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Construction and analysis of a sticky reflected distorted

Brownian motion
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August 9, 2018

Abstract

We give a Dirichlet form approach for the construction of a distorted Brownian motion in
E := [0,∞)n, n ∈ N, where the behavior on the boundary is determined by the competing ef-
fects of reflection from and pinning at the boundary (sticky boundary behavior). In providing
a Skorokhod decomposition of the constructed process we are able to justify that the stochas-
tic process is solving the underlying stochastic differential equation weakly for quasi every
starting point with respect to the associated Dirichlet form. That the boundary behavior of
the constructed process indeed is sticky, we obtain by proving ergodicity of the constructed
process. Therefore, we are able to show that the occupation time on specified parts of the
boundary is positive. In particular, our considerations enable us to construct a dynamical
wetting model (also known as Ginzburg–Landau dynamics) on a bounded set DN ⊂ Zd under
mild assumptions on the underlying pair interaction potential in all dimensions d ∈ N. In
dimension d = 2 this model describes the motion of an interface resulting from wetting of a
solid surface by a fluid.

Mathematics Subject Classification 2010. 60K35, 60J50, 60J55, 82C41.

Keywords: Interacting sticky reflected distorted Brownian motion, Skorokhod decomposition,

Wentzell boundary condition, interface models.

1 Introduction

In [EP12] the authors study stochastic differential equations (SDEs) with sticky boundary behavior
and provide existence and uniqueness of solutions to the SDE system

{
dXt =

1
2
dℓ0+t

(
X
)
+ 1(0,∞)

(
Xt

)
dBt

1{0}

(
Xt

)
dt = 1

µ
dℓ0+t

(
X
)
,

(1.1)

for reflecting Brownian motion X in [0,∞) sticky at 0, where X :=
(
Xt

)
t≥0

starts at x ∈ [0,∞),

µ ∈ (0,∞) is a given constant, ℓ0+
(
X
)

is the right local time of X at 0 and B :=
(
Bt

)
t≥0

is the
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1 Introduction

standard Brownian motion. In particular, H.-J. Engelbert and G. Peskir show that the system
(1.1) has a jointly unique weak solution and moreover, they prove that the system (1.1) has no
strong solution, thus verifying Skorokhod’s conjecture of the non-existence of a strong solution in
this case. For an outline of the historical evolution in the study of sticky Brownian motion we
refer to the references given in [EP12].

In the present paper we construct a reflected distorted Brownian motion in E := [0,∞)n, n ∈ N,
with sticky boundary behavior. First we use Dirichlet form techniques in order to construct
solutions in the sense of the associated martingale problem for general Wentzell type boundary
conditions. Then, by providing a Skorokhod decomposition for the constructed process, we can
show that this process solves the stochastic differential equation

dX
j
t = 1E̊

(
Xt

)√
2 dBj

t + ∂j ln(̺)
(
Xt

)
1E̊

(
Xt

)
dt

+
∑

∅ 6=B(I

{
1E+(B)

(
Xt

)√
2 dBj

t + ∂j ln(̺)
(
Xt

)
1E+(B)

(
Xt

)
dt, if j ∈ B

1
β
1E+(B)

(
Xt

)
dt, if j ∈ I \B

+
1

β
1{(0,...,0)}

(
Xt

)
dt, for some β > 0, (1.2)

weakly for quasi every starting point with respect to the underlying Dirichlet form. Here j ∈ I :=
{1, . . . , n}, E+(B) :=

{
x ∈ E | xi > 0 for all i ∈ B and xi = 0 for all i ∈ I \ B

}
for B ⊂ I with

E+(B) ⊂ ∂E for B ( I, (Bj
t )t≥0 are one dimensional independent standard Brownian motions,

j ∈ I. ̺ is a continuously differentiable density on E such that for all B ⊂ I, ̺ is almost everywhere

positive on E+(B) with respect to the Lebesgue measure and for all ∅ 6= B ⊂ I,
√
̺
∣∣
E+(B)

is in

the Sobolev space of weakly differentiable functions on E+(B), square integrable together with its
derivative. ̺ continuously differentiable on E implies that the drift part

(
∂j ln(̺)

)
j∈I

is continuous

on {̺ > 0}. The stochastic differential equation (1.2) can be rewritten as

dX
j
t = 1(0,∞)

(
X

j
t

) (√
2 dBj

t + ∂j ln(̺)
(
Xt

)
dt
)
+

1

β
1{0}

(
X

j
t

)
dt, j ∈ I, for some β > 0, (1.3)

or equivalently

dX
j
t = 1(0,∞)

(
X

j
t

) (√
2 dBj

t + ∂j ln(̺)
(
Xt

)
dt
)
+ dℓ

0,j
t ,

with ℓ
0,j
t :=

1

β

∫ t

0

1{0}

(
X

j
s

)
ds, j ∈ I, for some β > 0.

Note that a solution to (1.3) is a continuous semimartingale. By [RY91, Chapter VI] the right
local time ℓ

0+,j
t of

(
X

j
t

)
t≥0

, j ∈ I, is charaterized by

∣∣Xj
t

∣∣ =
∣∣Xj

0

∣∣ +
∫ t

0

sgn(Xj
s) dX

j
s + ℓ

0+,j
t ,

where sgn is defined by sgn(x) = 1 for x > 0 and sgn(x) = −1 for x ≤ 0. For a solution to (1.3)
holds

∣∣Xj
t

∣∣ =
∣∣Xj

0

∣∣+
∫ t

0

1(0,∞)

(
X

j
s

)
dXj

s +
1

β

∫ t

0

1{0}

(
X

j
s

)
ds
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1 Introduction

=
∣∣Xj

0

∣∣+
∫ t

0

sgn
(
X

j
s

)
dXj

s +
2

β

∫ t

0

1{0}

(
X

j
s

)
ds,

since X
j
t ≥ 0 for all t ≥ 0 and sgn(0) = −1. Hence, ℓ0+,j

t = 2
β

∫ t

0
1{0}

(
X

j
s

)
ds = 2 ℓ

0,j
t almost

surely. In other words, ℓ0,jt equals one half of the right local time ℓ0+,j
t . Furthermore, due to [RY91,

Corollary 1.9] we can conclude that ℓ
0,j
t coincides with the central local time of

(
X

j
t

)
t≥0

, i.e., it
holds almost surely

ℓ
0,j
t =

1

β

∫ t

0

1{0}

(
X

j
s

)
ds =

1

2
lim
ε↓0

1

ε

∫ t

0

1[0,ε)

(
X

j
s

)
d〈Xj〉s

= lim
ε↓0

1

2ε

∫ t

0

1(−ε,ε)

(
X

j
s

)
d〈Xj〉s.

Our considerations are motivated by the so-called ∇φ interface model which provides a fun-
damental mathematical model for the physical description of interfaces from a microscopic or
mesoscopic point of view. As an application of our results we are interested in the time develop-
ment of such interfaces. In [FS97] the authors consider a scalar field φt, t ≥ 0, where its motion
is governed by a reversible stochastic dynamics, i.e., in a finite volume Λ ⊂ Zd, d ∈ N, under suit-
able boundary conditions, the scalar field φt :=

(
φt(x)

)
x∈Λ

, t ≥ 0, is described by the stochastic
differential equations

dφt(x) = −
∑

y∈Λ
|x−y|=1

V ′(φt(x)− φt(y))dt+
√
2 dBt(x), x ∈ Λ, t ≥ 0.

Here | · | denotes the norm induced by the euclidean scalar product on Rd, V ∈ C2(R) is a sym-
metric, strictly convex potential and

{
(Bt(x))t≥0 | x ∈ Λ

}
are independent standard Brownian

motions. Such a dynamics is known as the Ginzburg-Landau ∇φ interface model in finite volume.
Of particular interest in the framework of ∇φ interface models is the so-called entropic repulsion.
Though one considers the ∇φ interface model with reflection on a hard wall. This phenomenon
was investigated e.g. in [DG00] and [BDG01] for the static ∇φ interface model. Interface motion
with entropic repulsion, i.e., the Ginzburg-Landau ∇φ interface model with entropic repulsion was
studied recently in [DN07] for dimension d ≥ 2. Here the underlying potentials are again symmet-
ric, strictly convex and nearest neighbor C2-pair potentials. The Ginzburg-Landau dynamics with
repulsion was introduced by T. Funaki and S. Olla in [Fun03, FO01]. In [Zam04] this problem was
tackled via Dirichlet form techniques in dimension d = 1.

In considering the ∇φ interface model with reflection on a hard wall and additionally putting
a pinning effect on that wall, we are dealing with the so-called wetting model. In dimension
d = 2 this model describes the wetting of a solid surface by a fluid. The static wetting model was
studied recently in [DGZ05], see also [CV00]. Considerations of the Ginzburg-Landau dynamics
with reflection on a hard wall under the influence of an outer force, causing e.g. a mild pinning
effect on the wall can be found in [Fun03].

In [Fun05, Sect. 15.1] J.-D. Deuschel and T. Funaki investigated the scalar field φt :=
(
φt(x)

)
x∈Λ

,
t ≥ 0, described by the stochastic differential equations

dφt(x) = −1(0,∞)

(
φt(x)

) ∑

y∈Λ
|x−y|=1

V ′
(
φt(x)− φt(y)

)
dt

3



1 Introduction

+ 1(0,∞)

(
φt(x)

)√
2dBt(x) + dℓ0t(x), x ∈ Λ, (1.4)

subject to the conditions:

φt(x) ≥ 0, ℓ0t(x) is non-decreasing with respect to t, ℓ00(x) = 0,
∫ ∞

0

φt(x) dℓ
0

t(x) = 0,

βℓ0t(x) =

∫ t

0

1{0}

(
φs(x)

)
ds for fixed β > 0,

where ℓ0t(x) denotes the central local time of φt(x) at 0 and the pair interaction potential V is
again symmetric, strictly convex and C2.

For treating this system of stochastic differential equations the authors gave reference to classical
solution techniques as developed e.g. in [IW89]. The methods provided therein require more
restrictive assumptions on the drift part as in our situation (instead of boundedness and Lipschitz
continuity we only need continuity and a mild integrability condition, see Condition 2.14 and
Remark 2.15), moreover, do not apply directly (the geometry differs). First steps in the direction
of applying [IW89] are discussed in [Fun05] by J.-D. Deuschel and T. Funaki.

As far as we know the only reference that applies to the system of stochastic differential equations
(1.3) is [Gra88]. By means of a suitable choice of the coefficients the system of equations given by
[Gra88, (II.1)] coincides with (1.3), but amongst others the drift part is also assumed to be Lipschitz
continuous and boundend. For this reason, it is not possible to apply the results of [Gra88] to the
setting invenstigated by J.-D. Deuschel and T. Funaki, since the potential V naturally causes an
unbounded drift. Moreover, neither properties of the corresponding L2-semigroup are worked out
nor the invariant measure, Dirichlet form or generator are provided. Such tools are very useful for
analyzing scaling limits of the considered system, see e.g. [GKLR03] and [Zam04]. These we plan
to investigate in a follow-up article.

The theory of Dirichlet forms provides appropiate techniques in order to construct and analyze
solutions to (1.4) for a large class of potentials. Indeed, we obtain a weak solution to (1.4) with
sticky boundary behavior under rather mild assumption on the underlying probability density.
Note that in view of the results provided in [EP12], this notion of solution is the only reasonable
one. That the boundary behavior of the constructed weak solution to (1.4) indeed is sticky, we
obtain by proving an ergodicity result (see Theorem 5.6 below). From this we can conclude, that
the occupation time on the boundary of the constructed process increases asymptotically linear,
whenever the process starts in a point with positive density ̺ connected with the boundary, see
Corollary 5.7 below.

