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WEIGHTED AND VECTOR-VALUED VARIATIONAL ESTIMATES FOR ERGODIC

AVERAGES

BEN KRAUSE AND PAVEL ZORIN-KRANICH

ABSTRACT. We prove weighted and vector-valued variational estimates for ergodic av-
erages on Rd . The weighted square function estimate relating ergodic averages to the
dyadic martingale is obtained using an ℓr version of a reverse Hölder inequality for
variation seminorms.

1. INTRODUCTION

We denote ergodic averages on Rd , d ≥ 1, by

At f (x) =

 

B(0,t)
f (x + y)dy,

where B(0, t) is the ball of radius t centered at zero and
ffl

A = |A|
−1
´

A. The homoge-
neous r-variation norm is denoted by

‖at‖Ṽ r
t∈I

:= sup
t0<t1<···<tJ∈I

�

J
∑

j=1

|at j
− at j−1

|r
�1/r

and the inhomogeneous r-variation norm by

‖at‖V r
t∈I

:= sup
t∈I
|at |+ ‖at‖Ṽ r

t∈I
.

Variational estimates for ergodic averages of the form

‖‖At f (x)‖V r
t>0
‖Lp

x
® ‖ f ‖Lp

have been introduced by Bourgain [Bou89] and a complete theory has been developed
by a number of authors [JRW03; JKRW98; JSW08] covering the full possible range of
exponents p, r including the end points. Our purpose is to obtain weighted and vector-
valued versions of these results.

A weight is a positive function on Rd . The A1 constant of a weight is given by

(1.1) [w]A1
= sup

x
Mw(x)/w(x),

the Ap constant, 1< p <∞, is given by

(1.2) [w]Ap
= sup

Q

�

|Q|−1

ˆ

Q
w
��

|Q|−1

ˆ

Q
w−1/(p−1)�p−1

,

and a weight w is A∞ if

(1.3) w(E)/w(Q)≤ Cw(|E|/|Q|)
δ

for some δ ∈ (0,1] and all E ⊂ Q. Here and later the letter Q denotes a cube in Rd ,
not necessarily dyadic unless explicitly stated so. We refer to [GCF85, Chapter IV] for

2010 Mathematics Subject Classification. 37A45 (Primary), 26A45 (Secondary).

1

http://arxiv.org/abs/1409.7120v2


2 BEN KRAUSE AND PAVEL ZORIN-KRANICH

the basic properties of Ap weights. Note that all constants in the results from [GCF85,
Chapter IV] that we use can be taken to depend only on the Ap constants of the weights
involved in them and not otherwise on the weight. This kind of dependence is required
for the Rubio de Francia extrapolation theorem to apply (see e.g. [Duo11, Theorem
3.1]).

The set of dyadic cubes in Rd with side length 2k is denoted byQk. For a point x we
write Qk(x) for the unique (away from a set of measure zero) dyadic cube with side
length 2k containing x . The conditional expectation onto the σ-algebra generated by
Qk is denoted by Ek.

Ergodic averages will be compared with a dyadic martingale using the short varia-
tions

Sk f := ‖At f − Ek f ‖V 2

2k≤t≤2k+1
.

Following [Kra13] we will in fact use the (larger) smoothed version of the short varia-
tions given by

S̃k f (x) := sup
y∈3Qk(x)

Sk f (y).

Here, 3Qk(x) denotes the concentric cube to Qk(x) with three times the side length.
The smoothed square function is defined by

S̃ f := (
∑

k

(S̃k f )2)1/2.

Weighted bounds for a discrete version of S̃ have been proved in [Kra13] using the
Auscher–Martell extrapolation theorem with limited range of exponents (see [Duo11,
Theorem 7.1]). We present a direct proof relying on an ℓr version of a reverse Hölder
inequality from [JRW03] and another alternative proof using a good λ inequality.

