · s∗(v)
)

= s∗p∗(u) · s∗s∗(v) = u · s∗s∗(v)

and part (b) from

p∗(s∗(u)
n) = p∗

(

s∗(u) ·s∗(u)
n−1

)

= p∗

(

s∗
(

u ·s∗(s∗(u)
n−1)

)

)

= u ·s∗s∗(u)
n−1. �

This lemma applies in particular when p : X → pt is the structural morphism of
X and s is therefore a G-fixed point of X .

We now concentrate on the following setting. Let λ1 and λ2 be characters of
T , and let V1 and V2 be the corresponding one dimensional representations of T ,
i.e. t ∈ T acts on v ∈ Vi by t · v = λi(t)v. Thus, the projective space P(V1 ⊕ V2)
is endowed with a natural T -action, induced by the action of T on the direct sum
of representations V1 ⊕ V2. Furthermore, the line bundle O(−1) has a natural T -
equivariant structure, that can be described in the following way: The geometric
points of the total space ofO(−1) are pairs (W,w) whereW is a rank one sub-vector
space of V1 ⊕ V2 and w ∈W . The torus T acts by t · (W,w) = (t(W ), t(w)).

Two obvious embeddings Vi ⊆ V1 ⊕ V2 induce two T -fixed points closed em-
beddings σ1, σ2 : pt →֒ P(V1 ⊕ V2). The open complement to σ1 is an affine space
isomorphic to V1⊗V ∨

2 , with T -action by the character λ1−λ2. We set α := λ2−λ1.
By homotopy invariance (A4) applied to the pull-back induced by the structural

morphism of V1, we have hT (pt)
∼
→ hT (V1) with inverse given by the pull-back σ∗

2
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(which actually lands in V1). The exact localization sequence (A3) can therefore
be rewritten as

hT (pt)
(σ1)∗

// hT (P(V1 ⊕ V2))
σ∗

2 // hT (pt) // 0

Using the structural map p : P(V1 ⊕ V2) → pt, we get a splitting p∗ of σ∗
2 and a

retract p∗ of (σ1)∗. Thus, the exact sequence is in fact injective on the left, and we
can decompose hT (P(V1 ⊕ V2)) using mutually inverse isomorphisms

(4.1) hT (pt)⊕ hT (pt)
((σ1)∗, p∗−(σ1)∗p∗p

∗)
// hT (P(V1 ⊕ V2))

(

p∗

σ
∗

2

)

oo

Lemma 4.4. (a) As T -equivariant bundles, we have σ∗
i (O(−1)) = Vi.

(b) We have (σ1)∗(1) = c1
(

O(1)⊗ p∗(V2)
)

and (σ2)∗(1) = c1(O(1)⊗ p∗(V1)) in

hT

(

P(V1 ⊕ V2)
)

.
(c) For any u ∈ hT (pt), we have σ∗

1(σ1)∗(u) = xαu, σ
∗
2(σ2)∗(u) = x−αu and

σ∗
1(σ2)∗(u) = σ∗

2(σ1)∗(u) = 0.

Proof. The first part is easily checked on the geometric points of total spaces and
is left to the reader. The second part follows from (A5), given the exact sequence
of T -equivariant sheaves

0→ O(−1)⊗ p∗(V2)
∨ → O → Oσ1 → 0,

where Oσ1 is the structural sheaf of the closed subscheme given by σ1. Again this
exact sequence is easy to check and we leave it to the reader. In the third part, the
last equality holds by transverse base change through the empty scheme, while the
first two follow from Lemma 4.3 and

σ∗
1(σ1)∗(1) = σ∗

1c1
(

O(1)⊗p∗(V2)
)

= c1

(

σ∗
1

(

O(1)⊗p∗(V2)
)

)

= c1
(

V ∨
1 ⊗V2) = xλ2−λ1 .

or a symmetric computation for σ∗
2(σ2)∗(1). �

Lemma 4.5. If xα is not a zero divisor in S, then the push-forward

p∗ : hT (P(V1 ⊕ V2))→ hT (pt) satisfies p∗(1) =
1
xα

+ 1
x−α

(observe that p∗(1) ∈ S by [CPZ, 3.12], where it is denoted by eα).

Proof. By Lemma 4.4, we have

xα = c1(p
∗(V2 ⊗ V

∨
1 )) = c1(O(1) ⊗ p

∗(V2)⊗ (O(1)⊗ p∗(V1))
∨)

= c1
(

O(1)⊗ p∗(V2)
)

−F c1
(

O(1)⊗ p∗(V1)
)

= (σ1)∗(1)−F (σ2)∗(1).

By transverse base change, we have (σ1)∗(1) · (σ2)∗(1) = 0, and therefore

(σ1)∗(1)−F (σ2)∗(1) = (σ1)∗(1) +
(

−F (σ2)∗(1)
)

.

Since xα is not a zero divisor in S, it suffices to prove that

xα · p∗(1) = 1 + xα

x−α
,

where xα

x−α
∈ S× is the power series −F (x)

x applied to x = x−α. Now,

xαp∗(1) = p∗(xα) = p∗
(

(σ1)∗(1) + (−F (σ2)∗(1))
)

= 1 + p∗(−F (σ2)∗(1)) = 1 + xα

x−α
.

where the last equality follows from Lemma 4.3, part (b). �
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Let σ = σ1 ⊔ σ2 : pt ⊔ pt→ P(V1 ⊕ V2) be the inclusion of both T -fixed points.

Lemma 4.6. If xα is not a zero divisor in S, the pull-back σ∗ is injective, and

imσ∗ = {(u, v) ∈ hT (pt)⊕ hT (pt) | x−αu+ xαv ∈ xαx−α · hT (pt)}.

Proof. Since hT (pt⊔pt) = hT (pt)⊕ hT (pt) identifies σ
∗ with (σ∗

1 , σ
∗
2), it suffices to

check that the composition

hT (pt)⊕ hT (pt)
((σ1)∗, p∗−(σ1)∗p∗p

∗)

≃
// hT (P(V1 ⊕ V2))

(

σ
∗

1
σ
∗

2

)

// hT (pt)⊕ hT (pt)

is injective. Indeed, it is given by the matrix
(

σ
∗

1 (σ1)∗ σ
∗

1p
∗
− σ

∗

1 (σ1)∗p∗p
∗

σ
∗

2 (σ1)∗ σ
∗

2p
∗
− σ

∗

2 (σ1)∗p∗p
∗

)

=
(

xα 1 − xα · p∗(1)
0 1

)

=
(

xα −
xα

x
−α

0 1

)

where in the first equality, we have used p ◦ σi = id, Lemma 4.4 part (c), to get the
1’s and the 0, and then the projection formula p∗p

∗(u) = u · p∗(1) and Lemma 4.3
to get σ∗

1(σ1)∗p∗p
∗(u) = xαp∗(1) · u. The last equality holds by Lemma 4.5.

Finally, the image of this matrix is of the expected form. �

Let S[ 1
xα

] be the localization of S at the multiplicative subset generated by xα.

Since xα

x−α
is invertible, there is a canonical isomorphism S[ 1

xα
] ≃ S[ 1

x−α
]. We

consider the S[ 1
xα

]-linear operator

A : S[ 1
xα

]⊕ S[ 1
xα

] −→ S[ 1
xα

] given by (u, v) 7→ u
xα

+ v
x−α

.

