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Abstract

Inverse problems use physical measurements along with a computa-
tional model to estimate the parameters or state of a system of interest.
Errors in measurements and uncertainties in the computational model lead
to inaccurate estimates. This work develops a methodology to estimate
the impact of different errors on the variational solutions of inverse prob-
lems. The focus is on time evolving systems described by ordinary differen-
tial equations, and on a particular class of inverse problems, namely, data
assimilation. The computational algorithm uses first-order and second-
order adjoint models. In a deterministic setting the methodology provides
a posteriori error estimates for the inverse solution. In a probabilistic set-
ting it provides an a posteriori quantification of uncertainty in the inverse
solution, given the uncertainties in the model and data. Numerical exper-
iments with the shallow water equations in spherical coordinates illustrate
the use of the proposed error estimation machinery in both deterministic
and probabilistic settings.
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1 Introduction

Inverse problems use information from different sources in order to infer the
state or parameters of a system of interest. Data assimilation is a class of
inverse problems that combines information from an imperfect computational
model (which encapsulates our knowledge of the physical laws that govern the
evolution of the real system), from noisy observations (sparse snapshots of real-
ity), and from an uncertain prior (which encapsulates our current knowledge of
reality). Data assimilation combines these three sources of information and the
associated uncertainties in a Bayesian framework to provide the posterior, i.e.,
the best description of reality when considering the new information from the
data. In a variational approach data assimilation is formulated as an optimiza-
tion problem whose solution represents a maximum likelihood estimate of the
state or parameters. The errors in the underlying computational observation as
well as the errors in the observations lead to error in the optimal solution. Our
goal is to quantitatively estimate the impact of various errors on the accuracy
of the optimal solution.

A posteriori error estimation is concerned with quantifying the error asso-
ciated with a particular – and already computed – solution of the problem of
interest [11, 12]. A posteriori error estimation is a well-established methodol-
ogy in the context of numerical approximations of partial differential equations
[2]. The approach has been extended to the solution of inverse problems [5]
and has been applied to guide mesh refinement [6]. The Ph.D. dissertation of
M. Alexe [3] develops systematic methodologies for quantifying the impact of
various errors on the optimal solution in variational inverse problems. Recent
related work in the context of variational data assimilation has developed tools
to quantify the impact of errors in the background, observations, and the associ-
ated error covariance matrices on the accuracy of resulting analyses [13, 15, 25].
The choice of optimal error covariances for estimating parameters such as dis-
tributed coefficients and boundary conditions for a convection-diffusion model
has been discussed in [14].

While previous work has considered the impact of data errors, no method is
available to date to estimate the impact of model errors on the optimal solution
of a variational inverse problem.This paper develops a coherent framework to
estimate the impact of both model and data errors on the optimal solution. The
computational procedure makes use of first order and the second order adjoint
information and builds upon our previous work [3, 4, 7].

The remainder of the paper is organized as follows. In Section 2 we define
the problem and derive the optimality conditions for the problem in 2.1. We use
the super Lagrangian technique in Section 2.2 to develop a general algorithm to
obtain the super Lagrange multipliers, which are necessary to perform the error
estimates. We define the perturbed inverse problem in Section 2.3 and obtain
the first order optimality conditions for it in Section 2.4. In Section 2.5 we
derive the expression to estimate the error in the optimal solution for a general
inverse problem. In Section 3 we present the discrete-time model framework.
In Section 4 we present the error estimation methodology for discrete models.
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In Section 5 we present a detailed procedure to perfrom the error estimation
for the data assimilation problem. We show the numerical results to support
our theory for the heat equation and the shallow water model in spherical co-
ordinates in Section 6. The error estimates are statistically validated in Section
6.5. Finally we give the concluding remarks in Section 7.

2 Inverse problems with continuous-time mod-
els

We consider a time-evolving physical system modeled by ordinary differential
equations (ODEs):

x′ = f (t,x, θ) , t0 ≤ t ≤ tF , x(t0) = x0(θ) , (1)

where t ∈ R is time, x ∈ Rn is the state vector, and θ ∈ Rm is the vector of
parameters. In many practical situations (1) represents an evolutionary partial
differential equation (PDE) after the semi–discretization in space. We call (1)
the continuous forward model.

A cost function defined on the solution and on the parameters of (1) has the
general form

J (x, θ) =

tF∫
t0

r (x(t), θ) dt+ w (x(tF ), θ) . (2)

We consider the following inverse problem that seeks the optimal values of the
model parameters:

θa =arg min
θ

J (x, θ)

subject to (1) .
(3)

The inverse problem in (3) is constrained by the dynamics of the system (1).
Solving this system for a given value of the parameters finds the solution x(t, θ).
Using this solution in (3) eliminates the constraints and leads to the equivalent
unconstrained problem

θa = arg min
θ

J (x(θ), θ) , (4)

where J (x(θ), θ) is the reduced cost function. The problem (3) or (4) can be
solved numerically using gradient based methods. The derivative information
required for the computation of gradients and Hessian can be computed using
sensitivity analysis [27, 7, 18].

We are interested in estimating the impact of observation and model errors
on the optimal solution θa. Specifically, we will quantify the effect of errors
on a certain quantity of interest (qoi ) defined by a scalar error functional
E : Rm → R that measures a certain aspect of the the optimal parameter value

qoi = E (θa) . (5)
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An example of error functional is the k-th component of the optimal parameter
vector E (θa) = θak.

2.1 First order optimality conditions

The Lagrangian function associated with the cost function in (2) and the con-
straint in (1) is

L =

tF∫
t0

r (x(t), θ) dt+ w (x(tF ), θ)−
tF∫
t0

λT(t) · (x′ − f(t,x, θ)) dt. (6)

Setting to zero the variations of L with respect to the independent perturbations
δλ, δx, and δθ leads to the following optimality equations:

forward model: − x′ + f(t,x, θ) = 0, (7a)

t0 ≤ t ≤ tF , x(t0) = x0 ,

adjoint model: λ′ + rTx (x(t), θ) + fTx (t,x, θ) · λ = 0, (7b)

tF ≤ t ≤ t0, λ (tF ) = wT
x (x (tF ) , θ) ,

optimality: ξ (t0) + xT
θ (t0) · λ(t0) = 0 , (7c)

where ξ′ = −rTθ (x(t), θ)− fTθ (t,x, θ) · λ,
tF ≤ t ≤ t0, ξ (tF ) = wT

θ (x (tF ) , θ) .

Equations (7) constitute the first order optimality conditions for the inverse
problem (3). Subscripts denote partial derivatives, e.g., fx = ∂f/∂x. For
a detailed derivation of the first order optimality conditions, please see the
Appendix A.

2.2 The super-Lagrangian

We follow the methodology discussed in [3, 6] to develop a posteriori error
estimates applicable to our problem of interest.

The Lagrangian associated with the error functional of the form (5) and the
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constraints posed by the first order optimality conditions (7) is:

LE = E (θa)−
tF∫
t0

νT · (−x′ + f) dt− νT (t0) · (x(t0)− x0) (8)

−
tF∫
t0

µT ·
(
λ′ + rTx + fTx · λ

)
dt− µT (tF ) ·

(
λ (tF )− wT

x (x (tF ) , θ)
)

−
tF∫
t0

ζT ·
(
ξ′ + rTθ + fTθ · λ

)
dt

−ζT ·
(
ξ (tF )− wT

θ (x (tF ) , θ)
)

−ζT ·
(
ξ (t0) + xT

θ (t0) · λ(t0)
)
.

We have removed the arguments for convenience of notation. Here ν, µ, and
ζ are the super–Lagrange multipliers associated with constraints (7a) (forward
model), (7b) (adjoint model), and (7c) (optimality condition) respectively.

2.2.1 The tangent linear model

Taking the variations of (8) and imposing the stationarity condition ∇λLE = 0
leads to the following tangent linear model (TLM):

−µ′ + fx · µ+ fθ · ζ = 0, t0 ≤ t ≤ tF ; (9)

µ (t0) = xθ(t0) · ζ .

2.2.2 The second order adjoint equation

The stationarity condition ∇xLE = 0 leads to the following second order adjoint
ODE (SOA):

ν′ + fTx · ν + rx,x · µ+ (fx,x · µ)
T · λ (10)

+rθ,x · ζ + (fθ,x · ζ)
T · λ = 0, tF ≥ t ≥ t0;

ν (tF ) = wθ,x (x (tF ) , θ) · ζ + wx,x (x (tF ) , θ) · µ (tF )

2.2.3 The optimality equation

The stationarity condition ∇θLE = 0 leads to the following optimality equation:(
d2

dθ2
J (x(θ), θ)

)∣∣∣∣
θa
· ζ = Eθ, (11)
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where the reduced Hessian-vector product in the direction of δθ is given by:

d2 J (x(θ), θ)

dθ2
· δθ = wT

θ,x (x(tF ), θ) · δx (tF ) + wθ,θ (x (tF ) , θ) · δθ

+

(
dx0

dθ

)T

· ν(t0) +

(
d2x0

dθ2
δθ

)
· λ(t0)

+

tF∫
t0

(
fTθ · ν + (fθ,x · δx)

T · λ+ (fθ,θ · δθ)T · λ
)

dt

+

tF∫
t0

(
rTθ,x · δx + rθ,θ · δθ

)
dt .

(12)

The procedure to obtain the super Lagrange parameters ζ, µ and ν is summa-
rized in Algorithm 1. A detailed derivation of the super-Lagrange parameters
is presented in Appendix B.

Algorithm 1 SuperLagrangeMultipliers

1: procedure SuperLagrangeMultipliers
2: Solve the linear system (11) to obtain ζ.
3: Solve the tangent linear model (9) to obtain µ.
4: Solve the second order adjoint equation (10) to obtain ν.
5: end procedure

2.3 Perturbed inverse problems

In practice the forward model (1) is inaccurate and subject to model errors. To
describe this inaccuracy we consider a forward model that is marred by a time–
and state–dependent model error

x̂′ = f (t, x̂, θ) + ∆f (t, x̂) , x̂ (t0) = x0 + ∆x0 . (13)

Furthermore, the noise in the data leads to errors ∆r and ∆w in the corre-
sponding terms of the cost function (2). The inaccurate cost function is given
by

Ĵ (x̂, θ) =

tF∫
t0

(r (x̂(t), θ) + ∆r) dt+ w (x̂(tF ), θ) + ∆w . (14)

Therefore in practice one solves the following perturbed inverse problem:

θ̂a = arg min
θ

Ĵ (x̂, θ)

subject to (13) .
(15)
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2.4 First order optimality conditions for the perturbed
inverse problems

The Lagrangian function associated with the cost function in (14) and the con-
straint in (13) is

L̂ =

tF∫
t0

(r (x̂(t), θ) + ∆r) dt+ w (x̂(tF ), θ) + ∆w (16)

−
tF∫
t0

λT(t) · (x̂′ − f(t, x̂, θ)−∆f) dt .