Theorem 1.4. The operator S̃ is bounded

(1) on Lp(w) for every w ∈ Ap, 1< p <∞, and
(2) as an operator L1(w)→ L1,∞(w) for every w ∈ A1.

In each case the operator norm is bounded in terms of the Ap constant of the weight.

For an ℓ∞ → BMO estimate in the discrete setting see also [Kra13, Section 3]. The
above estimate for the square function together with weighted bounds for the dyadic
martingale square function and Haar multipliers will be used to show weighted and
vector-valued bounds for the r-variation of ergodic averages.

Theorem 1.5. Let r > 2 and 1< q <∞. The operator

fi(x) 7→ (At fi)(x)

acting on sequence-valued functions on Rd is bounded as an operator

L1
x(ℓ

q
i , w)→ L1,∞

x (ℓ
q
i (V

r
t ), w), for any w ∈ A1(R

d)(1.6)

L∞x (ℓ
q
i )→ BMOx(ℓ

q
i (V

r
t )), and(1.7)

Lp
x(ℓ

q
i , w)→ Lp

x(ℓ
q
i (V

r
t ), w) for any 1< p <∞ and w ∈ Ap(R

d).(1.8)

In each case the operator norm is bounded in terms of the Ap constant of the weight and
grows as r

r−2
for r → 2.

Theorem 1.5 is a joint generalization of the Fefferman–Stein vector-valued maximal
inequality [FS71] and the Bourgain–Lépingle inequality [Bou89]. Since bounds for a
fixed t are immediate, it suffices to treat the homogeneous variation.
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Our proof also gives analogous results for dilates of other neighborhoods of the
origin provided that the boundary is sufficiently smooth, this applies e.g. to cubes.
Throughout the proof we assume r <∞, which is justified by the fact that the conclu-
sion of the theorem becomes stronger as r decreases. We also assume that the coor-
dinate functions fi are smooth on Rd , the general case follows by standard truncation
arguments.

The p-maximal function and the sharp p-maximal function are denoted by

(1.9) Mp f (x) = sup
Q∋x

�

|Q|−1

ˆ

Q
| f |p
�1/p

, M ♯
p f (x) = sup

Q∋x
inf

c

�

|Q|−1

ˆ

Q
| f − c|p
�1/p

.

The subscript p is omitted if p = 1.
The authors thank the Hausdorff Research Institute for Mathematics for hospitality

during the Trimester Program “Harmonic Analysis and Partial Differential Equations”.

2. A REVERSE HÖLDER INEQUALITY

For 1< r <∞ let

Rk b(x) := ‖At b‖V r
t∈[2k ,2k+1]

, R̃k b(x) = sup
y∈3Qk(x)

Rk b(y), R̃(b) := (
∑

k

R̃k(b)
r)1/r .

Denote the side length of a cube Q by ℓ(Q).

Lemma 2.1 (cf. [JRW03, Lemma 4.2]). Let 1< r <∞. Let Q be a collection of disjoint
cubes Q of size ® 2k. For each Q let bQ be a scalar-valued function supported on Q with
´

bQ = 0. Then for every α > d−1
r′

we have

(2.2) Rk(
∑

Q

bQ(x))r ®α,r,d (2
k)αr
∑

Q

ℓ(Q)−αrRk(b
Q(x))r .

Proof. We consider only the homogeneous variation, in order to get the inhomoge-
neous variation it suffices to additionally consider an arbitrary (but fixed) t, which is
similar but easier. Fix an arbitrary sequence 2k ≤ t1 < · · · < tJ ≤ 2k+1 and split the
sum over cubes in

∑

j

|
∑

Q

(At j+1
− At j

)bQ(x)|r .

according to the size of the cubes
∑

j

|
∑

i≤0

∑

Q:ℓ(Q)≈2k+i

(At j+1
− At j

)bQ(x)|r .