Note that by the previous lemma, it sends the image of σ∗ to S inside S[ 1
xα

].

Lemma 4.7. If xα is not a zero divisor in S, the following diagram commutes.

hT

(

P(V1 ⊕ V2)
)

p∗

��

σ∗

// hT (pt)⊕ hT (pt) S ⊕ S
≃oo ⊆ S[ 1

xα
]⊕ S[ 1

xα
]

A

��

hT (pt) S
≃oo ⊆ S[ 1

xα
]

Proof. It suffices to check the equality of the two maps after precomposition by the
isomorphism hT (pt) ⊕ hT (pt) → hT

(

P(V1 ⊕ V2)
)

given in (4.1). Using the matrix
already computed in the proof of Lemma 4.6, one obtains that the upper right
composition sends (u, v) to u. The lower left composition sends (u, v) to

p∗
(

(σ1)∗(u) + p∗(v) − (σ1)∗p∗p
∗(v)

)

= u+ p∗p
∗(v) − p∗p

∗(v) = u. �

5. Algebraic and combinatorial objects

Let us now introduce the main algebraic objects D⋆, D⋆
Ξ, S

⋆
W and S⋆

W/WΞ
that

play the role of algebraic replacements for some equivariant cohomology groups in
the remaining of this paper. These objects were discussed in detail in [CZZ] and
[CZZ2], and we only give a brief overview here. Their geometric interpretation will
be explained in the next sections.

Let Σ →֒ Λ∨, α 7→ α∨ be a root datum. The rank of the root datum is the
dimension of Q⊗Z Λ, and elements in Σ are called roots. The root lattice Λr is the
subgroup of Λ generated by elements in Σ, and the weight lattice is defined as

Λw = {ω ∈ Q⊗Z | α
∨(ω) ∈ Z for all α ∈ Σ}.
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We have Λr ⊆ Λ ⊆ Λw. We always assume that the root datum is semisimple
(the ranks of Λ, Λr, Λw are equal and no root is twice any other root). The root
datum is called simply connected (resp. adjoint) if Λ = Λw (resp. Λ = Λr) and if
it is furthermore irreducible of rank n, we use the notation Dsc

n (resp. Dad
n ) for its

Dynkin type, with D among A, B, C, D, G, F , E.

The Weyl group W of the root datum is the subgroup of AutZ(Λ) generated by
simple reflections

sα(λ) = λ− α∨(λ)α, λ ∈ Λ.

Fixing a set of simple roots Π = {α1, ..., αn} induces a partition Σ = Σ+ ∪ Σ−,
where Σ+ is the set of positive roots and Σ− = −Σ+ is the set of negative roots.
The Weyl group W is actually generated by si := sαi , i = 1, ..., n.

Let F be a one-dimensional commutative formal group law over a commutative
ring R. Let S = R[[Λ]]F . From now on we always assume that

Assumption 5.1. The algebra S is Σ-regular, that is, xα is regular in S for all
α ∈ Σ (see [CZZ, Def. 4.4]).

This holds if 2 is regular in R, or if the root datum does not contain an irreducible
component of type Csc

k [CZZ, Rem. 4.5].

The action ofW on Λ induces an action ofW on S, and let SW be the R-algebra
defined as S ⊗R R[W ] as an R-module, and with product given by

qδwq
′δw′ = qw(q′)δww′ , q, q′ ∈ S, w,w′ ∈W.

Let Q = S[ 1
xα
|α ∈ Σ] and QW = Q⊗S SW , with ring structure given by the same

formula with q, q′ ∈ Q. Then {δw}w∈W is an S-basis of SW and a Q-basis of QW .
There is an action of QW on Q, restricting to an action of SW on S, and given by

qδw · q
′ = qw(q′), q, q′ ∈ Q, w ∈ W.

For each α ∈ Σ, we define κα = 1
xα

+ 1
x−α
∈ S.

Definition 5.2. For any α ∈ Σ, let

Xα = 1
xα
− 1

xα
δsα , Yα = κα −Xα = 1

x−α
+ 1

xα
δsα ,

in QW , respectively called a formal Demazure element and a formal push-pull ele-
ment.

For each sequence (i1, ..., ik) with 1 ≤ ij ≤ n, we define XI = Xαi1
· · ·Xαik

and
YI = Yαi1

· · ·Yαik
.

Definition 5.3. Let D be the R-subalgebra of QW generated by elements from S
and the elements Xα, α ∈ Σ.

Since δsi = 1 − xαiXαi , we have SW ⊆ D. By [CZZ, Prop. 7.7], D is a free S-
module and for any choice of reduced decompositions Iw for every element w ∈W
the family {XIw}w∈W is an S-basis of D.

There is a coproduct structure on the Q-module QW defined by

QW ⊗Q QW → QW , qδw 7→ qδw ⊗ δw,

with counit QW → Q, qδw 7→ q. Here QW ⊗Q QW is the tensor product of left
Q-modules. By the same formula, one can define a coproduct structure on the
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S-module SW . The coproduct on QW induces a coproduct structure on D as a left
S-module.

On duals S⋆
W = HomS(SW , S), D⋆ = HomS(D, S) and Q∗

W = HomQ(QW , Q)
(notice the different stars ⋆ for S-duality and ∗ for Q-duality), the respective co-
products induce products. In S⋆

W or Q∗
W , this product is given by the simple

formula

fvfw = δKr
v,wfv

on the dual basis {fv}w∈W to {δw}w∈W , with δKr
v,w the Kronecker delta. The mul-

tiplicative identity is 1 =
∑

v∈W fv. Let η be the inclusion SW ⊆ D. It induces an
S-algebra map η⋆ : D⋆ → S⋆

W , which happens to be injective [CZZ2, Lemma 10.2].
Furthermore, after localization, ηQ : QW → Q ⊗S D⋆ is an isomorphism and by
freeness, we have Q ⊗S D⋆ ≃ HomQ(Q ⊗S D, Q) and thus Q⊗S D⋆ ≃ Q∗

W , as left
Q-rings.

There is a Q-linear action of the R-algebra QW on Q∗
W given by

(z • f)(z′) = f(z′z), z, z′ ∈ QW , f ∈ Q∗
W .

as well as S-linear actions of SW on S⋆
W and of D on D⋆, given by the same

formula. With this action, it is proved in [CZZ2, Theorem 10.13] that D⋆ is a free
D-module of rank 1 and any w ∈W gives a one-element basis {xΠ •fw} of it, where
xΠ =

∏

α∈Σ− xα.
The map cS : S → D⋆ sending s to s • 1 is called the algebraic (equivariant)

characteristic map, and it is of special importance (see section 10).

We now turn to the setting related to parabolic subgroups. Let Ξ ⊆ Π be a
subset and let WΞ be the subgroup of W generated by the si with αi ∈ Ξ. Let
ΣΞ = {α ∈ Σ|sα ∈ WΞ}, and define Σ+

Ξ = Σ+ ∩ ΣΞ and Σ−
Ξ = Σ− ∩ ΣΞ. For

Ξ′ ⊆ Ξ ⊆ Π, let Σ+
Ξ/Ξ′

= Σ+
Ξ\Σ

+
Ξ′ and Σ−

Ξ/Ξ′
= Σ−

Ξ\Σ
−
Ξ′ . In S, we set

xΞ/Ξ′ =
∏

α∈Σ−

Ξ/Ξ′

xα and xΞ = xΞ/∅.

