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Abstract—This paper considers the joint transceiver design in multiple access channels (MAC) between the sensors and
a wireless sensor network where multiple sensors observeeéh the fusion center are perfect without fading or noise. For
same physical event and transmit their contaminated obseat | \;rejess communication, the assumption of ideal channel is

tions to a fusion center, with all nodes equipped with multige L . . .
antennae and linear filters. Under the mean square error unrealistic and the imperfect channels are considered}in [3

(MSE) criterion, the joint beamforming design problem can be  [9]. [3] researches the problem of scalar source transamissi
formulated as a nonconvex optimization problem. To attack his ~ with all sensors sharing one total transmission power and

problem, various block coordinate descent (BCD) algorithns are  ysing orthogonal MAC. Imperfect coherent MAC and separate
proposed with convergence being carefully examined. Firswe 4 ar constraint for each sensor are consideredlin [4], unde

propose a two block coordinate descent (2-BCD) algorithm tht th fi that all ch I tri d
iteratively designs all the beamformers and the linear reciwer, € assumptions that all_channel matrices are square an

where both subproblems are convex and the convergence of Nonsingular. The work [5] and [6] are particularly relevamt
limit points to stationary points is guaranteed. Besides, He our problem.[[5] is the first to present a very general system

thorough solution to optimizing one single beamformer is gien,  model, which considers noisy and fading channels, separate
which, although discussed several times, is usually incorfgde  ,q\ver constraints and does not impose any constraints on the

in existing literature. Based on that, multiple block coordnate di . fb f h | tri 5 id
descent algorithms are proposed. Solving the joint beamfoners'  dimensions of beamformers or channel matrices. [5] pravide

design by cyclically updating each separate beamformer uret  the solutions to several interesting special cases of thergé

the 2-BCD framework gives birth to a layered BCD algorithm, model for coherent MAC, such as the noiseless channel case
which guarantees convergence to stationary points. Besisl¢hat, and the no-intersymbol-interference (no-1Sl) channeécérs

a wide class of multiple BCD algorithms using the general &) the quthors develop a useful type of iterative methad th
essentially cyclic updating rule has been studied. As will&seen, . ‘

by appropriately adjusting the update of single beamformer S applicable to the_general model in [5] for coherent MAC.
fast converging, highly efficient and stationary point achéving All the works mentioned above take the mean square error
algorithms can be obtained. Extensive numerical results & (MSE) as performance metric. Recently, under the similar
presented to verify our findings. system settings of [5], joint transceiver design to maxamiz
mutual information(MI) attract attentions and are studied
in [7] and [8], with orthogonal and coherent MAC being

considered respectively. The SNR maximization problem for

_Consider a typica| wireless sensor network (WSN) COMgireless sensor network with coherent MAC is reported in
prised of a fusion center (FC) and numerous sensors th['g'ﬁ_

are spatially distributed and wirelessly connected to i@V = | g interesting to note that the beamforming design

surveillance to the same physical event. After harvestingophiems in MIMO multi-sensor decision-fusion system have
information from the environment, these sensors transmifynificant relevance with those in other multi-agent com-
distorted observations to the fusion center (FC) to perform nication networks, e.g. MIMO multi-relay and multiuser

data fusion. A central underlying problem is how to desigi,mmynication systems. A large number of exciting papers
the sensors and the fusion center to collaboratively acismp o ist in the literature. see. for examplé, [112[14] and the

sensing, communication and fusion task in an efficient and¢arences therein

trust-worthy manner. _ _ This paper considers the very general coherent MAC model
‘When the sensors and the fusion center are all equipPglcyssed in[[5],[6]. To solve the original nonconvex joint

with multiple antennas and linear fllters, th_|§ problem may bbeamforming problem, we propose several iterative optimiz

regarded as one of the cooperative multi-input multi-oUtPYinn 4g0rithms using the block coordinate descent (BCD)

(MIMO) beamforming design problems, which have beep,qahqdology, with their convergence and complexity cdhefu
tackled from various perspectives [1]-[9]. For example-[4] _ studied. Specifically our contributions include:

target compressiqn (dimensionalit_y reduction) beamfogni 1) We first propose a 2 block coordinate descent (2-
[1] and [2] consider the scenarios where the orthogon@cpy method that decomposes the original problem into two

Supported by National Science Foundation under Grants 996@D2, Sybpml_)'emsf one .Sl.prI’Oblem, with all the beamformers
1133027 and 1343372. given, is a linear minimum mean square error (LMMSE)
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filtering problem and the other one, jointly optimizing thethe further decomposition of the joint optimization of beam
beamformers with the receiver given, is shown to be contex.formers, including the closed form solution to one separate
is worth mentioning that [5] considers the special case whebeamformer’'s update, layered BCD algorithms, essentially
the sensor-FC channels are intersymbol-interferencgffi€ cyclic BCD algorithms and their variants and convergence.
(i.e. the sensor-FC channel matrix is an identity matrix) anSection[¥ provides simulation verification and Sectlod VI
solves the entire problem by semidefinite programming(SDRpncludes this article.

and relaxation. Here we reformulate the joint optimizatidn Notations We use bold lowercase letters to denote complex
beamformers, even with arbitrary sensor-FC channel matiectors and bold capital letters to denote complex matrices
ces, into a second-order cone programming(SOCP) problet, O,,,«., and I, are used to denote zero vectors, zero
which is more efficiently solvable than the general SDP prolmatrices of dimensiom x n, and identity matrices of orden

lem. Convergence analysis shows that this 2-BCD algorithmespectivelyA”, A* and A" are used to denote transpose,
guarantees its limit points to be stationary points of theonjugate and conjugate transpose (Hermitian transpese) r
original problem. Interestingly enough, although not présd  spectively of an arbitrary complex matrix. Tr{-} denotes

in this article, the proposed 2-BCD algorithm has one morthe trace operation of a square mattix.denotes the modulus
fold of importance—the convexity of its subproblem jointlyof a complex scalar, and - ||» denotes thes-norm of a
optimizing beamformers can be taken advantage of by tl@mplex vectorvec(-) means vectorization operation of a ma-
multiplier method[[24], which requires the original probiéo  trix, which is performed by packing the columns of a matrix
be convex, and therefore gives birth to decentralized moisit into a long one columng denotes the Kronecker product.

to the problem under the 2-BCD framework. diag{A1,--- ,A,} denotes the block diagonal matrix with
2) We have also attacked the MSE minimization with reits i-th diagonal block being the square complex mathix
spect to one single beamformer and developed fully analytici € {1,--- ,n}. Re{z} denotes the real part of a complex

solutions (possibly up to a simple one-dimension bisectiovalue x.
search). It should be pointed out that, although the same
problem has been studied in several previous papers|(¢,g. [6
[11], [13], [14]), we are able to carry out the analysis to ) _ ) )
the very end and thoroughly solved the problem by clearly Consider a cen_trahzed wireless sensor network \Elmen-_
describing the solution structure and deriving the sohgifor  SOrs and one fusion center where all the nodes are equipped
all possible cases. Specifically, we explicitly obtain toedi-  With multiple antennae, as shown in Figlie 1. Bétand N;
tions for judging the positiveness of the Lagrange mugipli (¢ = 1,2,---, L) be the number of antennas provisioned to
Moreover, in the zero-Lagrange-multiplier case with siagu the fusion center and theth sensor respectively. Denoge
quadratic matrix, we give out the energy-preserving sofuti S the common source vector pbseryed b_y all sensors. The
via pseudoinverse among all possible optimal solutions. TPUrces is a complex vector of dimensiol, i.e.s € cr,
the best of our knowledge, these exact results have never bédd is observed by all the sensors. At thth sensor, the
discussed in existing literature. source signal is linearly transformed_ by an obse_rvatlor_nmat

3) Our closed form solution for one single beamformerd: € C’** and corrupted by additive observation noise
update paves the way to multiple block coordinate descefflich has zero mean and covariance maktix
algorithms. A layered-BCD algorithm is proposed, where an
inner-loop cyclically optimizing each separate beamfarme i Sensort
is embedded in the 2-BCD framework. This layered-BCDs o— F
algorithm is shown to guarantee the limit points of its so- '
lution sequence to be stationary. Besides we also consider a- '

Il. SYSTEM MODEL

Fusion Center

wide class of multiple block coordinate descent algorithms " sensori My

with the very general essentially cyclic updating rule.dt i F " _»é_» G i
interesting to note that this class of algorithms subsurmes t - - ' '

one proposed ir_[6] as a specialized realization. Furtheemo

as will be shown, by appropriately adjusting the update of | M Sensorl
each single beamformer to a proximal version and intro- b4 r
ducing approximation, the essentially cyclic multiple ¢ko L L
coordinate descent algorithm exhibits fast converging,rat
guarantees convergence to stationary points and achiees h Fig. 1: Multi-Sensor System Model
computation efficiency.