Let α be chosen later and apply Hölder’s inequality in the sum over i to estimate this
by

(2.3)
∑

j

�

∑

i≤0

∑

Q:ℓ(Q)≈2k+i

|2−αi(At j+1
− At j

)bQ(x)|r
�

·
�

∑

i≤0

∑

Q:ℓ(Q)≈2k+i

|2αi1Q:Q∩(∂B(x ,t))6=;,t=t j or t j+1
|r
′�r/r′

.

In order to estimate the second bracket note that Q ∩ (∂ B(x , t)) 6= ; implies Q is
contained in a spherical shell of radius ≈ 2k and thickness ≈ 2k+i . For a fixed i there
can be at most O(2−i(d−1)) cubes of this kind. Hence the second bracket in (2.3) is
bounded by

�

∑

i≤0

2αi r′2−i(d−1)�r/r
′

,
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which is finite by the assumption on α. This gives for (2.3) the bound
∑

j

�

∑

i≤0

∑

Q:ℓ(Q)≈2k+i

|2−αi(At j+1
− At j

)bQ(x)|r
�

®
∑

j

∑

Q

ℓ(Q)−αr(2k)αr |(At j+1
− At j

)bQ(x)|r

Taking the supremum over sequences (t j) j we obtain (2.2). �

Estimating the r-variation norm by the 1-variation norm and noting that only cubes
with dist(x ,Q) ® 2k contribute to the sum we obtain

Corollary 2.4. In the situation of Lemma 2.1 we have

R̃k(
∑

Q

bQ(x))r ®α,r,d (2
k)αr−dr
∑

Q:dist(x ,Q)®2k

ℓ(Q)−αr‖bQ‖r1.

3. STRONG TYPE BOUNDS FOR THE SQUARE FUNCTION

Recall that a Haar function on a dyadic cube is a function that is constant on each
dyadic subcube and has integral zero. A Haar function is L∞ normalized if it is bounded
by 1.

Lemma 3.1. Let k ∈ Z and j < 0. Let hQ be L∞ normalized Haar functions supported on
the cubes Q ∈ Qk+ j+1. Let 1< p <∞ and w ∈ Ap. Then

(3.2) ‖S̃k(
∑

Q∈Qk+ j+1

hQEk+ j+1 f )‖Lp(w) ® 2−ε| j|‖ f ‖Lp(w),

where ε > 0 and the implied constant depend only on p and [w]Ap
, but not on k, j, or the

Haar functions.

Proof. By homogeneity we may assume k = 0. Let w ∈ Ap, then there exists r ∈
(1,min(2, p)) such that w ∈ Ap/r . Write fQ for the value of E j+1 f on Q and observe
E0

∑

Q∈Q j+1
hQ fQ = 0. Hence we have

‖S̃0(
∑

Q∈Q j+1

hQE j+1 f )‖Lp(w) ® ‖R̃0(
∑

Q∈Q j+1

hQ fQ)‖Lp(w),

where R̃0 is defined using the above value of r. Applying Corollary 2.4 we obtain

R̃0(
∑

Q∈Q j+1

hQ fQ)
r(x)® 2−rα j

∑

Q∈Q j+1,dist(x ,Q)®1

‖hQ fQ‖
r
1.

By Hölder’s inequality this is bounded by

2−rα j
∑

Q∈Q j+1,dist(x ,Q)®1

‖1Q fQ‖
r
r‖hQ‖

r
r′ ≤ 2−rα j2 jd r/r′

ˆ

B(x ,C)
|E j+1 f |r

® 2r(d/r′−α) j Mr(E j+1 f )r(x).

Thus we have established

R̃0(
∑

Q∈Q j+1

hQ fQ)(x)® 2ε j Mr(E j+1 f )(x)

for any ε < 1/r ′. We are done since the maximal function Mr is bounded on Lp(w). �
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Proof of Theorem 1.4, part 1. By Rubio de Francia’s extrapolation theorem it suffices to
consider p = 2. Write f =

∑

j d j , d j = E j f − E j+1 f . The result will follow if we can
show

‖S̃k(dk+ j)‖L2(w) ® 2−ε| j|‖dk+ j‖L2(w).