Let SW/WΞ
be the free S-module with basis {δw̄}w̄∈W/WΞ

and let QW/WΞ
=

Q⊗S SW/WΞ
be its localization.

As on QW , one can define a coproduct structure on QW/WΞ
and SW/WΞ

, by the
same diagonal formula. Let

S⋆
W/WΞ

= HomS(SW/WΞ
, S) and Q∗

W/WΞ
= HomQ(QW/WΞ

, Q)

be the respective dual rings of the corings SW/WΞ
and QW/WΞ

. On the basis
{fv̄}v̄∈W/WΞ

dual to the basis {δw̄}w̄∈W/WΞ
, the unit element is 1Ξ =

∑

v̄∈W/WΞ
fv̄,

both in S⋆
W/WΞ

and in Q∗
W/WΞ

.

Assume Ξ′ ⊆ Ξ. Let w̄ ∈W/WΞ′ and let ŵ denote its class in W/WΞ. Consider
the projection and the sum over orbits

pΞ/Ξ′ : SW/WΞ′
→ SW/WΞ

δw̄ 7→ δŵ

and dΞ/Ξ′ : SW/WΞ
→ SW/WΞ′

δŵ 7→
∑

v̄∈W/WΞ′

v̂=ŵ

δv̄
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with S-dual maps

p⋆Ξ/Ξ′ : S⋆
W/WΞ

→ S⋆
W/WΞ′

fŵ 7→
∑

v̄∈W/WΞ′

v̂=ŵ

fv̄

and d⋆Ξ/Ξ′ : S⋆
W/WΞ′

→ S⋆
W/WΞ

fw̄ 7→ fŵ

.

Note that pΞ/Ξ′ respects coproducts, so p⋆Ξ/Ξ′ is a ring map while d⋆Ξ/Ξ′ isn’t.

We set pΞ = pΞ/∅. Let DΞ denote the image of D via pΞ. The coproduct
structure on QW/WΞ

induces an S-linear coproduct structure on DΞ, so its S-dual
D⋆

Ξ has a ring structure.
In summary, we have the following diagram followed by its dualization

SW/WΞ′

� � ηΞ′

//

pΞ/Ξ′

����

DΞ′

� � //

pΞ/Ξ′

����

QW/WΞ′

pΞ/Ξ′

����

SW/WΞ

� � ηΞ
// DΞ

� � // QW/WΞ

D⋆
Ξ′

� �
η⋆
Ξ′

// S⋆
W/WΞ′

� � // Q∗
W/WΞ′

D⋆
Ξ

?�

p⋆
Ξ/Ξ′

OO

� � η⋆
Ξ // S⋆

W/WΞ

?�

p⋆
Ξ/Ξ′

OO

� � // Q∗
W/WΞ

?�

p⋆
Ξ/Ξ′

OO

in which all horizontal maps become isomorphisms after tensoring by Q on the left.
It will receive a geometric interpretation as Diagram (8.2). Moreover, by [CZZ2,
Lemma 11.7], the image of p⋆Ξ in D⋆ (or S⋆

W , Q∗
W ) is the subset of WΞ-invariant

elements.

There is no ‘•’-action of SW/WΞ
on S⋆

W/WΞ
because SW/WΞ

is not a ring. But

since xΠ/Ξ ∈ SWΞ , the element xΠ/Ξ • f is well-defined for any f ∈ S⋆
W/WΞ

and

actually belongs to D⋆
Ξ inside S⋆

W/WΞ
, by [CZZ2, Lemma 15.3]. This defines a map

D⋆
Ξ → SW/WΞ

, interpreted geometrically in Diagram (8.1).

For a given set of representatives of WΞ/WΞ′ we define the push-pull element by

YΞ/Ξ′ =
∑

w∈WΞ/Ξ′

δw
1

xΞ/Ξ′

∈ QW .

We set YΞ = YΞ/∅. If Ξ = {αi}, then YΞ = Yαi . By [CZZ2, Lemma 10.12], YΞ ∈ D.

Let

AΞ/Ξ′ : (Q∗
W )WΞ′ → (Q∗

W )WΞ

f 7→ YΞ/Ξ′ • f
and AΞ/Ξ′ : Q∗

W/WΞ′

→ Q∗
W/WΞ

f 7→ d⋆Ξ/Ξ′(
1

xΞ/Ξ′

• f)

and respectively call them push-pull operator and push-forward operator. The oper-
atorAΞ/Ξ′ is actually independent of the choice of representatives [CZZ2, Lem. 6.5].

We have AΞ/Ξ′((D⋆)WΞ′ ) = (D⋆)WΞ by [CZZ2, Cor. 14.6] and AΞ/Ξ′ induces a map
AΞ/Ξ′ : D⋆

Ξ′ → D⋆
Ξ by [CZZ2, Lemma 15.1]. These two operators are related by

the commutative diagram on the left below, becoming the one on the right after
tensoring by Q.

D⋆
Ξ′

p⋆
Ξ′

≃
//

AΞ/Ξ′

��

(D⋆)WΞ′

AΞ/Ξ′

��

D⋆
Ξ

p⋆
Ξ

≃
// (D⋆)WΞ

Q∗
W/WΞ′

p⋆
Ξ′

≃
//

AΞ/Ξ′

��

(Q∗
W )WΞ′

AΞ/Ξ′

��

Q∗
W/WΞ

p⋆
Ξ

≃
// (Q∗

W )WΞ

Again, when Ξ′ = ∅, we set AΞ = AΞ/∅ and AΞ = AΞ/∅.
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6. Fixed points of the torus action

We now consider a split semi-simple algebraic group G over k containing T as a
maximal torus. Let W be the Weyl group associated to (G, T ), with roots Σ ⊆ Λ.
We choose a Borel subgroup B of G containing T . It defines a set Π of simple roots
in W . Given a subset Ξ ⊆ Π, the subgroup generated by B and representatives in
G(k) of reflections with respect to roots in Ξ is a parabolic subgroup, denoted by
PΞ. The map sending Ξ to PΞ is a bijection between subsets of Π and parabolic
subgroups ofG containingB. LetWΞ be the subgroup ofW generated by reflections
with respect to roots in Ξ. We will abuse the notation by also writing W (or WΞ,
etc.) when referring to the constant finite algebraic group over pt whose set of
points over any field is W .

For any parabolic subgroup P , the quotient varietyG/P is projective and we con-
sider it in T -Var by letting T act on G by multiplication on the left. After identify-
ingW ≃ NG(T )/T , the Bruhat decomposition says that G/P = ∐w∈WΞBwPΞ/PΞ,
where the union is taken over the set WΞ of minimal left coset-representatives of
W/WΞ. The latter induces a bijection between k-points of G/PΞ that are fixed by
T and the set WΞ (or W/WΞ). In particular, fixed k-points of G/B are in bijection
with elements of W .