A Skorokhod decomposition for reflected diffusions on bounded Lipschitz domains with singular
non-reflection part was provided by G. Trutnau in [Tru03]. Here we consider the case of the
Wentzell type boundary condition. Dirichlet form methods in the context of Wentzell boundary
condition were introduced in e.g. [VV03]. Here, however, in view of our application we construct
via the underlying bilinear form a dynamics even on the boundary. In [VV03] a static boundary
behavior is realized. An overview of the state of the art in the framework of interface models is
presented in e.g. [Gia02], [Fun05].

Our paper is organized as follows. In Section 2 we provide the functional analytic background to
apply Dirichlet form methods in order to tackle the problem of sticky reflected distorted Brownian
motion. We analyze the bilinear form (2.3) below and show in Theorem 2.12 and in the proof of

4



2 The functional analytic background

Lemma 5.4 that
(
E , D(E)

)
is a recurrent, hence in particular conservative, strongly local, strongly

regular, symmetric Dirichlet form on the underlying L2-space. In Section 3 we present the proba-
bilistic counterpart of Section 2. The main result of this section is obtained in Theorem 3.1, where
we show that

(
E , D(E)

)
has an associated conservative diffusion process M, i.e., an associated

strong Markov process with continuous sample paths and infinite life time. The diffusion process
M is analyzed in Section 4. Here we provide in Corollary 4.18 a Skorokhod decomposition of
M. This proves that M is a weak solution to (1.4). In Section 5 we show in Theorem 5.6 that
the constructed process M is ergodic. Moreover, we present the consequences of the ergodicity
result for the occupation time on the boundary of the constructed process, see Corollary 5.7 below.
Finally, we apply our results to the problem of the dynamical wetting model, see Theorems 6.6,
6.10, 6.11 and Corollary 6.12 below.

The following list of main results summarizes the progress achieved in this paper:

(i) We construct conservative diffusion processes in [0,∞)n, n ∈ N, with the competing effects
of reflection and pinning at the boundary (sticky reflected distorted Brownian motion) under
mild assumptions on the drift part, see Theorems 3.1 and 3.2 below.

(ii) We provide a Skorokhod decomposition of the constructed processes and thereby prove that
the processes solve the underlying stochastic differential equations weakly for quasi all start-
ing points, see Corollary 4.18 below.

(iii) We show ergodicity of the constructed processes, see Theorem 5.6 below. Using this ergodicity
result, we illustrate the behavior of the processes at the boundary by studying the occupation
times on specified parts of the boundary by the constructed processes, see Corollary 5.7 below.

(iv) Our general considerations apply to the construction of the dynamical wetting model in finite
volume and all dimensions d ∈ N for a large class of pair interaction potentials, see Theorems
6.10, 6.11 and Corollary 6.12 below.

2 The functional analytic background

Let n ∈ N, I := In :=
{
1, . . . , n

}
and E := En := [0,∞)n. We have that E̊ = (0,∞)n and we

denote by ∂E the boundary of E. For each x = (x1, . . . , xn) ∈ E we set

I0(x) :=
{
i ∈ I

∣∣ xi = 0
}

and I+(x) :=
{
i ∈ I

∣∣ xi > 0
}
,

and define for A,B ⊂ I,

E0(A) :=
{
x ∈ E

∣∣∣ I0(x) = A
}

and E+(B) :=
{
x ∈ E

∣∣∣ I+(x) = B
}
,

respectively.

Remark 2.1. We have the decomposition

E =
⋃̇

A⊂I
E0(A) =

⋃̇
B⊂I

E+(B).

In particular,

∂E = E \ E̊ =
⋃̇

∅ 6=A⊂I
E0(A) =

⋃̇
B(I

E+(B).

5



2 The functional analytic background

On
(
E,B(E)

)
with B(E) being the trace σ-algebra of the Borel σ-algebra B(Rn) on E we define

for fixed β ∈ (0,∞) the measures

mn,β :=
∑

B⊂I

λn,β
B

with λn,β
B

:= βn−#B λ(n)

B
and λ(n)

B
:=
∏

i∈B

dxi
+

∏

j∈I\B

dδj0 , (2.1)

where #S denotes the number of elements in a set S, dxi
+

is the Lebesgue measure on(
[0,∞),B

(
[0,∞)

))
and δ

j
0 denotes the Dirac measure on

(
[0,∞),B

(
[0,∞)

))
at 0. The indices

i, j ∈ I give reference to the component of x = (x1, . . . , xn) ∈ E being integrated by dxi
+ and δ

j
0 ,

respectively.

Condition 2.2. ̺ is a mn,β-a.e. positive function on E such that ̺ ∈ L1
(
E;mn,β

)
.

Remark 2.3. In particular, ̺ can be chosen to be a probability density.

Under Condition 2.2 we define on
(
E,B(E)

)
the measure µn,β,̺ := ̺mn,β and hence, the space

of square integrable functions on E with respect to µn,β,̺, denoted by L2
(
E;µn,β,̺

)
.

Remark 2.4. Note that the measure µn,β,̺ on
(
E,B(E)

)
is a Baire measure. In our setting this

means µn,β,̺ is a Borel measure with the additional property that

µn,β,̺(K) < ∞ for all compact sets K ⊂ E. (2.2)

(2.2) is fulfilled, since ̺ ∈ L1
(
E;mn,β,̺

)
. Obviously, E is locally compact and countable at infinity.

We set

C0
c

(
E
)
:=
{
f : E → R

∣∣∣ f is continuous on E with supp(f) ⊂ E compact
}
,

where supp denotes the support of the corresponding function and for k ∈ N we define

Ck
c

(
E
)
:=
{
f : E → R

∣∣∣ f is k-times continuously differentiable on E̊

with supp(f) ⊂ E compact and

∂lf extends continuously to E for |l| ≤ k
}
.

Here and below ∂lf denotes the partial derivative of f to the multi index l ∈ Nn
0 , i.e.,

l =
(
l1, . . . , ln

)
∈ Nn

0 , |l| = l1 + . . .+ ln,

∂lf := ∂l1
1 ∂

l2
2 . . . ∂ln

n f, ∂li
i f := ∂li

xi
f, ∂0

xi
f := f, i ∈ I.

We write ∂i instead of ∂1
i . Furthermore, C∞

c (E) :=
⋂

k∈N0
Ck

c (E).

Remark 2.5. Under Condition 2.2 we have that C∞
c

(
E
)

is dense in L2
(
E;µn,β,̺

)
.

2.1 Dirichlet forms

Let n ∈ N be fixed and denote by {e1, . . . , en} the canonical basis of Rn. For β ∈ (0,∞) and ̺

fulfilling Condition 2.2 we define on L2
(
E;µn,β,̺

)
the bilinear form

E(f, g) := En,β,̺
(
f, g
)
:=

∑

∅ 6=B⊂I

EB(f, g), f, g ∈ D := C2
c

(
E
)
, (2.3)

6



2 The functional analytic background

with

EB(f, g) := En,β,̺
B

(
f, g
)
:=

∫

E+(B)

(
∇Bf ,∇Bg

)
dµ̺,n,β

B
, ∅ 6= B ⊂ I,

where µ̺,n,β
B := ̺ λ

n,β
B (see (2.1)), (·, ·) denotes the euclidean inner product and ∇Bf :=

∑
i∈B ∂if ei

for f ∈ D.

Remark 2.6. Suppose that Condition 2.2 is satisfied. Then
(
E ,D

)
is a symmetric, positive definite

bilinear form which is densely defined on L2
(
E;µn,β,̺

)
.

To prove closability of the underlying bilinear form, we have to put an additional restriction on
the density ̺. For ∅ 6= B ⊂ I we define

R̺

(
E+(B)

)
:=

{
x ∈ E+(B)

∣∣∣∣
∫

Bε(x)

̺−1 dλn,β
B

< ∞ for some ε > 0

}
,

where Bε(x) :=
{
y ∈ E+(B)

∣∣ |x− y| < ε
}

and for ∅ 6= B ⊂ I, E+(B) is the closure of E+(B) with
respect to | · |.
Condition 2.7. For ∅ 6= B ⊂ I we have that ̺ = 0 λ

n,β
B -a.e. on E+(B) \R̺

(
E+(B)

)
.

Lemma 2.8. Let Condition 2.7 be satisfied. For ∅ 6= B ⊂ I let ϕ ∈ C∞
c

(
R̺

(
E+(B)

))
and

f ∈ L2
(
E, µ̺,n,β

)
.

(i) There exists C1(ϕ,B) ∈ (0,∞) such that
∣∣∣∣∣

∫

R̺(E+(B))

fϕ dλn,β
B

∣∣∣∣∣ ≤ C1(ϕ,B) · ‖f‖
L2(E+(B);µ̺,n,β

B ).

Here L2
(
E+(B);µ̺,n,β

B

)
denotes the spaces of square integrable functions on E+(B) with

respect to µ
̺,n,β
B .

(ii) There exists C2(ϕ,B) ∈ (0,∞) such that
∣∣∣∣∣

∫

∂R̺(E+(B))

fϕ dσn,β
B

∣∣∣∣∣ ≤ C2(ϕ,B) · ‖f‖L2(E;µ̺,n,β),

where σ
n,β
B :=

∑
B̂(B λ

n,β
B̂

.

Proof. (i) See e.g. [MR92, Chap. 2, Lemma 2.2].

(ii) Let ∅ 6= B ⊂ I, ϕ ∈ C∞
c

(
R̺

(
E+(B)

))
and f ∈ L2

(
E, µ̺,n,β

)
. By a multiple application of

part (i) we obtain

∣∣∣∣∣

∫

∂R̺(E+(B))

fϕ dσn,β
B

∣∣∣∣∣ ≤
∑

B̂(B

∣∣∣∣∣

∫

∂R̺(E+(B))

fϕ dλ
n,β
B̂

∣∣∣∣∣

≤
∑

B̂(B

C1(ϕ, B̂) · ‖f‖
L2(E+(B̂);µ̺,n,β

B̂
)
≤ C2(ϕ,B) · ‖f‖L2(E;µ̺,n,β).

7



2 The functional analytic background

Proposition 2.9. Suppose that Conditions 2.2 and 2.7 are satisfied. Then
(
E ,D

)
is closable on

L2
(
E;µ̺,n,β

)
. Its closure we denote by

(
E , D(E)

)
.

Proof. Let (fk)k∈N be a Cauchy sequence in D with respect to E , i.e., E(fk−fl, fk−fl) → 0 as k, l →
∞. Furthermore, we suppose that fk → 0 in L2

(
E;µ̺,n,β

)
as k → ∞, i.e.,

(
fk, fk

)
L2(E;µ̺,n,β)

→ 0

as k → ∞. We have to check whether E(fk, fk) → 0 as k → ∞. Let ∅ 6= B ⊂ I. We know
that for fixed i ∈ B,

(
∂ifk

)
k∈N

converges to some hi in L2
(
E+(B);µ̺,n,β

B

)
, since

(
∂ifk

)
k∈N

is a

Cauchy sequence in L2
(
E+(B);µ̺,n,β

B

)
and

(
L2
(
E+(B);µ̺,n,β

B

)
, ‖ · ‖

L2(E+(B);µ̺,n,β
B )

)
is complete. Let

ϕ ∈ C∞
c

(
R̺

(
E+(B)

))
. Using Lemma 2.8(i) we obtain that

∣∣∣∣∣

∫

R̺(E+(B))

hi ϕdλn,β
B

−
∫

R̺(E+(B))

∂ifk ϕdλn,β
B

∣∣∣∣∣

=

∣∣∣∣∣

∫

R̺(E+(B))

(
hi − ∂ifk

)
ϕdλn,β

B

∣∣∣∣∣ ≤ C1(ϕ,B) · ‖hi − ∂ifk‖L2(E+(B);µ̺,n,β
B ) → 0 as k → ∞.