Indeed,

S̃ f = (
∑

k

(S̃k(
∑

j

dk+ j))
2)1/2 ≤
∑

j

(
∑

k

(S̃k(dk+ j))
2)1/2,

and taking L2(w) norms on both sides we obtain

‖S̃ f ‖L2(w) ≤
∑

j

(
∑

k

‖S̃k(dk+ j)‖
2
L2(w)
)1/2 ®
∑

j

2−ε| j|(
∑

k

‖dk+ j‖
2
L2(w)
)1/2.

The sum over k on the right-hand side is the dyadic martingale square function which
is bounded on L2(w), see [Buc93, Theorem 3.6] or [LPR10].

For j ≥ −10d (say) we note that Sk is invariant under constant addition to use the
estimate

Sk f (x)® inf
c

2−kd

ˆ

BC2k (x)
| f − c|.

It follows that an estimate of the same kind holds for S̃k. Writing dk+ j =
∑

Q∈Qk+ j
aQ1Q

we obtain

S̃kdk+ j ®
∑

Q∈Qk+ j

|aQ|1∂Q+BC2k
.

The overlap of the characteristic functions on the right-hand side is bounded by an
absolute constant, so

(S̃kdk+ j)
2 ®
∑

Q∈Qk+ j

|aQ|
21∂Q+BC2k

.

Integrating this we obtain

‖S̃kdk+ j‖
2
L2(w) ®
∑

Q∈Qk+ j

|aQ|
2w(∂Q+ BC2k )

Since the A2 weight w also satisfies the A∞ condition, this is bounded by
∑

Q∈Qk+ j

|aQ|
2w(Q+QC2k )(|∂Q+QC2k |/|Q+QC2k |)δ

for some δ > 0, and since w is doubling this is bounded by
∑

Q∈Qk+ j

|aQ|
2w(Q)(2− j)δ = 2− jδ‖dk+ j‖

2
L2(w).

For j < −10d write

dk+ j =
∑

Q∈Qk+ j+1

hQ Ek+ j+1 f ,

where hQ = dk+ j1Q/‖dk+ j1Q‖∞ are normalized Haar functions (with convention hQ = 0
if dk+ j1Q = 0) and f =

∑

Q∈Qk+ j+1
1Q‖dk+ j1Q‖∞. Note ‖ f ‖L2(w) ® ‖dk+ j‖L2(w) since w is

doubling and dk+ j is constant at scale 2k+ j . The claim now follows from Lemma 3.1.
�
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4. THE JUMP INEQUALITY

Let (at)t be an arbitrary function. The jump counting function Nλ(at) is the supre-
mum over all J such that there exist t0 < t1 < · · · < tJ with |at j

− at j−1
| > λ for all

j = 1, . . . , J . See [JSW08] for the basic properties of the jump counting function and
its relation to the variational norms.

Proposition 4.1. Let w ∈ Ap(R
d), 1< p <∞. Then

sup
λ>0
λ−1‖
p

Nλ(At f )‖Lp(w) ® ‖ f ‖Lp(w).

Proposition 4.1 implies the scalar-valued case of (1.8) in Theorem 1.5 by the inter-
polation argument in [JSW08, Section 2] (note that an Ap weight, 1 < p <∞, is also
in Aq for all q in a neighborhood of p). Extrapolation then yields the vector-valued
case of (1.8).