Let (G/PΞ)
T = ∐w̄∈W/WΞptw̄ denote the closed subvariety of T -fixed k-points,

then by additivity there is an S = hT (pt)-algebra isomorphism

ΘΞ : hT ((G/PΞ)
T )

≃
−→

∏

w̄∈W/WΞ

hT (ptw̄) =
∏

w̄∈W/WΞ

S ∼= S⋆
W/WΞ

.

If Π = ∅, we denote Θ : hT ((G/B)T ) = hT (W )→ S⋆
W .

Let ıΞ : (G/PΞ)
T →֒ G/PΞ denote the (closed) embedding of the T -fixed locus,

and let ıw̄Ξ : ptw̄ →֒ G/PΞ denote the embedding corresponding to w̄. Given Ξ′ ⊆
Ξ ⊆ Π, we define projections

πΞ/Ξ′ : G/PΞ′ → G/PΞ and ρΞ/Ξ′ : W/WΞ′ →W/WΞ

(here we view W/WΞ as a variety that is a disjoint union of copies of pt indexed by
cosets). If Ξ = {α} consists of a single simple root α, we omit the brackets in the
indices, i.e. we abbreviate W{α} as Wα, P{α} as Pα, etc. If Ξ′ = ∅, we omit the ∅
in the notation, i.e. πΞ/∅ = πΞ, ρΞ/∅ = ρΞ, etc. By definition, we have

(6.1) ΘΞ ◦ (ρΞ/Ξ′)∗ = d⋆Ξ/Ξ′ ◦ΘΞ′ and ΘΞ′ ◦ (ρΞ/Ξ′)∗ = p⋆Ξ/Ξ′ ◦ΘΞ.

Lemma 6.1. Let w ∈ W be a representative of w̄ ∈ W/WΞ. The pull-pack
(ıw̄Ξ)

∗TG/PΞ
of the tangent bundle TG/PΞ

of G/PΞ is the representation of T (the

T -equivariant bundle over a point) with weights {w(α) | α ∈ Σ−
Π/Ξ} (observe that

by [CZZ2, Lemma 5.1] it is independent of the choice of a representative w).

Proof. Consider the exact sequence of T -representations at the neutral element
e ∈ G

0→ TPΞ,e → TG,e → TG/PΞ,e → 0

(it is exact by local triviality of the right PΞ-torsor G → G/PΞ). By definition of
the root system associated to (G, T ), the roots Σ are the characters of TG,e. By
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definition of the parabolic subgroup PΞ, the characters of TPΞ,e are Σ+ ⊔Σ−
Ξ . This

proves the lemma when w = e. For an arbitrary w, we consider the diagram

pte
ıeΞ //

ıēΞ ""❊
❊❊

❊❊
❊❊

❊
G

w· //

��

G

��

G/PΞ
w· // G/PΞ

which is T -equivariant if T acts by multiplication on the left on the right column
and through conjugation by w−1 and then by multiplication on the left on the left
column. Since ıw̄Ξ is the bottom composite from pte to G/PΞ, the fiber of TG/PΞ

at w̄ is isomorphic to its fiber at e, but for every character α, the action of T is
now by t(v) = α(w̄−1tw̄) · v = α(w−1(t)) · v = w(α)(t) · v, in other words by the
character w(α). �

Proposition 6.2. We have (ıw̄Ξ)
∗(ıw̄

′

Ξ )∗(1) = 0 if w̄ 6= w̄′ ∈W/WΞ and

(ıw̄Ξ )
∗(ıw̄Ξ )∗(1) =

∏

α∈Σ−

Π/Ξ

xw(α) = w(xΠ/Ξ).

Proof. The case w̄ 6= w̄′ holds by transverse base change through the empty scheme.
Since the normal bundle to a point in G/PΞ is the tangent bundle of G/PΞ pulled
back to that point, and since any T -representation splits into one-dimensional ones,
the case w̄ = w̄′ follows from (A8) using Lemma 6.1 to identify the characters. �

Remark 6.3. Note that in the Borel case, the inclusion of an individual fixed point
is local complete intersection as any other morphism between smooth varieties,
but not “global” complete intersection, in the sense that it is not the zero locus
of transverse sections of a globally defined vector bundle. Otherwise, for Chow
groups, such a point would be in the image of the characteristic map as a product
of first Chern classes, and it isn’t for types for which the simply connected torsion
index isn’t 1. Locally, on an open excluding other fixed points, it becomes such a
product, as the previous proposition shows.

Corollary 6.4. We have ΘΞ(ıΞ)
∗(ıΞ)∗(1) = xΠ/Ξ • 1Ξ.

Proof. Since ıΞ =
⊔

w̄∈W/WΞ
ıw̄Ξ , we have

ΘΞ(ıΞ)
∗(ıΞ)∗(1) = ΘΞ

(

∑

v̄, w̄∈W/WΞ

(ıv̄Ξ)
∗(ıw̄Ξ )∗(1)

)

= ΘΞ

(

∑

w̄∈W/WΞ

w
(

xΠ/Ξ

)

1ptw̄

)

=
∑

w̄∈W/WΞ

w
(

xΠ/Ξ

)

fw̄ = xΠ/Ξ • 1Ξ. �

7. Bott-Samelson classes

In the present section we describe the Bott-Samelson classes in the T -equivariant
cohomology of G/PΞ.

Let Ξ ⊆ Π as before. For each w̄ ∈W/WΞ consider the B-orbit BwPΞ/PΞ of the
point in G/PΞ corresponding to w̄. It is isomorphic to the affine space Al(v) where

v ∈ WΞ is the representative of w̄ of minimal length l(v). Its closure BwPΞ/PΞ is
called the Schubert variety at w̄ with respect to Ξ and is denoted by XΞ

w̄ . If Ξ = ∅,
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we write Xw for X ∅
w. Moreover, by Bruhat decomposition the closed complement of

BwPΞ/PΞ is the union of Schubert varieties XΞ
ū with ū < w̄ for the Bruhat order

on W/WΞ. For any w ∈W , the projection map G/B → G/PΞ induces a projective
map Xw → X

Ξ
w . Moreover, if w ∈ WΞ, then the projection Xw → X

Ξ
w is (projective

and) birational.

The variety XΞ
w̄ is not smooth in general, but it admits nice desingulariza-

tions, that we now recall, following [Dem74]. Given a sequence of simple reflec-
tions I = (s1, . . . , sl) corresponding to simple roots (α1, . . . , αl), the Bott-Samelson
desingularization of XI is defined as

X̂I = Pα1 ×
B Pα2 ×

B · · · ×B Pαl
/B

where ×B means the quotient by the action of B given on points by b · (x, y) =

(xb−1, by). By definition, the multiplication of all factors induces a map qI : X̂I →

G/B which factors through a map µI : X̂I → Xw(I) where w(I) = s1 · · · sl. It is

easy to see that if I ′ = (s1, . . . , sl−1), the diagram

(7.1) X̂I
qI

//

p′

��

G/B

παl

��

X̂I′

παl
◦qI′

// G/Pαl

is cartesian, when p′ is projection on the first l − 1 factors. By induction on l,
the variety X̂I is smooth projective and the morphism µI is projective. When
furthermore I is a reduced decomposition of w(I), meaning that it is of minimal
length among the sequences J such that w(J) = w(I), the map µI is birational
(still by Bruhat decomposition). We can compose this map with the projection to

get a map X̂w → XΞ
w̄ and thus when w ∈ WΞ, we obtain a (projective birational)

desingularization X̂w → XΞ
w̄ . It shows that, G/PΞ has a cellular decomposition with

desingularizations, as considered just before [CPZ, Thm. 8.8], with cells indexed by
elements of W/WΞ.