The rest of the paper is organized as follows: Section Each sensor applies some linear precoBer: CVi*7, to
M introduces the system model of the joint beamformingts observationK;s + n;) before sending it to the common
problem in the MIMO wireless sensor network. Sectiorfusion center. Denotdl; ¢ CM*Y: as the fading channel
[ discusses the 2-BCD beamforming design approach armbtween thei-th sensor and the fusion center. Here we
analyzes its convexity and convergence. Sedfidn IV digsissconsiders the coherent MAC model, where the transmitted




data is superimposed and corrupted by additive noise at tdesign problem can then be formulated as the following

fusion center. Without loss of generality, the channel @igs optimization problem:

modeled as a vectaiy € CM*! with zero mean and white .

covariances2I,,. The fusion center, after collecting all the(PO){:F{,r}“;Ij 'VGMSE({Fi}iLzl’G)’ (72)

resultg, _applies a linear postcoder” € CEX*M  to retrieve - Tr{TE‘Z(KiESKH+2i)FH}§Pi, ie {1, L}. (7b)

the original source. g '
This system model depicted in Figuré 1 is the same akhe above problem is nonconvex, which can be verified by

the general model presented inl [5]. [6]. Following theirchecking the special case whef@;}Z , and G are all

convention, we assume that the system is perfectly timsealars.

synchronous (which may be realized via the GPS system) andThe following of this paper consults tblock coordinate

that all the channel state informatidd; is known (which descent(BCD) method [[15]+[18], which is also known as

may be achieved via channel estimation techniques). Sin@auss-Seidel method, to solMed) by partitioning the whole

the sensors and the fusion center are usually distributed owariables into separate groups and optimize each group (wit

a wide range of space, it is reasonable to assume that tfhe others being fixed) in an iterative manner. Appropriate

noisen, at different sensors and, at the fusion center are decomposition can lead to efficiently solvable subproblems

mutually uncorrelated. and may also provide opportunities for parallel computatio
The signal transmitted by thieth sensor takes the form of
F;(K;s + n;). The outputs of the postcoder at the fusion  ||I. Two-BLock COORDINATE DESCENT(2-BCD)

center is given as In this section, we study a two block coordinate descent (2-

BCD) method that decouples the design of the postcéiler
) (1) (conditioned on the precoders), thereafter referred tdPa¥ (
from the design of all the precodef¥';}%_, (conditioned on
the postcoder), thereafter referred to Bg)(

L

§=QGHyr = GH(Z H,F;(K;s +n;) + ng

i=1
I L

i1 =1 A. (P1): Optimizing G given{F;}

. . . For any given{F,}~ ;, minimizing MSE with respective
where the compound noise vectarhas covariance matrix o G pecomes a strictly convex non-constrained quadratic
En given by problem P1):

S = 02y + ZL:HFZFHHH 3) (P1) : min Te{@(G|{F:} ., ) }. ®)

=1

n

. . By equating the derivatived=MSE(G) with zero, the op-
In this paper, we take the mean square error as a figure @al receiver is readily obtained as the well-known Wiener

merit. The mean square error matdxis defined as filter [21]
BLE{(s—8)(s—8)"}. 4 L L H 1
{(s=8)(s=3)"} @) Gfpl)_{(ZHiFiKi) =Y HFK) +2n} (>mFx)s,,
Assume that the source signahas zero mean and a covari- i=1 i=1 i=1
ance matrixX £ E{ss”}. By plugging [2) into [(4), we can 9)

express thMSE matrix & as a function o F;} andG as:  \herex,, is given in [3).

L L
H
L H .. .
‘I’({Fz‘}i:u G):G (Eﬁ HzeKz) Es(g HleKl) G B. (P2): Optimizing {F;} givenG
L =t 1_1L With G being fixed, the subproblenP?) minimizesMSE
H - L .
H with respect to{F; };- , is formulated as
~G#( §_1 H.F/K)) 25—25(21 HF.K;) G !

i= = Lo L
e, TR
+ZG HFX%F H'G+oyG"G+Ys. (5) 4 Tr{F, (K, ZK42)FI <P, ie{1,---,L}. (10b)
=1
The totalMSE is then given by Below we discuss the convexity oPg).

Th 1.(P2) i ith t tOF, } ..
MSE({Fi}f,l,G) S Tr{q)({Fi}f,PG)}. ©) eorem 1. (P2) is convex with respect toF,}~
§ - Proof: First consider the functiorf(X) N LS

We consider the case where each sensor has its own traRs+(X) = Tr{A7XX X" A}, where the constant matrices
mission power constraint. This mead§||F;(K;s+n;)||3} = A and X have appropriate dimensions adlis Hermitian
TrH{F,;(K;ZK7+3,)F£} < P,. The overall beamforming and positive semidefinite.



By the identitiesTr{AB} Tr{BA} andTr{ABCD} =
vec" (DT)[CT® A Uec ), f(X) can be equivalently writ-
ten asf (X ) = vec )[Z* ® (AAT)|vec(X).

According to [2()] |) [A@B]H = A @B#; ii) for any
two Hermitian matricesA,,«.» and B, «, having eigen-
values{);(A)}~, and {)\;(B)}}_; respectively, the eigen-
values of their Kronecker producA @ B are given by
{Ai(A)N;(B)}1T -, - As aresult A®B is positive semidef-
inite when A andB are positive semidefinite.

SinceAAH andX* are both positive semidefinit€s* ©
(AAH)] is positive semidefinite and therefof¢X) is actu-
ally a convex homogeneous quadratic functiorvaf(X).

Now substituteX in f(X) by Zle (H;F;K;) and re-

call the fact that affine operation preserves convexity ,[22]

the term Tr{ G¥ (L1, HiF K;) B(L1, HiFiK,) "G}

in the objective functionK2) is therefore convex with respect

to {F;}L ;. By the same reasoning, the remaining terms in ‘

the objective and the constraints d?z() are either convex

quadratic or affine functions ofF;}~ ; and therefore the

problem(P2) is convex with respectrve toF; } - |
In the following we reformulate the subproblerﬁ?() into

a standard second order cone programming(SOCP) presenjgg |,

tion. To this end, we introduce the following notations:

f; & Uec(Fi); g2 Uec(G); (11a)
A2 (KK @ (HIGGTH;);  (11b)
B; 2 (K;%:)" @ H;; (11c)
Ci 2% @ (HIGG H,). (11d)

By the identity Tr{ABCD} = vec” (DT)[CT ® A]vec(B)
and the above notations, we can rewrite M8E in (P2) as

MSE({€}1_, |g) = ZZfHA”f 2Re(ZL:gHBifi)
i=1 j= i=1
L

+ Y £1CiH + odllgll” + Tr{=:}. (12)

i=1

By further denoting

fTé[ffaaffv 7fg]7 (13&)
Ain A AL
a Asr Ao Ay g
As | . . ; (13b)
Ari Aprp Arr
Bé{Bla"'aBia"'aBL}; (130)
Cédlag{cla aCia"' aCL}; (13d)
D; £ diag{Ogi1 ;v B Ogr 5w |
Ze{la 7L}3 (136)
é (KZESKF+EZ)T®IN17 (S {17 T 7L}; (13f)
¢ £ Tr{Ss} + op g%, (139)

the problem P2) can be rewritten asPQ’):
(P2') : min 7 (A+C)f —2Re{g"Bf} +c,
sit. fHD,f < P,

(14a)
1e{l,---, L} (14b)

As proved by Theorerh]1,P@’) (or equivalently P2)) is
convex, which impliefA+C) is positive semidefinite. Thus
the square roofA + C)z exists. The above problem can
therefore be reformulated in an SOCP form as follows

(P2socp) : f?in t, (15a)
s.t. s — 2Re{g"Bf} + ¢ < t; (15b)
1
3 1
H (Atg)2f Py (150)
5 2
1 Pl
Dl == ey s
2 2

(P2socp) can be numerically solved by off-the-shelf con-
vex programming solvers, such as CVX]23].