This, together with an integration by parts, triangle inequality, Lemma 2.8(ii) and the fact that(
fk, fk

)
L2(E;µ̺,n,β)

→ 0 as k → ∞ implies:

∣∣∣∣∣

∫

R̺(E+(B))

hi ϕdλn,β
B

∣∣∣∣∣ = lim
k→∞

∣∣∣∣∣

∫

R̺(E+(B))

∂ifk ϕdλn,β
B

∣∣∣∣∣

= lim
k→∞

∣∣∣∣∣

∫

∂(R̺(E+(B)))

fk ϕdσn,β
B

−
∫

R̺(E+(B))

fk ∂iϕdλn,β
B

∣∣∣∣∣

≤ lim
k→∞

∣∣∣∣∣

∫

∂(R̺(E+(B)))

fk ϕdσn,β
B

∣∣∣∣∣+ lim
k→∞

∣∣∣∣∣

∫

R̺(E+(B))

fk ∂iϕdλn,β
B

∣∣∣∣∣ = 0 as k → ∞.

Thus hi = 0 in L2
(
R̺(E+(B));λn,β

B

)
and therefore hi = 0 in L2

(
E+(B); ̺ λn,β

B

)
by Condition 2.7.

For all ∅ 6= B ⊂ I this yields hi = 0 in L2
(
E+(B);µ̺,n,β

B

)
for all i ∈ B. Moreover,

E(fk, fk) =
∑

∅ 6=B⊂I

∫

E+(B)

∣∣∇Bfk
∣∣2 dµ̺,n,β

B

=
∑

∅ 6=B⊂I

∑

i∈B

∥∥∂ifk − hi

∥∥2
L2(E+(B);µ̺,n,β

B )
→ 0 as k → ∞

and closability is shown.

Remark 2.10. Since
(
E ,D

)
is closable on L2

(
E;µ̺,n,β

)
by Proposition 2.9 we have that D(E) is

complete with respect to the norm ‖ · ‖E1 := E(·, ·)
1
2 +

(
·, ·
)1

2

L2(E;µ̺,n,β)
.

Proposition 2.11. Suppose that Conditions 2.2 and 2.7 are satisfied. Then
(
E , D(E)

)
is a sym-

metric, regular, strongly local and recurrent, hence in particular conservative, Dirichlet form.

Proof. The Markov property is clear, see e.g. [FOT11, Theo. 1.4.1]. Regularity can be shown
as follows. The extended Stone–Weierstraß theorem, see e.g. [Sim63, Chap. 7, Sect. 38], yields

8



2 The functional analytic background

that C∞
c

(
E
)

is dense in C0
c

(
E
)

with respect to ‖ · ‖sup. Furthermore, D is dense in D
(
E
)

with
respect to ‖ · ‖E1 . Since C∞

c (E) ⊂ D ⊂ D(E) ∩ C0
c (E), we obtain that

(
E , D(E)

)
is regular. Using

[FOT11, Theo. 3.1.1] and [FOT11, Exercise 3.1.1] it is sufficient to show the strong local property
for elements in D. Therefore, let f, g ∈ D with supp(f), supp(g) compact and let g be constant
on some open (in the trace topology of E) neighborhood U of supp(f). Then

E
(
f, g
)
=

∑

∅ 6=B⊂I

∫

E+(B)

(
∇Bf ,∇Bg

)
dµ̺,n,β

B

=
∑

∅ 6=B⊂I

∫

E+(B)∩supp(f)

(
∇Bf ,∇Bg︸︷︷︸

=0

)
dµ̺,n,β

B
+
∑

∅ 6=B⊂I

∫

E+(B)\supp(f)

(
∇Bf︸︷︷︸
=0

,∇Bg
)
dµ̺,n,β

B
= 0.

Hence
(
E , D(E)

)
is strongly local.

In order to deduce recurrence of (E , D(E)), it is enough to show that there exists a sequence
(fk)k∈N ⊂ D(E) such that limk→∞ fk = 1 µ̺,n,β-a.e. and limk→∞ E(fk, fk) = 0 by [FOT11, Theorem
1.6.3]. This we do next. 1E ∈ L2

(
E;µ̺,n,β

)
by Condition 2.2. We show that 1E ∈ D(E). Set

Λ := [−1,∞)n and Kk := [0, k]n, k ∈ N. Then there exist cutoff functions fk ∈ C∞
c (Λ), k ∈ N,

such that 0 ≤ fk ≤ fk+1 ≤ 1, fk = 1 on Kk, supp(fk) ⊂ B1(Kk) and
∣∣∂ifk

∣∣ ≤ C3 < ∞. C3

independent of k ∈ N. Here B1(Kk), k ∈ N, denotes the 1-neighborhood of the set Kk. Hence

‖1E − fk‖2L2(E;µ̺,n,β)
=

∫

E

(
1E − fk

)2
dµ̺,n,β

=

∫

E\Kk

(
1E − fk

)2
dµ̺,n,β ≤ µ̺,n,β

(
E \Kk

)
→ 0 as k → ∞. (2.4)

Furthermore,

E(fk, fk) =
∑

∅ 6=B⊂I

∫

E+(B)

∣∣∇Bfk
∣∣2 dµ̺,n,β

B
≤ nC2

3 µ̺,n,β

(
E \ Kk

)
→ 0 as k → ∞. (2.5)

Using (2.4) and (2.5) we easily obtain by applying the Cauchy-Schwarz inequality that (fk)k∈N is
E1-Cauchy. Hence 1E ∈ D(E) with

E(1E,1E) = lim
k→∞

E(fk, fk) = 0.

Therefore, (E , D(E)) is recurrent and, hence in particular, conservative.

Finally, we end up with the following result.

Theorem 2.12. For fixed n ∈ N, β ∈ (0,∞) and density function ̺ we have that under Conditions
2.2 and 2.7

E(f, g) =
∑

∅ 6=B⊂I

EB(f, g), f, g ∈ D = C2
c

(
E
)
,

with

EB(f, g) =

∫

E+(B)

(
∇Bf ,∇Bg

)
dµ̺,n,β

B
, ∅ 6= B ⊂ I,

and µ
̺,n,β
B = ̺ λ

n,β
B , is a densely defined, positive definite, symmetric bilinear form, which is closable

on L2
(
E;µ̺,n,β

)
. Its closure

(
E , D(E)

)
is a recurrent, hence in particular conservative, strongly

local, regular, symmetric Dirichlet form on L2
(
E;µ̺,n,β

)
.

Proof. See Remark 2.6 and Propositions 2.9 and 2.11.
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2 The functional analytic background

2.2 Generators

By Friedrichs representation theorem we have the existence of the self-adjoint generator(
H,D(H)

)
corresponding to

(
E , D(E)

)
.

Proposition 2.13. Suppose that Conditions 2.2 and 2.7 are satisfied. There exists a unique,
positive, self-adjoint, linear operator

(
H,D(H)

)
on L2

(
E;µ̺,n,β

)
such that

D(H) ⊂ D(E) and E
(
f, g
)
=
(
Hf, g

)

L2(E;µ̺,n,β)
for all f ∈ D(H), g ∈ D(E).

Proof. Using Proposition 2.9 this is a direct application of [FOT11, Coro. 1.3.1].

We need additional assumptions on the density function ̺ in order to derive an explicit formula
for the generator H on a subset of its domain D(H), dense in L2

(
E;µ̺,n,β

)
.

Condition 2.14. ̺ is a mn,β-a.e. positive function on E such that

(i)
√

̺
∣∣
E+(B)

∈ H1,2(E+(B)) for all ∅ 6= B ⊂ I, where H1,2(E+(B)) denotes the Sobolev space

of weakly differentiable functions on E+(B), square integrable together with their derivative.

(ii) ̺ ∈ C1(E), where C1(E) denotes the space of continuously differentiable functions on E.

Remark 2.15.

(i) Note that the additional assumptions collected in Condition 2.14 are not necessary for the
existence of the generator

(
H,D(H)

)
.

(ii) If ̺ fulfills Condition 2.2 then Condition 2.14(i) is equivalent to
(
∂i ln(̺)

)n
i=1

∈ L2(E;µ̺,n,β).

(iii) Condition 2.14(ii) implies that
(
∂i ln(̺)

)n
i=1

is continuous on the set {̺ > 0}.

(iv) If ̺ fulfills Condition 2.14 (ii), ̺ is in particular continuous on E and therefore Condition
2.7 is implied. Moreover, Condition 2.14 (i) implies Condition 2.2.

For f ∈ D = C2
c (E) and B ⊂ I we define

LBf := Ln,̺,Bf :=
∑

i∈B

(
∂2
i f + ∂if ∂i(ln ̺)

)
+
∑

i∈I\B

1

β
∂if

= ∆Bf +
(
∇Bf,∇B ln ̺

)
+

1

β
(∇I\Bf, e),

and

Lf :=
∑

B⊂I

1E+(B)L
Bf,

where ∆Bf :=
∑

i∈B ∂2
i f for f ∈ D, B ⊂ I and e is a vector of length n containing only ones.

Proposition 2.16. Suppose that Condition 2.14 is satisfied. For functions f, g ∈ D we have the

representation E
(
f, g
)
=
(
− Lf, g

)
L2(E;µ̺,n,β)

.
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2 The functional analytic background

Remark 2.17. Let LB
1 := ∆B +

(
∇B,∇B ln ̺

)
and L

I\B
2 := (∇I\B, e). Using this notation we can

express L in the form

Lf =
∑

B⊂I

1E+(B)(L
B
1 f +

1

β
L
I\B
2 f)

= 1E+(I) · LI
1f +

∑

B(I

1E+(B)(−L
I\B
1 f +

1

β
L
I\B
2 f), f ∈ D.

The interpretation of L is that on E+(B) the operator LB
1 describes the dynamics of the coordinates

i ∈ B by means of a diffusive and a drift term whereas the operator 1
β
L
I\B
2 forces the remaining

coordinates i ∈ I\B with constant drift 1
β

back to positive height. The operator −LB
1 + 1

β
LB
2

for B 6= ∅ is called a Wentzell type boundary operator. The associated Cauchy problem can be
formulated in the form





∂
∂t
ut(x) = ∆ut(x) +

(
∇ut(x),∇(ln ̺)(x)

)
, t > 0, x ∈ E,

∂2
i ut(x) + ∂iut(x)∂i(ln ̺)(x)− 1

β
∂iut(x) = 0, t > 0, i ∈ I, x ∈ E ∩ {xi = 0},

u0(x) = f(x)

(2.6)

The second line of (2.6) is called Wentzell boundary condition (for the i-th coordinate).