Setting to zero the variations of L̂ with respect to the independent perturbations
δλ̂, δx̂, and δθ leads to the following optimality equations:

perturbed forward model: − x̂′ + f (t, x̂, θ) + ∆f (t, x̂) = 0, (17a)

t0 ≤ t ≤ tF , x̂(t0) = x0 + ∆x0 ,

perturbed adjoint model: λ̂′ + rTx (x̂(t), θ) + fTx (t, x̂, θ) · λ̂ = 0, (17b)

tF ≤ t ≤ t0, λ̂ (tF ) = wT
x + ∆wT

x ,

perturbed optimality: ξ̂ (t0) + x̂T
θ (t0) · λ̂(t0) = 0 , (17c)

where ξ̂′ = −rTθ (x̂(t), θ)− fTθ (t, x̂, θ) · λ̂,

tF ≤ t ≤ t0, ξ̂ (tF ) = wT
θ + ∆wT

θ .

Equations (7) constitute the first order optimality conditions for the inverse
problem (15). A detailed derivation of the first order optimality conditions is
presented in the Appendix A.

2.5 A posteriori error estimation methodology

Our goal is to estimate the error in the optimal solution θ̂a − θa. Specifically,
we seek to estimate the errors in the quantity of interest E (θa)

∆E = E(θ̂a)− E (θa) (18)

due to the errors in both the model and the data. The first order necessary
conditions for the perturbed inverse problem (15) are given by the equations in
(17) and consist of the perturbed forward, adjoint, and optimality equations.

The errors in the optimal solution (18) are the result of errors in the adjoint
model (7b), in the forward model (7a), and in the optimality equation (7c), i.e.,
to differences between the perturbed and the perfect equations. This leads to
the following change in error functional resulting from model and data errors

∆E = ∆Eadj + ∆Efwd + ∆Eopt . (19)
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The perturbed super-Lagrangian can be written as:

L̂E = E(θ̂a)−
tF∫
t0

νT ·
(
−x̂′ + f̂ + ∆f̂

)
dt (20)

−νT (t0) · (x̂(t0)− x0 −∆x0)

−
tF∫
t0

µT ·
(
λ̂′ + r̂Tx + ∆r̂Tx +

(
f̂x + ∆f̂x

)T
· λ̂
)

dt

−µT (tF ) ·
(
λ̂ (tF )− ŵT

x (x̂, θ)−∆ŵT
x (x̂, θ)

)
−

tF∫
t0

ζT ·
(
ξ̂′ + r̂Tθ (x̂, θ) + ∆r̂Tθ (x̂, θ) +

(
f̂θ + ∆f̂θ

)T
· λ̂
)

dt

−ζT ·
(
ξ̂ (tF )− ŵT

θ −∆ŵT
θ

)
−ζT ·

(
ξ̂ (t0) + x̂T

θ (t0) · λ̂(t0)
)
.

We have denoted by hat the functions evaluated at x̂, e.g., f̂ = f(t, x̂, θ). The
gradient of the super-Lagrangian at the optimal solution is the same as the
gradient of the error functional, both being zero. Hence we have,

∆E ≈ L̂E − LE . (21)

The approximate contribution to the error brought by the adjoint model is given
by

∆Eadj ≈
∫ tF

t0

µT ·
(

∆r̂Tx + ∆f̂Tx · λ̂
)
dt− µT ·∆ŵT

x |tF . (22)

The approximate contribution to the error brought by the forward model only
depends on model errors, and is given by:

∆Efwd ≈
∫ tF

t0

νT ·∆f̂ dt . (23)

The contribution to the error by the optimality equation can be computed from
equation (8), and is given by:

∆Eopt ≈
∫ tF

t0

ζT ·
(

∆r̂Tθ −∆f̂Tθ · λ̂
)
dt− ζT ·∆ŵT

θ |tF . (24)

Appendix D demonstrates that equations (22), (23), and (24) correspond to first
order error estimates.
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3 Inverse problems with discrete-time models

Consider a time-evolving system governed by the following discrete-time model

xk+1 =Mk,k+1(xk, θ), k = 0, . . . , N − 1 , x0 = x0(θ) , (25)

where xk ∈ Rn is the state vector at time tk, Mk,k+1 is the solution operator
that advances the state vector from time tk to tk+1, and θ ∈ Rm is the vector
of model parameters. At each time tk the model state approximates the truth,
i.e., the state of the physical system, xk ≈ x(tk).

A cost function defined on the solution and on the parameters of (25) has
the general form

J (x, θ) =

N∑
k=0

rk (xk, θ) . (26)

For example, in four dimensional variational data assimilation [17, 22] the cost
function is

J (x0) =
1

2

(
x0 − xb

0(θ)
)T

B−10 (θ)
(
x0 − xb

0(θ)
)

(27)

+

N∑
k=0

1

2
(Hk(xk, θ)− yk)

T
R−1k (θ) (Hk(xk, θ)− yk) ,

where, xb
0 is the background state at the initial time (the prior knowledge of the

initial conditions), B0 is the covariance matrix of the background errors, yk is
the vector of observations at time tk and Rk is the corresponding observation
error covariance matrix. The observation operators Hk map the model state
space onto the observation space. The cost function (27) measures the departure
of the initial state x0 from the background initial state, as well as the discrepancy
between the model predictions and measurements of reality yk at tk for k ≥
1. The norms of the differences are weighted by the corresponding inverse
background error covariance matrices.

An inverse problem that seeks the optimal values of the model parameters
is formulated as follows:

θa = arg min
θ

J (x, θ) subject to (25) . (28)

For example the optimal parameter values lead to a best fit between model
predictions and measurements, in a least squares sense.

3.1 First order optimality conditions

The Lagrangian function associated with the problem (28) is

L =

N−1∑
k=0

(
rk (xk, θ)− λTk+1 · (xk+1 −Mk,k+1(xk, θ))

)
(29)

+rN (xN , θ)− λT0 · (x0 − x0 (θ)) .
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Consider the following Jacobians of the model solution operator with respect to
the state and with respect to parameters, respectively:

Mk,k+1(x, θ) :=
(
Mk,k+1(x, θ)

)
x
, Mk,k+1(x, θ) :=

(
Mk,k+1(x, θ)

)
θ
. (30)

Consider also the Jacobians of the cost function terms

(rk)xk
:= (rk (x, θ))x |x=xk

, (rk)θ := (rk (x, θ))θ |x=xk
. (31)

Setting to zero the variations of L with respect to the independent perturbations
δλ, δx, and δθ leads to the first order optimality conditions for the inverse
problem (28):

forward model: 0 = xk+1 −Mk,k+1(xk, θ), k = 0, . . . , N − 1 ; (32a)

adjoint model: 0 = λN − (rN )
T
xN

, (32b)

0 = λk −MT
k,k+1 λk+1 − (rk)

T
xk
, k = N − 1, . . . , 0;

optimality: 0 = (x0)Tθ λ0 +

N∑
k=0

(rk)
T
θ +

N−1∑
k=0

MT
k,k+1λk+1 . (32c)

Here λk ∈ Rn are the adjoint variables. A detailed derivation of the first order
optimality conditions can be found in the Appendix A of [21].

3.2 Perturbed inverse problem with discrete-time models

In practice the evolution of the physical system is represented by the imperfect
discrete model

x̂k+1 =Mk,k+1(x̂k, θ) + ∆x̂k+1(x̂k, θ), k = 0, 1, . . . , N − 1 . (33)

Errors in the data lead to the following perturbed cost function:

Ĵ (x̂, θ) =

N∑
k=0

(
rk (x̂k, θ) + ∆r̂k (x̂k, θ)

)
. (34)

The perturbed inverse problem solved in practice reads:

θ̂a = arg min
θ

Ĵ (x̂, θ) subject to (33) . (35)

We consider the model Jacobians (30) evaluated at the perturbed state and
parameters:

M̂k,k+1 := Mk,k+1(x̂, θ), M̂k,k+1 := Mk,k+1(x̂, θ).

We also consider the cost function Jacobians (31) evaluated at the perturbed
state and parameters:

(r̂k)x̂k
:= (rk (x, θ))x |x=x̂k

, (r̂k)θ := (rk (x, θ))θ |x=x̂k
.
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The first order optimality conditions for the perturbed inverse problem (35) are:

forward model: ∆x̂k+1= x̂k+1 −Mk,k+1(x̂k, θ), k = 0, . . . , N − 1; (36a)

adjoint model: (∆r̂N )
T
x̂N

= λ̂N − (r̂N )
T
x̂N

, (36b)

(∆r̂k)
T
x̂k

+ (∆x̂k+1)
T
x̂k
λ̂k+1 = λ̂k − M̂T

k,k+1 λ̂k+1 − (r̂k)
T
x̂k

k = N − 1, . . . , 0;

optimality:

N∑
k=0

(∆r̂k)
T
θ −

N−1∑
k=0

(∆x̂k+1)
T
θ λ̂k+1 = (x̂0)

T
θ λ̂0 +

N∑
k=0

(r̂k)
T
θ (36c)

+

N−1∑
k=0

M̂T
k,k+1λ̂k+1.

The perturbed optimality conditions (36) differ in two ways from the ideal
optimality conditions (32). First, the perturbations due to the error terms
∆x and ∆r̂ appear on the left hand side as residuals in each of the forward
(36a), adjoint (36b), and optimality equations (36c). Next, the linearizations in

(36b) and (36c) are performed about the perturbed solution x̂ and θ̂a, while the
linearizations in (32b) and (32c) are performed about the ideal solution x and
θa.

3.3 Quantity of interest

Consider a quantity of interest (qoi ) defined by a scalar functional E : Rm → R
that measures a certain aspect of the the optimal parameter value

qoi = E (θa) . (37)

An example of error functional (37) is the `-th component of the optimal pa-
rameter vector, E (θa) = θa` .

We are interested in estimating the impact of observation and model errors
on the optimal solution θa, or, more specifically, the error impact on the aspect
of θa captured by the qoi . The error in the qoi is

∆E = E(θ̂a)− E (θa) (38)

where θ̂a and θa are the solutions of the perturbed inverse problem (35) and of
the ideal inverse problem (28), respectively.

4 Aposteriori error estimation

The ideal optimal solution θa is obtained (in principle) by solving the nonlinear

system (32), while the perturbed optimal solution θ̂a is obtained by solving the
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system (36). We have seen that (36) is obtained from (32) by adding residuals
to each of the optimality equations. The a posteriori error estimate quantifies,
to first order, the impact of these residuals on the solution of the nonlinear
system (32). The methodology presented below follows the approach discussed
in [3, 6].

4.1 The error estimation procedure

It is useful to consider the reduced cost function (26)

j(θ) = J (x(θ), θ) =

N∑
k=0

rk (xk(θ), θ) (39)

with the solution dependency on the parameters given by the model (25).

Theorem 1 (A posteriori error estimates). Assume that the model operator
M and the functions rk are twice continuously differentiable. Assume also that
reduced Hessian (∇2

θ,θj)(θ
a) ∈ R

m×m evaluated at the minimizer of (28) is
positive definite.