Remark 7.1. The flag varieties, the Schubert varieties, their Bott-Samelson desin-
gularizations and the various morphisms between them that we have just introduced
are all B-equivariant when B acts on the left, and therefore are T -equivariant.

Definition 7.2. Let qΞI = πΞ◦qI , let ζΞI be the push-forward (qΞI )∗(1) in hT (G/PΞ),

and let ζI = ζ∅I in hT (G/B).

Note that by definition, we have (πΞ)∗(ζI) = ζΞI .

Lemma 7.3. For any choice of reduced sequences {Iw}w∈WΞ, the classes ζΞIw gen-
erate hT (G/PΞ) as an S-module.

Proof. The proof of [CPZ, Theorem 8.8] goes through when h is replaced by hT ,
since all morphisms involved are T -equivariant; it only uses homotopy invariance
and localization. �

Let V0 (resp. Vα) be the 1-dimensional representation of T corresponding to the 0
(resp. α) character. Let σ0 and σα be the inclusions of T -fixed points corresponding
to V0 and Vα in P(V0 ⊕ Vα) as in the setting of Section 4.
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Consider the projection πα : G/B → G/Pα. Given an element w ∈ W , with
image w̄ in W/Wα and any lifting w′ of w in G, the fiber over the fixed point
ıw̄α : ptw̄ → G/Pα is w′Pα/B.

Lemma 7.4. There is a T -equivariant isomorphism w′Pα/B ≃ P(V0 ⊕ V−w(α)),
such that the the closed fixed point ıw : ptw → w′Pα/B →֒ G/B (resp. ıwsα) is sent
to σ0 : pt→ P(V0 ⊕ V−w(α)) (resp. to σ−w(α)).

Proof. Multiplication on the left by w′ defines an isomorphism Pα/B → w′Pα/B
and it is T -equivariant if T acts by multiplication on the left on w′Pα/B and through
conjugation by (w′)−1 and then by multiplication on the left on Pα/B. Thus, we
can reduce to the case where w′ = e: the general case follows by replacing the
character α by w(α).

First, let us observe that PGL2 acts on the projective space P1 by projective
transformations, i.e.

(

t b
c d

)

[x : y] = [tx+ by : cx+ dy]

with its Borel subgroup BPGL2
of upper triangular matrices fixing the point [1 : 0],

which therefore gives an identification PGL2/BPGL2
≃ P1. So, its maximal torus

Gm of matrices such that b = c = 0 and d = 1 acts by t[x : y] = [tx : y] = [x : t−1y].
Thus, as a Gm-variety, this P1 is actually P(V1 ⊕ V0) ≃ P(V0 ⊕ V−1).

The adjoint semi-simple quotient of Pα is of rank one, so it is isomorphic to
PGL2. The maximal torus T maps to a maximal torus Gm and the Borel B to a
Borel in this PGL2. Up to modification of the isomorphism by a conjugation, we
can assume that this Borel of PGL2 is indeed BPGL2 as above. The map T → Gm

is ±α (the sign depends on how the maximal torus of PGL2 is identified with Gm).
Since Pα/B ≃ PGL2/BPGL2

, we are done by the PGL2 case. �

Recall the notation from section 5.

Lemma 7.5. The following diagram commutes.

hT (G/B)

π∗

α(πα)∗

��

ı∗ // hT (W )
Θ

≃
// S⋆

W ⊆ Q∗
W

Aα

��

hT (G/B)
ı∗ // hT (W )

Θ

≃
// S⋆

W ⊆ Q∗
W

Proof. In view of Lemma 7.4, the strategy is to reduce to the case of Lemma 4.7
by restricting to the fiber over one fixed point of G/Pα at a time.

We decompose Q∗
W =

⊕

w∈Wα(Q · fw ⊕ Q · fwsα) and note that Aα preserves
this decomposition since

Aα(fw) =
1

x−w(α)
(fw + fwsα), Aα(fwsα) =

1

xw(α)
(fw + fwsα)

and Aα is Q-linear. It therefore suffices to check the commutativity of the diagram
after extending both rows on the right by a projection Q∗

W → Q · fw ⊕Q · fwsα , for
all w ∈ Wα. But then, the composite horizontal maps hT (G/B)→ Q ·fw⊕Q ·fwsα

factor as

hT (G/B)→ hT (PαwB/B)→ hT (pt)⊕hT (pt)≃S⊕S ⊆ S[
1

xw(α)
]⊕S[ 1

xw(α)
] ⊆ Q⊕Q.
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Using proper base change on the diagram

G/B

πα

��

w′Pα/B

��

? _oo

G/Pα pt? _
ıw̄αoo

and identifying w′Pα/B with P(V0 ⊕ V−w(α)) by Lemma 7.4, we are reduced to
proving the commutativity of

hT

(

P(V0 ⊕ V−w(α))
)

p∗p∗

��

σ∗

// hT (pt)⊕ hT (pt) S ⊕ S
≃oo ⊆ S[ 1

xw(α)
]⊕ S[ 1

xw(α)
]

Aα

��

hT

(

P(V0 ⊕ V−w(α))
) σ∗

// hT (pt)⊕ hT (pt) S ⊕ S
≃oo ⊆ S[ 1

xw(α)
]⊕ S[ 1

xw(α)
]

which immediately reduces to the diagram of Lemma 7.5 followed by an obvious
commutative diagram involving pull-backs

hT

(

P(V0 ⊕ V−w(α))
) σ∗

// hT (pt)⊕ hT (pt) S ⊕ S
≃oo ⊆ S[ 1

xw(α)
]⊕ S[ 1

xw(α)
]

hT (pt)

p∗

OO

∆

66❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

S
≃oo ⊆

∆

OO

S[ 1
xw(α)

]

∆

OO

in which ∆ is the diagonal morphism. �

Lemma 7.6. For any sequence I = (i1, . . . , il), the Bott-Samelson class ζI ∈
hT (G/B) maps to

Θ ◦ ı∗(ζI) = AIrev

(

xΠ · fe
)

in S⋆
W .

Proof. By induction using diagram (7.1), we have

ζI = π∗
αil

(παil
)∗ ◦ · · · ◦ π

∗
αi1

(παi1
)∗ ◦ (ı

e)∗(1).

Since Θı∗(ıe)∗(1) = xΠ·fe by Proposition 6.2, the conclusion follows from Lemma 7.5.
�

8. Equivariant cohomology of a flag variety

In the present section we describe the T -equivariant cohomology of an arbitrary
split flag variety G/PΞ.

First, consider the complete flag variety G/B.

Proposition 8.1. For any choice of reduced decompositions (Iw)w∈W , the family
(ζIw )w∈W form a basis of hT (G/B) over S = hT (pt).