Proof of Proposition 2.16. Let f ∈ D and g ∈ C1
c (E). In order to show this representation we

carry out an integration by parts. We start with B = I, i.e., #B = n:

EI(f, g) =
∑

i∈I

∫

E̊

∂if ∂ig ̺ dλ
(n)

I
=
∑

i∈I

∫

E̊

∂if̺ ∂ig dλ
(n)

I

=
∑

i∈I

∫

E̊

(
− ∂2

i f̺− ∂if∂i̺
)
g(x) dλ(n)

I
−

∑

B⊂I
#B=n−1

∑

i∈I\B

∫

E+(B)

∂ifg̺ dλ
(n)

B

=
∑

i∈I

∫

E̊

(
− ∂2

i f − ∂if∂i ln(̺)
)
g(x) ̺ dλ(n)

I
−

∑

B⊂I
#B=n−1

∑

i∈I\B

∫

E+(B)

∂if g̺ dλ(n)

B
.

Next we consider all B ⊂ I such that #B = n− 1, i.e.,

EB(f, g) =
∑

i∈B

∫

E+(B)

∂if ∂ig β ̺
∏

i∈B

dxi
+

∏

j∈I\B

dδ
j
0

=
∑

i∈B

∫

E+(B)

(
− ∂2

i f − ∂if∂i ln(̺)
)
g ̺ β dλ(n)

B

−
∑

B̃⊂B
#B̃=n−2

∑

i∈B\B̃

∫

E+(B̃)

∂if g̺ β dλ
(n)

B̃
.

Proceeding inductively we end up with all B ⊂ I fulfilling #B = 1, i.e., we consider

EB(f, g) =
∑

i∈B

∫

E+(B)

∂if ∂ig ̺ β
n−1

∏

i∈B

dxi
+

∏

j∈I\B

dδ
j
0

11



3 The associated Markov process

=
∑

i∈B

∫

E+(B)

(
− ∂2

i f − ∂if∂i ln(̺)
)
g ̺ βn−1 dλ(n)

B

− βn−1
∑

i∈B

∂if(0) g(0)̺(0).

Combining all this yields

E
(
f, g
)
=

∑

∅ 6=B⊂I

EB

(
f, g
)

=
∑

i∈I

∫

E̊

(
− ∂2

i f − ∂if∂i ln(̺)
)
g ̺ dλ(n)

I

+
∑

B⊂I
#B=n−1

∫

E+(B)



∑

i∈B

(
− ∂2

i f − ∂if∂i ln(̺)
)
− 1

β

∑

i∈I\B

∂if


 g β ̺ dλ(n)

B

+
∑

B⊂I
#B=n−2

∫

E+(B)



∑

i∈B

(
− ∂2

i f − ∂if∂i ln(̺)
)
− 1

β

∑

i∈I\B

∂if


 g β2 ̺ dλ(n)

B

+
...
+

∑

B⊂I
#B=1

∫

E+(B)



∑

i∈B

(
− ∂2

i f − ∂if∂i ln(̺)
)
− 1

β

∑

i∈I\B

∂if


 g βn−1 ̺(x) dλ(n)

B

−
∑

i∈I

1

β
∂if(0) g(0) β

n ̺(0). (2.7)

Now using the definition of L, we obtain the desired result.

3 The associated Markov process

Since
(
E , D(E)

)
is a regular, symmetric Dirichlet form on L2

(
E;µ̺,n,β

)
which is recurrent, hence in

particular conservative, and possesses the strong local property, we obtain the following theorem,
where

(
Tt

)
t>0

denotes the C0-semigroup corresponding to
(
E , D(E)

)
, see e.g. [FOT11, Chap. 4 and

Chap. 7].

Theorem 3.1. Suppose that Conditions 2.2 and 2.7 are satisfied. Then there exists a conservative
diffusion process (i.e. a strong Markov process with continuous sample paths and infinite life time)

M := M
̺,n,β :=

(
Ω,F, (Ft)t≥0, (Xt)t≥0, (Θt)t≥0, (P

̺,n,β
x )x∈E

)

with state space E which is associated with
(
E , D(E)

)
, i.e., for all (µ̺,n,β-versions of) f ∈ L2

(
E;µ̺,n,β

)

and all t > 0 the function

E ∋ x 7→ ptf(x) := E̺,n,β
x

(
f
(
Xt

))
:=

∫

Ω

f
(
Xt

)
dP̺,n,β

x ∈ [0,∞)

12



4 Analysis of the stochastic process by additive functionals

is a quasi continuous version of Ttf . M is up to µ̺,n,β-equivalence unique. In particular, M is
µ̺,n,β-symmetric, i.e.,

∫

E

ptf g dµ̺,n,β =

∫

E

f ptg dµ̺,n,β for all f, g : E → [0,∞) measurable and all t > 0,

and has µ̺,n,β as reversible, invariant measure, i.e.,

∫

E

ptf dµ̺,n,β =

∫

E

f dµ̺,n,β for all f : E → [0,∞) measurable and all t > 0.

In the above theorem M is canonical, i.e., Ω = C0
(
[0,∞), E

)
, the space of continuous functions

on [0,∞) into E, Xt(ω) = ω(t), ω ∈ Ω. The filtration (Ft)t≥0 is the natural minimum completed

admissible filtration obtained from the σ-algebras F0
t := σ

{
Xs

∣∣∣ 0 ≤ s ≤ t
}

, t ≥ 0, and F := F∞ :=
∨

t∈[0,∞)Ft. For each t ≥ 0 we denote by Θt : Ω → Ω a shift operator such that Xs ◦Θt = Xs+t

for all s ≥ 0.

Proof. See e.g. [FOT11, Theo. 7.2.2 and Exercise 4.5.1 ].

Theorem 3.2. The diffusion process M from Theorem 3.1 is up to µ̺,n,β-equivalence the unique
diffusion process having µ̺,n,β as symmetrizing measure and solving the martingale problem for(
H,D(H)

)
, i.e., for all g ∈ D(H)

g̃(Xt)− g̃(X0) +

∫ t

0

(
Hg
)
(Xs) ds, t ≥ 0,

is an Ft-martingale under P
̺,n,β
x for quasi all x ∈ E. Quasi all x ∈ E or quasi every x ∈ E

(abbreviated by q.a. x ∈ E or q.e. x ∈ E, respectively) means all x ∈ E except those contained
in a set of capacity zero. (Here g̃ denotes a quasi-continuous version of g, see [MR92, Chap. IV,
Prop. 3.3]. Moreover, note that in our setting the notions of capacity in the sence of [MR92] and
[FOT11] coincide.)

Proof. See e.g. [AR95, Theo. 3.4(i)].

4 Analysis of the stochastic process by additive functionals

Throughout this section we assume that we are given the regular, symmetric Dirichlet form(
E , D(E)

)
on L2

(
E;µ̺,n,β

)
which is recurrent, hence in particular conservative, and possesses the

strong local property, see Section 2, and the associated diffusion process M from Section 3. Let
g ∈ D(E) be essentially bounded. Due to [FOT11, Sect. 3.2] there exists a unique, finite, positive
Radon measure ν〈g〉 on

(
E,BE

)
satisfying

∫

E

f dν〈g〉 = 2 E(gf, g)− E(g2, f) for all f ∈ D(E) ∩ C0
c

(
E
)
.

Remark 4.1. For an essentially bounded g ∈ D(E) the measure ν〈g〉 is called the energy measure of
g.
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4 Analysis of the stochastic process by additive functionals

Lemma 4.2. Suppose that Condition 2.2 is satisfied and that ̺ is additionally continuous on E.
Let Ω be a relatively compact subset of E\{̺ = 0} such that Ω ⊂ E\{̺ = 0} and ∅ 6= B ⊂ I such
that E+(B) ∩ Ω is non-empty. Then the restriction map iB : g 7→ g|E+(B)∩Ω maps continuously
from D(E) to H1,2(E+(B) ∩ Ω), i.e., there exists a constant CB = CB(B, β, n, ̺,Ω) such that
‖g‖H1,2(E+(B)∩Ω) ≤ CB

√
E1(g, g) for g ∈ D(E).

Proof. Let ∅ 6= B ⊂ I such that E+(B) ∩ Ω 6= ∅. By assumption Ω is compact and contained in
{̺ > 0}. Therefore, there exist constants ̺+, ̺− ∈ (0,∞) and such that ̺− ≤ ̺ ≤ ̺+ on Ω. Let
g ∈ D. Note that g ∈ D is (weakly) differentiable on E+(B) with gradient ∇Bg :=

∑
i∈B ∂ig ei.

We have
∫

E+(B)∩Ω

g2 dλ
(n)
B +

∫

E+(B)∩Ω

|∇Bg|2 dλ
(n)
B

≤ 1

βn−#B̺−

(∫

E+(B)∩Ω

g2 dµ
̺,n,β
B +

∫

E+(B)∩Ω

|∇Bg|2 dµ
̺,n,β
B

)

≤ 1

βn−#B̺−

(∫

E+(B)

g2 dµ
̺,n,β
B +

∫

E+(B)

|∇Bg|2 dµ
̺,n,β
B

)

≤ 1

βn−#B̺−
E1(u, u) < ∞.

Hence, iB : D → H1,2(E+(B)∩Ω) is well-defined and continuous. Therefore, iB admits a continuous
extension to D(E). Let g ∈ D(E) and (gk)k∈N be a sequence in D converging to g with respect to

the E
1
2
1 -norm. Then iB(gk) = gk|E+(B)∩Ω → v = iB(g) in H1,2(E+(B) ∩Ω). In particular, the same

holds true with respect to the L2(E+(B) ∩ Ω;λ
(n)
B )-norm. Certainly, the convergence of (gk)k∈N

to g implies convergence in L2(E;µ̺,n,β) which in turn implies that gk|E+(B)∩Ω → g|E+(B)∩Ω in

L2(E+(B) ∩ Ω;λ
(n)
B ) due to the boundedness of ̺ on Ω. Hence, we can conclude that iB(g) =

g|E+(B)∩Ω by the uniqueness of the limit. Thus, the map

iB : D(E) → H1,2(E+(B) ∩ Ω), g 7→ g|E+(B)∩Ω

is well-defined and continuous. Set CB := 1√
βn−#B̺−

.

Proposition 4.3. Suppose that Conditions 2.2 is satisfied and that ̺ is additionally continuous on
E. Let g ∈ D(E)∩C0

c (E). Then g is weakly differentiable on E+(B) \ {̺ = 0} for each ∅ 6= B ⊂ I

with gradient ∇Bg ∈ L2(E+(B);µ̺,n,β
B ) and its energy measure ν〈g〉 is given by

ν〈g〉 = 2
∑

∅ 6=B⊂I

|∇Bg|2 µ̺,n,β
B

.

In particular, for g ∈ D holds

ν〈g〉 = 2
∑

∅ 6=B⊂I

∑

i∈B

(
∂ig
)2

µ̺,n,β
B

.

Proof. First let f, g ∈ D. We have

2 E(gf, g)− E(g2, f)
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4 Analysis of the stochastic process by additive functionals

= 2
∑

∅ 6=B⊂E

∫

E+(B)

∑

i∈B

∂i
(
gf
)
∂ig dµ

̺,n,β
B

−
∑

∅ 6=B⊂I

∫

E+(B)

∑

i∈B

∂i
(
g2
)
∂if dµ̺,n,β

B

= 2
∑

∅ 6=B⊂I

∫

E+(B)

∑

i∈B

(
∂igf + g∂if

)
∂ig dµ

̺,n,β
B

− 2
∑

∅ 6=B⊂I

∫

E+(B)

∑

i∈B

g ∂ig ∂if dµ̺,n,β
B

= 2
∑

∅ 6=B⊂I

∫

E+(B)

∑

i∈B

((
∂ig
)2

f + g ∂ig ∂if
)
dµ̺,n,β

B
− 2

∑

∅ 6=B⊂I

∫

E+(B)

∑

i∈B

g ∂ig ∂if dµ̺,n,β
B

= 2
∑

∅ 6=B⊂I

∫

E+(B)

∑

i∈B

(
∂ig
)2

f dµ̺,n,β
B

=

∫

E

f 2
∑

∅ 6=B⊂I

∑

i∈B

(
∂ig
)2

dµ̺,n,β
B

.

