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Abstract—This paper considers the joint transceiver design in
a wireless sensor network where multiple sensors observe the
same physical event and transmit their contaminated observa-
tions to a fusion center, with all nodes equipped with multiple
antennae and linear filters. Under the mean square error
(MSE) criterion, the joint beamforming design problem can be
formulated as a nonconvex optimization problem. To attack this
problem, various block coordinate descent (BCD) algorithms are
proposed with convergence being carefully examined. Firstwe
propose a two block coordinate descent (2-BCD) algorithm that
iteratively designs all the beamformers and the linear receiver,
where both subproblems are convex and the convergence of
limit points to stationary points is guaranteed. Besides, the
thorough solution to optimizing one single beamformer is given,
which, although discussed several times, is usually incomplete
in existing literature. Based on that, multiple block coordinate
descent algorithms are proposed. Solving the joint beamformers’
design by cyclically updating each separate beamformer under
the 2-BCD framework gives birth to a layered BCD algorithm,
which guarantees convergence to stationary points. Besides that,
a wide class of multiple BCD algorithms using the general
essentially cyclic updating rule has been studied. As will be seen,
by appropriately adjusting the update of single beamformer,
fast converging, highly efficient and stationary point achieving
algorithms can be obtained. Extensive numerical results are
presented to verify our findings.

I. I NTRODUCTION

Consider a typical wireless sensor network (WSN) com-
prised of a fusion center (FC) and numerous sensors that
are spatially distributed and wirelessly connected to provide
surveillance to the same physical event. After harvesting
information from the environment, these sensors transmit
distorted observations to the fusion center (FC) to perform
data fusion. A central underlying problem is how to design
the sensors and the fusion center to collaboratively accomplish
sensing, communication and fusion task in an efficient and
trust-worthy manner.

When the sensors and the fusion center are all equipped
with multiple antennas and linear filters, this problem may be
regarded as one of the cooperative multi-input multi-output
(MIMO) beamforming design problems, which have been
tackled from various perspectives [1]–[9]. For example [1]–[4]
target compression (dimensionality reduction) beamforming.
[1] and [2] consider the scenarios where the orthogonal

Supported by National Science Foundation under Grants No.0928092,
1133027 and 1343372.

multiple access channels (MAC) between the sensors and
the fusion center are perfect without fading or noise. For
wireless communication, the assumption of ideal channel is
unrealistic and the imperfect channels are considered in [3]–
[9]. [3] researches the problem of scalar source transmission
with all sensors sharing one total transmission power and
using orthogonal MAC. Imperfect coherent MAC and separate
power constraint for each sensor are considered in [4], under
the assumptions that all channel matrices are square and
nonsingular. The work [5] and [6] are particularly relevantto
our problem. [5] is the first to present a very general system
model, which considers noisy and fading channels, separate
power constraints and does not impose any constraints on the
dimensions of beamformers or channel matrices. [5] provides
the solutions to several interesting special cases of the general
model for coherent MAC, such as the noiseless channel case
and the no-intersymbol-interference (no-ISI) channel case. In
[6], the authors develop a useful type of iterative method that
is applicable to the general model in [5] for coherent MAC.
All the works mentioned above take the mean square error
(MSE) as performance metric. Recently, under the similar
system settings of [5], joint transceiver design to maximize
mutual information(MI) attract attentions and are studied
in [7] and [8], with orthogonal and coherent MAC being
considered respectively. The SNR maximization problem for
wireless sensor network with coherent MAC is reported in
[9].

It is interesting to note that the beamforming design
problems in MIMO multi-sensor decision-fusion system have
significant relevance with those in other multi-agent com-
munication networks, e.g. MIMO multi-relay and multiuser
communication systems. A large number of exciting papers
exist in the literature, see, for example, [11]–[14] and the
references therein.

This paper considers the very general coherent MAC model
discussed in [5], [6]. To solve the original nonconvex joint
beamforming problem, we propose several iterative optimiza-
tion algorithms using the block coordinate descent (BCD)
methodology, with their convergence and complexity carefully
studied. Specifically our contributions include:

1) We first propose a 2 block coordinate descent (2-
BCD) method that decomposes the original problem into two
subproblems— one subproblem, with all the beamformers
given, is a linear minimum mean square error (LMMSE)
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filtering problem and the other one, jointly optimizing the
beamformers with the receiver given, is shown to be convex. It
is worth mentioning that [5] considers the special case where
the sensor-FC channels are intersymbol-interference (ISI) free
(i.e. the sensor-FC channel matrix is an identity matrix) and
solves the entire problem by semidefinite programming(SDP)
and relaxation. Here we reformulate the joint optimizationof
beamformers, even with arbitrary sensor-FC channel matri-
ces, into a second-order cone programming(SOCP) problem,
which is more efficiently solvable than the general SDP prob-
lem. Convergence analysis shows that this 2-BCD algorithm
guarantees its limit points to be stationary points of the
original problem. Interestingly enough, although not presented
in this article, the proposed 2-BCD algorithm has one more
fold of importance—the convexity of its subproblem jointly
optimizing beamformers can be taken advantage of by the
multiplier method [24], which requires the original problem to
be convex, and therefore gives birth to decentralized solutions
to the problem under the 2-BCD framework.

2) We have also attacked the MSE minimization with re-
spect to one single beamformer and developed fully analytical
solutions (possibly up to a simple one-dimension bisection
search). It should be pointed out that, although the same
problem has been studied in several previous papers (e.g. [6],
[11], [13], [14]), we are able to carry out the analysis to
the very end and thoroughly solved the problem by clearly
describing the solution structure and deriving the solutions for
all possible cases. Specifically, we explicitly obtain the condi-
tions for judging the positiveness of the Lagrange multiplier.
Moreover, in the zero-Lagrange-multiplier case with singular
quadratic matrix, we give out the energy-preserving solution
via pseudoinverse among all possible optimal solutions. To
the best of our knowledge, these exact results have never been
discussed in existing literature.

3) Our closed form solution for one single beamformer’s
update paves the way to multiple block coordinate descent
algorithms. A layered-BCD algorithm is proposed, where an
inner-loop cyclically optimizing each separate beamformer
is embedded in the 2-BCD framework. This layered-BCD
algorithm is shown to guarantee the limit points of its so-
lution sequence to be stationary. Besides we also consider a
wide class of multiple block coordinate descent algorithms
with the very general essentially cyclic updating rule. It is
interesting to note that this class of algorithms subsumes the
one proposed in [6] as a specialized realization. Furthermore,
as will be shown, by appropriately adjusting the update of
each single beamformer to a proximal version and intro-
ducing approximation, the essentially cyclic multiple block
coordinate descent algorithm exhibits fast converging rate,
guarantees convergence to stationary points and achieves high
computation efficiency.

The rest of the paper is organized as follows: Section
II introduces the system model of the joint beamforming
problem in the MIMO wireless sensor network. Section
III discusses the 2-BCD beamforming design approach and
analyzes its convexity and convergence. Section IV discusses

the further decomposition of the joint optimization of beam-
formers, including the closed form solution to one separate
beamformer’s update, layered BCD algorithms, essentially
cyclic BCD algorithms and their variants and convergence.
Section V provides simulation verification and Section VI
concludes this article.

Notations: We use bold lowercase letters to denote complex
vectors and bold capital letters to denote complex matrices.
0, Om×n, and Im are used to denote zero vectors, zero
matrices of dimensionm×n, and identity matrices of orderm
respectively.AT , A∗ andAH are used to denote transpose,
conjugate and conjugate transpose (Hermitian transpose) re-
spectively of an arbitrary complex matrixA. Tr{·} denotes
the trace operation of a square matrix.|·| denotes the modulus
of a complex scalar, and‖ · ‖2 denotes thel2-norm of a
complex vector.vec(·) means vectorization operation of a ma-
trix, which is performed by packing the columns of a matrix
into a long one column.⊗ denotes the Kronecker product.
diag{A1, · · · ,An} denotes the block diagonal matrix with
its i-th diagonal block being the square complex matrixAi,
i ∈ {1, · · · , n}. Re{x} denotes the real part of a complex
valuex.