Then there exist “impact factors” ζ ∈ Rm, µk ∈ Rn for k = 0, . . . , N , and
νk ∈ Rn for k = 0, . . . , N such that the error in the qoi is approximated to first
order by the formula:

∆E ≈ ∆Eest = ∆Efwd + ∆Eadj + ∆Eopt, (40a)

where the three terms are the contributions of errors in the forward model, ad-
joint model, and optimality equation, respectively. Specifically, the estimated
contribution of the error in the forward model to the error in qoi is:

∆Efwd =

N−1∑
k=0

νTk+1 ·∆x̂k+1 . (40b)

Similarly, the estimated contribution of the adjoint model error to the error in
qoi is:

∆Eadj =

N∑
k=0

µT
k · (∆r̂k)

T
xk

+

N−1∑
k=0

µT
k · (∆x̂k+1)

T
xk
λ̂k+1 . (40c)

Finally, the contribution of the error in the optimality equation is given by

∆Eopt = ζT ·

(
N∑
k=0

(∆r̂k)
T
θ −

N−1∑
k=0

(∆x̂k+1)
T
θ λ̂k+1

)
. (40d)

Proof. A discrete super-Lagrangian associated with the scalar functional (38)
and with the constraints posed by the first order optimality conditions (32) is
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defined as follows:

LE(θ,x, λ, µ, ν, ζ) = E(θ)− νT0 · (x0 − x0 (θ))−
N−1∑
k=0

νTk+1 · (xk+1 −Mk,k+1(xk, θ))

−µT
N ·
(
λN − (rN )

T
xN

)
−
N−1∑
k=0

µT
k ·
(
λk −MT

k,k+1 λk+1 − (rk)
T
xk

)
(41)

−ζT ·

(
(x0)

T
θ λ0 +

N∑
k=0

(rk)θ +

N−1∑
k=0

MT
k,k+1λk+1

)
.

Consider a stationary point (θa,x, λ, µ, ν, ζ) of the super-Lagrangian LE

δLE
∣∣
(θa,x,λ,µ,ν,ζ) = 0. (42)

Setting to zero the variations of (41) with respect to µ, ν, ζ shows that the
parameter vector θ, the forward solution x, and the adjoint solution λ satisfy the
first order optimality conditions (32). Consequently {θa,x = x(θa), λ = λ(θa)}
is the solution of the inverse problem (28). The super-Lagrange multipliers ζ, ν,
and µ for a stationary point of the super-Lagrangian are calculated by setting
to zero the variations of (41) with respect to θ,x, λ, as discussed in section 4.2.
From (41) we have that

LE(θa,x, λ, µ, ν, ζ) = E(θa). (43)

We now evaluate (41) at the solution {θ̂a, x̂ = x̂(θ̂a), λ̂ = λ̂(θ̂a)} of the
perturbed inverse problem. The super-multipliers ζ, η, and µ are not changed
and they correspond to the stationary point at the ideal solution (42). We have:

LE(θ̂a, x̂, λ̂, µ, ν, ζ) = E(θ̂a)−
N−1∑
k=0

νTk+1 ·
(
x̂k+1 −Mk,k+1(x̂k, θ̂

a)
)

−νT0 ·
(
x̂0 − x0(θ̂a)

)
− µT

N ·
(
λ̂N − (r̂N )

T
x̂N

)
−
N−1∑
k=0

µT
k ·
(
λ̂k − M̂T

k,k+1 λ̂k+1 − (r̂k)
T
x̂k

)
(44)

−ζT ·

(
(x̂0)

T
θ λ̂0 +

N∑
k=0

(r̂k)
T
θ +

N−1∑
k=0

(
M̂T
k,k+1

)
λ̂k+1

)
.

The perturbed inverse problem solution {θ̂a, x̂, λ̂} satisfies the perturbed first
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order optimality conditions (36). Substituting (36) in (44) leads to

LE(θ̂a, x̂, λ̂, µ, ν, ζ) = E(θ̂a)−
N−1∑
k=0

νTk+1 ·∆x̂k+1 − µT
N · (∆r̂N )

T
x̂N

−
N−1∑
k=0

µT
k ·
(

(∆r̂k)
T
x̂k

+ (∆x̂k+1)
T
x̂k
λ̂k+1

)
(45)

−ζT ·

(
N∑
k=0

(∆r̂k)
T
θ −

N−1∑
k=0

(∆x̂k+1)
T
θ λ̂k+1

)
.

Since the super-Lagrangian is stationary at (θa,x, λ, µ, ν, ζ) its variation van-
ishes (42), therefore to first order it holds that

∆LE = LE(θ̂a, x̂, λ̂, µ, ν, ζ)− LE(θa,x, λ, µ, ν, ζ) ≈ 0. (46)

Subtracting (43) from (45) and using the stationarity relation (46) leads to the
error estimate (40).

The existence of the super-Lagrange multipliers follows from Theorem 2
discussed in the next section. Specifically, the Hessian equation (47) has a
unique solution, and so do the tangent linear model (47b) and the second order
adjoint model (47c). The multipliers exist and can be calculated by Algorithm
2.

4.2 Calculation of super–Lagrange multipliers

Theorem 2 (Calculation of impact factors). When the assumptions of Theorem
1 hold the super-Lagrange multipliers corresponding to a stationary point of (41)
are computed via the following steps. First, solve the following linear system for
the multiplier ζ ∈ Rm:

(∇2
θ,θj)(θ

a) · ζ = ETθ , (47a)

whose matrix is the reduced Hessian ∇2
θ,θj ∈ Rm×m evaluated at the minimizer

θa. We call (47a) the “Hessian equation”. Next, solve the following tangent
linear model (TLM) for the multipliers µk ∈ Rn, k = 0, . . . , N :

µ0 = − (x0)θ ζ ; (47b)

µk = Mk−1,k µk−1 −Mk−1,k ζ, k = 1, . . . , N .

Finally, solve the following second order adjoint model (SOA) for the multipliers
νk ∈ Rn, k = N, . . . , 0:

νN = (rN )xN ,xN
µN − (rN )θ,xN

ζ ;

νk = MT
k,k+1νk+1 +

(
MT

k,k+1λk+1

)T
xk
µk (47c)

− (rk)θ,xk
ζ −

(
MT
k,k+1λk+1

)T
xk
ζ, k = N − 1, . . . , 0 .
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Algorithm 2 Calculation of super-Lagrange multipliers

1: procedure DiscreteSuperLagrangeMultipliers
2: Solve the Hessian equation (47a) for ζ;
3: Solve the TLM (47b) forward in time for µk, k = 0, . . . , N ;
4: Solve the SOA model (47c) backward in time for νk, k = N, . . . , 0.
5: end procedure

The computational procedure is summarized in the Algorithm 2. A simi-
lar approach is discussed in [3] in the context of error estimation for inverse
problems with elliptical PDEs.

Comment 1 (Iterative solution of the Hessian equation). The Hessian equation
(47a) can be solved by iterative methods such as preconditioned conjugate gradi-
ents [7], which rely on the evaluation of matrix-vector products v = (∇2

θ,θj)(θ
a)·u

for any user defined vector u. As explained in [7] these products can be computed
by first solving a tangent linear model (47b) initialized with u, and then solving
a second order adjoint model (47c), where all linearizations are performed about
the optimal solution {θa,x(θa), λ(θa)}. The matrix-vector product v is obtained
from the second order adjoint variable at the initial time.

Comment 2 (Approximate solution of the Hessian equation). The numerical
solution of (28) is usually obtained in a reduced space approach via a gradient-
based optimization method. A reduced gradient ∇θ j(θ(p)) is computed at each
iteration p of the numerical optimization algorithm. Quasi-Newton approxima-
tions of the reduced Hessian inverse B ≈ (∇2

θ,θj)
−1 can be constructed from the

sequence of reduced gradients. As proposed in [3], a convenient way to approxi-
mately solve (47a) is to use the quasi-Newton matrix: ζ ≈ B · ETθ .

Proof. The variation of the super-Lagrangian (42) with respect to independent
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perturbations in θ,x, λ is:

δLE = Eθ δθ − νT0 · (δx0 − (x0 (θ))θ δθ)

−
N−1∑
k=0

νTk+1 · (δxk+1 −Mk,k+1δxk −Mk,k+1δθ)

−µT
N ·
(
δλN − (rN )xN ,xN

δxN − (rN )xN ,θ
δθ
)

−
N−1∑
k=0

µT
k ·
(
δλk −MT

k,k+1 δλk+1

)
+

N−1∑
k=0

µT
k ·
(
MT

k,k+1 λk+1 + (rk)
T
xk

)
xk

δxk

+

N−1∑
k=0

µT
k ·
(
MT

k,k+1 λk+1 + (rk)
T
xk

)
θ
δθ

−ζT ·

(
(x0)

T
θ δλ0 + λT0 (x0)θ,θ δθ +

N∑
k=0

(rk)θ,θ δθ +

N∑
k=0

(rk)θ,xk
δxk

)

−ζT ·
N−1∑
k=0

(
MT
k,k+1δλk+1 +

(
MT
k,k+1λk+1

)
xk
δxk +

(
MT
k,k+1λk+1

)
θ
δθ
)
.

The linearization point {θa,x(θa), λ(θa)} satisfies the ideal optimality conditions
(32).

The variation of the super-Lagrangian can be written in terms of dot-products
as follows:

δLE = δE −
N∑
k=0

〈
∇λk
LE , δλk

〉
−

N∑
k=0

〈
∇xk
LE , δxk

〉
−
〈
∇θLE , δθ

〉
,

and stationary points are characterized by∇λk
LE = 0, ∇xk

LE = 0, and∇θLE =
0.

Setting ∇λk
LE = 0 for k = 0, . . . , N leads to the tangent linear model

(TLM):

µ0 = − (x0)θ ζ; (48)

µk = Mk−1,k µk−1 −Mk−1,k ζ, k = 1, . . . , N.

The derivative of the model equation (25) with respect to θ is:

(x0)θ = (x0 (θ))θ ; (49)

(xk+1)θ = Mk,k+1 (xk)θ + Mk,k+1, k = 0, . . . , N − 1 .

Multiplying (49) from the right with the vector ζ gives the variation of the
model (25) with respect to θ in the direction ζ:

(x0)θ ζ = (x0 (θ))θ ζ; (50)

(xk)θ ζ = Mk−1,k (xk−1)θ ζ + Mk−1,k ζ, k = 1, . . . , N ;
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Equations (48) and (50) are identical and consequently we make the identifica-
tion

µk ≡ − (xk)θ ζ, k = 0, . . . , N . (51)

Setting ∇xk
LE = 0 for k = N, . . . , 0 leads to the following second order adjoint

(SOA) model:

νN = (rN )xN ,xN
µN − (rN )θ,xN

ζ ; (52)

νk = MT
k,k+1νk+1 +

(
MT

k,k+1λk+1

)T
xk
µk + (rk)xk,xk

µk − (rk)θ,xk
ζ

−
(
MT
k,k+1λk+1

)T
xk
ζ , k = N − 1, . . . , 0.

Setting ∇θLE = 0 gives:

0 = ETθ + (x0)
T
θ ν0 +

N−1∑
k=0

MT
k,k+1 νk+1 (53)

+ (rN )
T
xN ,θ

µN +

N−1∑
k=0

(
MT

k,k+1 λk+1 + (rk)xk

)T
θ
µk

−
(
λT0 (x0)θ,θ

)T
ζ −

N∑
k=0

(rk)
T
θ,θ ζ −

N−1∑
k=0

(
MT
k,k+1λk+1

)T
θ
ζ.