Proof. In view of the weighted bound for the square function (part 1 of Theorem 1.4)
it suffices to show

sup
λ>0
λ−1‖
p

Nλ(Et f )‖Lp(w) ® ‖ f ‖Lp(w),

where t takes dyadic values (here we use the convention that Ek is the conditional
expectation at scale 2−k), see e.g. [JSW08, Lemma 1.3]. By the greedy selection argu-
ment, see e.g. [JKRW98, Lemma 6.7], this follows from

‖(
∑

j

|Et j+1(x) f (x)− Et j(x) f (x)|
2)1/2‖Lp

x (w) ® ‖ f ‖Lp(w),

where t1 ≤ t2 ≤ . . . are stopping times and the bound does not depend on the stopping
times. By truncation we may assume t0 = −∞ and tJ = +∞ for some J . Writing r j for
the Rademacher functions the left-hand side can be estimated by

‖‖
∑

j

r j(s)(Et j+1(x) f (x)− Et j(x) f (x))‖Lp
s
‖Lp

x (w) = ‖‖
∑

j

r j(s)

t j+1(x)−1
∑

k=t j(x)

dk(x)‖Lp
x (w)‖L

p
s
,

where dk = Ek+1 f − Ek f . Now the Lp
x(w) norm on the right-hand side can be written

as

‖
∑

k

rmax{ j:t j(x)≤k}(s)dk(x)‖Lp
x (w).

The function x 7→ rmax{ j:t j(x)≤k}(s) is constant at scale 2−k since t j are stopping times, so
this is bounded by ‖ f ‖Lp(w) uniformly in s in view of the weighted bound for the Haar
multipliers (which extends to all 1 < p < ∞ by extrapolation), see [Wit00, Theorem
3.1] for the case d = 1 and [LPR10, Theorem 1.6] for the general case. Integrating
over s we obtain the claim. �

5. WEAK TYPE (1,1) BOUNDS

Proposition 5.1. Let 1 < q < ∞, let w be an A1 weight and let T be a sublinear oper-
ator that is bounded on Lq(w) and pointwise bounded by a finite linear combination of
operators of the form R̃ for some 1< r ≤ q. Then T : L1(ℓq, w)→ L1,∞(ℓq, w).

This allows us to deduce part 2 of Theorem 1.4 from part 1 of that theorem and
part (1.6) of Theorem 1.5 from part (1.8) of that theorem.
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Proof. The argument is adapted from [JKRW98; JRW03]. By homogeneity it suffices
to prove

w{x : (
∑

i

|T fi |
q)1/q > 1} ® ‖(
∑

i

| fi |
q)1/q‖L1(w).

We use the Calderón–Zygmund decomposition as in [FS71]. Let F = (
∑

i | fi |
q)1/q, then

there exist disjoint cubes (denoted by Q) such that ‖F‖L∞(R\∪Q) ≤ 1,
∑

Q |Q| ® ‖F‖1,
and ‖F‖L1(Q) ® |Q|. Let

g j(x) =

¨

|Q|−1
´

Q f j , x ∈Q,

f j(x), x 6∈ ∪Q

and

b j =
∑

Q

bQ
j , bQ

j (x) =

¨

f j(x)− |Q|
−1
´

Q f j , x ∈Q,

0, x 6∈ ∪Q

Let G = (
∑

j |g j |
q)1/q, then G(x) = F(x) for x 6∈ ∪Q and

G(x) = (
∑

j

||Q|−1

ˆ

Q
f j |

q)1/q ≤ |Q|−1

ˆ

Q
(
∑

j

| f j |
q)1/q = |Q|−1‖F‖L1(Q) ® 1

for x ∈Q. Hence ‖G‖L1(w) ≤ ‖F‖L1(w) and ‖G‖∞ ® 1, so we get the required weak type
bound for (g j) j from the strong type (q,q) bound.

Note

w(5Q) ≤

ˆ

Q
|F |w(5Q)/|Q| ®

ˆ

Q
|F |Mw ®

ˆ

Q
|F |w,

so with Ẽ := ∪Q5Q it suffices to show

(5.2) w{x 6∈ Ẽ : (
∑

i

|T bi |
q)1/q > 1}®
∑

Q

w(Q).

By the hypothesis it suffices to show

(5.3)

ˆ

Rd\Ẽ
(
∑

i

(
∑

k

(R̃k bi)
r)q/r)r/qw ®
∑

Q

w(Q).