Summarizing the above discussions, the probl€6) can
be solved by a 2- BCD algorithm: updatig by solving P1)
pdatmg{F } by solving P2’) alternatively, which
is summarized in AIgonthrE]l

Algorithm 1: 2-BCD Algorithm to Solve P0)

1 Initialization : Randomly generate feasib{&, 0)}Z 1
i€{l,---,L}; ComputeG® using [9);

2 repeat

3 | With GU—Y fixed, solve P2’) and obtaln{F(J)}l ¥

4 With {FZ(.J)}Z-:1 fixed, computeG ) using [9);

5 until decrease oMSE is small enough or predefined
number of iterations is reached

C. Convergence of 2-BCD Algorithm

In this subsection we study the convergence of the
above 2-BCD algorithm. Consider the optimization problem
min{ f(x)|x € X} with f(-) being continuously differentiable
and the feasible domailX being closed and nonempty.
A point xg € X is a stationary pointif and only if
Vi(xo)(x —x9) > 0, Vx € X, whereV f(xq) denotes the
gradient of f at xq. For the proposed 2-BCD algorithm, we
have the following convergence conclusion.

Theorem 2. The objective sequend®SEY)}%; generated
by the 2-BCD algorithm in Algorithml 1 is monotonlcally de-
creasing. IfK; XK -~ 0orX; = 0forall i e {1,---,L},
the solution sequenct%{F Gne G(J>} - generated by the
2- BCD algorithm has limit points and each limit point of
{{Fz .G 7)}j:1 is a stationary point of P0).

Proof: Since each block update solves a minimiza-
tion problem, MSE keeps decreasing. Let; = {X €
CN THX (K B KA+3) X} < P}, fori=1,--- | L




and X;,; = CMxK_Under the strictly positive definite- of p,. The solution to P2) is given as follows:

ness assumption & ;XK or ;, we have(KiESKer CASE (I)—if either of the following two conditions holds:
¥;) = 0 and thus (KZ-ESK{’+EZ-)T @Iy, > 0 for i) Ekfjjri + 1, JiN;} SUCT th?t|pz'.,k| # 0;
all i € }L{Il,--- 77@}. Thisf implies that the null space of or ii) Y7500 [pikl =0and 7l ”;gk > P,.
(KiZ:K/'+3%;) @Ly, is {0} and consequentlf; has The optimal solution to#2’) is given by

to be bounded to satisfy power constraint. Therefdireis .

bounded for alli € {1,---,L}. Since the feasible set for ff = (A+CHIE;)  (Bfg—ai), 17)

eachF; is bounded, by Bolzano-Weierstrass theorem, there

_ . s . .
exists a convergent subsequen{:éFg“) 521}:»:1. Since with the positive value(L]i‘Nbewllg :Ir;e unique solutlgn to the
G is updated by equatior](9) as a continuous functiofAuation: gi(u:) = 351" ooz = Fi- An interval

of {F;}L ,, the subsequencgGU++1}> also converges [lbdi,ubd;] containingy; is determined by Lemnid 1 which
and thus bounded. By further restricting to a subsequengemes later. ,
of {{FV*V} GU+D1™ | we can obtain a convergent CASE ()—>"7 N Ipikl =0 and 37, % <P,
subsequence o[f{FEj)}iL:h G(ﬂ')};il. The optimal solution to®2’) is given by

Since Algorithm1 is a two block coordinate descent pro- L. Nt
cedure and the problen() has continuously differentiable f =E, ? (EZ 2 (Ayi+Ci)E; 5) E, 2(Bfg—q;). (18)
objective and closed and convex feasible domain, Corollary

2 in [17] is valid to invoke, we conclude that any limit point Proof: See Appendix_A. ]
of {{F(_j)}_L G} is a stationary point ofR0) n Here we have several comments and supplementary discus-
7 =11 j=1 . . . ’
sions on the solution toP@;).

IV. MULTI-BLOCK COORDINATE DESCENT Comment IV.1. When pf = 0 and M; is singular, the
For the above 2-BCD algorithm, although we can solveolution to P2;) is usually non-unique. According to the
the subproblemR2) as a standard SOCP problem, its closedproof procedure in AppendiX]JA[(18) is actually the power-
form solution is still inaccessible. The complexity forwolg preserving optimal solution, which has the minimal trarssmi

(P2) can be shown to b@(\/f( SE NZ-Jl-)3 , This implies  sion power among all optimal solutions tB2().
that when the sensor network under consideration has a lati@gmment 1V.2. It is worth noting that the three cases dis-

number of sensors and/or antennae, the complexity forre®Ivi ¢ ;ssed in the proof of Theordm GASE()-case i), CASE(I)-

(P2) can be rather daunting. This motivates us to search f@hse ii) andCASE(ll), are mutually exclusive events. One and
more efficient ways to update sensor's beamformer. only one case will occur.

A. Further Decoupling of £2) and Closed-Form Solution Comment V.3, The problem of minimizing MSE with
_ _ respect to one separate beamformer with one power cortstrain
Looking back to problemR?2), although it has separables 5 rather standard problem that has been discussed in
power constraints, its quadratic terms in its objectivegtes  previous works such as|[6], L1, [L3].[14]. A big contritar
different sensors’ beamformers t_qgether and thus |_”nakes Izére is that we havdully solved this problem by clearly
Karush-Kuhn-Tucker(KKT) conditions ofP) analytically jqentifying the solution structure and writing out the aho
unsolvable. Here we adopt the BCD methodology to furthgtjgsed-form solutions for all possible cases, whereas the
decom,po_se the subproblerft2). Instead of optimizing all revious papers have not. One key consideration is the ¢ase o
the F;'s in a single batch, we optimize on& at a time  yank deficientM; for zeroy*. Although [11] and([B] mention
with the others being fixed. By introducing the nOtat'Orlhatm can be zero, the solution for singul; in this case
.2 b Af;, each subproblemPQ]) of (P2) is  ic micsi | ; :
q: J=1,g#i FXI 00 p i is missing. In fact whefM, does not have full rank ang is
given as zero, its inverse does not exist and consequently the eokiti
(P2) : min £/ (A,i+C))f; + 2Re{q”f;}—2Re{g"B,f;} (16a) given in. [el, [11]_, [13], [14] dp not stgnd any more (they
£; all provide solutions by matrix inversion). It is noted that
s.t. fAEf; < P;. (16b) [6] imposes more assumptions on the number of antennas

. . . to exclude some cases whek&; is rank deficient. However
Now our problem boils down to solving the simpler prob-

lem (P2)), for i — 1,--- , L. The following theorem provides these assumptions undermine the generality of the system

. , model and, still, adverse channel parameters can reswhh r
analmostclosed-form solution toR2’). The only reason that - g o
. v . deficiency ofM;. Turns out, the rank deficiency scenario is
this is not afully closed-form solution is because it may

involve a bisection search to determine the value of a iti actually not rare. In fact, whenevar < ; or M < N; holds,
real number es the matricesA;; and C; are both born rank deficient. If they

share common nonzero components of null spAdewill be
Theorem 3. AssumeKiESKfI = 0 or X; = 0. Define rank deficient. For example, consider the simple case where
parametersM;, U, and p; as in equations[(26) in the K; = Ix, s = 021, 8; = 0?1 and min(K, M) < N;.
appendix,r; as the rank ofM; and p; ; as thei-th entry At this time M; is not of full rank. Besides inappropriate



channel paramete; can also generate rank deficiévl;.  Algorithm 2: Solving the ProblemR2})
Thus taking the rank deficiency &1; when p, = 0 into
consideration is both necessary and meaningful.