II. SYSTEM MODEL

Consider a centralized wireless sensor network withL sen-
sors and one fusion center where all the nodes are equipped
with multiple antennae, as shown in Figure 1. LetM andNi

(i = 1, 2, · · · , L) be the number of antennas provisioned to
the fusion center and thei-th sensor respectively. Denotes
as the common source vector observed by all sensors. The
sources is a complex vector of dimensionK, i.e. s ∈ CK×1,
and is observed by all the sensors. At thei-th sensor, the
source signal is linearly transformed by an observation matrix
Ki ∈ CJi×K and corrupted by additive observation noiseni,
which has zero mean and covariance matrixΣi.
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s

.

.

.

1
H

L
H

Sensor 1

Sensor L

Fusion Center

.

.

.
Å

i
n

i
N

Sensor i

.

.

.

.

.

.

.

.

.

.

.

.

i
H H

G

1
F

i
F

L
F

1
K

i
K

L
K

Fig. 1: Multi-Sensor System Model

Each sensor applies some linear precoder,Fi ∈ CNi×Ji , to
its observation(Kis + ni) before sending it to the common
fusion center. DenoteHi ∈ CM×Ni as the fading channel
between thei-th sensor and the fusion center. Here we
considers the coherent MAC model, where the transmitted
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data is superimposed and corrupted by additive noise at the
fusion center. Without loss of generality, the channel noise is
modeled as a vectorn0 ∈ CM×1 with zero mean and white
covarianceσ2

0IM . The fusion center, after collecting all the
results, applies a linear postcoder,GH ∈ CK×M , to retrieve
the original sources.

This system model depicted in Figure 1 is the same as
the general model presented in [5], [6]. Following their
convention, we assume that the system is perfectly time-
synchronous (which may be realized via the GPS system) and
that all the channel state informationHi is known (which
may be achieved via channel estimation techniques). Since
the sensors and the fusion center are usually distributed over
a wide range of space, it is reasonable to assume that the
noiseni at different sensors andn0 at the fusion center are
mutually uncorrelated.

The signal transmitted by thei-th sensor takes the form of
Fi(Kis + ni). The outputŝ of the postcoder at the fusion
center is given as

ŝ = GHr = GH

( L∑

i=1

HiFi(Kis+ ni) + n0

)
(1)

= GH

( L∑

i=1

HiFiKi

)
s+GH

( L∑

i=1

HiFini + n0

︸ ︷︷ ︸
n

)
, (2)

where the compound noise vectorn has covariance matrix
Σn given by

Σn = σ2
0IM +

L∑

i=1

HiFiΣiF
H
i HH

i . (3)

In this paper, we take the mean square error as a figure of
merit. The mean square error matrixΦ is defined as

Φ , E
{(

s− ŝ
)(
s− ŝ

)H}
. (4)

Assume that the source signals has zero mean and a covari-
ance matrixΣs , E{ssH}. By plugging (2) into (4), we can
express theMSE matrix Φ as a function of{Fi} andG as:

Φ
(
{Fi}Li=1,G

)
=GH

( L∑

i=1

HiFiKi

)
Σs

( L∑

i=1

HiFiKi

)H

G

−GH
( L∑

i=1

HiFiKi

)
Σs−Σs

( L∑

i=1

HiFiKi

)H

G

+

L∑

i=1

GHHiFiΣiF
H
i HH

i G+σ2
0G

HG+Σs. (5)

The totalMSE is then given by

MSE
({

Fi

}L

i=1
,G

)
, Tr

{
Φ
({

Fi

}L

i=1
,G

)}
. (6)

We consider the case where each sensor has its own trans-
mission power constraint. This meansE{‖Fi(Kis+ni)‖22} =
Tr{Fi(KiΣsK

H
i +Σi)F

H
i } ≤ Pi. The overall beamforming

design problem can then be formulated as the following
optimization problem:

(P0): min .
{Fi}L

i=1
,G
MSE

(
{Fi}Li=1,G

)
, (7a)

s.t. Tr
{
Fi(KiΣsK

H
i +Σi)F

H
i

}
≤Pi, i ∈ {1, · · · , L}. (7b)

The above problem is nonconvex, which can be verified by
checking the special case where{Fi}Li=1 and G are all
scalars.

The following of this paper consults toblock coordinate
descent(BCD) method [15]–[18], which is also known as
Gauss-Seidel method, to solve (P0) by partitioning the whole
variables into separate groups and optimize each group (with
the others being fixed) in an iterative manner. Appropriate
decomposition can lead to efficiently solvable subproblems
and may also provide opportunities for parallel computation.

III. T WO-BLOCK COORDINATE DESCENT(2-BCD)

In this section, we study a two block coordinate descent (2-
BCD) method that decouples the design of the postcoderG

(conditioned on the precoders), thereafter referred to as (P1),
from the design of all the precoders{Fi}Li=1 (conditioned on
the postcoder), thereafter referred to as (P2).

A. (P1 ): OptimizingG given{Fi}
For any given{Fi}Li=1, minimizing MSE with respective

to G becomes a strictly convex non-constrained quadratic
problem (P1):

(P1) : min
G

Tr
{
Φ
(
G

∣∣∣
{
Fi

}L

i=1

)}
. (8)

By equating the derivative ∂
∂G∗MSE

(
G
)

with zero, the op-
timal receiver is readily obtained as the well-known Wiener
filter [21]

G⋆
(P1)=

[( L∑

i=1

HiFiKi

)
Σs

( L∑

i=1

HiFiKi

)H
+Σn

]−1( L∑

i=1

HiFiKi

)
Σs,

(9)

whereΣn is given in (3).

B. (P2 ): Optimizing{Fi} givenG

With G being fixed, the subproblem (P2) minimizesMSE

with respect to{Fi}Li=1 is formulated as

(P2) : min .
{Fi}L

i=1

Tr
{
Φ
({

Fi

}L

i=1

∣∣∣G
)}

, (10a)

s.t. Tr
{
Fi(KiΣsK

H
i +Σi)F

H
i

}
≤Pi, i∈{1, · · · , L}. (10b)

Below we discuss the convexity of (P2).

Theorem 1. (P2 ) is convex with respect to{Fi}Li=1.

Proof: First consider the functionf
(
X
)

: Cm×n 7→
R, f(X) = Tr{AHXΣXHA}, where the constant matrices
A andΣ have appropriate dimensions andΣ is Hermitian
and positive semidefinite.
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By the identitiesTr{AB} = Tr{BA} andTr{ABCD} =
vecT (DT )

[
CT ⊗A

]
vec(B), f

(
X
)

can be equivalently writ-
ten asf(X) = vecH(X)[Σ∗ ⊗ (AAH)]vec(X).

According to [20], i) [A⊗B]H = AH ⊗BH ; ii) for any
two Hermitian matricesAm×m and Bn×n having eigen-
values{λi(A)}mi=1 and {λj(B)}nj=1 respectively, the eigen-
values of their Kronecker productA ⊗ B are given by
{λi(A)λj(B)}m,n

i=1,j=1. As a result,A⊗B is positive semidef-
inite whenA andB are positive semidefinite.

SinceAAH andΣ∗ are both positive semidefinite,[Σ∗ ⊗
(AAH)] is positive semidefinite and thereforef(X) is actu-
ally a convex homogeneous quadratic function ofvec

(
X
)
.

Now substituteX in f(X) by
∑L

i=1

(
HiFiKi

)
and re-

call the fact that affine operation preserves convexity [22],
the termTr

{
GH

(∑L
i=1 HiFiKi

)
Σs

(∑L
i=1 HiFiKi

)H
G
}

in the objective function (P2) is therefore convex with respect
to {Fi}Li=1. By the same reasoning, the remaining terms in
the objective and the constraints of (P2) are either convex
quadratic or affine functions of{Fi}Li=1 and therefore the
problem(P2) is convex with respective to{Fi}Li=1.

In the following we reformulate the subproblem (P2) into
a standard second order cone programming(SOCP) presenta-
tion. To this end, we introduce the following notations:

fi , vec
(
Fi

)
; g , vec

(
G
)
; (11a)

Aij , (KjΣsK
H
i )T ⊗

(
HH

i GGHHj

)
; (11b)

Bi , (KiΣs)
T ⊗Hi; (11c)

Ci , Σ∗
i ⊗

(
HH

i GGHHi

)
. (11d)

By the identityTr{ABCD} = vecT (DT )
[
CT ⊗A

]
vec(B)

and the above notations, we can rewrite theMSE in (P2) as

MSE
({

fi
}L

i=1

∣∣∣g
)
=

L∑

i=1

L∑

j=1

fHi Aijfj − 2Re
( L∑

i=1

gHBifi

)

+

L∑

i=1

fHi Cifi + σ2
0‖g‖2 + Tr

{
Σs

}
. (12)

By further denoting

fT ,
[
fT1 , · · · , fTi , · · · , fTL

]
; (13a)

A ,




A1,1 A1,2 · · · A1,L

A2,1 A2,2 · · · A2,L

...
...