Let α > (d − 1)/r ′ be chosen later. For x 6∈ E only cubes with ℓ(Q) ® 2k contribute
to R̃k. Thus by Corollary 2.4 we have

(R̃k bi)
r(x) ® 2kαr−kdr

∑

Q:dist(x ,Q)®2k

ℓ(Q)−αr‖bQ
i ‖

r
1.

Hence the left-hand side of (5.3) can be estimated by

(5.4)

ˆ

Rd\Ẽ
(
∑

i

(
∑

k

2k(α−d)r
∑

Q

1dist(·,Q)®2k(x)ℓ(Q)−αr‖bQ
i ‖

r
1)

q/r)r/qw(x)dx .

By Minkowski’s inequality this is bounded by
∑

Q

ℓ(Q)−αr(
∑

i

‖bQ
i ‖

q
1)

r/q
∑

k

2k(α−d)r

ˆ

Rd\Ẽ
1dist(·,Q)®2k(x)w(x)dx .

Note that

(5.5)
∑

i

‖bQ
i ‖

q
1 ≤
�

ˆ

Q
(
∑

i

|bi
Q|

q)1/q
�q
® ‖F‖q

L1(Q)
® |Q|q
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by Minkowski’s inequality. Hence we obtain the bound
∑

Q

ℓ(Q)−αr |Q|r
∑

k:2k¦ℓ(Q)

2k(α−d)r

ˆ

Rd
1dist(·,Q)®2k(x)w(x)dx .

The latter integral can be estimated by 2kd minx∈Q Mw(x), and the sum over k is finite
provided (α− d)r + d < 0. In this case we obtain the bound
∑

Q

ℓ(Q)−αr |Q|rℓ(Q)(α−d)r+d min
x∈Q

Mw(x)

®
∑

Q

|Q|rℓ(Q)d(1−r)min
x∈Q

w(x)

≈
∑

Q

|Q|min
x∈Q

w(x)

≤
∑

Q

w(Q).

as required. Note that the restrictions on α imposed here are equivalent to d−1
r′
< α <

d
r′

, so an appropriate α can be chosen whenever r > 1. �

The above proof also yields an A1 weighted weak type (1,1) estimate for the jump
counting function.

6. THE BMO BOUND

Finally we prove (1.7) in Theorem 1.5. Suppose ‖(
∑

i | fi |
q)1/q‖∞ ≤ 1 and let Q be a

cube. It suffices to show
 

Q
(
∑

i

‖At fi(x)− ct ,i,Q‖
q
V r

t
)1/qdx ® 1

for some choice of functions ct ,i,Q. We split f = g + b, where g = f 13Q. For the local

part g we have ‖g‖Lq(ℓq) ® |Q|
1/q, and it follows from the scalar-valued case of the

Bourgain–Lépingle inequality 1.8 that

‖(
∑

i

‖At gi(x)‖
q
V r

t
)1/q‖Lq

x
® ‖g‖Lq (ℓq).

The required estimate for the local part then follows by an application of the Cauchy–
Schwarz inequality in the x variable.

It remains to treat the global part b. We set ct ,i,Q =
ffl

Q At bi(y)dy . We have
 

Q
(
∑

i

‖At bi(x)− ct ,i,Q‖
q
V r

t
)1/qdx ≤

 

Q

 

Q
(
∑

i

‖At bi(x)− At bi(y)‖
q
V r

t
)1/qdxdy,

so it suffices to show

(6.1) (
∑

i

‖At bi(x)− At bi(y)‖
q
V r

t
)1/q ® 1

uniformly in x , y ∈ Q. Estimating the r-variational norm by the min(r,q)-variational
norm we may assume r ≤ q for the remaining part of the proof. By Lemma B.1 we
have

‖At bi(x)− At bi(y)‖V r
t
® ‖At bi(x)− At bi(y)‖

1−1/r
Lr

t
‖

d

dt
(At bi(x)− At bi(y))‖

1/r
Lr

t
.
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By Cauchy–Schwarz the left-hand side of (6.1) can be estimated by

(
∑

i

‖At bi(x)− At bi(y)‖
q
Lr

t
)(1−1/r)/q(
∑

i

‖
d

dt
(At bi(x)− At bi(y))‖

q
Lr

t
)(1/r)/q.