Proof. By Lemma 7.6, the element ζIw pulls-back to AIrev

(

xΠ ·fe
)

in S⋆
W and these

are linearly independent over S by [CZZ2, Theorem 12.4]. They generate hT (G/B)
by Lemma 7.3. �

Theorem 8.2. The pull-back map to fixed points ı∗ : hT (G/B)→ hT (W ) is injec-
tive, and the isomorphism Θ : hT (W ) ≃ S⋆

W , identifies its image to D⋆ ⊆ S⋆
W .
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Proof. This follows from Lemma 8.1 and the fact that the AIrev

(

xΠ · fe
)

form a
basis of D⋆ as a submodule of S⋆

W , still by [CZZ2, Theorem 12.4]. �

Remark 8.3. We do not know a direct geometric proof that hT (G/B) injects into
hT ((G/B)T ), which is of course well known for Chow groups or K-theory. Tracking
back this fact in the proof of the previous theorem, one notices that it makes full
use of the algebraic description of these cohomology groups, in other words, that
the map D⋆ → S⋆

W is indeed an injection by [CZZ2, Lemma 10.2].

Corollary 8.4. The pull-back map ı∗ : hT (G/B) → hT (W ) becomes an isomor-
phism after localization at the multiplicative subset generated by all xα where α is
a root.

Proof. After localization at this subset, the inclusion D⋆ ⊆ S⋆
W becomes an iso-

morphism (see [CZZ2, Lemma 10.2]). �

Lemma 8.5. The following diagram commutes

hT (W )

≃ Θ

��

ı∗ // hT (G/B) �
� ı∗ //

≃ Θ

��

hT (W )

≃ Θ

��

S⋆
W

xΠ•(−)
// D⋆ �

� η∗

// S⋆
W

Proof. This follows from Corollary 6.4 and Theorem 8.2. �

We now consider an arbitrary flag variety G/PΞ.

Lemma 8.6. The following diagram commutes.

hT (G/B)

(πΞ)∗

��

ı∗ // hT (W )
Θ

≃
// S⋆

W ⊆ Q∗
W

AΞ

��

hT (G/PΞ)
ı∗Ξ // hT (W/WΞ)

ΘΞ

≃
// S⋆

W/WΞ
⊆ Q∗

W/WΞ

Proof. After tensoring the whole diagram with Q over S, the morphism ı∗ be-
comes an isomorphism by Corollary 8.4. The family

(

(ıw)∗(1)
)

w∈W
is a Q-basis of

Q ⊗S hT (G/B), since by Proposition 6.2, Θ ◦ ı∗ ◦ (ıw)∗(1) is fw multiplied by an
element that is invertible (in Q). It therefore suffices to check the equality of both
compositions in the diagram when applied to all (ıw)∗(1) with w ∈ W :

AΞ ◦Θ ◦ ı
∗ ◦ (ıw)∗(1) = AΞ(w(xΠ)fw) = w(xΠ)AΞ(fw)

(∗)
= w(xΠ/Ξ)fw̄ = ΘΞ(ıΞ)

∗(ıw̄Ξ )∗(1) = ΘΞ(ıΞ)
∗(πΞ)∗(ı

w)∗(1)

where equality (∗) follows from the definition of AΞ. �

Corollary 8.7. The following diagram commutes.

hT (G/B)

(πΞ)
∗(πΞ)∗

��

ı∗ // hT (W )
Θ

≃
// S⋆

W ⊆ Q∗
W

AΞ

��

hT (G/B)
ı∗ // hT (W )

Θ

≃
// S⋆

W ⊆ Q∗
W
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Proof. Using equation (6.1), one easily checks the commutativity of diagram in-
volving pull-backs

hT (G/B)
ı∗ // hT (W )

Θ

≃
// S⋆

W ⊆ Q∗
W

hT (G/PΞ)

π∗

Ξ

OO

ı∗ // hT (W/WΞ)
ΘΞ

≃
// S⋆

W/WΞ
⊆ Q∗

W/WΞ

p⋆
Ξ

OO

where p⋆Ξ is the sum over orbits: p⋆Ξ(fw̄) =
∑

v̄=w̄ fv. The result follows from the
combination of this diagram and the one of Lemma 8.6. �

Lemma 8.8. For any sequence I = (i1, . . . , il), the Bott-Samelson class ζΞI ∈
hT (G/PΞ) maps to

Θ ◦ (ıΞ)
∗(ζΞI ) = AΞ ◦AIrev

(

xΠfe
)

in S⋆
W .

Proof. We have

Θ(ıΞ)
∗(ζΞIw ) = Θ(ıΞ)

∗(πΞ)∗(ζIw ) = AΞ ◦Θ ◦ ı
∗(ζIw ) = AΞ ◦AIrev

w

(

xΠfe
)

using Lemma 8.6 and Lemma 7.6 for the last two equalities. �

Proposition 8.9. For any choice of reduced decompositions (Iw)w∈WΞ for elements
minimal in their WΞ-cosets, the classes ζΞIw form an S-basis of hT (G/PΞ).

Proof. By Lemma 7.3, the classes ζΞIw generate hT (G/PΞ) as an S-module. We have

Θı∗(πΞ)
∗(ζΞIw ) = Θı∗(πΞ)

∗(πΞ)∗(ζIw ) = AΞΘı
∗(ζIw ) = AΞAIrev

w

(

xΠfe
)

and these elements are linearly independent by [CZZ2, Theorem 14.3]. �

Let Ξ′ ⊆ Ξ ⊆ Π.

Corollary 8.10. The push-forward map (πΞ/Ξ′)∗ : hT (G/PΞ′) → hT (G/PΞ) is
surjective and the pull-back map (πΞ/Ξ′)∗ : hT (G/PΞ)→ hT (G/PΞ′) is injective.

Proof. Surjectivity is obvious from the fact that ζIw maps to the basis element ζΞIw̄
for any w ∈ WΞ and injectivity can be seen in the proof of Proposition 8.9: the
elements ζΞIw̄ stay independent when pulled back all the way to hT (W ) through
hT (G/B). �

Theorem 8.11. The pull-back map ı∗Ξ : hT (G/PΞ)→ hT (W/WΞ) is injective and

the isomorphism ΘΞ : hT (W/WΞ)
∼
→ S⋆

W/WΞ
identifies its image to D⋆

Ξ ⊆ S
⋆
W/WΞ

.

Proof. As seen in the proof of Corollary 8.10, pulling back further to hT (W ) is
injective, so injectivity of ı∗Ξ is clear. By Lemma 8.8, for any w ∈ WΞ, the Bott-
Samelson class ζΞIw is sent to AΞAIrev

w

(

xΠ/Ξfe
)

. These elements form a basis of D⋆
Ξ

by [CZZ2, Theorem 14.3 and Lemma 15.1]. �

Corollary 8.12. The pull-back map ı∗Ξ : hT (G/PΞ) → hT (W/WΞ) becomes an
isomorphism after localization at the multiplicative subset generated by all xα where
α is a root.