1 Initialization : Perform eigenvalue decomposition
M, = U;A; U¥; Calculatep; using [268);

Comment IV.4. In the special case whet€ = J; = 1,the  , if (3k e {r; +1,---,J;N;} si.t. |pi.k] # 0) or

fully closed form solution to B2;) does exist! At this time, TN, ) ri lpisl?

the optimalyu; and f7 can be obtained analytically without (Zk L1 piklF=0and 5,0 32, ) then

bisection search. In this case, eigenvalue decomposition 3 Determine bound#bd; andubd via (19) or [20) ;

also unnecessary. So whén = J; = 1, solving P2;) is 4 Bisection search orﬁlbdz,ubd] to determineu;;

extremely efficient. The details can be found[in EI.O] 5 fr= (A“+Cl+ul )71(Bng_Qi);

Recall that inCASE (1) of ThoereniB . is obtained as the © €IS€
solution tog;(u;) = P;. This equation generally has no ana-; ‘ fi*:Ei_% (Ei‘% (Aii‘f'ci)Ei_%)TEi_% (Bflg—qi);
lytic solution. Fortunatelyy;(u;) is strictly decreasing inu; & end
and thus the equation can be efficiently solved by a bisection
search. The following lemma provides an interfiadl;, ubd;]
containing the positivg:, from which the bisection search
to determineu} can be started. Algorithm [2 summarizes the results obtained in Theorem
Lemma 1. The positive.* in (P2!) (i.e. CASE (I) in Theorem and/Lemm@l and provides a (nearly) closed-form solution
[3) has the following lower bounidd; and upper boundbd;: to (P2)).
i) For subcase i)

JF . _ .
Ihd, — [|pz|2 Y 1}  ubd; = sz||2; (19) B. Layered-BCD Algorithm
) \/E VP The above analysis oP@}), combined with P1), naturally
i) For subcase ii) leads to a nested or layered-BCD algorithm, that can be used

Ipill + Ipilla to analytically solve the joint beamforming problerR0j.
Ibd; = [ N A1 } ,  ubd; = N Air;» (20)  The algorithm consists of two loops (two layers). The outer-
! ! loop is a two-block descent procedure alternatively opting

where [2]" = max{0, z}. G and {F;}L ., and the inner-loop further decomposes the
Proof: For subcase i), by definition af(;;;) in (30), we optimization of {F,;}~ , into an L-block descent procedure
have operated in an |terat|ve round robin fashion. Algorithin 3
T outlines the overall procedure. As will be seen in the next,
Pilla  _ — this layered-BCD has strong convergence property.
- ) 1) — Pz y g g p p ty
(i + Xi1)? (/Ll + /\z,l)2 < gilpa)
I N
< ||p1||2 . (21) Algorithm 3: Layered-BCD Algorithm to SolveR0)
) _ ) NZ & 1 Initialization : Randomly generate feasib{&; 0)}Z 15
which can be equivalently written as 2 ObtainG(® by (9);
Ipill2 _ Ipill 3 repeat
ﬁ - /\z,l < py < f (22) 4 repeat
Also notice thatu? should be positive; the bounds |E[19)5 for i =1; i <= L; i ++ do
thus follow. Given G and{F;};;, updateF; by
For subcase ii), by assumptioly,; """ , | |p; x|* =0. This Theoreni 8,
leads to ! _end . -
9 - 9 8 until decrease oMSE is sufficiently sma]l
Ip:ll3 _ Z2ak=1 |pi. k| N p . L . .
T v R e W < gi(pi) = P; 9 | Given{F;} ,, updateG via (@) ;
LAl ot 10 until decrease oMSE is sufficiently small or predefined
Zk 1 [Pkl Ipal3 (23) number of iterations is reached

(/Lz"’)\zn) BRITES VR

Following the same line of derivation as in subcase i), we
obtain the bounds ir_(20). B Theorem 4. Assume thaK; X, K” ~ 0 or X; >~ 0, Vi €
1 [10] actually solves an approximation of problefA2() with scalared {1’ L} The ObJeCtlve Sequen({MSE(J)} =0 generated

source , where a specific affine term ff in the objective of P2/) is by A|90I’Ithm[3 is monotonlcally decreasmg The solution

approximated by its latest value (approximation is diseds® subsection sequenc F UL G(J) enerated by Algorithm13
[V-Dlof this paper). However fully analytic solution oPg;) can be obtained q e{{ } } -1 9 y A9 il

by following very similar lines as [10] without introducingpproximation of h?? “r;“t pomts and eaCh I'm't p0|nt is a Stat'onary pOIht
f;. of (PO



Proof: The proof of the monotonicity o{l\/ISE(j)}B?';0 This suggests that the convergent limit pofr{tF;}~ ,, G }
and the existence of limit points for the solution sequends actually a stationary point ofP().
follows the same lines as those of Theollgm 2. However the assumption that the whole solution sequence
From Theorem[J1l, givenG, the objective function converges is actually a very strong assumption and cannot
MSE({F;}/,|G) of Problem [[I#) is convex (and there-be theoretically proved, although extensive numericalltss
fore, of course, pseudoconvex) with respect {f}L ;. show that this fact seem always hold in practice for our
Since the objectiveMSE({F;}~,|G) in (P2) is continu- problem.
ous and the feasible domain ¢¥;}~ , is bounded, there  For rigorous proof of the convergence to stationary points
exists some feasible poinfF;}~ , making the level set of BCD algorithms, one usually requires uniqueness of solu-
{{Fi}le € CTiNix1y .. .XCJLNLX1| MSE({Fi}le \G) < tions for each block update, as the analysis performed i-[16
. . 18]. Without the uniqueness assumptions, convergence to
MSE ({F; i:l‘G)} closed and bounded. Thus Proposition &ationary points is not guaranteed and a counter example ha
in [17] is valid to invoke. For a giveltx at any step of outer- peen reported i [19], where the solution sequence is always
loop, the inner loop generates limit point(s) convergin@to far away from stationary points. In retrospect to Theofém 3,
stationary point of the problenP@). Since P2) is a convex gpecific parameter setting§ASE(Il) with singular (A;+C;)
problem, any stationary point is actually an optimal saioti and zerqu*) will result in infinitely many optimal solutions to
[16]. Therefore the subproblenP%) is actually globally (p2/). To overcome this difficulty, we adopt proximal method
solved. By Theoreril2, each limit point of solution sequencexercise 2.7.1 in[[16]), which locally modifies thé))
is a stationary point of the original problerR(). B by imposing a squared norm and guarantees that each block
Although the convergence analysis in Theoren 4 statgpdate is uniquely solved.
that the layered-BCD algorithm guarantees convergence, itgpecifically, to update théth beamformer, we consult to
reqL_Jires the inner-lqop to itgrate numerous times to C@®/Erthe proximal version objectivéMSE (f;|{£;};.4:. g) + l|fi —
sufficiently. In fact if each inner loop is performed with aﬁ_H% of (P2}) with £, being the latest value of; until the

small number of iterations, the layered BCD algorithm beg,,rrent ypdate and being any positive real constant. Thus the

comes a specialized essentially cyclic BCD algorithm, Whic o hiem updating the-th sensor's beamformer is equivalent
will be discussed in next subsection. to (P4;) as follows