. . .
...

AL,1 AL,2 · · · AL,L


 ; (13b)

B ,

[
B1, · · · ,Bi, · · · ,BL

]
; (13c)

C , diag
{
C1, · · · ,Ci, · · · ,CL

}
; (13d)

Di , diag
{
O∑i−1

j=1
JjNj

,Ei,O∑
L
j=i+1

JjNj

}
,

i ∈ {1, · · · , L}; (13e)

Ei ,
(
KiΣsK

H
i +Σi

)T ⊗INi
, i ∈ {1, · · · , L}; (13f)

c , Tr{Σs}+ σ2
0‖g‖2, (13g)

the problem (P2) can be rewritten as (P2′):

(P2′) : min
f

fH
(
A+C

)
f−2Re{gHBf}+c, (14a)

s.t. fHDif ≤ Pi, i ∈ {1, · · · , L}. (14b)

As proved by Theorem 1, (P2′) (or equivalently (P2)) is
convex, which implies(A+C) is positive semidefinite. Thus
the square root(A+C)

1
2 exists. The above problem can

therefore be reformulated in an SOCP form as follows

(P2SOCP ) : min .
f ,t,s

t, (15a)

s.t. s− 2Re{gHBf} + c ≤ t; (15b)∥∥∥∥
(A+C)

1
2 f

s−1
2

∥∥∥∥
2

≤ s+1

2
; (15c)

∥∥∥∥∥
D

1
2

i f
Pi−1

2

∥∥∥∥∥
2

≤ Pi+1

2
, i ∈ {1, · · · , L}; (15d)

(P2SOCP ) can be numerically solved by off-the-shelf con-
vex programming solvers, such as CVX [23].

Summarizing the above discussions, the problem (P0) can
be solved by a 2-BCD algorithm: updatingG by solving (P1)
and updating

{
Fi

}L

i=1
by solving (P2′) alternatively, which

is summarized in Algorithm 1.

Algorithm 1: 2-BCD Algorithm to Solve (P0)

1 Initialization : Randomly generate feasible{F(0)
i }Li=1,

i ∈ {1, · · · , L}; ComputeG(0) using (9);
2 repeat
3 With G(j−1) fixed, solve (P2′) and obtain{F(j)

i }Li=1;

4 With {F(j)
i }Li=1 fixed, computeG(j) using (9);

5 until decrease ofMSE is small enough or predefined
number of iterations is reached;

C. Convergence of 2-BCD Algorithm

In this subsection we study the convergence of the
above 2-BCD algorithm. Consider the optimization problem
min{f(x)|x ∈ X} with f(·) being continuously differentiable
and the feasible domainX being closed and nonempty.
A point x0 ∈ X is a stationary point if and only if
∇f(x0)(x − x0) ≥ 0, ∀x ∈ X, where∇f(x0) denotes the
gradient off at x0. For the proposed 2-BCD algorithm, we
have the following convergence conclusion.

Theorem 2. The objective sequence{MSE(j)}∞j=0 generated
by the 2-BCD algorithm in Algorithm 1 is monotonically de-
creasing. IfKiΣsK

H
i ≻ 0 or Σi ≻ 0 for all i ∈ {1, · · · , L},

the solution sequence
{
{F(j)

i }Li=1,G
(j)

}∞

j=1
generated by the

2-BCD algorithm has limit points and each limit point of{
{F(j)

i }Li=1,G
(j)

}∞

j=1
is a stationary point of (P0 ).

Proof: Since each block update solves a minimiza-
tion problem, MSE keeps decreasing. LetXi =

{
X ∈

CNi×Ji

∣∣Tr{X(KiΣsK
H
i +Σi)X

H} ≤ Pi

}
, for i = 1, · · · , L



5

and XL+1 = CM×K . Under the strictly positive definite-
ness assumption ofKiΣsK

H
i or Σi, we have

(
KiΣsK

H
i +

Σi

)
≻ 0 and thus

(
KiΣsK

H
i +Σi

)T ⊗ INi
≻ 0 for

all i ∈ {1, · · · , L}. This implies that the null space of(
KiΣsK

H
i +Σi

)T ⊗ INi
is {0} and consequentlyfi has

to be bounded to satisfy power constraint. ThereforeXi is
bounded for alli ∈ {1, · · · , L}. Since the feasible set for
eachFi is bounded, by Bolzano-Weierstrass theorem, there
exists a convergent subsequence

{
{F(jk)

i }Li=1

}∞

k=1
. Since

G is updated by equation (9) as a continuous function
of {Fi}Li=1, the subsequence{G(jk+1)}∞k=1 also converges
and thus bounded. By further restricting to a subsequence
of

{
{F(jk+1)

i },G(jk+1)
}∞

k=1
, we can obtain a convergent

subsequence of
{
{F(j)

i }Li=1,G
(j)

}∞

j=1
.

Since Algorithm 1 is a two block coordinate descent pro-
cedure and the problem (P0) has continuously differentiable
objective and closed and convex feasible domain, Corollary
2 in [17] is valid to invoke, we conclude that any limit point
of

{
{F(j)

i }Li=1,G
(j)

}∞

j=1
is a stationary point of (P0).

IV. M ULTI -BLOCK COORDINATE DESCENT

For the above 2-BCD algorithm, although we can solve
the subproblem (P2) as a standard SOCP problem, its closed-
form solution is still inaccessible. The complexity for solving
(P2) can be shown to beO

(√
L
(∑L

i=1 NiJi
)3)

, This implies
that when the sensor network under consideration has a large
number of sensors and/or antennae, the complexity for solving
(P2) can be rather daunting. This motivates us to search for
more efficient ways to update sensor’s beamformer.

A. Further Decoupling of (P2 ) and Closed-Form Solution

Looking back to problem (P2), although it has separable
power constraints, its quadratic terms in its objective tangles
different sensors’ beamformers together and thus makes the
Karush-Kuhn-Tucker(KKT) conditions of (P2) analytically
unsolvable. Here we adopt the BCD methodology to further
decompose the subproblem (P2). Instead of optimizing all
the Fi’s in a single batch, we optimize onefi at a time
with the others being fixed. By introducing the notation
qi ,

∑L
j=1,j 6=i Aijfj , each subproblem (P2′i) of (P2′) is

given as

(P2′i) : min
fi

fHi
(
Aii+Ci

)
fi + 2Re{qH

i fi}−2Re{gHBifi} (16a)

s.t. fHi Eifi ≤ Pi. (16b)

Now our problem boils down to solving the simpler prob-
lem (P2′i), for i = 1, · · · , L. The following theorem provides
analmostclosed-form solution to (P2′i). The only reason that
this is not a fully closed-form solution is because it may
involve a bisection search to determine the value of a positive
real number.

Theorem 3. AssumeKiΣsK
H
i ≻ 0 or Σi ≻ 0. Define

parametersMi, Ui and pi as in equations (26) in the
appendix,ri as the rank ofMi and pi,k as the i-th entry

of pi. The solution to (P2 ′
i) is given as follows:

CASE (I)—if either of the following two conditions holds:
i) ∃k ∈ {ri + 1, · · · , JiNi} such that|pi,k| 6= 0;

or ii)
∑JiNi

k=ri+1
|pi,k| = 0 and

∑ri
k=1

|pi,k|
2

λ2
i,k

> Pi.

The optimal solution to (P2 ′
i
) is given by

f⋆i =
(
Aii+Ci+µ

⋆
iEi

)−1(
BH

i g− qi

)
, (17)

with the positive valueµ⋆
i being the unique solution to the

equation: gi(µi) =
∑JiNi

k=1
|pi,k|

2

(λi,k+µi)2
= Pi. An interval[

lbdi, ubdi
]

containingµ⋆
i is determined by Lemma 1 which

comes later.
CASE (II)—

∑JiNi

k=ri+1
|pi,k| = 0 and

∑ri
k=1

|pi,k|
2

λ2
i,k

≤ Pi,

The optimal solution to (P2 ′
i
) is given by

f⋆i = E
− 1

2

i

(
E

− 1
2

i

(
Aii+Ci

)
E

− 1
2

i

)†

E
− 1

2

i

(
BH

i g − qi

)
. (18)

Proof: See Appendix A.
Here we have several comments and supplementary discus-

sions on the solution to (P2′i).