This shows the assertion for g ∈ D, since D is dense in C0
c (E) with respect to ‖ · ‖sup.

Now let g ∈ D(E)∩C0
c (E) and f ∈ D. Moreover, let (gk)k∈N ⊂ D such that gk → g in

(
D(E), ‖·‖E1

)
.

By [FOT11, p.123] it holds

∣∣∣∣∣
( ∫

E

fdν〈g〉

) 1
2 −

( ∫

E

fdν〈gk〉

) 1
2

∣∣∣∣∣ ≤
( ∫

E

fdν〈g−gk〉

) 1
2 ≤

√
2‖f‖sup E(g − gk, g − gk).

Hence
∫

E

fdν〈g〉 = lim
k→∞

∫

E

fdν〈gk〉 = lim
k→∞

(
2 E
(
fgk, gk

)
− E

(
g2k, f

))

= lim
k→∞

∫

E

f 2
∑

∅ 6=B⊂I

∑

i∈B

(
∂igk

)2
dµ̺,n,β

B
.

It remains to show that g possesses on each set E+(B)\{̺ = 0} a square-integrable weak gradient
(with respect to µ

̺,n,β
B ) and that ∇Bgk → ∇Bg in L2(E+(B);µ̺,n,β

B ) as k → ∞.

Define Gj := [0, j)n ∩ (E \ B 1
j
({̺ = 0}) and GB

j := E+(B) ∩ Gj for j ∈ N. Then each Gj fulfills

the assumptions of Lemma 4.2 and GB
j ↑ E+(B) \ {̺ = 0} as j ↑ ∞. This yields a weak gradient

∇Bg of g on each set GB
j and therefore a weak gradient in L1

loc(E+(B) \ {̺ = 0}). Additionally, it
holds ∫

E+(B)

|∇Bg|2 dµ̺,n,β
B

≤ lim inf
j→∞

∫

E+(B)

1Gj
|∇Bg|2 dµ̺,n,β

B
≤ EB(g, g),

since the last inequality holds for fixed j ∈ N. This shows that ∇Bg ∈ L2(E+(B);µ̺,n,β
B ) and

furthermore, applying the above inequality to g − gk finishes the proof.

Proposition 4.4. Suppose that Condition 2.14 is satisfied. Let f, g ∈ D ⊂ D(E). Then

E
(
f, g
)
=
〈
νf , g

〉
:=

∫

E

g dνf

with

νf :=
∑

B⊂I

(
−∆Bf −

(
∇Bf,∇B ln(̺)

))
λ̺,n,β

B
− 1

β

∑

B(I

(
∇I\Bf, e

)
λ̺,n,β

B
.

Proof. This representation is valid due to the integration by parts carried out in the proof of
Proposition 2.16.
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4 Analysis of the stochastic process by additive functionals

Next we recall the definition of a positive, continuous, additive functional (see e.g. [FOT11,
Appendix A.2, A.3]).

Definition 4.5 (additive functional). A family
(
At

)
t≥0

of extended real valued functions At : Ω →
R, with R := R ∪ {−∞,∞}, is called additive functional (AF in abbreviation) of M if it satisfies
the following conditions:

(A1) At is Ft-measurable for each t ≥ 0.

(A2) There exists Λ ∈ F∞ with P
̺,n,β
x (Λ) = 1 for all x ∈ E, ΘtΛ ⊂ Λ for all t > 0 and for each

ω ∈ Λ, t 7→ At(ω) is right continuous and has left limit on
[
0,∞

)
satisfying

(i) A0(ω) = 0, and

(ii) At+s(ω) = At(ω) + As(Θtω) for all t, s ≥ 0.

The set Λ in the above is called a defining set for
(
At

)
t≥0

. An
(
At

)
t≥0

is said to be finite if∣∣At(ω)
∣∣ < ∞ for all t ∈ [0,∞) and each ω in a defining set. An

(
At

)
t≥0

is said to be continuous

if [0,∞) ∋ t 7→ At(ω) ∈ R is continuous for each ω in a defining set. A continuous AF
(
At

)
t≥0

consisting of a family of [0,∞]-valued functions At : Ω → [0,∞] is called a positive continuous
AF (PCAF in abbreviation). The set of all PCAFs we denote by A

+
c . Moreover, we call an AF

which is also a square integrable martingale with respect to
(
Ft

)
t≥0

a martingale AF (MAF in

abbreviation).

Remark 4.6. Suppose that Conditions 2.2 and 2.7 are satisfied. Let 0 ≤ g ∈ C0
(
E
)

and M ∈ B(E).
Then A := (At)t≥0 with

At(ω) :=

∫ t

0

g
(
Xs(ω)

)
1M

(
Xs(ω)

)
ds, ω ∈ Ω,

is a PCAF, i.e., A ∈ A
+
c . If g is bounded, A is even finite. Compare e.g. [FOT11, Exam. 5.1.1].

Given M and a positive measure µ on
(
E,B(E)

)
we define a positive measure Pµ on (Ω,F) by

Pµ(Γ) :=

∫

E

P
̺,n,β
x (Γ) dµ(x), Γ ∈ F.

Now we want to assign to the measures ν〈g〉 from Proposition 4.3 and νf from Proposition 4.4 the
corresponding additive functionals (AFs). In order to do this we make use of [FOT11, Theo. 5.1.3].

We consider the following classes of measures.

Definition 4.7 (smooth measure, measure of finite energy integral). We denote by S the family of
smooth measures, i.e., all positive Borel measures µ on B(E) such that µ charges no set of capacity
zero and there exists an increasing sequence

(
Fk

)
k∈N

of closed sets in E such that µ
(
Fk

)
< ∞ for

all k ∈ N and limk→∞ cap
(
K \ Fk

)
= 0 for any compact set K ⊂ E. Here cap

(
S
)

denotes the
capacity of a set S ⊂ E.

A positive Radon measure µ on B(E) is said to be of finite energy integral if
∫

E

∣∣f
∣∣ dµ ≤ C4

√
E1
(
f, f
)
, f ∈ D(E) ∩ C0

c (E),

for some C4 ∈ (0,∞). We denote by S0 the set of all positive Radon measures of finite energy
integral.
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4 Analysis of the stochastic process by additive functionals

Remark 4.8. A positive Radon measure µ on B(E) is of finite energy integral if and only if there
exists for each α > 0 a unique Uαµ ∈ D

(
E
)

such that

Eα
(
Uαµ, f

)
=

∫

E

f dµ for all f ∈ D
(
E
)
∩ C0

c (E),

where Eα(·, ·) := E(·, ·) + α
(
·, ·
)
L2(E;µ̺,n,β)

.

Definition 4.9 (α-potential). We call Uαµ from Remark 4.8 an α-potential and denote by S00 the
set of all finite µ ∈ S0 such that ‖U1µ‖L∞(E;µ̺,n,β) < ∞.

Remark 4.10. Let µ ∈ S00 be a finite measure and g : E → [0,∞) measurable and bounded.
Applying [FOT11, Theo. 2.2.1] we obtain that µg := gµ ∈ S00.

Let t > 0, µ ∈ S, A ∈ A
+
c and f, h : E → [0,∞) measurable. Then we consider

Ehµ̺,n,β

((
fA
)
t

)
:=

∫

Ω

∫ t

0

f
(
Xs

)
dAs dPh·µ̺,n,β

(4.1)

and

∫ t

0

〈fµ, psh〉 ds :=
∫ t

0

∫

E

(psh) f dµ ds

=

∫ t

0

∫

E

∫

Ω

h
(
Xs(ω)

)
dP̺,n,β

x (ω) f(x) dµ(x) ds. (4.2)

Definition 4.11 (Revuz correspondence). A measure µ ∈ S and a AF A ∈ A
+
c are said to be

in Revuz correspondence if and only if equality of (4.1) and (4.2) holds for all f, h : E → [0,∞)
measurable.

Remark 4.12. Suppose that Condition 2.14 is satisfied. Using the symmetry of (pt)t≥0 in (4.2) one
easily checks that the measure µ̺,n,β is in Revuz correspondence with the PCAF (At)t≥0 := (t)t≥0.

Remark 4.13. Suppose that Condition 2.14 is satisfied. Then for B ⊂ I the positive Radon measure
µB := µ

n,̺
B := ̺ λ

(n)

B is an element of S00 and, by using Remark 4.12 together with [FOT11, Lemma
5.1.3], in Revuz correspondence with the PCAF

(
AB

t

)
t≥0

given by

AB

t := A
n,β,B
t :=

1

βn−#B

∫ t

0

1E+(B)

(
Xs

)
ds.

Remark 4.14. Suppose Conditions 2.2 and 2.7. Let η ∈ C0(E) such that η ≥ 0. Again by applying
[FOT11, Lemma 5.1.3] and using Remark 4.10 we obtain:

(i) If µ ∈ S00 and At =
∫ t

0
g
(
Xs

)
1M

(
Xs

)
ds, t ≥ 0, as in Remark 4.6, are in Revuz correspon-

dence, then

µη := ηµ and A
η
t :=

∫ t

0

η
(
Xs

)
g
(
Xs

)
1M

(
Xs

)
ds

are in Revuz correspondence.
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4 Analysis of the stochastic process by additive functionals

(ii) If, moreover, η has compact support, then µη ∈ S00.

Remark 4.15. If µ1, µ2 ∈ S00 with Revuz corresponding AFs A1, A2, respectively. Then µ1+µ2 ∈ S00

with Revuz corresponding AF A given by A := A1 + A2.

Theorem 4.16. Suppose that Condition 2.14 is satisfied. Let f ∈ D. Then

f
(
Xt

)
− f

(
X0

)
= M

[f ]
t +N

[f ]
t P

̺,n,β
x − a.s. for q.e. x ∈ E, (4.3)

where M
[f ]
t is a MAF with quadratic variation

〈
M

[f ]
〉
t
= 2

∑

∅ 6=B⊂I

∫ t

0

∣∣∇Bf
(
Xs

)∣∣2
1E+(B)

(
Xs

)
ds

and

N
[f ]
t =

∫ t

0

(∑

B⊂I

((
∆Bf +

(
∇Bf,∇B ln(̺)

))(
Xs

)
1E+(B)

(
Xs

))

+
(∑

B⊂I

1

s

(
∇I\Bf, e

)
(Xs

)
1E+(B)

(
Xs

))
ds.

Remark 4.17. Note that the decomposition (4.3) is valid P
̺,n,β
x −a.s. for q.e. x ∈ E. This is weaker

then the statement in [FOT11, Theo. 5.2.5] where the decomposition holds P̺,n,β
x −a.s. for each x ∈

E. This is caused by the fact that in our setting we do not know if the absolute continuity condition
is fulfilled.

Proof. We have to check the assumptions of [FOT11, Theo. 5.2.5]. f ∈ D ⊂ D
(
E
)

is clearly
bounded and continuous. The measure ν〈f〉 ∈ S00 due to Proposition 4.3, Remarks 4.13, 4.14(ii)
and 4.15 applied inductively. In addition, these results yield that ν〈f〉 is in Revuz correspondence
with the PCAF

2
∑

∅ 6=B⊂I

∫ t

0

∑

i∈B

(
∂if
)2(

Xs

)
1E+(B)

(
Xs

)
ds.