The transposed equation (49) times the multiplier ν gives:

(x0)
T
θ ν0 = (x0 (θ))

T
θ ν0;

(xk+1)Tθ νk+1 = (xk)
T
θ MT

k,k+1 νk+1 + MT
k,k+1 νk+1, k = 0, . . . , N − 1 ,

and using the SOA model (52)

(xk+1)Tθ νk+1 = (xk)Tθ νk − (xk)Tθ
(
MT

k,k+1λk+1

)T
xk
µk + (xk)Tθ (rk)θ,xk

ζ

−(xk)Tθ (rk)xk,xk
µk + (xk)Tθ

(
MT
k,k+1λk+1

)T
xk
ζ + MT

k,k+1 νk+1,

k = 0, . . . , N − 1 .

Summing up this equation for times k = 0, . . . , N − 1 leads to

(xN )Tθ νN = (x0)Tθ ν0 −
N−1∑
k=0

(xk)Tθ
(
MT

k,k+1λk+1

)T
xk
µk +

N−1∑
k=0

(xk)Tθ (rk)θ,xk
ζ

−
N−1∑
k=0

(xk)Tθ (rk)xk,xk
µk +

N−1∑
k=0

(xk)Tθ
(
MT
k,k+1λk+1

)T
xk
ζ +

N−1∑
k=0

MT
k,k+1 νk+1 ,
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and after inserting the final condition for νN :

(x0)Tθ ν0 +

N−1∑
k=0

MT
k,k+1 νk+1 =

N−1∑
k=0

(xk)Tθ
(
MT

k,k+1λk+1

)T
xk
µk

+

N∑
k=0

(xk)Tθ (rk)xk,xk
µk −

N∑
k=0

(xk)Tθ (rk)θ,xk
ζ(54)

−
N−1∑
k=0

(xk)Tθ
(
MT
k,k+1λk+1

)T
xk
ζ.

Substituting equations (54) and (51) in (53) we obtain the following expression
of the equation ∇θLE = 0:

0 = ETθ −
N∑
k=0

(xk)
T
θ

(
(rk)

T
xk,xk

)
(xk)θ ζ (55)

−
N−1∑
k=0

(
(xk)

T
θ

(
MT

k,k+1λk+1

)
xk

(xk)θ ζ
)

−
N−1∑
k=0

(xk)
T
θ

(
(rk)

T
θ,xk

+
(
MT
k,k+1λk+1

)
xk

)
ζ − (xN )

T
θ (rN )

T
θ,xk

ζ

− (rN )
T
xN ,θ

(xN )θ ζ −
N−1∑
k=0

(
MT

k,k+1 λk+1 + (rk)xk

)T
θ

(xk)θ ζ

−
(
λT0 (x0)θ,θ

)T
ζ −

N∑
k=0

(rk)
T
θ,θ ζ −

(
N−1∑
k=0

(
MT
k,k+1λk+1

)T
θ

)
· ζ.

Hessian of the reduced function Consider the reduced Lagrangian (29)

`(θ) = j(θ)−
N−1∑
k=0

λTk+1 ·(xk+1(θ)−Mk,k+1(xk(θ), θ))−λT0 ·(x0 − x0 (θ)) . (56)

Since there are only equality constraints the reduced Lagrangian (56), its gradi-
ent, and its Hessian evaluated at a solution are identically equal to the reduced
cost function (39), its reduced gradient, and its reduced Hessian, respectively:

`(θ) ≡ j(θ), ∇θ`(θ) ≡ ∇θj(θ), ∇2
θ,θ`(θ) ≡ ∇2

θ,θj(θ). (57)
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The gradient of the reduced Lagrangian (56) with respect to θ is

(∇θ`)T =

N∑
k=0

(rk)θ +

N∑
k=0

(rk)xk
(xk)θ (58)

−
N−1∑
k=0

λTk+1

(
(xk+1)θ −Mk,k+1 −Mk,k+1 (xk)θ

)
−
N−1∑
k=0

(λTk+1)θ · (xk+1(θ)−Mk,k+1(xk(θ), θ))

−λT0 · ((x0)θ − (x0 (θ))θ)− (λT0 )θ · (x0 − x0 (θ)) .

Taking the variation of (58) with respect to θ in the direction δθ = ζ and
evaluating all terms at at the optimal point {θa,x(θa), λ(θa)} gives:

(
∇2
θ,θ`
)
ζ =

N∑
k=0

(
(rk)θ,θ + (xk)

T
θ (rk)xk,xk

(xk)θ + (xk)
T
θ (rk)xk,θ

)
ζ

+

N∑
k=0

(rk)θ,xk
(xk)θ ζ +

N−1∑
k=0

(
λTk+1 Mk,k+1

)
θ
ζ (59)

+

N−1∑
k=0

(
(xk)

T
θ

(
λTk+1 Mk,k+1

)
θ

+
(
λTk+1 Mk,k+1

)
xk

(xk)θ

)
ζ

+λT0 ·
(
x0 (θ)θ,θ

)
ζ +

N−1∑
k=0

(xk)
T
θ

(
λTk+1 Mk,k+1

)
xk

(xk)θ ζ.

Substituting equations (59) and (57) into (55) leads to the following simpler
form of the equation ∇θLE = 0:

ETθ =
(
∇2
θ,θ`
)T · ζ =

(
∇2
θ,θ`
)
· ζ =

(
∇2
θ,θj
)
· ζ . (60)

Comment 3 (Relation to the error covariance matrix of the optimal solution).
The paper [13] describes an algorithm for the evaluation of the error covariance
matrix associated with the optimal solution θa when there are errors in the data.
There is a direct relationship between the above a posteriori error estimate and
[13]. In this work we can recover the error covariance matrix column by column
by successively solving the system in (47a) for several error functionals. Specif-
ically, if we take E to be one solution component (37), Eθ becomes the canonical
basis vector ek. Application of Algorithm 2 then recovers the kth column of the
a posteriori error covariance matrix by solving the linear system (47a).
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5 Application to data assimilation problems

Next we apply this methodology to a specific discrete-time inverse problem,
namely, four dimensional variational (4D-Var) data assimilation. Data assimi-
lation is the fusion of information from imperfect model predictions and noisy
data available at discrete times, to obtain a consistent description of the state
of a physical system [9, 17]. For a detailed description of the sources of informa-
tion, sources of error, description of four dimensional variational assimilation
problems (4D-Var), approaches to solve the 4D-Var problems and a detailed
derivation of a posteriori error estimation for 4D-Var problems, please see [20].

5.1 The ideal 4D-Var problem

We consider the particular case of strongly constrained 4D-Var data assimilation
[17] where the parameters are the initial conditions θ := x0 and the cost function
(27) is

J (x0) =
1

2

(
x0 − xb

0

)T
B−10

(
x0 − xb

0

)
(61)

+
1

2

N∑
k=0

(Hk(xk)− yk)
T

R−1k (Hk(xk)− yk) ,

The inference problem is formulated as follows:

xa
0 = arg min

x0∈Rn

J (x0) subject to (25) . (62)

The first order optimality conditions for the problem (62) read:

forward model: 0 = xk+1 −Mk,k+1(xk), k = 0, 1, . . . , N − 1 ; (63a)

adjoint model: λN = HT
NR−1N (HN (xN )− yN ) , (63b)

λk = MT
k,k+1 λk+1 + HT

kR−1k (Hk(xk)− yk) ,

k = N − 1, . . . , 0 ;

optimality: 0 = B−10 (x0 − xb
0) + λ0 . (63c)

Here λk ∈ Rn are the adjoint variables, and

Hk := (Hk)xk
(xk) ,

is the state-dependent Jacobian matrix of the observation operator.
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5.2 The perturbed 4D-Var problem

In this section we use the imperfect data, imperfect model and hence solve a
perturbed 4D-Var problem. The evolution of the discrete state vector x ∈ Rn is
represented by the imperfect discrete model (33). In the presence of data errors
∆yk the discrete cost function reads [17]:

Ĵ (x0) =
1

2

(
x0 − xb

0

)T
B−10 (x0 − xb

0) (64)

+
1

2

N∑
k=0

(Hk(x̂k)− yk −∆yk)
T

R−1k (Hk(x̂k)− yk −∆yk) .

The perturbation in each of the cost function terms is

∆r̂k = (yk −Hk(x̂k))
T

R−1k ∆yk +
1

2
∆yk

T R−1k ∆yk.

The perturbed strongly constrained 4D-Var analysis problem solved in reality
is

x̂a
0 = arg min

x0∈Rn

Ĵ (x0) subject to (33) . (65)

5.3 Super-Lagrangian for the 4D-Var problem

We follow the same procedure as in Section 4.2 to construct the super-Lagrangian
(41) associated with the qoi functional of the form (37) and with the first order
discrete optimality conditions (63) as constraints. The super-Lagrange multi-
pliers for a stationary point of LE are computed using Algorithm 2. Equations
(47) take the following particular form for the 4D-Var system:

Linear system:
(
∇2

x0,x0
j
)
· ζ = ∇x0

E ; (66a)

TLM: µ0 = −ζ ; µk+1 = Mk,k+1 µk, k = 0, . . . , N − 1 ; (66b)

SOA: νN = HT
NR−1N HN µN , (66c)

νk = MT
k,k+1 νk+1 + (MT

k,k+1 λk+1)Txk
µk

+ HT
kR−1k Hk µk , k = N − 1, . . . , 0.

5.4 The 4D-Var a posteriori error estimate

We apply the a posteriori error estimate (40) to the 4D-Var solution. The total
error (40a) is the sum of the contributions of forward model errors

∆Efwd =

N∑
k=1

νTk ·∆x̂k , (67a)

the contributions of the adjoint model errors

∆Eadj = −
N∑
k=0

µT
k ·
(
HT
kR−1k ∆yk

)
+

N−1∑
k=0

µT
k · (∆x̂k+1)

T
xk
λ̂k+1 , (67b)
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and the contribution of the error in the optimality equation

∆Eopt = −ζT (∆x̂1)
T
x0
λ̂1. (67c)

5.5 Probabilistic interpretation

Consider the case where the model errors are given by a state-dependent bias
plus state-independent noise:

∆x̂k = βk + ηk; E[ηk] = 0; cov[ηk, η`] = Qk,`.

Similarly, assume that the data errors are composed of bias and noise (both
state-independent) and that data noise at different times is uncorrelated:

∆ŷk = ρk + εk; E[εk] = 0; cov[εk, εk] = Rk; cov[εk, ε`] = 0, k 6= `. (68)

Assume in addition that the model and the data noises are uncorrelated.
Consider the super-multipliers evaluated at a given forward and adjoint tra-

jectory, e.g., at the optimum. The super-multiplier values do not depend on
the noise in the model and in the data. From equations (67) the error estimate
reads

∆Eest =

N∑
k=1

νTk · βk +

N∑
k=1

νTk · ηk −
N∑
k=0

µT
k ·
(
HT
kR−1k ρk

)
, (69a)

−
N∑
k=0

µT
k ·
(
HT
kR−1k εk

)
+

N−1∑
k=0

µT
k · (βk+1)

T
xk
λ̂k+1 − ζT (β1)

T
x0
λ̂1.