Comment IV.1. When µ⋆
i = 0 and Mi is singular, the

solution to (P2′i) is usually non-unique. According to the
proof procedure in Appendix A, (18) is actually the power-
preserving optimal solution, which has the minimal transmis-
sion power among all optimal solutions to (P2′i).

Comment IV.2. It is worth noting that the three cases dis-
cussed in the proof of Theorem 3,CASE(I)-case i),CASE(I)-
case ii) andCASE(II), are mutually exclusive events. One and
only one case will occur.

Comment IV.3. The problem of minimizing MSE with
respect to one separate beamformer with one power constraint
is a rather standard problem that has been discussed in
previous works such as [6], [11], [13], [14]. A big contribution
here is that we havefully solved this problem by clearly
identifying the solution structure and writing out the almost
closed-form solutions for all possible cases, whereas the
previous papers have not. One key consideration is the case of
rank deficientMi for zeroµ⋆

i . Although [11] and [6] mention
thatµ⋆

i can be zero, the solution for singularMi in this case
is missing. In fact whenMi does not have full rank andµ⋆

i is
zero, its inverse does not exist and consequently the solutions
given in [6], [11], [13], [14] do not stand any more (they
all provide solutions by matrix inversion). It is noted that
[6] imposes more assumptions on the number of antennas
to exclude some cases whereMi is rank deficient. However
these assumptions undermine the generality of the system
model and, still, adverse channel parameters can result in rank
deficiency ofMi. Turns out, the rank deficiency scenario is
actually not rare. In fact, wheneverK < Ni orM < Ni holds,
the matricesAii andCi are both born rank deficient. If they
share common nonzero components of null space,Mi will be
rank deficient. For example, consider the simple case where
Ki = IK , Σs = σ2

sI, Σi = σ2
i I and min(K,M) < Ni.

At this time Mi is not of full rank. Besides inappropriate
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channel parametersHi can also generate rank deficientMi.
Thus taking the rank deficiency ofMi when µ⋆ = 0 into
consideration is both necessary and meaningful.

Comment IV.4. In the special case whereK = Ji = 1, the
fully closed form solution to (P2i) does exist! At this time,
the optimalµ⋆

i and f⋆i can be obtained analytically without
bisection search. In this case, eigenvalue decomposition is
also unnecessary. So whenK = Ji = 1, solving (P2i) is
extremely efficient. The details can be found in [10]1.

Recall that inCASE (I) of Thoerem 3,µ⋆
i is obtained as the

solution togi(µi) = Pi. This equation generally has no ana-
lytic solution. Fortunatelygi(µi) is strictly decreasing inµi

and thus the equation can be efficiently solved by a bisection
search. The following lemma provides an interval[lbdi, ubdi]
containing the positiveµ⋆

i , from which the bisection search
to determineµ⋆

i can be started.

Lemma 1. The positiveµ⋆
i in (P2 ′

i) (i.e. CASE (I) in Theorem
3) has the following lower boundlbdi and upper boundubdi:

i) For subcase i)

lbdi =

[‖pi‖2√
Pi

− λi,1

]+
, ubdi =

‖pi‖2√
Pi

; (19)

ii) For subcase ii)

lbdi =

[‖pi‖2√
Pi

− λi,1

]+
, ubdi =

‖pi‖2√
Pi

− λi,ri , (20)

where[x]+ = max{0, x}.

Proof: For subcase i), by definition ofgi(µi) in (30), we
have

‖pi‖22
(µi + λi,1)2

=

∑JiNi

k=1 |pi,k|2
(µi + λi,1)2

≤ gi(µi) = Pi

≤
∑JiNi

k=1 |pi,k|2
µ2
i

=
‖pi‖22
µ2
i

, (21)

which can be equivalently written as

‖pi‖2√
Pi

− λi,1 ≤ µi ≤
‖pi‖2√

Pi

. (22)

Also notice thatµ⋆
i should be positive; the bounds in (19)

thus follow.
For subcase ii), by assumption,

∑JiNi

k=ri+1 |pi,k|2 =0. This
leads to

‖pi‖22
(µi + λi,1)2

=

∑ri
k=1 |pi,k|2

(µi + λi,1)2
≤ gi(µi) = Pi

≤
∑ri

k=1 |pi,k|2
(µi + λi,ri)

2
=

‖pi‖22
(µi + λi,ri)

2
. (23)

Following the same line of derivation as in subcase i), we
obtain the bounds in (20).

1 [10] actually solves an approximation of problem (P2′
i
) with scalared

source , where a specific affine term offi in the objective of (P2′
i
) is

approximated by its latest value (approximation is discussed in subsection
IV-D of this paper). However fully analytic solution of (P2i) can be obtained
by following very similar lines as [10] without introducingapproximation of
fi.

Algorithm 2: Solving the Problem (P2′i)

1 Initialization : Perform eigenvalue decomposition
Mi = UiΛiU

H
i ; Calculatepi using (26d);

2 if
(
∃k ∈ {ri + 1, · · · , JiNi} s.t. |pi,k| 6= 0

)
or(∑JiNi

k=ri+1 |pi,k|2=0 and
∑ri

k=1
|pi,k|

2

λ2
i,k

>Pi

)
then

3 Determine boundslbdi andubdi via (19) or (20) ;
4 Bisection search on

[
lbdi, ubdi

]
to determineµ⋆

i ;

5 f⋆i =
(
Aii+Ci+µ

⋆
iEi

)−1(
BH

i g−qi

)
;

6 else

7 f⋆i =E
− 1

2

i

(
E

− 1
2

i

(
Aii+Ci

)
E

− 1
2

i

)†

E
− 1

2

i

(
BH

i g−qi

)
;

8 end

Algorithm 2 summarizes the results obtained in Theorem
3 and Lemma 1 and provides a (nearly) closed-form solution
to (P2′i).

B. Layered-BCD Algorithm

The above analysis of (P2′i), combined with (P1), naturally
leads to a nested or layered-BCD algorithm, that can be used
to analytically solve the joint beamforming problem (P0).
The algorithm consists of two loops (two layers). The outer-
loop is a two-block descent procedure alternatively optimizing
G and {Fi}Li=1, and the inner-loop further decomposes the
optimization of{Fi}Li=1 into anL-block descent procedure
operated in an iterative round robin fashion. Algorithm 3
outlines the overall procedure. As will be seen in the next,
this layered-BCD has strong convergence property.

Algorithm 3: Layered-BCD Algorithm to Solve (P0)

1 Initialization : Randomly generate feasible{F(0)
i }Li=1 ;

2 ObtainG(0) by (9);
3 repeat
4 repeat
5 for i = 1; i <= L; i++ do
6 GivenG and{Fj}j 6=i, updateFi by

Theorem 3;
7 end
8 until decrease ofMSE is sufficiently small;

9 Given
{
Fi

}L

i=1
, updateG via (9) ;

10 until decrease ofMSE is sufficiently small or predefined
number of iterations is reached;

Theorem 4. Assume thatKiΣsK
H
i ≻ 0 or Σi ≻ 0, ∀i ∈

{1, · · · , L}. The objective sequence{MSE(j)}∞j=0 generated
by Algorithm 3 is monotonically decreasing. The solution
sequence

{
{F(j)

i }Li=1,G
(j)

}∞

j=1
generated by Algorithm 3

has limit points, and each limit point is a stationary point
of (P0).
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Proof: The proof of the monotonicity of{MSE(j)}∞j=0

and the existence of limit points for the solution sequence
follows the same lines as those of Theorem 2.