By Minkowski’s integral inequality this is bounded by

(6.2) ‖(
∑

i

|At bi(x)− At bi(y)|
q)1/q‖

1−1/r
Lr

t
‖(
∑

i

|
d

dt
(At bi(x)− At bi(y))|

q)1/q‖
1/r
Lr

t
.

Note that At bi(x) = At bi(y) = 0 if t < ℓ(Q). For t > ℓ(Q) we write

At bi(x)− At bi(y) =
C

td

ˆ

(1B(x ,t) − 1B(y,t))bi

and use the fact that

(6.3) |B(x , t)∆B(y, t)|® |x − y |td−1 ® ℓ(Q)td−1.

This gives the estimate

‖(
∑

i

|At bi(x)− At bi(y)|
q)1/q‖Lr

t>ℓ(Q)

® ‖t−d

ˆ

|1B(x ,t) − 1B(y,t)|(
∑

i

|bi |
q)1/q‖Lr

t>ℓ(Q)

® ℓ(Q)‖t−1‖Lr
t>ℓ(Q)
® ℓ(Q)1/r

for the first factor in (6.2). In the second factor we split

|
d

dt
(At bi(x)−At bi(y))|® t−d−1|

ˆ

B(x ,t)∆B(y,t)
bi |+ t−d |

d

dt

ˆ

B(x ,t)
bi |+ t−d |

d

dt

ˆ

B(y,t)
bi |

and estimate the contributions of the first and the second summand separately (the
third summand is entirely analogous to the second). The contribution of the first sum-
mand is estimated as above and gives ‖ . . . ‖Lr ® ℓ(Q)−1+1/r . In the second summand
note

d

dt

ˆ

B(x ,t)
bi ≈

ˆ

∂ B(x ,t)
bi ,

and analogously to the above case we again obtain ‖ . . .‖Lr ® ℓ(Q)−1+1/r . Combin-
ing these estimates we see that (6.2) is bounded by an absolute constant, and this
concludes the proof.

APPENDIX A. A GOOD λ INEQUALITY

The good λ inequality below provides an alternative way to deduce part 1 of Theo-
rem 1.4 from the special case p = 2, w ≡ 1.

Proposition A.1. Suppose S̃ : Lp → Lp,∞ (unweighted) for some 1≤ p <∞. Let w be a
weight satisfying the A∞ condition (1.3). Then for each λ > 0 and A> 1 we have

w{S̃ f > Aλ, M ♯
p f ≤ γλ}®p Cw

� γ

A− 1

�pδw{S̃ f > λ}.
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Proof. We decompose

{S̃ f > λ}=
⋃

Q

Q

into a disjoint union of maximal dyadic cubes Q. We have

w{S̃ f > Aλ, M ♯
p f ≤ γλ}

w{S̃ f > λ}
≤ sup

Q∈Q

w{S̃ f > Aλ, M ♯
p f ≤ γλ,Q}

w(Q)

≤ Cw sup
Q∈Q

�

|Q ∩ {S̃ f > Aλ, M ♯
p f ≤ γλ}|

|Q|

�δ

by the A∞ condition. Fix Q ∈ Q, we need to find a bound for the ratio on the right-
hand side. Now, if M ♯

p f > γλ on Q, then the ratio is zero, so we assume that there
exists some z = zQ such that

M ♯
p f (z)≤ γλ.

Suppose Q ∈ σ j . Now, for x ∈Q, we may express

(S̃ f )2(x)®
∑

k≤ j

∑

Q′∼Qk(x)

Sk f (xQ′)
2 +
∑

k> j

∑

Q′∼Qk(x)

Sk f (xQ′)
2.