The mean of the estimated qoi error is

E[∆Eest] =

N∑
k=1

νTk · βk −
N∑
k=0

µT
k ·
(
HT
kR−1k ρk

)
(69b)

+

N−1∑
k=0

µT
k · (βk+1)

T
xk
λ̂k+1 − ζT (β1)

T
x0
λ̂1,

and the last two terms disappear when the model bias is state-independent. The
variance of the estimated qoi error contributions is:

var[∆Eest] =

N∑
k,`=1

νTk Qk,` ν` +

N∑
k=0

µT
k

(
HT
k R−1k Hk

)
µk. (69c)

More details can be found in [21, Appendix C].
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6 Numerical Experiments

We now apply the continuous and discrete a posteriori error estimation method-
ologies to two test problems, the heat equation and the shallow water model on
a sphere. The a posteriori error estimates for the heat equation is performed
using the continuous model procedure, whereas for the shallow water model we
calculate the estimates using a discrete model.

6.1 Heat equation

The one dimensional heat equation is given by [16]:

∂u

∂t
= α2 ∂

2u

∂x2
, x ∈ [−1, 1] , t ∈ [0, 0.1] , (70)

with the following initial and boundary conditions:
u (0,x) = u0 (x) ,

u (t,−1) = u (t, 1) ,
∂u

∂x
(t,−1) =

∂u

∂x
(t, 1) .

(71)

We discretize the PDE (71) in space using a central difference scheme to
obtain an ODE of the form (1), which is our forward model. The evolution
of temperature with time is shown in Figure 1(a). Synthetic observations are
obtained by integrating the forward model in time, using a reference initial
condition, and perturbing the solution at various times with noise, whose mean
is 0 and standard deviation is 10% of the actual solution. Synthetic model errors
are introduced by adding a constant vector to the actual model; the imperfect
model has the form (13) with ∆f(t) = 1.

We solve the inverse problem (3) to obtain xa
0 which minimizes the cost func-

tion (2). The solution of the inverse problem (3) requires solving a constrained
optimization problem. The optimization is performed using Poblano, a Matlab
package for gradient based optimization [10]. The necessary gradients are com-
puted using FATODE, a package for time integration and sensitivity analysis
for ODEs [28].

The qoi , i.e., the error functional, is the mean value of the optimal initial
condition

E (xa
0) =

1

n

n∑
i=1

(xa
0)i . (72)

We denote the solution of the perturbed inverse problem (65) by x̂a
0. The actual

error in the mean of the solution (76) is given by:

∆Eactual = E (x̂a
0)− E (xa

0) =
1

n

n∑
i=1

(
(x̂a

0)i −
(
xa
0

)
i

)
. (73)
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∆Eactual ∆Eest
Data Errors 1.945×10−2 2.395×10−2

Model Errors 2.561×10−2 1.819×10−2

Table 1: The comparison between actual error and the a posteriori error esti-
mates for the heat equation.

We follow the procedure outlined in Algorithm 1 and Section 2.5 to estimate
the impact of the data and model errors on the mean of the optimal solution
(72). Solutions of the tangent linear, first order adjoint, and the second order
adjoint models are shown in Figures 1(b), 1(c), and 1(d) respectively. Table
1 compares the actual error(equation (73)) in the qoi and an estimate of (73)
(∆Eest). We observe that the estimates are within acceptable bounds, when
compared to the actual values. Figure 2(a) shows the errors in the individual
observations for the 1D heat equation; they are randomly distributed. Figure
2(b) shows the contributions of different observation errors to the error in the
quantity of interest (72). We observe that certain grid points contribute to the
error more than others. Since the physical process is diffusive, measurements
errors occurring earlier in time contribute more to the a posteriori error estimate.
The data error contributions indicate the sensitive areas, where measurements
need to be very accurate. Gross inconsistencies in the data error contribution
may also point towards faulty sensors. Figure 2(c) shows the contributions of
model errors at different grid points to the error in the quantity of interest
(72). We observe that the contributions of model errors follows the profile of
the second order adjoint model evolution shown in Figure 1(d). This is in
agreement with the theory in Section 2. Some grid points tend to be more
sensitive than the others to the errors in the model. This indicates the need
for better physical representation, e.g., obtained by increasing grid resolution in
the sensitive regions.

6.2 Shallow water model on a sphere

The shallow water equations have been used to model the atmosphere for many
years. They contain the essential wave propagation mechanisms found in gen-
eral circulation models (GCMs)[26]. The shallow water equations in spherical
coordinates are:

∂u

∂t
+

1

a cos θ

(
u
∂u

∂λ
+ v cos θ

∂u

∂θ

)
−
(
f +

u tan θ

a

)
v +

g

a cos θ

∂h

∂λ
= 0, (74a)

∂v

∂t
+

1

a cos θ

(
u
∂v

∂λ
+ v cos θ

∂v

∂θ

)
+

(
f +

u tan θ

a

)
u+

g

a

∂h

∂θ
= 0, (74b)

∂h

∂θ
+

1

a cos θ

(
∂ (hu)

∂λ
+
∂(hv cos θ)

∂θ

)
= 0. (74c)

Here, f is the Coriolis parameter given by f = 2Ω sin θ, where Ω is the angular
speed of the rotation of the Earth, h is the height of the homogeneous atmo-
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(a) Forward model (b) Tangent linear solution

(c) Adjoint solution (d) Second order adjoint solution

Figure 1: The evolution of forward, tangent linear, and adjoint variables for the
heat equation (equations (70) and (71)).

sphere, u and v are the zonal and meridional wind components, respectively,
θ and λ are the latitudinal and longitudinal directions, respectively, a is the
radius of the earth and g is the gravitational constant. The space discretization
is performed using the unstaggered Turkel-Zwas scheme [19]. The discretization
has nlon=72 nodes in longitudinal direction and nlat=36 nodes in the latitudi-
nal direction. The code we use for the forward model is a matlab version of
the fortran code developed by Daescu and Navon and used in the paper [8].
The semi-discretization in space leads to the following discrete model:

xk+1 =M (xk, θ) x0 = x0 (θ) , k = 0, . . . , N. (75)

In (75), the zonal wind, meridional wind and the height variables are combined
into the vector x ∈ Rn with n = 3×nlat×nlon. We perform the time integration
using an adaptive time-stepping algorithm. For a tolerance of 10−8 the average
time step size is 180 seconds. A reference initial condition is used to generate a
reference trajectory.

Synthetic observation errors at various times tk are normally distributed with
mean zero and a diagonal observation error covariance matrix with entries equal
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(a) Data errors
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(b) Contributions of data errors to error in
the quantity of interest (73)
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(c) Contributions of model errors to error
in the quantity of interest (73)

Figure 2: Data errors at different grid points for the heat equation (equations
(70) and (71)) and the contributions to the error functional resulting from data
and model errors.

to (Rk)i,i = 1 for u and v components and (Rk)i,i = 106 for h components. The
Rk values correspond to a standard deviation of 5% for u and v components,
and 2% for h component. Synthetic observations are obtained by adding the
synthetic observation noise to the reference solution at times tk. The background
error covariance matrix is also diagonal with entries equal to (B0)i,i = 1 for u
and v components and (B0)i,i = 106 for h components.

Model errors are introduced in the form of random correlated noise. We
build statistical models of model errors and consider different realizations in
Section 6.3. The cost function has the form (64).

The qoi is the mean of the height component of the analysis (the optimal
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initial condition)

E (xa
0) =

1

nlat× nlon

3×nlat×nlon∑
i=2×nlat×nlon+1

(xa
0)i . (76)

6.3 Statistical models for model errors

To realistically simulate model errors we consider differences between the shallow
water solutions obtain on a coarse and on a fine grid. The coarse grid was
discussed in Section 6.2. The fine grid has a spatial resolution of nlat × nlon =
108 × 72, three times smaller than the coarse grid. The time integration is also
performed at a finer temporal resolution realized by using the matlab’s ode45
integrator. The atol and rtol are both set to 10−12. The solution fields
obtained one the fine grid are perturbed to produce synthetic observations,
which are then used for the coarse grid data assimilation.

The differences between model solutions on the fine grid (projected onto
the coarse) and on coarse grid are used as proxies for the model errors. The
procedure used to generate the ensemble of model errors is as follows. Integrate
the model on the fine grid for the simulation window. Divide the simulation
window into sub-intervals [tk, tk+1] of length tk+1 − tk = 400 seconds. At the
beginning of each sub-interval project the solution values from the fine grid onto
the coarse grid. Use these values as coarse grid initial solutions, and run the
coarse model on each sub-interval. The differences between the coarse and fine
solutions at the end of each sub-interval [tk, tk+1] (projected onto the coarse
model space) represent the model error terms ∆x̂k+1 in (33). The procedure
summarized above, is used to generate a total of 216 error vectors (an ensemble
member is collected every 400 seconds for a period of 24 hours). We make the
assumption that model errors are stationary and use this ensemble of differences
to build statistical models of model errors.

To find an appropriate description of model errors we consider a variety of
distributions and fit the model errors using the Bayesian information criterion
(BIC). The BIC is a criterion for model selection among a finite set of models
that resolves the problem of overfitting by introducing a penalty term for the
number of parameters in the model [23, 24].

We first seek one probability distribution that can best describe the errors
at each of the 7,776 individual grid points. Different distribution families are
used to fit the ensembles of errors. As shown in Figures 3 and 4, no distribution
fits the error completely satisfactorily. The BIC criterion ranks the suitability
of different distributions for each grid point, and Table 2 shows the number of
grid points where the most successful fits appear in top three. Since the normal
distribution consistently ranks in the top three we choose to model the model
errors as a Gaussian process. There is a considerable inter-grid correlation of
errors. The scaled Bessel functions of the first kind [1] are used to model inter-
grid correlation functions and their parameters are obtained by fitting to the
actual values. Figure 5 shows the comparison between actual correlation values
and the correlation modeled with Bessel functions. We construct the error
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Figure 3: The model errors for the shallow water equations (74) are fit to
different distributions based on the Bayesian information criterion for some
samples. The plots show the top three best fits.

correlation matrix using inter-grid correlations modeled by the Bessel functions
of the first kind. We use the resulting covariance matrix and the mean of the
ensembles of real errors to generate different realizations of model errors. These
realizations correspond to the terms ∆x̂k+1 in equation (33). The multiple
instances of model errors help with the statistical validation of the a posteriori
error estimates discussed in Section 6.5.

Distribution name No of best fits in top three
Generalized extreme value 7,608
Normal 7,247
Tlocation scale 7,052

Table 2: The number of best fits for selected distributions. This is the number
of grid points where the distributions are ranked in top three by the Bayesian
information criterion as the comparison metric.

6.4 Validation of a posteriori error estimates in determin-
istic setting

A posteriori estimates for the error in the qoi (76) due to data and model errors
in 4D-Var data assimilation with the shallow water system are computed using
the methodology discussed in the Section 3. Table 3 compares the actual errors
(38) and the estimated errors (67). We observe that the estimates are fairly
accurate. Figure 6 shows the errors in the individual observations (which are
independent and normally distributed) and the corresponding contributions of
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Figure 4: The model errors are fit to different distributions for the shallow water
model (74) based on the Bayesian information criterion for some samples. The
plots show the top three best fits.

different observation errors to the error in the quantity of interest (76). We ob-
serve that certain grid points contribute to the error more than others. The data
error contributions indicate the sensitive areas where measurements need to be
more accurate in order to obtain a better analysis (as measured by the qoi ).
Larger than expected data error contributions may also point to faulty sensors.
Figure 7 shows the model errors at different grid points and their contributions
to the error in the qoi (76). Some grid points are more sensitive than others
to the errors in the model. This indicates the need for better physical repre-
sentation, or for higher numerical accuracy (e.g., obtained by increasing grid
resolution, or by using higher order time integration) in the sensitive regions.