C. Essentially CycliqL + 1)-BCD Algorithm (P4i):n}%n £/ (AitCitrly, g, ) fit2Re{ (q —g " Bi—rt{T)f; }

In this subsection, we propose ah - 1)-BCD algorithm, st. fHEf < P (24)
where in each update the linear FC receiver or one single
beamformer is updated efficiently by equatibh (9) or Theorefys shown by the following theorem, the proximal version
respectively. Compared to the 2-BCD algorithm, the blocRf any essentially cyclic & + 1)-BCD algorithm guaran-
updating rule for multiple block coordinate descent methot€S monotonic decreasing of objective and stationargtpoi
can have various patterns. Here we adopt a very general-upd@ghieving convergence of the solution sequence.

ing manner callegssentially cyclic rulgl8]. For essentially Theorem 5. Assume that, 2. K? ~ 0 or & = 0
cyclic update rule, there exists a positive inte@erwhich is {1,---,L}. By updatingG aznd F, by solving P1)
called period, such that each block of variables is updated g,q (P4’») réspectively any essentially cyclid.{ 1)-BCD
least once within any consecutiie updates. The classical 51qorithm generates monotonically decreasM§E sequence
Gauss-Seidel method is actually a special case of esdgntialg the solution sequence has limit points with each limit

cyclic rule w_ith its periodT" being exactly the number of point being a stationary point of the original probler®q).
blocks of variables.

For the convergence of essentially cyclic BCD algorithm, ~ Proof: See AppendixB. L
when the whole solution sequence converges, the limit of Note the solution to R4;) can be easily obtained by
the solution sequence is stationary. In fact, assume tieat thheorem 3 with the termgA; + C;) and (B{'g - q;)
sequence {F\)} £, G(j)};il converges to the limit point being replaced b)(Aii'f‘c.:.i'f‘fiINiJi) and (Bflg—qri-ﬁfi)

X £ {{F;}L,,G}. DenoteX = {{F;}L,, G} andX; as respectively and no additional cqmpIeX{ty is requ!red. .
thei-th bIoclIZofX, which can beG orF;TVj ef{1,.-- L}, Recall the layered-BCD algorithm discussed in previous

andX; as the variables other thaX;, i.e. X; = {X}\{X;. sul?secti_on, W_hen the inner-loop is performe_d k_Jy small numbe
j of iterations, it actually reduces to a specialized esabti

i G+ minimi S i () i

$|nceXi__ minimizesMSE with glvenéi(%) }’(?)S (T)ptlmal- cyclic BCD algorithm. One special case is the iterative
ity ‘c?ndmons, we havelr{Vx,MSE(X; ’Xi‘ ) (Xi_ algorithm proposed in[[6] whose inner-loop updates each
XP*)} > 0 for any feasibleX;. Since {X\”)} — X;, peamformer for once. According to the above theorem, by
X§j+1) — X; and MSE is continuously differentiable, we updating each beamformer with the proximal method, the
have Tr{Vx,MSE(X)” (X-X;)} > 0 for any feasibleX;, convergence to stationary points can be guaranteed.

Vi e {1,---,L+1}. By summing up all.+1 variable blocks, One drawback of the above proximal update is its slow
we obtainTr{ VxMSE(X)T (X-X)} > 0 for any feasibleX.  convergence rate, as will be shown in Secfioh V. However



this shortcoming can be well compensated by the followin 2-BCD Algorithm vs Layered (L+1)-BCD Algorithm
r T T T

acceleration scheme in the next subsection. ! - |- 2-BCD, 3 lters
- = 2-BCD, 5 lters

= €= 2-BCD, 10 lters

= % = 2-BCD, 20 Iters

= vk = 2-BCD, 40 Iters
—f— (L+1)B-Lyrd, 3 lters
—f&— (L+1)B-Lyrd, 5 Iters
—— (L+1)B-Lyrd, 10 lters
=——4— (L+1)B-Lyrd, 20 Iterg
—fe— (L+1)B-Lyrd, 40 Iterg

D. Acceleration by Approximation %

The aforementionedl(+1)-BCD algorithm can be accel- 0,264
erated by introducing approximation when updating singl
beamformeiF'; in (P2}). In addition to setting th¢F; };»; as
known and fixed, we assume that the teAmf; is also known
by leveraging the value df in the previous updates. In other
words, we define?h- = Zf:l,j;éi Aijfj +Aiifi = qi-i-Aiifi 0-22
with f; being the latest value df. Thus to updaté; we solve
the approximate versiorP6;) of (P2;) as follows

(P5;) : H%in £ C,f; + 2Re{q/"f;}—2Re{g" B,f;} (25a)

& 0.24
2 o.

0.2F

0'180 8 10 12 14 16 18
st. fHEf;, < P, (25b) SNRESM,)

The problem P5,) can still be efficiently solved by Theorem Fig. 2: MSE Performance of 2-BCD v.s. Layered-{1)-BCD
3. Interestingly enough, this approximation can signifisan (With 2 inner-loop iterations) Algorithms

improve the convergence rate of the cyclic-BCD procedure!

Actually similar idea appears in_[11], where the precoders
of multiusers is updated in a cyclic manner. In Implementati  |n the test of each algorithm, channel noise level increases
2 (Table I1) of [11], with others being fixed, one separatdrom SNR, = 0dB to 18dB. For one specific channel noise
precoder is updated by minimizing the totdSE function |evel, 500 channel realization§ H,, Ho, H3} are randomly
with some terms of the to-be-updated precoder approximatgénerated with each matrix entry following standard comple
by previous values. As reflected by the extensive numericaircular Gaussian distributio©N(0,1). The mean square
results in [11], this approximated BCD implementation hasrror averaged over al00 random channel realizations are
surprisingly faster convergence compared to the origin&l 0 evaluated as a function of the number of (outer-loop) itenat
(Implementation | in Table I) in[[11]. and the channel SNR.

The surprisingly fast convergence of the approximate up- 2.BCD algorithm is implemented by utilizing CVX(with
date inspires us the idea that it can become perfect coMppT3 solver) to solve its subprobler®2). For the es-
plement of the aforementioned proximal update. In implesentially cyclic .+ 1)-BCD algorithm, here we test two
mentation, (.+1)-BCD algorithms can be performed in anspecial cases: i) the layered BCD algorithm with finite inner
approximate-proximal manner—in the first few outer-looRoop iterations, where the inner-loop cyclically updateste
iterations we run the approximate update and then convert fgamformer for two times; ii) [+ 1)B-FG algorithm, where
proximal update in the subsequent updates. This approgimabeamformers are cyclically updated with eaEkis update
proximal combination exhibits fast convergence and alsfllowed by the calibration of+. That means the variables are

guar_antees stationary-points-achieving convergencb@srs updated in an order &, G, F,, G, - - -. In one outer-loop it
previously. updates eack; once andG for L times. The performance of
these two cases are presented in Figlire 2[and 3 respectively.
V. NUMERICAL RESULTS The 2-BCD algorithm is plotted in each figure to serve as
In this section, numerical results are presented to verity a @ benchmark. On average, the layered-BCD algorithm with
compare the performance of the proposed algorithms. ~ finite inner-loop iteration and theZ(+ 1)B-FG algorithm