From Theorem 1, givenG, the objective function
MSE

(
{Fi}Li=1

∣∣G
)

of Problem (14) is convex (and there-
fore, of course, pseudoconvex) with respect to{fi}Li=1.
Since the objectiveMSE

(
{Fi}Li=1

∣∣G
)

in (P2) is continu-
ous and the feasible domain of{Fi}Li=1 is bounded, there
exists some feasible point{F̄i}Li=1 making the level set{
{Fi}Li=1 ∈ CJ1N1×1×· · ·×CJLNL×1

∣∣MSE
(
{Fi}Li=1

∣∣G
)
≤

MSE
(
{F̄i}Li=1

∣∣G
)}

closed and bounded. Thus Proposition 6
in [17] is valid to invoke. For a givenG at any step of outer-
loop, the inner loop generates limit point(s) converging toa
stationary point of the problem (P2). Since (P2) is a convex
problem, any stationary point is actually an optimal solution
[16]. Therefore the subproblem (P2) is actually globally
solved. By Theorem 2, each limit point of solution sequence
is a stationary point of the original problem (P0).

Although the convergence analysis in Theorem 4 states
that the layered-BCD algorithm guarantees convergence, it
requires the inner-loop to iterate numerous times to converge
sufficiently. In fact if each inner loop is performed with a
small number of iterations, the layered BCD algorithm be-
comes a specialized essentially cyclic BCD algorithm, which
will be discussed in next subsection.

C. Essentially Cyclic(L+ 1)-BCD Algorithm

In this subsection, we propose an (L+ 1)-BCD algorithm,
where in each update the linear FC receiver or one single
beamformer is updated efficiently by equation (9) or Theorem
3 respectively. Compared to the 2-BCD algorithm, the block
updating rule for multiple block coordinate descent method
can have various patterns. Here we adopt a very general updat-
ing manner calledessentially cyclic rule[18]. For essentially
cyclic update rule, there exists a positive integerT , which is
called period, such that each block of variables is updated at
least once within any consecutiveT updates. The classical
Gauss-Seidel method is actually a special case of essentially
cyclic rule with its periodT being exactly the number of
blocks of variables.

For the convergence of essentially cyclic BCD algorithm,
when the whole solution sequence converges, the limit of
the solution sequence is stationary. In fact, assume that the
sequence

{
{F(j)

i }Li=1,G
(j)

}∞

j=1
converges to the limit point

X̄ ,
{
{F̄i}Li=1, Ḡ

}
. DenoteX =

{
{Fi}Li=1,G

}
andXi as

the i-th block ofX, which can beG or Fj , ∀j ∈ {1, · · · , L},
andXī as the variables other thanXi, i.e.Xī = {X}\{Xi}.
SinceX(j+1)

i minimizesMSE with given{X(j)

ī
}, as optimal-

ity conditions, we haveTr{∇Xi
MSE(X

(j+1)
i ,X

(j)

ī
)T

(
Xi−

X
(j+1)
i

)
} ≥ 0 for any feasibleXi. Since {X(j)

ī
} → X̄ī,

X
(j+1)
i → X̄i and MSE is continuously differentiable, we

haveTr{∇Xi
MSE(X̄)T

(
X−X̄i

)
} ≥ 0 for any feasibleXi,

∀i ∈ {1, · · · , L+1}. By summing up allL+1 variable blocks,
we obtainTr{∇XMSE(X̄)T

(
X−X̄

)
} ≥ 0 for any feasibleX.

This suggests that the convergent limit point
{
{F̄i}Li=1, Ḡ

}

is actually a stationary point of (P0).
However the assumption that the whole solution sequence

converges is actually a very strong assumption and cannot
be theoretically proved, although extensive numerical results
show that this fact seem always hold in practice for our
problem.

For rigorous proof of the convergence to stationary points
of BCD algorithms, one usually requires uniqueness of solu-
tions for each block update, as the analysis performed in [16]–
[18]. Without the uniqueness assumptions, convergence to
stationary points is not guaranteed and a counter example has
been reported in [19], where the solution sequence is always
far away from stationary points. In retrospect to Theorem 3,
specific parameter settings (CASE(II) with singular(Aii+Ci)
and zeroµ⋆

i ) will result in infinitely many optimal solutions to
(P2′i). To overcome this difficulty, we adopt proximal method
(Exercise 2.7.1 in [16]), which locally modifies the (P2′i)
by imposing a squared norm and guarantees that each block
update is uniquely solved.

Specifically, to update thei-th beamformer, we consult to
the proximal version objectiveMSE

(
fi
∣∣{fj}j 6=i,g

)
+ κ‖fi−

f̂i‖22 of (P2′i) with f̂i being the latest value offi until the
current update andκ being any positive real constant. Thus the
problem updating thei-th sensor’s beamformer is equivalent
to (P4i) as follows

(P4i) :min
fi

fHi
(
Aii+Ci+κINiJi

)
fi+2Re

{(
qH
i −gHBi−κf̂Hi

)
fi
}

s.t. fHi Eifi ≤ Pi. (24)

As shown by the following theorem, the proximal version
of any essentially cyclic (L + 1)-BCD algorithm guaran-
tees monotonic decreasing of objective and stationary-point-
achieving convergence of the solution sequence.

Theorem 5. Assume thatKiΣsK
H
i ≻ 0 or Σi ≻ 0,

∀i ∈ {1, · · · , L}. By updatingG and Fi by solving (P1 )
and (P4 i) respectively, any essentially cyclic (L+1 )-BCD
algorithm generates monotonically decreasingMSE sequence
and the solution sequence has limit points with each limit
point being a stationary point of the original problem (P0 ).

Proof: See Appendix B.
Note the solution to (P4i) can be easily obtained by

Theorem 3 with the terms
(
Aii +Ci

)
and

(
BH

i g − qi

)

being replaced by
(
Aii+Ci+κINiJi

)
and

(
BH

i g−qi+κf̂i
)

respectively and no additional complexity is required.
Recall the layered-BCD algorithm discussed in previous

subsection, when the inner-loop is performed by small number
of iterations, it actually reduces to a specialized essentially
cyclic BCD algorithm. One special case is the iterative
algorithm proposed in [6] whose inner-loop updates each
beamformer for once. According to the above theorem, by
updating each beamformer with the proximal method, the
convergence to stationary points can be guaranteed.

One drawback of the above proximal update is its slow
convergence rate, as will be shown in Section V. However



8

this shortcoming can be well compensated by the following
acceleration scheme in the next subsection.

D. Acceleration by Approximation

The aforementioned (L+1)-BCD algorithm can be accel-
erated by introducing approximation when updating single
beamformerFi in (P2′i). In addition to setting the{Fj}j 6=i as
known and fixed, we assume that the termAiifi is also known
by leveraging the value offi in the previous updates. In other
words, we definêqi =

∑L
j=1,j 6=i Aijfj+Aii f̂i = qi+Aii f̂i

with f̂i being the latest value offi. Thus to updatefi we solve
the approximate version (P5i) of (P2′i) as follows

(P5i) : min
fi

fHi Cifi + 2Re{q̂H
i fi}−2Re{gHBifi} (25a)

s.t. fHi Eifi ≤ Pi. (25b)

The problem (P5i) can still be efficiently solved by Theorem
3. Interestingly enough, this approximation can significantly
improve the convergence rate of the cyclic-BCD procedure!

Actually similar idea appears in [11], where the precoders
of multiusers is updated in a cyclic manner. In Implementation
2 (Table II) of [11], with others being fixed, one separate
precoder is updated by minimizing the totalMSE function
with some terms of the to-be-updated precoder approximated
by previous values. As reflected by the extensive numerical
results in [11], this approximated BCD implementation has
surprisingly faster convergence compared to the original one
(Implementation I in Table I) in [11].

The surprisingly fast convergence of the approximate up-
date inspires us the idea that it can become perfect com-
plement of the aforementioned proximal update. In imple-
mentation, (L+1)-BCD algorithms can be performed in an
approximate-proximal manner—in the first few outer-loop
iterations we run the approximate update and then convert to
proximal update in the subsequent updates. This approximate-
proximal combination exhibits fast convergence and also
guarantees stationary-points-achieving convergence as shown
previously.

V. NUMERICAL RESULTS

In this section, numerical results are presented to verify and
compare the performance of the proposed algorithms.