∆Eactual ∆Eest
Data Errors 54.701 57.268
Model Errors 1.9278 2.9683

Table 3: Comparison between actual errors in the qoi and the a posteriori error
estimates for the shallow water model in a deterministic setting.

6.5 Validation of a posteriori error estimates in proba-
bilistic setting

The statistics of the a posteriori error estimate (69) are validated by comparing
them against the mean and variance of the qoi for an ensemble of runs (ensemble
mean and variance).

The validation procedure is as follows:
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(b) North-South correlation of model errors

Figure 5: Correlations between model errors at neighboring grid points. The
actual values are obtained form the ensemble of runs. They are modeled by
Bessel functions of the first kind.

1. Generate Nens realizations of data errors taken from a Gaussian distri-
bution ∆yk ∼ N (0,Rk). This distribution is consistent with (68) for
ρk = 0.

2. Generate Nens realizations of model errors. The procedure to obtain dif-
ferent realizations of model error is described in Section 6.3.

3. Solve Nens different 4D-Var optimization problems (65) to obtain solutions
(x̂a

0)e, e = 1, . . . , Nens. Each 4D-Var problem uses a different realization
of model error and a different realization of the synthetic data (reference
values plus the realization of data errors).

4. Obtain an ensemble of errors in the qoi (∆Eens)e = E((x̂a
0)e) − E(xa

0),
e = 1, . . . , Nens.

5. The ensemble mean of error impact is computed by:

E[∆Eens] =
1

Nens

Nens∑
i=e

(∆Eens)e , (77a)

and the ensemble variance of error impact is computed by:

var[∆Eens] =
1

Nens − 1

Nens∑
e=1

((∆Eens)e − E[∆Eens])2 . (77b)

6. Compare the variational estimates (69) of means and variances of the im-
pact of data and model errors on the optimal solution against the ensemble
estimates (77).
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Figure 6: The figures on the left show the errors in the data collected for
different variables at different grid points for the shallow water model (74) at
an observation time t = 12h. The figures on the right show the sum total of
data error contributions at different grid points to the error functional (76) for
hourly observations measured over a period of 24 hours.

Table 4 shows the results for the shallow water equation. Two sets of ex-
periments are performed. In the first set we consider data errors, but no model
errors. In the second we consider model errors, but no data errors. This allows
to validate separately the impact of data and the impact of model errors. In
each case we use ensembles of Nens = 15 members. The variational estimates
are fairly close to the ensemble means and variances.

7 Conclusions and future work

Practical inverse problems use imperfect models and noisy data. This work
considers variational inverse problems with time dependent models such as those
arising from the discretization of evolutionary PDEs. An a posteriori error
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E[∆Eobs] var (∆Eobs) E[∆Emod] var (∆Emod)
Variational estimates (69) 0.00 2.87 1.21 0.053
Ensemble estimates (77) 0.105 2.53 1.17 0.080

Table 4: Comparison between ensemble mean and variances of the impact of
model and data errors on the 4D-Var optimal solution with the shallow water
model (74).

estimation methodology is developed to quantify the impact of model and data
errors on the inference result. The approach considers a scalar quantity of
interest that depends on the inference result, and which is formalized as an
error functional. The errors in the quantity of interest due to errors in the
model and data are estimated to first order using an algorithm that involves
tangent linear, first, and second order adjoint models. We consider generic
continuous-time and discrete-time models, and generic cost functionals for the
inverse problem. We also derive estimations in the particular case of 4D-Var
data assimilation.

We illustrate the proposed approach using a 4D-Var data assimilation tests
with a one dimensional heat equation and with the shallow water model on a
sphere. The error estimates are very close to the actual errors in the quantity of
interest due to both the data as well as the model inaccuracies. The statistics
(mean and variance) of the estimates are cross-validated using an ensemble of
estimates.

The proposed methodology can prove useful in a general context to quan-
tify and reduce uncertainties in a real-time system with feedback. The error
estimates can be used to locate faulty sensors. Moreover, the areas of maxi-
mum sensitivity highlighted via the error estimates indicate the locations where
greater accuracy in measurements is required (adaptive observations), or where
it is beneficial to increase the model resolution (adaptive modeling). In future
work we plan to apply this methodology to estimate errors in real scenarios
using models like the Weather Research and Forecast Model (WRF).
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Figure 7: The figures on the left show samples of model errors for different
variables at different grid points for the shallow water model (74) at time t=
3600s. The figures on the right show the corresponding model error contribu-
tions at different grid points to the error functional (76) for hourly observations
measured over a period of 24 hours. The plot indicates the sum of the model
error impact over all the observation instances.
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Appendices

A Derivation of first order optimality conditions
for continuous-time models

The Lagrangian function associated with the cost function in (2) and the con-
straint in (1) is

L =

tF∫
t0

r (x(t), θ) dt+ w (x(tF ), θ)−
tF∫
t0

λT(t) · (x′ − f(t,x, θ)) dt (78)

Taking variations of (78) we obtain:

δL =

tF∫
t0

((
rTθ (x(t), θ) + fTθ (t,x, θ) · λ

)T · δθ)dt

+

tF∫
t0

((
rTx (x(t), θ) + fTx (t,x, θ) · λ

)T · δx) dt

−
tF∫
t0

δλT · (x′ − f(t,x, θ)) dt−
tF∫
t0

λT · (δx′) dt

+ wx (x (tF ) , θ) · δx (tF ) + wθ (x (tF ) , θ) · δθ
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Further, by performing integration by parts we obtain:

−
tF∫
t0

λT · (δx′) dt =− λT (t) · δx (t)

∣∣∣∣tF
t0

+

tF∫
t0

(λ′)
T · δx (t) dt

=− λT (tF ) · δx (tF ) + λT (t0) · δx (t0)

+

tF∫
t0

(λ′)
T · δx (t) dt

=− λT (tF ) · δx (tF ) + λT (t0) · (xθ(t0) · δθ)

+

tF∫
t0

(λ′)
T · δx (t) dt

(79)

The KKT conditions or the first order optimality conditions are obtained by
setting Lλ,Lθ, and Lx = 0.
Setting 〈Lx, δx〉 = 0, (where, 〈.〉 denotes the inner product.) gives us the fol-
lowing adjoint ODE :

λ′ = −rTx (x(t), θ)− fTx (t,x, θ) · λ, λ (tF ) = wT
x (x (tF ) , θ) . (80a)

Setting 〈Lλ, δλ〉 = 0, we obtain the constraint ODE

− x′ + f(t,x, θ) = 0, x(t0) = x0 . (80b)

Setting 〈Lθ, δθ〉 = 0, we obtain the following optimality condition:

ξ (t0) + xT
θ (t0) · λ(t0) = 0 . (80c)

The value of ξ (t0) can be obtained by solving the following ODE:

ξ′ = −
(
rTθ (x(t), θ) + fTθ (t,x, θ) · λ

)
,

tF ≤ t ≤ t0, ξ (tF ) = wT
θ (x (tF ) , θ) .

(81)

The group of equations in (80) represent the first order optimality conditions
and are same as the group of equations elaborated in (7).
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B Derivation of super-Lagrange parameters

The Lagrangian associated with the error functional of the form (5) and the
constraints posed by the first order optimality conditions (7) is:

LE = E (θa)−
t0∫

tF

µT ·
(
λ′ + rTx + fTx · λ

)
dt (82)

−µT (tF ) ·
(
λ (tF )− wT

x (x (tF ) , θ)
)

−
t0∫

tF

ζT ·
(
ξ′ + rTθ + fTθ · λ

)
dt

−ζT ·
(
ξ (tF )− wT

θ (x (tF ) , θ)
)

−ζT ·
(
ξ (t0) + xT

θ (t0) · λ(t0)
)

−
tF∫
t0

νT · (x′ − f) dt− νT (t0) · (x(t0)− x0) .

Taking the variations of (82) we obtain:

〈
LEλ, δλ

〉
= 〈Eλ, δλ〉 =

t0∫
tF

(
− (µ′)

T · δλ+ µT ·
(
fTx · δλ

)
+ ζT ·

(
fTθ · δλ

))
dt

+ µT · δλ
∣∣t0
tF

+ µT (tF ) · δλ (tF ) + ζT · xT
θ (t0) · δλ(t0)

Imposing the stationary condition ∇λLE = 0 leads to the following tangent
linear model (TLM):

−µ′ + fx · µ+ fθ · ζ = 0, t0 ≤ t ≤ tF ; (83)

µ (t0) = −xθ(t0) · ζ .

〈
LEx, δx

〉
= 〈Ex, δx〉 =

tF∫
t0

(
− (ν′)

T − νT · fx − (rx,x · µ)
T −

(
(fx,x · µ)

T · λ
)T)

· δx dt

+

tF∫
t0

(
−
(
rTθ,x · ζ

)T − ((fTθ,x · ζ)T · λ)T) · δx dt

+νT · δx
∣∣tF
t0

+ νT(t0) · (δx (t0)− δx0)

+ζT ·
(
−wT

θ,x (x (tF ) , θ) · δx (tF )
)

−µ (tF )
T · (wx,x (x (tF ) , θ)) · δx (tF ) .
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The stationarity condition ∇xLE = 0 leads to the following second order adjoint
ODE (SOA)

(ν′) + fTx · ν + rx,x · µ+ (fx,x · µ)
T · λ (84)

+rTθ,x · ζ +
(
fTθ,x · ζ

)T · λ = 0, tF ≥ t ≥ t0;

ν (tF ) = wθ,x (x (tF ) , θ) · ζ + wx,x (x (tF ) , θ) · µ (tF ) .

We group the remaining terms to obtain

〈Eθ, δθ〉 =

tF∫
t0

−
(
µT ·

(
rTx,θ + fx,θ · λ

)
+ ζT ·

(
rTθ,θ + (fθ,θ · λ)

T
)

(85)

+νT · fθ
)
· δθ dt

−µT (tF ) · (wθ,x · δθ (tF ))− ζT · (wθ,θ · δθ (tF ))

−ζT ·
(

(xθ,θ (t0) · δθ)T · λ(t0)
)
− ν (t0)

T · ((x0)θ δθ) .

Let us take the variation of the first order adjoint equation in equation (80a) in

the direction of δθ, we obtain (we denote σ(t) =
dλ(t)

dθ
· δθ)

σ′ = −fTx · σ − (fx,x · δx)
T · λ− (fx,θ · δθ)T · λ (86)

−rx,x · δx− rTθ,x · δθ , tF ≥ t ≥ t0 ,
σ (tF ) = wx,x · δx|tF + wθ,x · δθ|tF .

The gradient of the cost function with respect to θ is given by

∇θJ = wTθ + xTθ · λ (t0) (87)

+

∫ tF

t0

(
fθ · λ+ rTθ

)
dt .

Now taking the derivative of the gradient in the direction of δθ, we have in the
direction of δθ, the following Hessian-vector product:

∇2
θ,θJ · δθ = wx,θ (x(tF ), θ) · δx (tF ) + wθ,θ (x (tF ) , θ) · δθ

+

(
dx0

dθ

)T
· σ(t0) +

(
d2x0

dθ2
δθ

)
· λ(t0)

+

tF∫
t0

(
fTθ · σ + (fθ,x · δx)

T · λ+ (fθ,θ · δθ)T · λ
)

dt

+

tF∫
t0

(rx,θ · δx + rθ,θ · δθ) dt .