In the following experiments, a wireless sensor networkonverges in 30-40 outer-loop iterations to the identic&8lEv
with L = 3 sensors is considered. The antenna numbers of tRé that of the 2-BCD algorithm.
sensors and the fusion center are seVas= 3, No = 4, N3 = The approximate and proximal version (with = 1) of
5 andM = 4 respectively. All observation matricés; are set (L+1)B-FG algorithm are also tested and presented in Figure
as identity matrices. The source sigedlas dimensiodk =3 [ and’ respectively. As shown in Figliie 4, the performance of
with zero mean, unit-power and uncorrelated component@pproximate method is surprisingly fast and exhibits droél
The observation noise at each sensor is colored and Hegrformance within only 3 to 5 outer-loop iterations. Com-
covariance matrixs; = 02%;, i € {1,---, L}, where the paratively the proximal method, although whose convergenc
J; x J; matrix X ; has the Toeplitz structure with itg,)-th  to stationary points can be proved, exhibits a much slower
elementX ], 1 =p/*7!. The parametep is set ag).5 for all ~ convergence than other algorithms, as shown in Figlre 5.
sensors in our test. The transmission power and observatiorin Figure[® the approximate-proximal version df-{1)B-
noise at each sensor are setlas= 2, P, = 2, P; = 3, FG is tested. Here in the first 10 outer-loop iterations,
o, % =6dB, 0, % = 7dB ando; * = 8dB, respectively. approximate version ofI{(+1)B-FG is performed and after



2-BCD Algorithm vs (L+1)B-FG Algorithm
T

= @l = 2-BCD, 3 lters

- A= 2-BCD, 5 lters

= €= 2-BCD, 10 lters

= % = 2-BCD, 20 lters

= %= 2-BCD, 40 Iters
—&— (L+1)B-FG, 3 lters
—&— (L+1)B-FG, 5 Iters
—&— (L+1)B-FG, 10 Iterg
—#— (L+1)B-FG, 20 Iterg
—¢— (L+1)B-FG, 40 lterg

0.18
0

Fig. 3: MSE Performance of 2-BCD v.d(+1)B-FG Algo-

rithms

2-BCD vs (L+1)B-FG Approximation Algorithm
T

0.22

0.2

T T

= #= 2-BCD, 3 Iters

- A= 2-BCD, 5 lters

- 4 - 2-BCD, 10 lters

= %= 2-BCD, 20 Iters

= 9= 2-BCD, 40 lters

—&— (L+1)B-FG-apprx, 3 Iters
—&— (L+1)B-FG-apprx, 5 Iters ||
—6— (L+1)B-FG-apprx, 10 lter:
=——— (L+1)B-FG-apprx, 20 lter:
—je— (L+1)B-FG-apprx, 40 Iter:

0.18

Fig. 4: MSE Performance of 2-BCD v.s. Approximaté {

1)B-FG

12 14 16 18

2-BCD Algorithm vs (L+1)B-FG Proximal Algorithm
T T T

0.5

MSE

0.2!

0.2

T T T

= f= 2-BCD, 3 Iters
- A= 2-BCD, 5 lters
- 4 - 2-BCD, 10 lters i
= %= 2-BCD, 20 Iters
= == 2-BCD, 40 Iters
= (L+1)B-FG-prxml, 3 lters | |
—&— (L+1)B-FG-prxml, 5 Iters
—6— (L+1)B-FG—-prxml, 10 Iter.
=—8— (L+1)B-FG-prxml, 20 lter:
—fe— (L+1)B-FG-prxml, 40 Iter:

12 14 16 18

Fig. 5: MSE Performance of 2-BCD v.s. Proximal{1)B-FG

2-BCD Alg

orithm vs (L+1)B-FG Approximate—Proximal Algorithm
T T T T

0.22

0.2

= #= 2-BCD, 3 Iters

- A= 2-BCD, 5 lters

- 4 - 2-BCD, 10 lters

= %= 2-BCD, 20 Iters

= 9= 2-BCD, 40 lters

= (L+1)B-FG-ApprxPrxm, 3 lters
—&— (L+1)B-FG-ApprxPrxm, 5 Iters | |
—6— (L+1)B-FG-ApprxPrxm, 10 lter:
=——4— (L+1)B-FG-ApprxPrxm, 20 Iter:
—Je— (L+1)B-FG-ApprxPrxm, 40 Iter

0.18
0

12 14 16 18

Fig. 6: MSE Performance of 2-BCD v.s. Approximate-

Proximal +1)B-FG

convergence rates. Proximal method has an obviously slower

that the proximal method is used. As shown in the figuresonvergence and the approximate-proximal method exhibits
this combination scheme inherits the fast convergence rdtest convergence in the first 3 outer-loop iterations, which
of approximate method and, as proved previously, guarantemincides with the observations presented in previousédgur
We present in Tablg | the average MATLAB running time

convergence to stationary points.

Next, we take a close look at the convergence behaviors fufr different algorithms (running in a regular laptop). For
these algorithms. We s8R, = 2dB and fix the channel by simplicity, we focus on homogeneous sensor network, where
a randomly-generated realization. We randomly generate #ach sensor has the same number of antennae/aadN;.
Different values of K (size of the source vector) and
(L+1)B-FG and approximate-proximal{1)B-FG algorithms (number of sensors) are tested to take into account differen
from these 10 random initial points and represent the rasult problem sizes. The algorithms are run multiple times and the
MSE itineraries in Figure§lf19. These plots clearly demonaverage MATLAB running time per outer-loop iteration is
recorded. For the 2-BCD algorithm, CVX is utilized to solve
exhibit rather stable converged MSE from different stayin its subproblem and the solver SDPT3 is chosen. In Table I,
As shown in the figures, different algorithms with randonthe average running time of 2-BCDL+41)B-FG and layered
(L+1)-BCD algorithm is presented. Note that the approximate,

feasible initial points. We run 2-BCD L(+1)B-FG, proximal

strate that these algorithms are insensitive to initiahtsand

initials finally converge to identical MSE value with diffant



10

MSE Itineraries of 2-BCD and (L+1)B-FG Algorithms MSE ltineraries of 2-BCD and Approximate—Proximal (L+1)B—-FG Algorithms
1.2 T T T T T T 1.2 T T T T
- - - 2-BCD - = = 2-BCD
11t : : (L+1)B-FG 11} (L+1)B-FG-ApprxPrxml(-
1 ] 1 T T T T T T ]
0.9 4 0.9 1
0.8 q 0.8 4
2 3
2 0.7 1 2 0.7 4

0.6 J 0.6

0.5

0.4

0.3

0.2

n n n n n n 0.2 n
0 5 10 15 20 25 30 35 40 45 50 0 10 20 30 40 50

Outer Loop Iteration Index Outer-Loop lteration Index

Fig. 7: MSE ltineraries of 2-BCD v.sI(+1)B-FG Algorithm  Fig. 9: MSE ltineraries of 2-BCD v.s. Approximate-Proximal
(L+1)B-FG Algorithm

MSE ltineraries of 2-BCD and Proximal (L+1)B-FG Algorithms

1.2 ‘ ‘ ‘ ‘
- = = 2-BCD
11 (L+1)B-FG-prxmi|{

L . \ \ \ ‘ | TABLE |: MATLAB Running Time Per (Outer-Loop) Iteration

0.9 Dim. L Algorithms L=2 L=4 L=6¢6 L=38
0.8 K=1 2-BCD 0.2167s| 0.2490 | 0.2987s| 0.3500s
w M=3 (L+1)B-FG | 0.0026s| 0.0066s| 0.0120s| 0.0189s
Qo7 N; =3 Lay. BCD 0.0031Is| 0.0094s| 0.0181s]| 0.0301s
K=3 2-BCD 0.2432s| 0.3068s| 0.3636s| 0.4285s
06 M=3 (L+1)B-FG | 0.0056s| 0.0159s| 0.0328s| 0.0560s
05 N; =3 Lay. BCD 0.0087s| 0.0241s| 0.0493s| 0.0839s
' K=6 2-BCD 0.2529s| 0.3786s| 0.5861s| 0.7526s
0.4 M=6 (L+1)B-FG | 0.0075s| 0.0203s| 0.0397s| 0.0664s
N; =6 Lay. BCD 0.0116s| 0.0319s| 0.0622s| 0.1031s
0.3 K=9 2-BCD 0.4352s| 0.7956s| 1.1401s| 1.9593s
----- M=9 (L+1)B-FG | 0.0120s| 0.0302s| 0.0557s| 0.0902s
0-20 10 20 3‘0 20 50 N; =9 Lay. BCD 0.0205s | 0.0514s| 0.0928s| 0.1467s

Outer—Loop lteration Index Notes: (i) Tayered-BCD is run with 2 inner-loop iterations.