In the following experiments, a wireless sensor network
with L = 3 sensors is considered. The antenna numbers of the
sensors and the fusion center are set asN1 = 3, N2 = 4, N3 =
5 andM = 4 respectively. All observation matricesKi are set
as identity matrices. The source signals has dimensionK = 3
with zero mean, unit-power and uncorrelated components.
The observation noise at each sensor is colored and has
covariance matrixΣi = σ2

iΣ0,i, i ∈ {1, · · · , L}, where the
Ji×Ji matrixΣ0,i has the Toeplitz structure with its (j, k)-th
element[Σ0,i]j,k=ρ|k−j|. The parameterρ is set as0.5 for all
sensors in our test. The transmission power and observation
noise at each sensor are set asP1 = 2, P2 = 2, P3 = 3,
σ−2
1 = 6dB, σ−2

2 = 7dB andσ−2
3 = 8dB, respectively.
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Fig. 2:MSE Performance of 2-BCD v.s. Layered (L+1)-BCD
(with 2 inner-loop iterations) Algorithms

In the test of each algorithm, channel noise level increases
from SNR0 = 0dB to 18dB. For one specific channel noise
level, 500 channel realizations{H1,H2,H3} are randomly
generated with each matrix entry following standard complex
circular Gaussian distributionCN(0, 1). The mean square
error averaged over all500 random channel realizations are
evaluated as a function of the number of (outer-loop) iterations
and the channel SNR.

2-BCD algorithm is implemented by utilizing CVX(with
SDPT3 solver) to solve its subproblem (P2). For the es-
sentially cyclic (L+ 1)-BCD algorithm, here we test two
special cases: i) the layered BCD algorithm with finite inner-
loop iterations, where the inner-loop cyclically updates each
beamformer for two times; ii) (L+1)B-FG algorithm, where
beamformers are cyclically updated with eachFi’s update
followed by the calibration ofG. That means the variables are
updated in an order ofF1,G,F2,G, · · · . In one outer-loop it
updates eachFi once andG for L times. The performance of
these two cases are presented in Figure 2 and 3 respectively.
The 2-BCD algorithm is plotted in each figure to serve as
a benchmark. On average, the layered-BCD algorithm with
finite inner-loop iteration and the (L+ 1)B-FG algorithm
converges in 30-40 outer-loop iterations to the identical MSE
as that of the 2-BCD algorithm.

The approximate and proximal version (withκ = 1) of
(L+1)B-FG algorithm are also tested and presented in Figure
4 and 5 respectively. As shown in Figure 4, the performance of
approximate method is surprisingly fast and exhibits excellent
performance within only 3 to 5 outer-loop iterations. Com-
paratively the proximal method, although whose convergence
to stationary points can be proved, exhibits a much slower
convergence than other algorithms, as shown in Figure 5.

In Figure 6 the approximate-proximal version of (L+1)B-
FG is tested. Here in the first 10 outer-loop iterations,
approximate version of (L+1)B-FG is performed and after
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Fig. 4: MSE Performance of 2-BCD v.s. Approximate (L+
1)B-FG

that the proximal method is used. As shown in the figure,
this combination scheme inherits the fast convergence rate
of approximate method and, as proved previously, guarantees
convergence to stationary points.

Next, we take a close look at the convergence behaviors of
these algorithms. We setSNR0 = 2dB and fix the channel by
a randomly-generated realization. We randomly generate 10
feasible initial points. We run 2-BCD, (L+1)B-FG, proximal
(L+1)B-FG and approximate-proximal (L+1)B-FG algorithms
from these 10 random initial points and represent the resultant
MSE itineraries in Figures 7-9. These plots clearly demon-
strate that these algorithms are insensitive to initial points and
exhibit rather stable converged MSE from different startings.
As shown in the figures, different algorithms with random
initials finally converge to identical MSE value with different
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Fig. 5:MSE Performance of 2-BCD v.s. Proximal (L+1)B-FG
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convergence rates. Proximal method has an obviously slower
convergence and the approximate-proximal method exhibits
fast convergence in the first 3 outer-loop iterations, which
coincides with the observations presented in previous figures.

We present in Table I the average MATLAB running time
for different algorithms (running in a regular laptop). For
simplicity, we focus on homogeneous sensor network, where
each sensor has the same number of antennae andJi = Ni.
Different values ofK (size of the source vector) andL
(number of sensors) are tested to take into account different
problem sizes. The algorithms are run multiple times and the
average MATLAB running time per outer-loop iteration is
recorded. For the 2-BCD algorithm, CVX is utilized to solve
its subproblem and the solver SDPT3 is chosen. In Table I,
the average running time of 2-BCD, (L+1)B-FG and layered
(L+1)-BCD algorithm is presented. Note that the approximate,
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proximal and approximate-proximal (L+1)B-FG algorithms
have the same complexity as that of (L+1)B-FG algorithm.
The analytic solutions obtained in Theorem 3 entitles the
essentially cyclic (L+1)-BCD algorithm and its variants high
efficiency for implementation. However it should be pointed
out that the 2-BCD method still has great significance in
decentralized optimization for our problem. As proved in
Theorem 1, its subproblem (P2) is convex. In fact, by taking
advantage of this key property and utilizing multiplier method,
the problem (P0) can be solved under the 2-BCD framework,
where (P2) is solved in a highly distributed manner with each
sensor updating its own beamformer.

VI. CONCLUSION

In this paper we study the joint transceiver design problem
for the wireless sensor network under theMSE criterion. Due
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Fig. 9: MSE Itineraries of 2-BCD v.s. Approximate-Proximal
(L+1)B-FG Algorithm

TABLE I: MATLAB Running Time Per (Outer-Loop) Iteration

P
P
P
P
PP

Dim.
L

Algorithms L = 2 L = 4 L = 6 L = 8

K = 1 2-BCD 0.2167s 0.2490 0.2987s 0.3500s
M = 3 (L+1)B-FG 0.0026s 0.0066s 0.0120s 0.0189s
Ni = 3 Lay. BCD 0.0031s 0.0094s 0.0181s 0.0301s
K = 3 2-BCD 0.2432s 0.3068s 0.3636s 0.4285s
M = 3 (L+1)B-FG 0.0056s 0.0159s 0.0328s 0.0560s
Ni = 3 Lay. BCD 0.0087s 0.0241s 0.0493s 0.0839s
K = 6 2-BCD 0.2529s 0.3786s 0.5861s 0.7526s
M = 6 (L+1)B-FG 0.0075s 0.0203s 0.0397s 0.0664s
Ni = 6 Lay. BCD 0.0116s 0.0319s 0.0622s 0.1031s
K = 9 2-BCD 0.4352s 0.7956s 1.1401s 1.9593s
M = 9 (L+1)B-FG 0.0120s 0.0302s 0.0557s 0.0902s
Ni = 9 Lay. BCD 0.0205s 0.0514s 0.0928s 0.1467s

Notes: (i) layered-BCD is run with 2 inner-loop iterations.
(ii) SDPT3 solver of CVX is chosen to implement 2-BCD.

to the nonconvexity of the original problem, block coordinate
descent methods are adopted. A two-block coordinate descent
method is first proposed, which decomposes the original
problem into two subproblems and alternatively optimizes
the linear postcoder and the linear precoders jointly. This2-
BCD algorithm guarantees convergence (of its solution limit
points) to stationary points. We also completely solve the one
single beamformer’s optimization problem with one power
constraint. This conclusion gives birth to highly efficient
multiple block coordinate descent methods. We prove the
fact that updating the separate beamformer or the linear
receiver in any essentially cyclic rule with proximal method
can guarantee the convergence to stationary points. Moreover
combining approximation with the proximal method signif-
icantly improves the convergence rate while maintaining its
strong convergence and high efficiency. Extensive numerical
results are provided to verify our findings.
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APPENDIX

A. Proof of Theorem 3

Proof: The assumption implies
(
KiΣsK

H
i +Σi

)
≻ 0.

ThereforeEi =
(
KiΣsK

H
i +Σi

)
⊗INi

≻ 0. We introduce the
following notations

f̃ , E
1
2

i f ; (26a)

Mi , E
− 1

2

i

(
Aii+Ci

)
E

− 1
2

i = UiΛiU
H
i ; (26b)

bi , E
− 1

2

i

(
BH

i g − qi

)
; (26c)

pi , UH
i bi; (26d)

where thej-th columnui,j of Ui is the eigenvector associated
with the eigenvalueλi,j , [Λi]j,j . Without loss of generality,
we assume that the eigenvalues ofMi are arranged in a
decreasing order and thatMi has rankri, ri ≤ JiNi. In other
wordsλi,1 ≥ · · · ≥ λi,ri > λi,ri+1 = · · · = λi,JiNi

= 0.
Then the problem (P2′i) is rewritten as

(P3i) : min
f̃i

f̃Hi Mif̃i − 2Re{bH
i f̃i}, (27a)

s.t. ‖f̃i‖22 ≤ Pi. (27b)

SinceMi is positive semidefinite, (P3i) is convex and is
obviously strictly feasible. Thus solving (P3i) is equivalent
to solving its KKT conditions:

(
Mi + µiI

)
f̃i = bi; (28a)

‖f̃i‖22 ≤ Pi; (28b)

µi

(
‖f̃i‖22 − Pi

)
= 0; (28c)

µi ≥ 0. (28d)

The Lagrangian multiplierµi should be either positive or
zero, our next discussion focuses on identifying the positivity
of µi.