(88)
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Comparing (86) and (84) we see the following relationsips

δθ = ζ (89)

δx = µ

σ = ν

Substituting (89) in (85) we obtain (11).

C Derivation of first order optimality conditions
for discrete-time models

The Lagrangian function associated with the cost function in (26) and the con-
straints in (25) is

L =

N−1∑
k=0

(
rk (xk, θ)− λTk+1 · (xk+1 −Mk,k+1(xk, θ))

)
+ rN (xN , θ) (90)

−λT0 · (x0 − x0 (θ))

Taking the variations we get

δL =

N∑
k=0

(rk (xk, θ))xk
· δxk + (rk (xk, θ))θ · δθ

−
N−1∑
k=0

λTk+1 · (δxk+1 −Mk,k+1δxk −Mk,k+1δθ)

−
N−1∑
k=0

δλTk+1 · (xk+1 −Mk,k+1 (xk, θ))

−λT0 · (δx0 − (x0)θ δθ)− δλ
T
0 · (x0 − x0 (θ)) .

Setting the independent variations with respect to δθ, δxk , and δλk = 0 we get

λN = (rN (xN , θ))
T
xN

, (91a)

0 = λk −MT
k,k+1λk+1 − (rk (xk, θ))

T
xk
, k = N − 1, . . . , 0 , (91b)

0 = xk+1 −Mk,k+1 (xk, θ) , k = 0, . . . , N − 1 , (91c)

0 =

N∑
k=0

(rk (xk, θ))
T
θ + (x0)

T
θ · λ0 +

N−1∑
k=0

MT
k,k+1λk+1 . (91d)

The set of equations in (91) represent the first order optimality conditions for
the inverse problem (28) with discrete time models.
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D Finite dimensional methodology

D.1 The exact inverse problem

Consider the exact (“reference”) inverse problem

θa =arg min
θ

J (x, θ)

subject to c (x, θ) = 0 .
(92)

The Lagrangian is given by

L = J − λT · c . (93)

The KKT conditions for equation (93) is given by

forward model: 0 = c (x, θ) , (94a)

adjoint model: 0 = Jx − λT · cx , (94b)

optimality: 0 = Jθ − λT · cθ . (94c)

It should be noted that the gradient of L with respect to θ is given by

∇θL = Jθ − λT · cθ . (95)

We seek to minimize the function E (θ) with the KKT conditions in equation
(94) as the constraints. Hence we consider the following super-Lagrangian

LE = E − νT · c−
(
Jx − λT · cx

)
µ−

(
Jθ − λT · cθ

)
ζ . (96)

Taking the derivative of LE with respect to x, λ, and θ we obtain the following:

(
LE
)
x

= Ex − νT · cx − µT
(
Jx,x − λT · cx,x

)
(97a)

− ζT ·
(
Jθ,x − λT · cθ,x

)
,(

LE
)
λ

= Eλ + µT · cTx + ζT · cTθ , (97b)(
LE
)
θ

= Eθ − νT · cθ − µT ·
(
Jx,θ − λT · cx,θ

)
(97c)

− ζT ·
(
Jθ,θ − λT · cθ,θ

)
.

Setting
(
LE
)
λ

= 0, we obtain (Eλ = 0)

µT = −ζT ·
(
cTθ c−Tx

)
. (98)

From equations (97a) and (98) and setting
(
LE
)
x

= 0, we obtain (Ex = 0)

νT · cθ = ζT
(
cθc
−1
x

(
Jx,x − λT · cx,x

)
−
(
Jθ,x − λT · cθ,x

))
c−1x cθ. (99)

Substituting equations (99) and (98) in (97c) we obtain

Eθ = ζT
(
cTθ c−Tx

(
Jx,x − λT · cx,x

)
−
(
Jθ,x − λT · cθ,x

))
c−1x cθ (100)

−ζT
(
cTθ c−Tx

(
Jx,θ − λT · cx,θ

))
+ ζT ·

(
Jθ,θ − λT · cθ,θ

)
.
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Consider the Lagrangian of the reduced cost function

`(θ) = J (x (θ) , θ)− λ(θ)T · c (x (θ) , θ) . (101)

The reduced gradient reads

`Tθ = J Tθ − cTθ λ+ xTθ
(
J Tx − cTx λ

)
−
(
λTθ + xTθ λ

T
x

)
c . (102)

The reduced Hessian reads

`θ,θ = Jθ,θ − λT cθ,θ +
(
Jθ,x − λT cθ,x

)
xθ − cTθ (λθ + λx xθ) (103)

+xTθ
(
Jx,θ − λT cx,θ

)
+ xTθ

(
Jx,x − λT cx,x

)
xθ

−xTθ cTx (λθ + λx xθ)

−
(
λTθ + xTθ λ

T
x

)
(cθ + cx xθ)−

d

dθ

(
λTθ + xTθ λ

T
x

)
c

= Jθ,θ − λT cθ,θ +
(
Jθ,x − λT cθ,x

)
xθ

+xTθ
(
Jx,θ − λT cx,θ

)
+ xTθ

(
Jx,x − λT cx,x

)
xθ

−
(
cTθ + xTθ cTx

)
(λθ + λx xθ)

−
(
λTθ + xTθ λ

T
x

)
(cθ + cx xθ)−

d

dθ

(
λTθ + xTθ λ

T
x

)
c .

When the optimality conditions are satisfied we have that

c = 0 , cθ + cx xθ = 0 ⇒ xθ = −c−1x cθ.

Consequently the reduced Hessian (103) evaluated at the optimal solution reads

`θ,θ = Jθ,θ − λT cθ,θ +
(
Jθ,x − λT cθ,x

)
xθ (104)

+xTθ
(
Jx,θ − λT cx,θ

)
+ xTθ

(
Jx,x − λT cx,x

)
xθ

= Jθ,θ − λT cθ,θ −
(
Jθ,x − λT cθ,x

)
c−1x cθ

−cTθ c−Tx

(
Jx,θ − λT cx,θ

)
+ cTθ c−Tx

(
Jx,x − λT cx,x

)
c−1x cθ.

Equation (100) can be written as the “Hessian linear system”

`θ,θ · ζ = ETθ .

Equation (98) is the tangent linear model

µ = −c−1x cθ · ζ ⇔ cx · µ = −cθ · ζ.

Finally from (97a) we have the second order adjoint model

cTx ν = −
(
Jx,x − λT · cx,x

)T
µ−

(
Jθ,x − λT · cθ,x

)T
ζ

or

ν = c−Tx

(
Jx,x − λT · cx,x

)T
c−1x cθ · ζ − c−Tx

(
Jθ,x − λT · cθ,x

)T
ζ.
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Consider now the perturbed inverse problem

perturbed forward model: ∆F = c (x, θ) , (105a)

perturbed adjoint model: ∆A = Jx − λT · cx , (105b)

perturbed optimality: ∆O = Jθ − λT · cθ . (105c)

where ∆F , ∆A, and ∆O are the residuals in the forward, adjoint, and optimality
conditions, respectively. From (96) we have the following error estimate:

∆E ≈ νT ·∆F + µT ·∆A+ ζT ·∆O
= ζT

(
cTθ c−Tx

(
Jx,x − λT · cx,x

)
−
(
Jθ,x − λT · cθ,x

))
c−1x ∆F

+ζT
(
−cTθ c−Tx ∆A+ ∆O

)
D.2 Perturbed finite dimensional inverse problem

Consider the perturbed inverse problem

θ̂a =arg min
θ

J (x, θ) + ∆J (x, θ)

subject to c (x, θ) + ∆c (x, θ) = 0 .
(106)

The perturbed Lagrangian is given by

L̂ = J + ∆J − λT · (c + ∆c) . (107)

For convenience we use the short notation

c := c (x, θ) , ĉ := c
(
x̂, θ̂
)
, x̂ = x + ∆x, θ̂ = θ + ∆θ, λ̂ = λ+ ∆λ.

The KKT conditions for equation (107) are

forward model: 0 = ĉ + ∆ĉ , (108a)

adjoint model: 0 = Ĵx + ∆Ĵx − λ̂T · (ĉx + ∆ĉx) , (108b)

optimality: 0 = Ĵθ + ∆Ĵθ − λ̂T · (ĉθ + ∆ĉθ) . (108c)

Linearize (108) around the ideal optimal solution (94):

0 = c + ∆c + (c + ∆c)x ∆x + (c + ∆c)θ ∆θ , (109a)

0 = (J + ∆J )x + (J + ∆J )x,x ∆x + (J + ∆J )x,θ ∆θ (109b)

−∆λT · cx − λT · (c + ∆c)x
−λT · (c + ∆c)x,x ∆x− λT · (c + ∆c)x,θ ∆θ ,

0 = (J + ∆J )θ + (J + ∆J )θ,x ∆x + (J + ∆J )θ,θ ∆θ (109c)

−∆λT · cθ − λT · (c + ∆c)θ − λ
T · (c + ∆c)θ,x ∆x

−λT · (c + ∆c)θ,θ ∆θ.
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Assumption: ∆c, ∆J , their first derivatives ∆cx, ∆Jx, ∆cθ, ∆Jθ, and their
second order derivatives ∆cx,x, ∆cx,θ, . . . , ∆Jθ,θ are small (their norms are
bounded by ε).

Then ignoring products of small terms in (109) leads to

0 = c + ∆c + cx ∆x + cθ ∆θ (110a)

0 = (J + ∆J )x + Jx,x ∆x + Jx,θ ∆θ (110b)

−∆λT · cx − λT · (c + ∆c)x − λ
T · cx,x ∆x− λT · cx,θ ∆θ ,

0 = (J + ∆J )θ + Jθ,x ∆x + Jθ,θ ∆θ (110c)

−∆λT · cθ − λT · (c + ∆c)θ − λ
T · cθ,x ∆x− λT · cθ,θ ∆θ.

Using the ideal KKT conditions (94) and after rearranging terms the above
expressions (110) become

0 = ∆c + cx ∆x + cθ ∆θ (111a)

0 = ∆J Tx − cTx ·∆λ−∆cTx · λ (111b)

+
(
Jx,x − λT · cx,x

)
∆x +

(
Jx,θ − λT · cx,θ

)
∆θ ,

0 = ∆J Tθ − cTθ ·∆λ−∆cTθ · λ (111c)

+
(
Jθ,x − λT · cθ,x

)
∆x +

(
Jθ,θ − λT · cθ,θ

)
∆θ .

From (111a)
∆x = −c−1x ∆c− c−1x cθ ∆θ.