Proof. After localization at this subset, the inclusion D⋆
Ξ ⊆ S⋆

W/WΞ
becomes an

isomorphism (see [CZZ2, Lemma 11.5]). �
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As for G/B, we have the following commutative diagram

(8.1)

hT (W/WΞ)
(ıΞ)∗

//

≃ ΘΞ

��

hT (G/PΞ)
� � (ıΞ)∗

//

≃ ΘΞ

��

hT (W/WΞ)

≃ ΘΞ

��

S⋆
W/WΞ

xΠ/Ξ•(−)
// D⋆

Ξ
� � η∗

Ξ // S⋆
W/WΞ

Lemma 8.13. The following diagram commutes.

hT (G/PΞ′)

(πΞ/Ξ′)∗

��

(ıΞ′ )∗
// hT (W/WΞ′ )

ΘΞ′

≃
// S⋆

W/WΞ′

⊆ Q∗
W/WΞ′

AΞ/Ξ′

��

hT (G/PΞ)
(ıΞ)

∗

// hT (W/WΞ)
ΘΞ

≃
// S⋆

W/WΞ
⊆ Q∗

W/WΞ

Proof. By the surjectivity claim in Corollary 8.10, we can precompose the diagram
by πΞ′ . Since AΞ = AΞ/Ξ′ ◦AΞ′ , the result follows from Lemma 8.6 applied first to
Ξ′ and then to Ξ. �

Summarizing, we have the following commutative diagrams describing the cor-
respondence between the cohomology rings and their algebraic counterparts:

(8.2)

hT (W/WΞ′)
≃

ΘΞ′

// S⋆
W/WΞ′

hT (G/PΞ′)
≃

ΘΞ′

//

*



ı∗
Ξ′

77♣♣♣♣♣♣♣♣♣♣♣♣

D⋆
Ξ′

-



;;✇✇✇✇✇✇✇✇

hT (W/WΞ) ≃

ΘΞ
//

?�

(ρΞ/Ξ′)∗

OO

S⋆
W/WΞ

?�

(pΞ/Ξ′)⋆

OO

hT (G/PΞ) ≃

ΘΞ //
?�

(πΞ/Ξ′)∗

OO

*



ı∗Ξ

77♣♣♣♣♣♣♣♣♣♣♣♣

D⋆
Ξ

?�

OO

-



;;✇✇✇✇✇✇✇✇

For push-forwards, instead, the morphism AΞ/Ξ′ : Q∗
W/WΞ′

→ Q∗
W/WΞ

induces a

map AΞ/Ξ′ : D⋆
Ξ′ → D⋆

Ξ by [CZZ2, Lemma 15.1], and we have:

(8.3)

hT (W/WΞ′)
≃

ΘΞ′

// S⋆
W/WΞ′

� � // Q∗
W/WΞ′

AΞ/Ξ′

����

hT (G/PΞ′)

(πΞ/Ξ′)∗

����

≃

ΘΞ′

//

*



ı∗
Ξ′

88♣♣♣♣♣♣♣♣♣♣♣

D⋆
Ξ′

-



<<①①①①①①①①

AΞ/Ξ′

����

hT (W/WΞ) ≃

ΘΞ // S⋆
W/WΞ

� � // Q∗
W/WΞ

hT (G/PΞ) ≃

ΘΞ //

*



ı∗Ξ

88♣♣♣♣♣♣♣♣♣♣♣

D⋆
Ξ

-



;;①①①①①①①①
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Notice that on this diagram, there is no map from hT (W/WΞ′ ) to hT (W/WΞ), nor
from S⋆

W/WΞ′

to S⋆
W/WΞ

because the operator AΞ/Ξ′ is not defined at that level.

By (8.1) and the identity xΠ/Ξ′ = xΠ/ΞxΞ/Ξ′ , we finally have the following.

(8.4)

hT (W/WΞ′)

(ıΞ′ )∗

xx♣♣
♣♣
♣♣
♣♣
♣♣
♣

(ρΞ/Ξ′)∗

����

≃

ΘΞ′

// S⋆
W/WΞ′

xΠ/Ξ′•

||①①
①①
①①
①①

(dΞ/Ξ′)⋆

����

// Q∗
W/WΞ′

(dΞ/Ξ′)⋆

����

hT (G/PΞ′)
≃

ΘΞ′

//

(πΞ/Ξ′)∗

����

D⋆
Ξ′

AΞ/Ξ′

����

hT (W/WΞ′)
≃

ΘΞ //

(ıΞ)∗

xx♣♣
♣♣
♣♣
♣♣
♣♣
♣

S⋆
W/WΞ

xΠ/Ξ′•
{{①①
①①
①①
①①

// Q∗
W/WΞ

hT (G/PΞ) ≃

ΘΞ // D⋆
Ξ

9. Invariant subrings and push-forward pairings

We now describe how the Weyl groupW , as an abstract group, acts on hT (G/B),
and how WΞ-invariant elements of this action are related to hT (G/PΞ).

Since the projectionG/T → G/B is an affine bundle, by homotopy invariance the

induced pull-back hT (G/B)
∼
→ hT (G/T ) is an isomorphism. The Weyl group action

is easier to describe geometrically on hT (G/T ). Since W ≃ NG(T )/T , multiplica-
tion on the right by w ∈ W defines a right action of W on G/T , by T -equivariant
morphisms. Action by induced pull-backs, therefore, defines a left action of W
on hT (G/T ). Similarly, a right action of W on the T -fixed points (G/T )T = W
induces a left action of W on hT (W ), and the pull-back hT (G/T ) → hT (W ) is
W -equivariant. Identifying hT (G/T ) ≃ hT (G/B), we obtain the Weyl group action
on hT (G/B) with ı∗ : hT (G/B)→ hT (W ) being W -equivariant.

One easily checks on S-basis elements fw that through Θ, this W -action on
hT (W ) corresponds to the W -action on S⋆

W by the Hecke action w(z) = δw • z, as
described in [CZZ2, §4] (by definition, we have δw • fv = fvw−1).

Theorem 9.1. The image of the injective pull-back map hT (G/PΞ)→ hT (G/B) is
hT (G/B)WΞ .

Proof. In Diagram (8.2), the upper square is W -equviariant. Since ı∗ is both W -
equivariant and injective, we are reduced to showing that p⋆Ξ identifies S⋆

W/WΞ
to

(S⋆
W )WΞ , which follows from [CZZ2, Lemma 11.7]. �

The following theorem generalizes [Br97, Proposition 6.5.(i)]. According to the
irreducible Dynkin types of the group, regularity assumptions on elements of the
base ring R (or weaker assumptions on elements in R[[x]]) are needed. They are
carefully summarized in [CZZ2, Lemma 2.7], but as a first approximation, regularity
in R of 2, 3 and divisors of |Λw/Λr| cover all types, except the Csc

n case, in which
one needs 2 to be invertible.1

1Regarding these assumptions, there is a slight omission in the statement of [Br97, Proposition
6.5.(i)]. One needs to add that no root is divisible in the lattice for the statement to hold integrally.
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Theorem 9.2. Under the regularity assumptions of [CZZ2, Lemma 2.7], the image
of the injective pull-back ı∗ : hT (G/B) → hT (W ) ∼= S⋆

W is the set of element
∑

w∈W qwfw such that xα|(qw − qsαw) for all roots α.

Proof. If follows from [CZZ2, Theorem 10.7]. �

We now describe the pairing given by multiplication and then push-forward to
the point, that we call the push-forward pairing. Let

hT (G/PΞ)⊗S hT (G/PΞ)
〈−,−〉Ξ
−→ S

ξ ⊗ ξ′ 7−→ 〈ξ, ξ′〉Ξ = (πΠ/Ξ)∗(ξ · ξ
′)

It is clearly S-bilinear and symmetric. Through the isomorphism Θ, this pairing
corresponds to

〈ξ, ξ′〉Ξ = AΠ/Ξ(ΘΞ(ξ) ·ΘΞ(ξ
′))

by Diagram (8.3).