Assume thatµi > 0, then
(
Mi + µiI

)
is strictly positive

definite and thus invertible. Consequentlỹfi =
(
Mi +

µiI
)−1

bi. By the slackness condition (28c), the power con-
straint (28b) should be active. Plugging̃fi into (28b) and
noting the eigenvalue decomposition in (26b), we get

‖f̃i‖2=bH
i Ui

(
Λi+µiI

)−2
UH

i bi=Pi. (29)

By the definition ofpi in (26d), we rewrite (29) as

‖f̃i‖2 = gi(µi) =

ri∑

k=1

|pi,k|2
(λi,k + µi)2

+

JiNi∑

k=ri+1

|pi,k|2
µ2
i

= Pi. (30)

Note that heregi(µi) is a positive, continuous and strictly
decreasing function inµi.

To identify the positivity ofµi, the following different cases
are considered:
CASE (I)— µ⋆

i > 0 This case further involves two sub-
cases:

case i)— ∃k ∈ {ri + 1, · · · , JiNi} s.t. |pi,k| 6= 0:
In this case, it is easily seen thatgi(µi) → +∞ when

µi → 0+, so gi(µi) has the range of
(
0,∞

)
for positiveµi.

So in case i) there always exists a unique positiveµi satisfying
(30). Suppose that the unique solution of (30) isµ⋆

i . Plugging
µ⋆
i back into the KKT condition (28a), we obtain the optimal

solution f̃⋆i as

f̃⋆i =
(
Mi + µ⋆

i I
)−1

bi. (31)

Plugging (26) into the above, (17) is obtained. It is easily
verified that theµ⋆

i and f⋆i in (17) satisfy all the KKT
conditions in (28) and therefore is the optimal solution to
(P2′i).

case ii)
∑JiNi

k=ri+1 |pi,k|2=0 and
∑ri

k=1
|pi,k|

2

λ2
i,k

>Pi:

In this case, the second part in the summation of
gi(µi) in (30) vanishes andgi(µi) has the bounded range(
0,
∑ri

k=1
|pi,k|

2

λ2
i,k

]
, with its maximum value achieved atµi =

0. When
∑ri

k=1 |pi,k|2λ2
i,k > Pi, a positiveµ⋆

i satisfying (30)
still exists and is unique. Consequently, the optimal solution
f⋆i can be determined by (31) as in the subcase i).

CASE (II)—
∑JiNi

k=ri+1 |pi,k|2=0 and
∑ri

k=1
|pi,k|

2

λ2
i,k

≤Pi

In this case, a positiveµi satisfying KKT conditions does
not exist any more, andµ⋆

i = 0. As such, the optimal solution
f⋆i should satisfy (28a):

Mif̃i = bi. (32)

We now claim that the above equation (32) has a feasible
solution. Indeed, this equation is solvable if and only if the
right hand sidebi belongs to the column spaceR

(
Mi

)
.

Recall thatMi is Hermitian and has rankri; so R
(
Mi

)
=

span
(
ui,1, · · · ,ui,ri

)
and the null space ofMi satisfies

N
(
Mi

)
= R⊥

(
Mi

)
= span

(
ui,ri+1, · · · ,ui,JiNi

)
. In fact,

CJiNi = R
(
Mi

)
⊕N

(
Mi

)
. Invoking the assumption of CASE

(II) that |pi,k| = 0, ∀k ∈ {ri+1, · · · , JiNi} and the definition
of pi, we obtainpi,k = uH

i,kbi, ∀k ∈ {ri + 1, · · · , JiNi}.
Actually this impliesbi ∈ N

⊥
(
Mi

)
= R

(
Mi

)
and thus the

consistency (i.e. the feasibility) of (32) is guaranteed.
Next we proceed to analytically identify one special feasi-

ble solution of (32). Eigenvalue decomposingMi, (32) can
be equivalently written as

ΛiU
H
i f̃i = pi. (33)

Let Λ̄i represent the top-leftri×ri sub-matrix ofΛi, i.e.Λi =
diag

{
Λ̄i,OJiNi−ri

}
. Let Ūi andŨi represent the left-most

ri columns and the remaining columns ofUi respectively, i.e.
Ui =

[
Ūi, Ũi

]
. We can then simplify (33) to

Λ̄iŪ
H
i f̃i = pi. (34)

Since the columns ofUi form a set of orthonormal
basis forCJiNi , f̃i can be expressed via columns ofUi as
f̃i =

∑JiNi

k=1 αi,kui,k. Noticing the key fact that̄UH
i ui,k =

0, ∀k ∈ {ri + 1, · · · , JiNi}, we know that the values
of {αi,ri+1, · · · , αi,JiNi

} have no impact on (34) and can
therefore be safely set to zeros to save energy. As forαi,k,
∀k ∈ {1, · · · , ri}, we substitutẽfi =

∑ri
k=1 αi,kui,k into (34)

and obtain

αi,k = λ−1
i,kpi,k, ∀k ∈ {1, · · · , ri}. (35)
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Summarizing the above analysis, the optimal solutionf̃⋆i to
(P3i) is given by

f̃⋆i = UiΛ
†
iU

H
i bi, (36)

with Λ
†
i being the Moore-Penrose pseudoinverse ofΛi given

asdiag
{
Λ̄−1

i ,OJiNi−ri

}
. Matrix theory suggests that an arbi-

trary matrixX with its singular value decomposition (SVD)
given by X = UXΛXVH

X
has its unique Moore-Penrose

pseudoinverseX† = VXΛ
†
X
UH

X
, whereUX and VX are

left and right singular square matrices, respectively, andΛX

is a diagonal matrix with appropriate dimensions. Hence, (36)
can be equivalently written as

f̃⋆i = M
†
ibi. (37)

Obviously µ⋆
i = 0, and µ⋆

i and f̃⋆i satisfy the KKT
conditions (28a), (28c) and (28d). What remains to be shown
is that f̃⋆i satisfies the power constraint. We verify this using
(35) and get

‖f̃⋆i ‖2 =

ri∑

k=1

|αi,k|2 =

ri∑

k=1

|pi,k|2
λ2
i,k

≤ Pi, (38)

where the inequality in the above follows the assumption of
CASE (II). Plugging (26) into (37), (18) is obtained. The
proof is complete.

B. Proof of Theorem 5

Proof: This proof is inspired by Proposition 2.7.1 in
[16]. To simplify the following exposition, we definex ,

[xT
1 , · · · ,xT

L+1] = [fT1 , · · · , fTL ,gT ] and x ∈ X , X1 ×
· · · × XL+1 with Xi =

{
fi ∈ CJiNi

∣∣fHi Eifi ≤ Pi

}
, for

i = 1, · · · , L andXL+1 = CKM . For any specific essentially
cyclic update BCD algorithm, we assume that it starts from
an initial feasible solutionx(0) , [xT

1
(0), · · · ,xT

L+1
(0)] and

the iteration index(k) increases by one after any block’s
update. Denotex(k)

i as the i-th block of x(k) and xī =
[x1, · · · ,xi−1,xi+1, · · · ,xL+1], i ∈ {1, · · · , L + 1}, i ∈
{1, · · · , L+ 1}. Assume thatT is a period of the essentially
cyclic update rule and{t1, · · · , tT }, with tj ∈ {1, · · · , L+1}
∀j ∈ {1, · · · , T }, as the indices of the updated blocks in a
period in order. Ifxtj is updated in the(k)-th iteration, then
xtj⊕1

is updated in the(k+1)-th iteration. Definej⊕1 , j(
mod T )+1, ∀j ∈ {1, · · · , T } andj⊕m asj⊕1 by m times.