From (111b)

∆λ = c−Tx ·∆J Tx − c−Tx ·∆cTx · λ− c−Tx ·
(
Jx,x − λT · cx,x

)
c−1x ∆c

−c−Tx ·
(
Jx,x − λT · cx,x

)
c−1x cθ ∆θ + c−Tx ·

(
Jx,θ − λT · cx,θ

)
∆θ

From (111c)

0 = ∆J Tθ −∆cTθ · λ− cTθ c−Tx ·∆J Tx + cTθ c−Tx ·∆cTx · λ
+cTθ c−Tx ·

(
Jx,x − λT · cx,x

)
c−1x ∆c−

(
Jθ,x − λT · cθ,x

)
c−1x ∆c

+cTθ c−Tx ·
(
Jx,x − λT · cx,x

)
c−1x cθ ∆θ − cTθ c−Tx ·

(
Jx,θ − λT · cx,θ

)
∆θ

−
(
Jθ,x − λT · cθ,x

)
c−1x cθ ∆θ +

(
Jθ,θ − λT · cθ,θ

)
∆θ .

Using the reduced Hessian equation (104) we have that

`θ,θ ∆θ = −
(
∆Jθ − λT ·∆cθ

)T
+ cTθ c−Tx ·

(
∆Jx − λT ·∆cx

)T
−cTθ c−Tx ·

(
Jx,x − λT · cx,x

)
c−1x ∆c +

(
Jθ,x − λT · cθ,x

)
c−1x ∆c

= ∆O − cTθ c−Tx ·∆A
−
(
cTθ c−Tx

(
Jx,x − λT · cx,x

)
−
(
Jθ,x − λT · cθ,x

) )
c−1x ∆F

= β.
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where the residuals in the three KKT equations are denoted by

∆F = −∆c,

∆A = −
(
∆Jx − λT ·∆cx

)T
,

∆O = −
(
∆Jθ − λT ·∆cθ

)T
.

Solve
`θ,θ ζ = ETθ ⇒ ζT = Eθ · `−1θ,θ .

Then
∆E ≈ Eθ ·∆θ = Eθ · `−1θ,θ · β = ζT · β.

Therefore

∆E ≈ ζT ·∆O − ζT · cTθ c−Tx ·∆A
−ζT ·

(
cTθ c−Tx

(
Jx,x − λT · cx,x

)
−
(
Jθ,x − λT · cθ,x

) )
c−1x ∆F

Use the tangent linear model

µ = −c−1x cθ · ζ ⇔ cx · µ = −cθ · ζ.

The error estimate becomes:

∆E ≈ ζT ·∆O + µT ·∆A
+
(
µT
(
Jx,x − λT · cx,x

)
+ ζT ·

(
Jθ,x − λT · cθ,x

) )
c−1x ∆F

Using the second order adjoint model

cTx ν = −
(
Jx,x − λT · cx,x

)T
µ−

(
Jθ,x − λT · cθ,x

)T
ζ

The error estimate becomes the familiar one:

∆E ≈ ζT ·∆O + µT ·∆A− νT ∆F .

D.3 Perturbed super-Lagrange parameters

Recall the ideal KKT conditions (94)

forward model: 0 = c ,

adjoint model: 0 = J Tx − cTx λ

optimality: 0 = J Tθ − cTθ λ ,
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and linearize them about x̂, θ̂

0 = ĉ− ĉx ∆x− ĉθ ∆θ , (113a)

0 = Ĵ Tx − Ĵx,x ∆x− Ĵx,θ ∆θ (113b)

− (ĉx − ĉx,x ∆x− ĉx,θ ∆θ)
T
(
λ̂−∆λ

)
= Ĵ Tx − ĉTx λ̂+ ĉTx ∆λ

−
(
Ĵx,x − λ̂T ĉx,x

)
∆x−

(
Ĵx,θ − λ̂T ĉx,θ

)
∆θ

+∆λT ĉx,x ∆x + ∆λT ĉx,θ ∆θ,

0 = Ĵ Tθ − Ĵθ,x ∆x− Ĵθ,θ ∆θ (113c)

− (ĉθ − ĉθ,x ∆x− ĉθ,θ ∆θ)
T
(
λ̂−∆λ

)
= Ĵ Tθ − ĉTθ λ̂+ ĉTθ ∆λ

−
(
Ĵθ,x − λ̂T ĉθ,x

)
∆x−

(
Ĵθ,θ − λ̂T ĉθ,θ

)
∆θ

+∆λT ĉθ,x ∆x + ∆λT ĉθ,θ ∆θ.

Note that

λT c(x, θ) =
∑
i

λi ci(x, θ)

d λT c(x, θ)

dxj
=

∑
i

λi
d ci(x, θ)

dxj
=
∑
i

λi (cx)i,j = λT (cx):,j

(
d λT c(x, θ)

dx

)T
= cTx λ

d (cTx λ)j
dxk

=
∑
i

λi
d (cx)i,j
dxk

=
∑
i

λi
d2 ci
dxj dxk

=
∑
i

λi(cx,x)i,j,k

d (cTx λ)

dx
∆x = λT cx,x ∆x = (cx,x ∆x)T λ.

Subtract the linearized ideal KKT conditions (113) from the perturbed KKT
conditions (108) to obtain

0 = ∆ĉ + ĉx ∆x + ĉθ ∆θ , (114a)

0 = ∆Ĵ Tx −∆ĉTx λ̂− ĉTx ∆λ (114b)

+
(
Ĵx,x − λ̂T ĉx,x

)
∆x +

(
Ĵx,θ − λ̂T ĉx,θ

)
∆θ

0 = ∆Ĵ Tθ −∆ĉTθ λ̂− ĉTθ ∆λ (114c)

+
(
Ĵθ,x − λ̂T ĉθ,x

)
∆x +

(
Ĵθ,θ − λ̂T ĉθ,θ

)
∆θ.

Note the similarity of (114) with (111). While in (111) the functions are evalu-
ated at the exact optimum, in (114) they are evaluated at the perturbed opti-
mum (which is the one we actually compute).
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By substitution we arrive at the following:

∆x = −ĉ−1x (∆ĉ + ĉθ ∆θ) (115a)

∆λ = ĉ−Tx

(
∆Ĵ Tx −∆ĉTx λ̂

)
(115b)

−ĉ−Tx

(
Ĵx,x − λ̂T ĉx,x

)
ĉ−1x (∆ĉ + ĉθ ∆θ)

+ĉ−Tx

(
Ĵx,θ − λ̂T ĉx,θ

)
∆θ

0 = ∆Ĵ Tθ −∆ĉTθ λ̂ (115c)

−ĉTθ ĉ−Tx

(
∆Ĵ Tx −∆ĉTx λ̂

)
+ĉTθ ĉ−Tx

(
Ĵx,x − λ̂T ĉx,x

)
ĉ−1x (∆ĉ + ĉθ ∆θ)

−ĉTθ ĉ−Tx

(
Ĵx,θ − λ̂T ĉx,θ

)
∆θ

−
(
Ĵθ,x − λ̂T ĉθ,x

)
ĉ−1x (∆ĉ + ĉθ ∆θ)

+
(
Ĵθ,θ − λ̂T ĉθ,θ

)
∆θ.

Consider the reduced perturbed Lagrangian

̂̀(θ̂) = Ĵ (x̂(θ̂), θ̂) + ∆Ĵ (x̂(θ̂), θ̂)− λ̂(θ̂)T ·
(
ĉ(x̂(θ̂), θ̂) + ∆c(x̂(θ̂), θ̂)

)
. (116)

Similar to (104) the reduced perturbed Hessian evaluated at the perturbed op-
timal solution reads

̂̀
θ,θ = Ĵθ,θ − λ̂T cθ,θ + ∆Ĵθ,θ − λ̂T ∆cθ,θ (117)

−
(
Jθ,x − λT cθ,x

)
(ĉx + ∆ĉx)−1 (ĉθ + ∆ĉθ)

−
(
∆Jθ,x − λT ∆cθ,x

)
(ĉx + ∆ĉx)−1 (ĉθ + ∆ĉθ)

−(ĉθ + ∆ĉθ)
T (ĉx + ∆ĉx)−T

(
Jx,θ − λT cx,θ

)
−(ĉθ + ∆ĉθ)

T (ĉx + ∆ĉx)−T
(
∆Jx,θ − λT ∆cx,θ

)
+(ĉθ + ∆ĉθ)

T (ĉx + ∆ĉx)−T
(
Jx,x − λT cx,x

)
(ĉx + ∆ĉx)−1 (ĉθ + ∆ĉθ)

+(ĉθ + ∆ĉθ)
T (ĉx + ∆ĉx)−T

(
∆Jx,x − λT ∆cx,x

)
(ĉx + ∆ĉx)−1 (ĉθ + ∆ĉθ).

Assume that ‖∆ĉx‖ and ‖∆ĉθ‖ are small. Neglecting products of small terms
we have that

(ĉx + ∆ĉx)−1 (ĉθ + ∆ĉθ) ≈ (ĉ−1x −∆ĉx) (ĉθ + ∆ĉθ)

≈ ĉ−1x ĉθ + ĉ−1x ∆ĉθ −∆ĉx ĉθ.

We also assume that ‖∆ĉx,x‖, ‖∆ĉx,θ‖, and ‖∆ĉθ,θ‖ are small.
With this approximation, and after neglecting products of small terms, the
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reduced perturbed Hessian (117) becomes

̂̀
θ,θ = Ĵθ,θ − λ̂T cθ,θ (118)

+∆Ĵθ,θ − λ̂T ∆cθ,θ

−
(
Jθ,x − λT cθ,x

)
(ĉ−1x ĉθ + ĉ−1x ∆ĉθ −∆ĉx ĉθ)

−
(
∆Jθ,x − λT ∆cθ,x

)
(ĉ−1x ĉθ)

−(ĉ−1x ĉθ + ĉ−1x ∆ĉθ −∆ĉx ĉθ)
T
(
Jx,θ − λT cx,θ

)
−(ĉ−1x ĉθ)

T
(
∆Jx,θ − λT ∆cx,θ

)
+(ĉ−1x ĉθ)

T
(
Jx,x − λT cx,x

)
(ĉ−1x ĉθ + ĉ−1x ∆ĉθ −∆ĉx ĉθ)

+(ĉ−1x ĉθ + ĉ−1x ∆ĉθ −∆ĉx ĉθ)
T
(
Jx,x − λT cx,x

)
(ĉ−1x ĉθ)

+(ĉ−1x ĉθ)
T
(
∆Jx,x − λT ∆cx,x

)
(ĉ−1x ĉθ).

After neglecting products of small terms

̂̀
θ,θ ·∆θ =

(
Ĵθ,θ − λ̂T cθ,θ

)
∆θ

−
(
Jθ,x − λT cθ,x

)
(ĉ−1x ĉθ) ∆θ

−(ĉ−1x ĉθ)
T
(
Jx,θ − λT cx,θ

)
∆θ

+(ĉ−1x ĉθ)
T
(
Jx,x − λT cx,x

)
(ĉ−1x ĉθ)∆θ.

The last equation (115c) reads

0 = ∆Ĵ Tθ −∆ĉTθ λ̂− ĉTθ ĉ−Tx

(
∆Ĵ Tx −∆ĉTx λ̂

)
(119)

+ĉTθ ĉ−Tx

(
Ĵx,x − λ̂T ĉx,x

)
ĉ−1x ∆ĉ

−
(
Ĵθ,x − λ̂T ĉθ,x

)
ĉ−1x ∆ĉ

+ĉTθ ĉ−Tx

(
Ĵx,x − λ̂T ĉx,x

)
ĉ−1x ĉθ ∆θ̂̀

θ,θ ·∆θ. (120)

The derivation follows identical to the unperturbed case.
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