(ii) SDPT3 solver of CVX is chosen to implement 2-BCD.

Fig. 8: MSE ltineraries of 2-BCD v.s. ProximalL {1)B-FG
Algorithm

proximal and approximate-proximal ¢ 1)B-FG algorithms to the nonconvexity of the original problem, block coordaa
have the same complexity as that @f{ 1)B-FG algorithm. descent methods are adopted. A two-block coordinate descen
The analytic solutions obtained in Theoréfh 3 entitles th@ethod is first proposed, which decomposes the original
essentially cyclic {+1)-BCD algorithm and its variants high problem into two subproblems and alternatively optimizes

efficiency for implementation. However it should be pointedN€ linear postcoder and the linear precoders jointly. Phis
out that the 2-BCD method still has great significance iBCD algorithm guarantees convergence (of its solutiontlimi

decentralized optimization for our problem. As proved ifP0ints) to stationary points. We also completely solve the o

Theorenf, its subproblenP®) is convex. In fact, by taking Single beamformer's optimization problem with one power
advantage of this key property and utilizing multiplier ined, cons_tralnt. This con<_:|u5|on gives birth to highly efficient
the problem P0) can be solved under the 2-BCD framework,m““'ple block coordinate descent methods. We prove the

where P2) is solved in a highly distributed manner with eachf@ct that updating the separate beamformer or the linear
sensor updating its own beamformer. receiver in any essentially cyclic rule with proximal metho

can guarantee the convergence to stationary points. Mereov
combining approximation with the proximal method signif-
icantly improves the convergence rate while maintainisg it

In this paper we study the joint transceiver design problemstrong convergence and high efficiency. Extensive numlerica
for the wireless sensor network under i&E criterion. Due results are provided to verify our findings.

VI. CONCLUSION



APPENDIX
A. Proof of Theorerhl3
Proof: The assumption impIie:éKiESKfﬁ—Ei) > 0.

ThereforeE; = (Kl-ESKfﬁ—Zi)@INi > 0. We introduce the

following notations

FA@ie
f2E, (26a)
M, £ E;% (Aii-i-ci)E;% = UiAiUzH§ (26b)
b; £ E;% (Bf'g — ai); (26¢)
£ U b; (26d)

11

So in case i) there always exists a unique posjtiveatisfying
(30). Suppose that the unique solution[of] (30)js Plugging
u; back into the KKT condition[(28a), we obtain the optimal
solutionf} as
£ = (M, + 1) by (31)

Plugging [26) into the above[ (lL7) is obtained. It is easily
verified that thep; and £ in (I7) satisfy all the KKT
conditions in [[2B) and therefore is the optimal solution to
(P29).

case i) > [pik[>=0 and 37) 'ﬁ;” > P

In this case, the second part in ‘the summation of

where thej-th columnu; ; of U; is the eigenvector associatedg, (;1;) in (30) vanishes and;(u;) has the bounded range
2

with the eigenvalug\; ; = [A;];;. Without loss of generality,
we assume that the eigenvalues Idf; are arranged in a

decreasing order and thid; has rankr;, r; < J;N;. In other

words ;1 > - > Xip > Xipig1 = - = AN, = 0.
Then the problemR2;) is rewritten as
(P3;) : min £7M,f; — 2Re{b!f;}, (27a)
£
st |[fi3 < P (27b)

SinceM; is positive semidefinite,R3;) is convex and is
obviously strictly feasible. Thus solving®8;) is equivalent

to solving its KKT conditions:

(M; + MiI)E = b;; (28a)
%13 < P;; (28b)
wi(I£]3 - P) =0; (28c)
wi >0, (28d)

The Lagrangian multiplieg:; should be either positive or

zero, our next discussion focuses on identifying the paositi
of i

Assume thatu; > 0, then (Ml + uiI) is strictly positive
definite and thus invertible. Consequenty = (M +
pil)
straint [28b) should be active. Pluggirfg into (28B) and
noting the eigenvalue decomposition [n_(P6b), we get

T2 =bHU, (Ai+wI) “Ulb, = P,. (29)
By the definition ofp; in (26d), we rewrite[(29) as

ri JiN;
=gi(u) = )\lpi’7k|22+ 3 Iil® _ p 30y
o Qantm)® 2= h

I

(0 p ‘ﬁf AL 1 with its maximum value achieved at —
0. When"" | [pix?A7, > P, a positiven; satisfying [30)
still exists and is unique. Consequently, the optimal sofut
f* can be determined by (B1) as in the subcase i).
CASE (I)— Y27 [pik|?=0 and Y25 “;;k' <P,

In this case, a positive,; satisfying KKT conditions does

not exist any more, andr = 0. As such, the optimal solution
£+ should satisfy[(28a):

M,f, = b,.

(32)

We now claim that the above equatidnl(32) has a feasible
solution. Indeed, this equation is solvable if and only i th
right hand sideb; belongs to the column spac®&(M;).
Recall thatM; is Hermitian and has rank;; so R(M;) =

span(u;;1, -+ ,u;,,) and the null space oM, satisfies
NSMZ) = iRl(l\/Ii) = Span(ui,riJrl,"' ,111'_,,]1.]\71.). In fact,
C/ilVi = R(M;) &N (M;). Invoking the assumption of CASE

() that |p; x| = 0, Vk € {r;+1,---, J;N;} and the definition
of pPi, We Obtainpi,k = uffkbi, Vk € {T‘i +1,--- ,JiNi}.
Actually this impliesb; € N+ (M;) = R(M;) and thus the
consistency (i.e. the feasibility) of (B2) is guaranteed.

Next we proceed to analytically identify one special feasi-
ble solution of [[3R). Eigenvalue decomposiMj;, (32) can

'b;. By the slackness conditiofi (28c), the power conpe equivalently written as

A UPE = p,. (33)

Let ]&i_representthe top-Igﬁixri sub-matrix ofA;, i.e. A; =
diag{A;, O ,n,—r, }- Let U; and U; represent the left-most
r; columns and the remaining columnsiGf respectively, i.e.
U; = [U;,U;]. We can then S|mpl|fy[]33) to

Since the columns ofU; form a set of orthonormal

Note that herey;(u;) is a positive, continuous and strictly pasis for(C] Ni £, can be expressed via columns ©f as

decreasing function im;.