By repeatedly invoking Bolzano-Weierstrass theorem tofi
to fL and noticing thatg is updated in closed form by equation
(9), the existence of limit points of{x(k)}∞k=0 can be proved.

Then we prove thatMSE(k) is decreasing. IfxL+1(or g) is
updated in the(k+1)-th iteration, then (P1) is solved and thus
MSE is decreasing. Assume that in the(k+1)-th iteration, the
(tj⊕1)-th block is updated,tj⊕1 ∈ {1, · · · , L}. Then

x
(k+1)
tj⊕1

= argmin .
xtj⊕1

∈Xtj⊕1

MSE
(
xtj⊕1

∣∣x(k)

tj⊕1

)
+κ

∥∥xtj⊕1
−x

(k)
tj⊕1

∥∥2
2
.

Sincex(k)
tj

is feasible, it should give no smaller objective than

x
(k+1)
tj

for the above problem. This implies

MSE
(
x(k+1)

)
≤MSE

(
x(k)

)
−κ

∥∥x(k)−x(k+1)
∥∥2
2
≤MSE

(
x(k)

)
.

ThusMSE(k) is decreasing. At the same time notice thatMSE

should be nonnegative, thusMSE(k) converges.
Next we prove that any limit point is stationary. Assume

that a subsequence of solutionx(kj) converges to a limit point
x̄ , [x̄T

1 , · · · , x̄T
L+1]. Since there are finite blocks, we assume

the blocki ∈ {1, · · · , L+1} is updated infinitely many times
and assume thati = tl for somel ∈ {1, · · · , T }. It should be
noted that suchl may be non-unique and arbitrary one can
be chosen to do the job.

We assert thatx(kj+1) → x̄, i.e. x(kj+1)
tl⊕1

→ x̄tl⊕1
. This

claim can be proved in two cases—i)tl⊕1 = L+1 and ii)
tl⊕1 ∈ {1, · · · , L} .

i) tl⊕1=L+1. Notice thatxL+1 = g is updated in a closed
form (9), which is a continuous function of[xT

1 , · · · ,xT
L].

Sincex(kj)

L+1
converges, by takingj → ∞, x(kj+1)

tl⊕1
should con-

verge to some limit, i.e.x(kj+1)
tl⊕1

→ x̃L+1. Notice thatMSE(k)

converges, soMSE
(
x̄L+1, x̄L+1

)
= MSE

(
x̄L+1, x̃L+1

)
. This

means bothx̄L+1 and x̃L+1 are solutions to the problem
(P1) with sensors’ beamformers[x̄T

1 , · · · , x̄T
L ] given. Since

(P1) is strictly convex and thus has unique solution, we
concludex̃L+1 = x̄L+1. So x

(kj+1)
tl⊕1

→ x̄tl⊕1
holds for the

casetl⊕1 = L+ 1.
ii) tl⊕1 ∈ {1, · · · , L}. By contradiction, we assume that

x
(kj+1)
tl⊕1

does not converge tōxtl⊕1
. By denotingγ(kj) ,

‖x(kj+1)
tl⊕1

−x̄tl⊕1
‖2 and possibly restricting to a subsequence,

we assume that there exists aγ̄ > 0 such thatγ(kj) ≥ γ̄

for all j. Let s(kj)
l = (x

(kj+1)
tl⊕1

−x
(kj)
tl⊕1

)/γ(kj). Sinces(kj) is
bounded, by Bolzano-Weierstrass theorem and restricting to
a subsequence, we assume thats(kj) → s̄. Then we obtain

MSE
(
x(kj+1)

)
=MSE

(
x
(kj+1)
tl⊕1

∣∣x(kj)

tl⊕1

)
(39)

≤MSE
(
x
(kj+1)
tl⊕1

∣∣x(kj)

tl⊕1

)
+κ

∥∥x(kj+1)
tl⊕1

−x
(kj)
tl⊕1

∥∥2
2

(40)

=MSE
(
x
(kj)
tl⊕1

+γ(kj)s(kj)
∣∣x(kj)

tl⊕1

)
+κ

∥∥γ(kj)s(kj)
∥∥2

2
(41)

≤MSE
(
x
(kj)
tl⊕1

+ǫγ̄s(kj)
∣∣x(kj)

tl⊕1

)
+κ

∥∥ǫγ̄s(kj)
∥∥2
2
, ∀ǫ∈ [0, 1] (42)

≤MSE
(
x
(kj)
tl⊕1

∣∣x(kj)

tl⊕1

)
= MSE

(
x(kj)

)
, (43)

where the last two inequalities follow the fact that
MSE

(
xtl⊕1

∣∣x(kj)

tl⊕1

)
+κ‖xtl⊕1

−x(kj)
tl⊕1

‖22 is strictly convex and

attains the minimum at pointx(kj+1)
tl⊕1

. Noting MSE(kj) con-
verges and lettingj → ∞, we obtain

MSE
(
x̄
)
≤ MSE

(
x̄tl⊕1

+ǫγ̄s̄
∣∣x̄tl⊕1

)
+κǫ2γ̄2

≤ MSE
(
x̄
)
, ∀ǫ ∈ [0, 1], (44)

which immediately implies

MSE
(
x̄tl⊕1

+ǫγ̄s̄
∣∣x̄tl⊕1

)
+κǫ2γ̄2=MSE

(
x̄
)
, ∀ǫ ∈ [0, 1]. (45)
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However the above is impossible. Notice thatMSE
(
x̄tl⊕1

+
ǫγ̄s̄

∣∣x̄tl⊕1

)
is a quadratic function ofǫ with nonnegative

quadratic coefficient and̄γ, κ > 0. Thus the left hand
side(LHS) of equation (45) is a strictly convex quadratic
function of ǫ, which has at most two differentǫ giving the
function value ofMSE(x̄). Contradiction has been reached.

In the above we have proved thatx(kj+1) → x̄. Next we
show that∇xtl⊕1

MSE
(
x̄
)T (

xtl⊕1
− x̄tl⊕1

)
≥ 0, ∀xtl⊕1

∈
Xtl⊕1

, which is also proved in two cases:
When tl⊕1 ∈ {1, · · · , L}, we have

x
(kj+1)
tl⊕1

= argmin .
xtl⊕1

∈Xtl⊕1

MSE
(
xtl⊕1

∣∣x(kj)

tl⊕1

)
+κ

∥∥xtl⊕1
−x

(kj)
tl⊕1

∥∥2

2
.

By optimality condition, the above implies

∇xtl⊕1
MSE

(
x
(kj+1)
tl⊕1

∣∣x(kj)

tl⊕1

)T (
xtl⊕1

−x
(kj+1)
tl⊕1

)
, (46)

+2κ
(
x
(kj+1)
tl⊕1

−x
(kj)
tl⊕1

)T (
xtl⊕1

−x
(kj+1)
tl⊕1

)
≥ 0, ∀xtl⊕1

∈ Xtl⊕1
.

Let j → ∞ in the above equation and note thatMSE is
continuously differentiable, we obtain

∇xtl⊕1
MSE

(
x̄
)T (

xtl⊕1
−x̄tl⊕1

)
≥ 0, ∀xtl⊕1

∈ Xtl⊕1
. (47)

Whentl⊕1 = L+1, the above reasoning still works except
that the proximal term is absent (i.e.κ = 0). So we also
obtain∇xtl⊕1

MSE
(
x̄
)T (

xtl⊕1
−x̄tl⊕1

)
≥ 0.

Now replace the subsequence{kj} with {kj + 1}, tl⊕1

with tl⊕2 and utilize the verbatim argument as above, we can
prove

∇xtl⊕2
MSE

(
x̄
)T (

xtl⊕2
−x̄tl⊕2

)
≥ 0, ∀xtl⊕2

∈ Xtl⊕2
. (48)

Repeating this argument for(T − 1) times and recalling
that for essentially cyclic update rule,{tl⊕1, · · · , tl⊕T } =
{1, · · · , L}, we have proved that

∇xi
MSE

(
x̄
)T(

xi−x̄i

)
≥0, ∀xi ∈ Xi, ∀i∈{1,· · ·,L+1}. (49)

Summing up the above (L+1) inequalities, we obtain

∇xMSE
(
x̄
)T(

x−x̄
)
≥0, ∀x ∈ X. (50)

So x̄ is actually a stationary point of (P0).
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