By Proposition 4.4

E
(
f, g
)
=
〈
νf , g

〉
=

∫

E

g dνf

with

νf =
∑

B⊂I

(
∑

i∈B

(
− ∂2

i f − ∂if∂i ln(̺)
))

λ̺,n,β
B

− 1

β

∑

B⊂I

( ∑

i∈I\B

∂if
)
λ̺,n,β

B

for all f, g ∈ D. We can split the densities contained in νf into positive and negative part. This
yields two positive Radon measures ν+

f and ν−
f such that νf = ν+

f − ν−
f . These measures belong

to S00 by Remarks 4.13, 4.14 and 4.15. We can calculate the associated PCAFs A+ and A− in the
same way like in the case of ν〈f〉. By [FOT11, Theo. 5.2.5] N

[f ]
t = −A+ + A− and we obtain that
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4 Analysis of the stochastic process by additive functionals

N
[f ]
t =

∫ t

0

(∑

B⊂I

(∑

i∈B

(
∂2
i f + ∂if∂i ln(̺)

))(
Xs

)
1E+(B)

(
Xs

))

+
(∑

B⊂I

( 1
β

∑

i∈I\B

∂if
)
(Xs

)
1E+(B)

(
Xs

))
ds.

Corollary 4.18. Let j ∈ I. We denote by πj : Rn → R, x 7→ xj, the projection on the j-th
coordinate. Then under the assumptions of Theorem 4.16 the coordinate processes

(
X

j
t

)
t≥0

:=(
πj(Xt)

)
t≥0

, 1 ≤ j ≤ n, corresponding to M is given by

X
j
t −X

j
0 =

√
2

∫ t

0

1E̊

(
Xs

)
dBj

s +

∫ t

0

∂j ln(̺)
(
Xs

)
1E̊

(
Xs

)
ds

+
∑

∅ 6=B(I

{ √
2
∫ t

0
1E+(B)

(
Xs

)
dBj

s +
∫ t

0
∂j ln(̺)

(
Xs

)
1E+(B)

(
Xs

)
ds, if j ∈ B

1
β

∫ t

0
1E+(B)

(
Xs

)
ds, if j ∈ I \B

+
1

β

∫ t

0

1{(0,...,0)}

(
Xs

)
ds P

̺,n,β
x − a.s. for q.e. x ∈ E, (4.4)

where (Bj
t )t≥0 is a one dimensional standard Brownian motion. Moreover, (Bj

t )t≥0 and (Bi
t)t≥0 are

independent for i, j ∈ I with i 6= j.

Proof. We consider

πk
j (x) :=

{
xj , if x ∈ [0, k + 1)n

0, if x ∈ [k + 2,∞)n
, 1 ≤ j ≤ n, k ∈ N, such that πk

j ∈ D.

Furthermore, we define

τk := inf
{
t ≥ 0 |Xt 6∈ [0, k]n

}
, k ∈ N.

(τk)k∈N is a sequence of stopping times with τk ↑ ∞ as k → ∞. Now using the decomposition (4.3)
we obtain for k ∈ N and j ∈ I the representation

X
j
t∧τk

−X
j
0 = πk

j

(
Xt∧τk

)
− πk

j

(
X0

)
= M

[πk
j ]

t∧τk
+N

[πk
j ]

t∧τk

= M
[πk

j ]

t∧τk
+

∫ t∧τk

0

∂j ln(̺)
(
Xs

)
1E̊

(
Xs

)
ds

+
∑

∅ 6=B(I

{ ∫ t∧τk
0

∂j̺
(
Xs

)
1E+(B)

(
Xs

)
ds, if j ∈ B

1
β

∫ t∧τk
0

1E+(B)

(
Xs

)
ds, if j ∈ I \B

+
1

β

∫ t∧τk

0

1{(0,...,0)}

(
Xs

)
ds P

̺,n,β
x − a.s. for q.e. x ∈ E

Additionally we have the cross variation

〈
M

[πk
i ],M[πk

j ]
〉
t∧τk

= δij

〈
M

[πk
j ]
〉
t∧τk

= δij
∑

∅ 6=B⊂I

2

∫ t∧τk

0

1E+(B)

(
Xs

)
ds P

̺,n,β
x − a.s., x ∈ E.
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5 Ergodicity and occupation time

For k ∈ N large enough M
[πk

j ]

t∧τk
= M

[πj ]
t is a continuous, local martingale and moreover, for fixed

∅ 6= B ⊂ I and i, j ∈ B we have that

〈
M

[πi],M[πj ]
〉
t
= δij 2

∫ t

0

1E+(B)

(
Xs

)
ds =

∫ t

0

(
δij

√
21E+(B)

(
Xs

))2
ds P

̺,n,β
x − a.s., x ∈ E.

Thus for t ≥ 0 and j ∈ B we obtain (perhaps after enlarging the probability space) by using [Ka01,
Theo. 18.12] that

M
[πj ]
t =

√
2

∫ t

0

1E+(B)

(
Xs

)
dBj

s P
̺,n,β
x − a.s., x ∈ E,

where (Bj
t )t≥0 is a one dimensional standard Brownian motion. Moreover, (Bj

t )t≥0 and (Bi
t)t≥0 are

independent for i, j ∈ I with i 6= j.

5 Ergodicity and occupation time

Definition 5.1 (part of a Dirichlet form). Let (G, D(G)) be an arbitrary regular Dirichlet form
on some locally compact separable metric space X, m a positive Radon measure on X with full
topological support and G an open subset of X. Then we define by GG(f, g) := G(f, g) for
f, g ∈ {f ∈ D(G)| f̃ = 0 q.e. on X \ G} the part of the form (G, D(G)) on G, where f̃ denotes a
quasi-continuous version of f . Indeed, this defines a regular Dirichlet form on L2(G;m) and for
any special standard core C of (G, D(G)), CG := {f ∈ C| supp[f ] ⊂ G} is a core of (G, D(G)) (see
[FOT11, Theorem 4.4.3]).

Throughout this section, suppose Condition 2.14 is satisfied and denote by

M := M
̺,n,β :=

(
Ω,F, (Ft)t≥0, (Xt)t≥0, (Θt)t≥0, (P

̺,n,β
x )x∈E

)

the process constructed in Theorem 3.1. Furthermore, for an open subset G of E

M
G :=

(
Ω,F, (Ft)t≥0, (X

0
t )t≥0, (Θt)t≥0, (P

̺,n,β
x )x∈G∆

)

is called the part of the process M on G, where X
0
t (ω) results from Xt(ω) by killing the path upon

leaving G for ω ∈ Ω. Here G∆ := G∪{∆}, where ∆ denotes the cemetery, see e.g. [FOT11, Chap.
A.2]. By [FOT11, Theorem 4.4.2] the process M

G is associated to (EG, D(EG)).

In (2.3) we defined the form EB for ∅ 6= B ⊂ I and functions f, g ∈ D. We can extend
the definition to functions in f, g ∈ C2

c (E+(B)). Denote the closure of the pre-Dirichlet form
(EB, C

2
c (E+(B))) on L2(E+(B);µ̺,n,β

B ) by (EB, D(EB)) and by (T B

t )t>0 the corresponding semigroup.
It is known that this yields for each B a strongly local, recurrent, regular Dirichlet form.
Let Ai, i ∈ I, be the connected components of Ẽ := E \ {̺ = 0} for some index set I and
AB

i := Ai ∩ E+(B). We suppose an additional condition:

Condition 5.2. I is finite, each Ai, i ∈ I, is convex and the density ̺ fulfills
∫

Br({̺=0})

dµ̺,n,β ≤ Cr2 as r → 0

with a constant C < ∞.
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5 Ergodicity and occupation time

For the following lemma we need the notion of a strongly regular Dirichlet form (see also [Stu94,
Section 4.2] and [Stu95]):

Definition 5.3 (strong regularity). A regular Dirichlet form (G, D(G)) on L2(E;µ̺,n,β) is called
strongly regular, if the topology induced by the intrinsic metric

d(x, y) := sup{f(x)− f(y)| f ∈ D(G) ∩ C0
c (E) with

1

2
ν〈f〉 ≤ µ̺,n,β}, x, y ∈ E,

coincides with the topology generated by the euclidean metric on E. Here 1
2
ν〈f〉 ≤ µ̺,n,β means that

the energy measure of f is absolutely continuous w.r.t. µ̺,n,β and its Radon-Nikodym derivative is
almost everywhere less or equal than two.

Lemma 5.4. (i) {̺ = 0} is of capacity zero and {̺ = 0} ∩ E+(B) is of capacity zero for every
∅ 6= B ⊂ I.

(ii) Ai is open and Tt-invariant for every i ∈ I .

(iii) AB
i is open in E+(B) and TB

t -invariant for every i ∈ I and ∅ 6= B ⊂ I.

Proof. (i) We only show the first statement for the Dirichlet form (E , D(E)). The second statement
follows for the same reasons. By [Stu95, Theorem 3] and Condition 5.2 it is enough to show strong
regularity of (E , D(E)). Let f ∈ D(E) ∩ C0

c (E). Then the energy measure of f has the form

1

2
ν〈f〉 =

∑

∅ 6=B⊂I

|∇Bf |2µ̺,n,β
B =

( ∑

∅ 6=B⊂I

|∇Bf |21E+(B)

)
µ̺,n,β

by Proposition 4.3. Thus,

d(x, y) = sup{f(x)− f(y)| f ∈ D(E) ∩ Cc(E) with
∑

∅ 6=B⊂I

|∇Bf |21E+(B) ≤ 1 a.e. on E}

= sup{f(x)− f(y)| f ∈ D(E) ∩ Cc(E) with |∇Bf |2 ≤ 1 a.e. on E+(B), ∅ 6= B ⊂ I}

for x, y ∈ E. Since E is convex, we have by the fundamental theorem of calculus

|x− y| = d(x, y).

This proves the assertion.
(ii) Clearly, each Ai is open in E, since ̺ is continuous. In order to show Tt-invariance, it is
sufficient to prove that Ai is quasi open and quasi closed simultaneously by [FOT11, Corollary
4.6.3]. Since each open set is quasi open, it is left to show that Ai is quasi closed or equivalently
that E \ Ai is quasi open. Thus, let ε > 0. Since {̺ = 0} is of capacity zero by (i), there exists
an open set B containing {̺ = 0} with cap(B) < ε. The set G := ∪j 6=iAj ∪ B is open, contains
E \ Ai and it holds

cap(G \ (E \ Ai)) ≤ cap(B) < ε.

Hence E \ Ai is quasi closed. Thus Ai is Tt-invariant.
(iii) follows by the same arguments.

Remark 5.5. (i) Due to [FOT11, Lemma 4.6.3], Tt-invariance of Ai implies that there exists a
properly exceptional set Ni such that Ai \Ni is M-invariant in the sense that

P
̺,n,β
x (Xt ∈ (Ai \Ni) for all t ≥ 0) = 1 for all x ∈ Ai \Ni.
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5 Ergodicity and occupation time

(ii) Fix some set AB
i and define Gk := {x ∈ AB

i | d(x, {̺ = 0}∩E+(B)) > 1
k
}∩ [0, k)n. This yields

a sequence of bounded open subsets of AB
i increasing to AB

i . Since ̺ ∈ C1(E) by Condition

2.14, it follows that γk := ess infx∈Gk
̺ > 0, k = 1, 2, . . . , (with respect to the measure λ

(n)
B ).

(iii) By a similar argument, Lp-norms on K with respect to the measures µ
̺,n,β
B and λ

(n)
B respec-

tively are equivalent for some compact set K contained in some AB
i .