To identify the positivity ofu;, the following different cases 0, vk < {7’1- +1,--

are considered:
CASE (I)— p& > 0
cases:

case -k e {r;+1,--- , iN;} s.t. |pik| #0:

In this case, it is easily seen that(u;) — +oo when
i — 0T, s0 g;(u;) has the range of0, co) for positive y;.

azykul_,k Noticing the key fact thallXu, , =
,JiN;}, we know that the values
a;,;N,; + have no impact on[(34) and can

£ = 500

Of {urir1- -

This case further involves two sub- therefore be safely set to zeros to save energy. Asfgr,

Vke{l,---
and obtain

,7i}, we substitute; = 37| o pu; . into (33)

ik = /\;;pi,k, Vi e {1, -} (35)
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Summarizing the above analysis, the optimal soluﬁprto Sinceng) is feasible, it should give no smaller objective than
(P3;) is given by x{**1 for the above problem. This implies

J
£ = UAUD,, (36)  MmsE(x(k+D) < MSE(x(8) — [ Jx B 1) |2 < MSE (x (M),

with AZT being the Moore-Penrose pseudoinverségfgiven
asdiag{A; ", 0, n,r, }. Matrix theory suggests that an arbi-
trary matrix X with its singular value decomposition (SVD) Next we prove that any limit point is stationary. Assume

I = H I i - . . . .
given b,y X = UXAXVXT ha}sl its unique Moore Penrosethat a subsequence of solutigffi) converges to a limit point
pseudomyersé_(T = VxAxUx, whereUx and Vx are ;o %%, ... ,xT 1. Since there are finite blocks, we assume
left and right singular square matrices, respectively, And *

) _ o i : : the block: € {1,--- , L+ 1} is updated infinitely many times
is a diagonal matrix with appropriate dimensions. Herlc8) (3 5,4 assume that— t, for somel € {1,--- ,T}. It should be
can be equivalently written as

noted that such may be non-unigque and arbitrary one can
be chosen to do the job.
We assert thak(®it) — %, i.e. nge;j” — Xy, This
Obviously & = 0, and i and E* satisfy the KKT claim can be proved in two cases—#)y1 = L+1 and ii)
conditions [28g),[{28¢) an@(28d). What remains to be showfe! < {1, L} _ _
is thatf* satisfies the power constraint. We verify this using}O i) tig1 = L+1. Notice thatxy,,, = g is updated in a closed

ThusMSE™® is decreasing. At the same time notice th&8E
should be nonnegative, thadSE*) converges.

£ = M/b,. (37)

@35) and get rm @&,‘)Which is a continuous functi(()kerr(gcf, c o x P
Sincexmf1 converges, by taking — oo, x;,/ " * should con-
Ti Ti 12 L i ~ :
£ =" Jeisl? = M <P, (38) Verge to some limit, i.ex(" " — %p,1. Notice thatMSE®)
1 = Ak converges, SMSE (X7, XL 41) = MSE(iL—H, Xr+1). This

. - . eans bothx;.; and x;,; are solutions to the problem
where the inequality in the above follows the assumption 1) with sensors’ beamformer”, - - - ,x%] given. Since
1> » L .

CASE (. Pl?giglng [(2B) into[(37),[(18) is obtained. The(Pl) is strictly convex and thus has unique solution, we

prootIs compiete. concludexy 1 = Xr41. SO xifgl) — Xy, holds for the
caset;gy = L + 1.

B. Proof of Theorerfll5 i) tig1 € {1,---,L}. By contradiction, we assume that

_ o . _ x\"* does not converge t&,.,. By denotingyk:) 2
Proof: This proof is inspired by Proposition 2.7.1 in “f 1) _ . ero
[16]. To simplify the following exposition, we defing £  IXtiq, = —Xts, [l2 @nd possibly restricting to a subsequence,

Xl xT ] = [€F,--- f7,g7] andx € X & X, x We assume that there existsya> 0 such thaty(*s) > 5
) ) + - ) ) ) -

) k; kj+1 k; , : Ry

- X xL+1 with X, = {fl S (CJiNi leEzfZ < Pi}, for for all J- Let Sl( ): (Xz(fzgel )_ngz@z)/W(kj)- Smces(kj) IS
i=1,---,LandX;.1 = CKM. For any specific essentially bounded, by Bolzano-Weierstrass theorem and restricting t
cyclic update BCD algorithm, we assume that it starts frord Subsequence, we assume #1at) — 5. Then we obtain
an initial feasible solutionx® £ [xI'@ ... x7 (0] and . .

) ) (kj+1)\ _ (kj+1) | (k;)
the iteration index(k) increases by one after any block’s MSE(x ) =MSE(xig, i 2)) (39)
L[deate. Denotecgk) as theiith.bloc}:1 of x(’z anld}x;' = ngE(ngg” xigz)+n\]x§fgl)—x§gz||; (40)
X1, 3 Xi—1, Xi41, 0, Xp41), ¢ € P + IS ks ) ) ko p 12
{1,---, L +1}. Assume thaf is a period of the essentially —MSE(x;,") +’Y(k1)5(k”)|X%)+HHV(I€J)SU€J)||2 (41)
cyclic update rule andity, - -, tr}, with ¢; € {1,- -+, L+1} o (i) o oxg (ki) | (i) ~s®D |12 Veelo.1] (42
Vj € {1,---,T}, as the indices of the updated blocks in a~ (x“ﬂ>1+ms ‘xtz@1)+'€st H2’ c€0.1] (42)
period in order. Ifx,, is updated in thék)-th iteration, then gl\/ISE(ngéz xikﬂ')) = MSE(x*)), (43)
1p1

Xt,,, IS Updated in thgk-+1)-th iteration. Definej &1 £ j( _ N
mod T)+1,Vj € {1,---,T} andj®dm asj®1 by m times. Where the last two inequalities follow the fact that
’ 9 9 " k. k- . n
By repeatedly invoking Bolzano-Weierstrass theorenf;to MSE (x4, |X%) +“|\th@1—xgle§3|\% is strictly convex and

to f;, and noticing thag is updated in closed form by equation gttains the minimum at pointgfjfl). Noting MSE*+) con-
(@), the existence of limit points ofx(*)}72,) can be proved. verges and letting — o, we obtain

Then we prove thaMSE®) is decreasing. Ik, 1(or g) is
updated in thék+1)-th iteration, then®1) is solved and thus MSE(x) < MSE(itz@1+€’_Y§\5<@)+H€272
MSE is decreasing. Assume that in tfier-1)-th iteration, the < MSE(X), Ve e [0,1], (44)
(tjo1)-th block is updatedt;: € {1,---,L}. Then
which immediately implies
xgi;l): argmin. MSE(x,
Xtim1 Eth@l

@1 ’X%)+”HX%®1 _Xl(ffe)al Hz

MSE (4,4, +€78|Xg27) + ey =MSE(%), Ve € [0,1].  (45)



However the above is impossible. Notice thASE (x,,+
eﬁs\it@]) is a quadratic function ok with nonnegative
quadratic coefficient andy,x > 0. Thus the left hand

side(LHS) of equation[(45) is a strictly convex quadratic

function of ¢, which has at most two different giving the
function value ofMSE(x). Contradiction has been reached.
In the above we haveqproved that®s 1) — x. Next we
show thatVx, ~MSE(X)" (Xtq, —Xtig:) = 0, VXyg, €
Xt,5,» Which is also proved in two cases:
Whent;e; € {1,---, L}, we have

(kjt+1)

. (k5) (k3))12

fiy = argmin. MSE(xt,@l‘x% +/<;thl@1—xtle;1H2.
€x el

Xte1S M e

By optimality condition, the above implies

(kj+1) . (kj)\T (kj+1)
thl@] MSE(XtLEJBI thél) (theal_xtlﬂgl )v (46)
kj+1 kj T k;j+1
+2H(x1(51@1 )_xl(fzeez) (xtzeel_xl(fz@1 )) 2 O7vxtl€B1 € xtzeel-

Let j — oo in the above equation and note thelSE is
continuously differentiable, we obtain

\T _
th@ MSE(X) (th®1—th®1) Z O,\V/th@l S I)Ctl@l. (47)

1

Whent;g1 = L+ 1, the above reasoning still works except

that the proximal term is absent (i.e. = 0). So we also
obtain th@l MSE(X)T(th@l —Sctl@l) > 0.
Now replace the subsequen¢g;} with {k; + 1}, t;en1

with ¢;42 and utilize the verbatim argument as above, we can

prove
T _
thlem MSE(X) (th®2 _th®2) Z O,\V/th@z S I)Ctl@z. (48)

Repeating this argument fof7' — 1) times and recalling
that for essentially cyclic update rul€f;qei, -, tigr} =
{1,---, L}, we have proved that

VMSE (%) (xi—%;) >0,Vx; € X;, Vie{l, -, [+1}. (49)
Summing up the abovd.¢1) inequalities, we obtain
V.MSE (%) (x—%) >0, Vx € X. (50)

Sox is actually a stationary point of(). [ ]
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