Here Q′ ∼Qk(x) means the sum is taken over all neighbors Q′ ofQk(x), the unique
dyadic cube with side length 2k containing x , and xQ′ is a point at which the supremum
over Q is almost attained.

By maximality of Q, the second term is ≤ λ2. On the other hand, the first term in
the sum may be expressed as

∑

k≤ j

∑

Q′∼Qk(x)

Sk(( f − c)1CQ)(xQ′)
2 ≤ (S̃(( f − c)1CQ))

2

for any c. Thus

Q ∩ {S̃ f > Aλ, M ♯
p f ≤ γλ} ⊂Q ∩ {S̃(( f − c) · 1CQ)> (A− 1)λ}.

Using the weak-type (p, p) boundedness of S̃, we may estimate the measure of this
final set by

1

(A− 1)pλp ‖S̃‖
p
Lp→Lp,∞

ˆ

CQ
| f − c|p.

Minimizing over c we obtain the estimate

1

(A− 1)pλp |CQ|M ♯
p f (z)p ®

γp

(A− 1)p
|Q|. �

APPENDIX B. A SOBOLEV EMBEDDING THEOREM FOR r-VARIATION

For completeness we recall a simple estimate for the r-variational norm of a function
on R in terms of L r norms.

Lemma B.1. Let X be a normed space, 1≤ r <∞, and a : [0, T]→ X . Then

‖a‖Ṽ r ≤ 8‖a‖1−1/r
Lr (X ) ‖a

′‖
1/r
Lr (X ).

Note that the conclusion does not explicitly depend on T , so the estimate remains
true for functions defined on infinite intervals.
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Proof. Let L > 0 be an integer chosen later and set D := {0, T
L
, . . . , (L − 1) T

L
}. Let also

δ ∈ [0, T
L
] be chosen later. Splitting the variation into a short and a long part we get

‖a‖Ṽ r ≤ ‖a(t)‖Ṽ r
t∈δ+D

+ 2
�

L
∑

j=−1

‖a(t)‖r
Ṽ r

t∈[0,T ]∩ j T
L +δ+[0, T

L ]

�1/r

≤ 2‖a(t)‖ℓr
t∈δ+D

+ 2
�

L
∑

j=−1

‖a(t)‖r
Ṽ 1

t∈[0,T ]∩ j T
L +δ+[0, T

L ]

�1/r
.

We have ‖a‖rLr =
´

T
L

δ=0 ‖a(t)‖
r
ℓr

t∈δ+D
, so for some δ the first summand is bounded by

2(T/L)−1/r‖a‖Lr . In the second summand we have estimated the r-variation norm by
the 1-variation norm, which can be estimated by the L1 norm of the derivative. Hence
we obtain

‖a‖Ṽ r ≤ 2(T/L)−1/r‖a‖Lr + 2
�

L
∑

j=−1

‖a′‖r
L1

t∈[0,T ]∩ j T
L +δ+[0, T

L ]

�1/r
.

We estimate the L1 norm on the right-hand side by the L r norm using the Hölder
inequality, this gives

‖a‖Ṽ r ≤ 2(T/L)−1/r‖a‖Lr + 2(T/L)1−1/r�
L
∑

j=−1

‖a′‖rLr

t∈[0,T ]∩ j T
L +δ+[0, T

L ]

�1/r

= 2(T/L)−1/r‖a‖Lr + 2(T/L)1−1/r‖a′‖Lr .

The optimal choice L = ⌊T‖a′‖Lr /‖a‖Lr ⌋ gives the desired estimate unless T‖a′‖Lr <

‖a‖Lr . However, in the latter case we have the easy bound

‖a‖Ṽ r ≤ ‖a‖Ṽ 1 ≤ ‖a′‖L1 ≤ T 1−1/r‖a′‖Lr ≤ ‖a‖1−1/r
Lr ‖a′‖1/rLr . �
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