(iv) In the case that ̺(x) > 0 for all x ∈ E, Ẽ = E is already connected. Moreover, in Condition
5.2 instead of assuming convexity it suffices to require that I is finite and the intersection of
some Ai with E+(B) is either empty or connected.

Theorem 5.6. Let i ∈ I. For all f ∈ L1(Ai;µ̺,n,β) holds

lim
t→∞

1

t

∫ t

0

f(Xs)ds =

∫
Ai

fdµ̺,n,β

µ̺,n,β(Ai)
(5.1)

P
̺,n,β
x -a.s. for q.e. x ∈ Ai.

Proof. Fix i ∈ I. Due to [FOT11, Theorem 4.7.3(iii)], the definition of M
Ai and Remark 5.5

(i) it is sufficient to show that (EAi, D(EAi)) is irreducible recurrent. [FOT11, Theorem 1.6.3].
Recurrence has already been shown in Proposition 2.11. In particular, we have that 1E ∈ D(E)
and E(1E,1E) = 0. Since Ai is Tt-invariant, we have 1Ai

= 1Ai
1E ∈ D(E) and

0 = E(1E,1E) = E(1Ai
,1Ai

) + E(1E\Ai
,1E\Ai

)

by [FOT11, Theorem 1.6.1]. Hence, 1Ai
∈ D(EAi) and EAi(1Ai

,1Ai
) = 0 which implies recurrence

of (EAi, D(EAi)). Taking into account that the considered form is recurrent, irreducibility is equiv-
alent to the condition that every f ∈ D(EAi) with EAi(f, f) = 0 is µ̺,n,β-a.e. constant (on Ai)
by [CF11, Theorem 2.1.11]. Denote by (E i

B
, D(E i

B
)) the part of the form (EB, D(EB)) on AB

i . This
is the closure of (EB, C2

c (A
B

i )) by [FOT11, Theorem 4.4.3] and thus, it is irreducible. Indeed, the
closure of the pre-Dirichlet form

∑

i∈B

∫

AB
i

∂if∂igdλ
(n)
B , f, g ∈ C2

c (A
B

i ),

on L2(AB

i ;λ
(n)
B ) yields reflecting Brownian motion on AB

i which is irreducible (see [CF11, p.128])

and hence the closure of the form defined for functions in C2
c (A

B

i ) on L2(AB

i ;λ
(n)
B ) is also irreducible

in view of [CF11, Theorem 2.1.11]. Hence, it follows by [FOT11, Corollary 4.6.4] and Remark 5.5
(ii) that (E i

B
, D(E i

B
)) is irreducible.

Let f ∈ D(EAi) and choose a seqeunce (fk)k∈N in C2
c (Ai) such that fk → f with respect to

√
EAi

1 .

Then the restriction to E+(B) is by definition EB-Cauchy and converges to the restriction of f in
L2(E+(B);µ̺,n,β

B ). Therefore, the convergence holds also in D(EB) and

EAi(f, f) = E(f, f) = lim
k→∞

E(fk, fk) = lim
k→∞

∑

∅ 6=B⊂I

AB
i 6=∅

EB(fk, fk) =
∑

∅ 6=B⊂I

AB
i 6=∅

EB(f, f)

by definition. By T B

t -invariance

EAi(f, f) =
∑

∅ 6=B⊂I

AB
i 6=∅

E i
B
(1AB

i
f,1AB

i
f).
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5 Ergodicity and occupation time

Therefore, EAi(f, f) = 0 implies E i
B
(1AB

i
f,1AB

i
f) = 0 for each summand and hence, f = ciB

µ
̺,n,β
B -a.e. on AB

i for some constant ci
B

by [CF11, Theorem 2.1.11]. Thus, we can conclude

f =
∑

AB
i 6=∅

ci
B
1AB

i
.

It remains to show that there exists a constant c such that ci
B
= c for all B. Let ∅ 6= B ⊂ I with

AB

i 6= ∅ be arbitrary and l ∈ B such that Ai also intersects E+(B \ {l}) . We show that ci
B
= ci

B\{l}

by contradiction. Then the assertion follows by applying this result successively. If ci
B
6= ci

B\{l}
, we

can assume that ci
B
= 0 and ci

B\{l} = 1, since
ciB1Ai

−f

ciB−ci
B\{l}

∈ D(EAi). Fix a point z ∈ A
B\{l}

i . Then, by

construction there exists a (bounded) neighborhood U of z in E such that its closure is contained
in Ai. Choose a C∞-cutoff function η defined on E which is constantly one near z and has support
contained in U . Then it is easy to see that ηf ∈ D(EAi) and (ηfk)k∈N is an approximation for ηf
whenever (fk)k∈N is a sequence of C2

c (Ai)-functions which approximates f in D(EAi). Moreover,
EB(ηfk, ηfk) → 0 as k → ∞. By construction we have

ηfk(x) = ηfk(x)− ηfk(x+ Cel) = −
∫ C

0

∂l(ηfk)(x+ tel)dt,

where x ∈ U ∩ E+(B \ {l}) and C > 0 is chosen such that x+ Cel ∈ U \ supp(η). Hence,

|ηfk(x)| ≤
∫ ∞

0

|∂l(ηfk)(x+ tel)|dt.

This implies ∫

A
B\{l})
i

|ηfk| dλ(n)
B\{l} ≤

∫

AB
i

|∂j(ηfk)| dλ(n)

B
.

Since we can restrict our considerations to the closure of U by construction, we have equivalence of
norms by Remark 5.5 (iii) and hence, the left hand side converges to a positive constant, whereas
the right hand side converges to zero. This is a contradiction and thus ci

B
= c for some constant

c, all B and i.

By the preceding ergodic theorem it follows immediately by choosing f as the indicator function
of the boundary that the occupation time of the process M on the boundary increases asymptot-
ically linear whenever the process starts in a component which possesses a boundary part with
µ̺,n,β positive measure. In particular, the process spends in this case P

̺,n,β
x -a.s. a positive amount

of time at the boundary (with respect to the Lebesgue measure).

Corollary 5.7. For all measurable Γ ⊂ ∂E =
⋃̇

B(IE+(B) and all i ∈ I holds

lim
t→∞

1

t

∫ t

0

1Γ

(
Xs

)
ds =

µ̺,n,β

(
Γ ∩Ai

)

µ̺,n,β(Ai)
(5.2)

P
̺,n,β
x -a.s. for q.e. x ∈ Ai. In particular, under the condition that µ̺,n,β(Γ∩Ai) > 0 for q.e. x ∈ Ai

and P
̺,n,β
x -a.a. ω ∈ Ω there exists T (ω, x) ∈ [0,∞) and c(ω, x) ∈ (0,∞) such that

∫ t

0

1Γ

(
Xs(ω)

)
ds ≥ t c(ω, x) for all t ≥ T (ω, x). (5.3)
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6 Application to the dynamical wetting model in (d+ 1)-dimension

Corollary 5.8. Let ̺ > 0 pointwisely, j ∈ I and B 6= I. Then

lim
t→∞

1

t

∫ t

0

1{0}(X
j
s )ds =

µ̺,n,β({xj = 0})
µ̺,n,β(E)

> 0 (5.4)

and

lim
t→∞

1

t

∫ t

0

1E+(B)(Xs)ds =
µ̺,n,β(E+(B))

µ̺,n,β(E)
> 0

P
̺,n,β
x -a.s. for q.e. x ∈ E and (5.3) holds. Moreover, the right hand side of (5.4) is increasing in

β, converges to 1 as β → ∞ and converges to 0 as β → 0.

Proof. The first statement follows directly from (5.2). In order to proof the latter assertion note
that

µ̺,n,β({xj = 0})
µ̺,n,β(E)

= 1− µ̺,n,β({xj > 0})
µ̺,n,β(E)

and

µ̺,n,β({xj > 0})
µ̺,n,β(E)

=

∑
B⊂I
j∈B

∫
E+(B)

βn−#B̺dλ
(n)

B

∑
B⊂I

∫
E+(B)

βn−#B̺dλ
(n)
B

=

∑n
i=0 β

iai∑n

i=0 β
ibi

, (5.5)

where

ai :=
∑

B⊂I
#B=n−i, j∈B

∫

E+(B)

̺dλ(n)

B
for i = 0, . . . , n− 1,

bi :=
∑

B⊂I
#B=n−i

∫

E+(B)

̺dλ(n)

B
for i = 0, . . . , n

and an := 0. It holds 0 < ai < bi for i = 1, . . . , n− 1, 0 = an < bn and 0 < a0 = b0. Hence, (5.5) is
decreasing in β, converges to 0 as β → ∞ and converges to 1 as β → 0.

6 Application to the dynamical wetting model in (d+ 1)-dimension

Let d ∈ N and Dd := (0, 1]d ⊂ Rd. For N ∈ N we define Dd,N := NDd ∩ Zd, where NDd :={
Nθ
∣∣ θ ∈ Dd

}
. Here N stands for the scaling parameter. The discretized set Dd,N is a microscopic

correspondence to the macroscopic domain Dd and given by Dd,N =
{
1, 2, . . . , N

}d
. The boundary

∂Dd,N of Dd,N is defined by ∂Dd,N :=
{
x ∈ Zd \ Dd,N

∣∣ |x − y| = 1 for some y ∈ Dd,N

}
and the

closure Dd,N of Dd,N is defined by Dd,N := Dd,N ∪ ∂Dd,N . Hence Dd,N =
{
0, 1, 2, . . . , N + 1

}d
. For

fixed N ∈ N we consider the space of interfaces

Ω+
d,N := [0,∞)Dd,N :=

{
φ : Dd,N → [0,∞)

}

on Dd,N . Note that φ(x) describes the height of an interface φ ∈ Ω+
d,N at position x ∈ Dd,N with

respect to the reference hyperplane Dd,N . Therefore, φ(x), x ∈ Dd,N , is also called height variable.

We extend φ ∈ Ω+
d,N to the boundary ∂Dd,N by setting φ(x) = 0 for all x ∈ ∂Dd,N . The restriction
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6 Application to the dynamical wetting model in (d+ 1)-dimension

for the functions φ to take values in [0,∞) ⊂ R reflects the fact that a hard wall is settled at
height level 0 of the interface.

The potential energy of an interface φ ∈ Ω+
d,N is given by a Hamiltonian with zero boundary

condition, i.e.,

Ω+
d,N ∋ φ 7→ HV

d,N
(φ) :=

1

2

∑

x,y∈Dd,N

|x−y|=1

V
(
φ(x)− φ(y)

)
∈ R, (6.1)

where the pair interaction potential V fulfills Condition 6.1 below.

Condition 6.1. The potential V : R → [−b,∞), b ∈ [0,∞), is continuously differentiable and
symmetric, i.e., V (−r) = V (r) for all r ∈ R and moreover, κ :=

∫
R
exp

(
− V (r)

)
dr < ∞.