Theorem 9.3. The push-forward pairing hT (G/PΞ)⊗S hT (G/PΞ)→ hT (pt) ≃ S,
sending (ξ, ξ′) to 〈ξ, ξ′〉Ξ is non-degenerate.

Proof. This follows from [CZZ2, Theorem 15.6]. �

Remark 9.4. Note that in [CZZ2, Theorem 15.5], we describe a basis that is dual
to the basis of Bott-Samelson classes for the push-forward pairing on G/B. That
dual basis can be very useful for algorithmic computations. However, it is given in
combinatorial terms, and we do not have a geometric interpretation of its elements.
When the formal group law is additive, this problem disappears since the basis
is auto-dual (up to a permutation), see [Dem74, Prop. 1, p. 69], but for general
formal group laws, this is not the case.

10. Borel style presentation

The geometric (equivariant) characteristic map cg : hT (pt) → hT (G/B) is de-
fined as the composition

hT (pt)
∼
→ hT×G(G)

∼
← hG(G/T )→ hT (G/T )

∼
← hT (G/B)

where the first two maps are isomorphisms from Axiom (A6), the third is the
restriction to the subgroup T of G and the fourth is the pull-back map, an isomor-
phism by Axiom (A4) of homotopy invariance. In hT×G(G), the action of T × G
on G is by (t, g) · g′ = gg′t−1, and the other non-trivial actions are by multiplica-
tion on the left. Note that cg is R = h(pt)-linear, although not hT (pt)-linear. By
restricting further to h(G/B), one obtains the non-equivariant characteristic map
c : hT (pt)→ h(G/B). Recall the algebraic characteristic map cS : S → D⋆, sending
s→ s • 1, defined in section 5.

Lemma 10.1. The algebraic and geometric characteristic maps coincide with each
other, up to the identifications S ≃ hT (pt) of Theorem 3.3 and Θ : hT (G/B) ≃ D⋆

of Theorem 8.2.

Otherwise, for example, the product of all roots divided by 2 gives a counter-example in the Csc

2

case.
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Proof. It suffices to show the equality after embedding in S⋆
W ≃ hT (W ), which

decomposes as copies of S. In other words, it suffices to compare, for every w ∈W ,
a map φw from S to itself, and a map ψw from hT (pt) to itself. Both are continuous
R-algebra maps, ψw for the topology induced by the γ-filtration and φw for the IF -
adic topology, which correspond to each other through S ≃ hT (pt). Since S is
(topologically) generated by elements xλ, corresponding to first Chern classes of
line bundles cT1 (Lλ) in hT (pt), it suffices to compare φw(xλ) and ψw(c

T
1 (LΛ)). By

definition of cS , we have φ(xλ) = xw(λ). Since cg is defined using only pull-back and
restriction maps, both commuting with taking Chern classes, it suffices to verify
that when h = K, the Grothendieck group, we have ψw([Lλ]) = [Lw(λ)]. This is
easily checked by using total spaces of bundles, and the formalism of points. For
this purpose, let us consider the following equivariant bundles:

• Mλ, the T ×G-equivariant line bundle over G, whose total space is Lλ×G
mapping by the second projection to G, and with action given on points by
(t, g) · (v, g′) = (λ(t)v, gg′t−1);
• Nλ, the G-equivariant line bundle over G/T , whose total space is G×T Lλ,
the quotient of G×Lλ by the relation (gt, v) = (g, λ(t)v), mapping to G/T
by the first projection, and with G action by g · (g′, v) = (gg′, v);
• M ′

λ, the T ×G-equivariant line bundle over G, whose total space is G×G/T

G×T Lλ, mapping to G by the first projection, with action of T ×G given
by (t, g) · (g1, g2, v) = (gg1t

−1, gg2, v).

It is clear that Lλ restricts to T × G and pulls-back over G to Mλ. Similarly, Nλ

restricts and pulls-back to M ′
λ. But Mλ maps isomorphically to M ′

λ by the map

(v, g) 7→ (g, g, v). Therefore, [Lλ] maps to [Nλ] by the map KT (pt)
∼
→ KT×G(G)

∼
←

KG(G/T ). Furthermore, Nλ restricts and pulls-back as a T -equivariant bundle
to the fixed point w in G/T (or G/B) as wT ×T Lλ with T -action on the left,
isomorphic to Lw(λ). This completes the proof. �

Let t be the torsion index of the root datum, as defined in [Dem73, §5]. See
also [CPZ, 5.1] for a table giving the values of its prime divisors for each simply
connected type. For other types, one just needs to add the prime divisors of |Λw/Λ|
by [Dem73, §5, Prop. 6]. Together with the previous lemma, [CZZ, Thm. 11.4]
immediately implies a Borel style presentation of hT (G/B). Let π : G/B → pt be
the structural map.

Theorem 10.2. If 2t is regular in R, then the map hT (pt) ⊗hT (pt)W hT (pt) →
hT (G/B) sending a ⊗ b to π∗(a)cg(b) is an hT (pt)-linear ring isomorphism if and
only if the (non-equivariant) characteristic map c : hT (pt)→ h(G/B) is surjective.

In particular, it will hold for K-theory, since the characteristic map is always
surjective for K-theory. It will also hold for any cohomology theory if t is invertible
in R, as [CPZ, Cor. 13.9] shows that the non-equivariant characteristic map is then
surjective.

As mentioned in the introduction, this presentation was obtained in [KiKr13]
for algebraic cobordism, with the torsion index inverted, and by using comparisons
with complex cobordism.
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11. Subgroups of T

Let H be a subgroup of T given by the embedding h : H →֒ T . For example
H could be the trivial group, a finite multiplicative group or a subtorus of T .
For any X ∈ T -Var, and thus in H -Var by restriction, there is a restriction ring
map resh : hT (X) → hH(X), in particular if X = pt, which induces a canonical
morphism hH(pt) ⊗hT (pt) hT (X) → hH(X) of rings over hH(pt), sending a ⊗ b to
a · resh(b). This “change of coefficients” morphism is compatible with pull-backs
and push-forwards.

Lemma 11.1. The morphism hH(pt)⊗hT (pt) hT (X)→ hH(X) is an isomorphism
when X = G/PΞ or X =W/WΞ.

Proof. The case of X =W/WΞ is obvious, since as as scheme, it is simply a disjoint
union of copies of pt. If X = G/PΞ, the left-hand side is free, with a basis of Bott-
Samelson classes. So is the right-hand side: it is still generated as an hH(pt)-module
by the corresponding Bott-Samelson classes because the proof of Lemma 7.3 works
for H as well as for T . Thus, the change of coefficients is surjective. The push-
forward pairing is perfect and commutes to the restriction map from T to H , so
these classes stay independent in hH(G/PΞ) (they have a dual family). Thus, the
change of coefficients is injective. �

This shows that Diagram (8.2) for H is obtained by change of coefficients, as
well as Diagram (8.3) and Diagram (8.4) except their rightmost columns involving
Q. Theorem 9.3 on the bilinear pairing stays valid for H instead of T .
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