A natural distribution on the space of interfaces
(
Ω+

d,N ,B
(
Ω+

d,N

))
is given by the probability

measure µV,β

d,N
defined by

dµV,β

d,N
(φ) =

1

ZV,β

d,N

exp
(
−HV

d,N
(φ)
) ∏

x∈Dd,N

(
β dδ0(x) + dφ+(x)

)
, φ ∈ Ω+

d,N , (6.2)

with pair interaction potential V under Condition 6.1 and normalizing constant ZV,β

d,N
. Here

∏
x∈Dd,N

(
dδ0(x)+dφ+(x)

)
denotes the product measure on [0,∞)N

d

, where dφ+(x) is the Lebesgue

measure on
(
[0,∞),B

(
[0,∞)

))
and δ0(x) denotes the Dirac measure on

(
[0,∞),B

(
[0,∞)

))
at 0

for x ∈ Dd,N . µV,β

d,N
is a finite volume Gibbs measure conditioned on [0,∞)Dd,N . The corresponding

space of square integrable functions we denote by L2
(
Ω+

d,N ;µ
V,β

d,N

)
. Next we define the probability

density

̺(φ) := ̺V,β

d,N
(φ) :=

1

ZV,β

d,N

exp
(
−HV

d,N
(φ)
)
, φ ∈ Ω+

d,N .

Hence we can rewrite (6.2) as

dµNd,β,̺ := dµV,β

d,N
= ̺

∏

x∈Dd,N

(
β dδ0(x) + dφ+(x)

)

= ̺
∑

B⊂Dd,N

βNd−#B



∏

x∈B

dφ+(x)
∏

y∈Dd,N\B

dδ0(y)


 = ̺

∑

B⊂Dd,N

dλNd,β
B

= ̺ dmNd,β, φ ∈ Ω+
d,N .

Condition 6.2. V′(x, ·) ∈ L2
(
Ω+

d,N ;µNd,β,̺

)
for all x ∈ Dd,N , where

Ω+
d,N ∋ φ 7→ V′(x, φ) :=

∑

y∈Dd,N

|x−y|=1

V ′
(
φ(x)− φ(y)

)
∈ R.

Remark 6.3. Condition 6.1 guarantees that V (0) ∈ [−b,∞), hence flat interfaces are natural

elements in the space of interfaces Ω+
d,N , i.e., occur with positive probability, see (6.2). Furthermore,

Conditions 6.1 and 6.2 imply Conditions 2.14 and 5.2 (see also Remark 2.15).
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6 Application to the dynamical wetting model in (d+ 1)-dimension

Remark 6.4. In [Fun05] the authors assume that the potential V is twice continuously differentiable,
symmetric and strictly convex, i.e., it exist some constants c−, c+ > 0 such that c− ≤ V ′′(r) ≤ c+ for
all r ∈ R. This implies that κ :=

∫
R
exp(−V (r))dr < ∞. In particular, the potentials investigated

in [Fun05] obviously fulfill Condition 6.1. In addition, Condition 6.2 is also satisfied. Indeed, in
the case d = N = 1 with φ := φ(1) it holds by integration by parts

0 ≤
∫

[0,∞)

V′(1, φ)2 exp(−2V (φ))
(
βdδ0 + dφ+

)

= lim
b→∞

∫ b

0

(
− 2V ′(φ)

)(
− 2V ′(φ)

)
exp(−2V (φ)) dφ+

= lim
b→∞

−2V ′(b) exp(−2V (b)) +

∫

[0,∞)

2V ′′(φ) exp(−2V (φ)) dφ+

≤ 2c+

∫

[0,∞)

exp(−2V (φ)) dφ+ < ∞,

since V ′ is non-decreasing and V ′(0) = 0. Similar, but more lengthy, calculations show that this
result is valid for higher dimensions and larger numbers of height variables. Therefore, the class of
admissible potentials in our construction includes the one considered in [Fun05] for the dynamical
wetting model.

For each φ ∈ Ω+
d,N we denote by

Ddry

d,N
(φ) :=

{
x ∈ Dd,N

∣∣φ(x) = 0
}

and Dwet

d,N
(φ) :=

{
x ∈ Dd,N

∣∣φ(x) > 0
}
,

dry regions and wet regions associated with the interface φ, respectively, and define for A,B ⊂ Dd,N ,

Ω+,dry

d,N,A
:=
{
φ ∈ Ω+

d,N

∣∣∣Ddry

d,N
(φ) = A

}
and Ω+,wet

d,N,B
:=
{
φ ∈ Ω+

d,N

∣∣∣Dwet

d,N
(φ) = B

}
,

respectively.

Remark 6.5. The following decomposition of the state space is valid:

Ω+
d,N =

⋃̇
A⊂Dd,N

Ω+,dry

d,N,A
=
⋃̇

B⊂Dd,N

Ω+,wet

d,N,B
.

Therefore, µNd,β,̺ =
∑

B⊂Dd,N
µNd,β,̺

B
with µNd,β,̺

B
:= µNd,β,̺

∣∣∣
B
Ω
+,wet
d,N,B

.

Theorem 6.6. Let d,N ∈ N. For β ∈ (0,∞) we have that under Conditions 6.1 and 6.2

ENd,β,̺
(
F,G

)
:=

∑

∅ 6=B⊂Dd,N

ENd,β,̺
B

(
F,G

)
, F, G ∈ D = C2

c

(
Ω+

d,N

)
(6.3)

with

ENd,β,̺
B

(
F,G

)
:=
∑

x∈B

∫

Ω+,wet

d,N,B

∂xF ∂xGdµNd,β,̺

B
, ∅ 6= B ⊂ Dd,N ,

is a densely defined, positive definite, symmetric bilinear form, which is closable on

L2
(
Ω+

d,N ;µNd,β,̺

)
. Its closure

(
ENd,β,̺, D(ENd,β,̺)

)
is a recurrent, hence in particular conservative,

strongly local, strongly regular, symmetric Dirichlet form on L2
(
Ω+

d,N ;µNd,β,̺

)
.
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6 Application to the dynamical wetting model in (d+ 1)-dimension

Remark 6.7. Note that for functions in D, l ∈ {1, 2} and x ∈ Dd,N we denote by ∂l
x the partial

derivative of order l with respect to the variable φ(x). In particular, ∂x := ∂1
x.

Proof of Theorem 6.6. Use Remark 6.3 and apply Theorem 2.12. For strong regularity see the
proof of Lemma 5.4(i).

For F ∈ D := C2
c

(
Ω+

d,N

)
and B ⊂ Dd,N we define

LBF := Ld,N,̺,BF :=
∑

x∈B

(
∂2
xF + ∂xF ∂x(ln ̺)

)
+

∑

x∈Dd,N\B

1

β
∂xF

= ∆BF +
(
∇BF,∇B ln ̺

)
+

1

β
(∇Dd,N\BF, e),

and

LF :=
∑

B⊂Dd,N

1Ω+,wet

d,N,B
LBF,

where ∇BF :=
∑

x∈B ∂xF ec(x) with some c : Dd,N → {1, . . . , Nd} bijective and {e1, . . . , eNd} being

the canonical basis in RNd

. Moreover, ∆BF :=
∑

x∈B ∂2
xF for F ∈ D, B ⊂ Dd,N and e is a vector

of length Nd containing only ones.

Proposition 6.8. Suppose Conditions 6.1 and 6.2 to be satisfied. Then we have the representation

ENd,β,̺
(
F,G

)
=
(
− LF,G

)

L2(Ω+
d,N ;µ

Nd,β,̺
)
for F,G ∈ D.

Proof. Use Remark 6.3 and apply Proposition 2.16.

Remark 6.9. Let LB
1 := ∆B+

(
∇B,∇B ln ̺

)
and LB

2 := (∇B, e). Using this notation we can express
L in the form

LF =
∑

B⊂Dd,N

1Ω+,wet

d,N,B
(LB

1 F +
1

β
LDd,N\B

2 F )

= 1Ω+,wet

d,N,I
LDd,N

1 F +
∑

B(Dd,N

1Ω+,wet

d,N,B
(−LDd,N\B

1 F +
1

β
LDd,N\B

2 F ), F ∈ D.

The interpretation of L is that on Ω+,wet

d,N,B
the operator LB

1 describes the dynamics of the height

variables φ(x), x ∈ B, by means of a diffusive and a drift term whereas the operator 1
β
LDd,N\B

2

forces the remaining height variables φx, x ∈ Dd,N\B with constant drift 1
β

back to positive height.

The operator −LB
1 + 1

β
LB

2 for B 6= ∅ is called a Wentzell type boundary operator. The associated
Cauchy problem can be formulated in the form




∂
∂t
Ut(φ) = ∆Ut(φ) +

(
∇Ut(φ),∇(ln ̺)(φ)

)
, t > 0, φ ∈ Ω+

d,N ,

∂2
xUt(φ) + ∂xUt(φ)∂x(ln ̺)(φ)− 1

β
∂xUt(φ) = 0, t > 0, x ∈ Dd,N , φ ∈ Ω+

d,N ∩ {φx = 0},
U0(φ) = F (φ)

(6.4)

The second line of (6.4) is called Wentzell boundary condition (for the x-th height variable).
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6 Application to the dynamical wetting model in (d+ 1)-dimension

Theorem 6.10. Suppose that Conditions 6.1 and 6.2 are satisfied. Then there exists a conservative
diffusion process (i.e. a strong Markov process with continuous sample paths and infinite life time)

M
Nd,β,̺ =

(
Ω,F, (Ft)t≥0, (φt)t≥0, (Θt)t≥0, (P

Nd,β,̺
φ )

φ∈Ω+
d,N

)

with state space Ω+
d,N which is associated with

(
ENd,β,̺, D(ENd,β,̺)

)
. M

Nd,β,̺ is up to µNd,β,̺-

equivalence unique. In particular, MNd,β,̺ is µNd,β,̺-symmetric and has µNd,β,̺ as invariant and
reversible measure.

Proof. Use Remark 6.3 and apply Theorem 3.1.

Theorem 6.11. The diffusion process M
Nd,β,̺ from Theorem 6.10 is up to µNd,β,̺-equivalence

the unique diffusion process having µNd,β,̺ as symmetrizing measure and solving the martingale

problem for
(
HNd,β,̺, D(HNd,β,̺)

)
, i.e., for all G ∈ D(HNd,β,̺)

G̃(φt)− G̃(φ0) +

∫ t

0

(
HNd,β,̺G

)
(φs) ds, t ≥ 0,

is an Ft-martingale under P
Nd,β,̺
φ for quasi all φ ∈ Ω+

d,N .

Proof. Use Remark 6.3 and apply Theorem 3.2.

Corollary 6.12. Suppose that Conditions 6.1 and 6.2 are satisfied. Let x ∈ Dd,N. We denote by

πx : Ω+
d,N → [0,∞), φ 7→ φ(x), the projection on the x-th coordinate. The coordinate processes(

φt(x)
)
t≥0

:=
(
πx(φt)

)
t≥0

corresponding to M
Nd,β,̺ is given by

φt(x)− φ0(x) =
√
2

∫ t

0

1Ω+
d,N

(
φs

)
dBs(x)−

∫ t

0

V′
(
x,φs

)
1Ω+

d,N

(
φs

)
ds

+
∑

∅ 6=B(Dd,N

{ √
2
∫ t

0
1Ω+,wet

d,N,B

(
φs

)
dBs(x)−

∫ t

0
V′
(
x,φs

)
1Ω+,wet

d,N,B

(
φs

)
ds, if x ∈ B

1
β

∫ t

0
1Ω+,wet

d,N,B

(
φs

)
ds, if x ∈ Dd,N \B

+
1

β

∫ t

0

1{(0,...,0)}

(
φs

)
ds, (6.5)

where (Bt(x))t≥0, x ∈ Dd,N , are one dimensional independent standard Brownian motions and

V′(x, φ) :=
∑

y∈Dd,N

|x−y|=1

V ′
(
φ(x)− φ(y)

)
, φ ∈ Ω+

d,N ,

with pair interaction potential V .

Proof. Use Remark 6.3 and apply Corollary 4.18.

Remark 6.13. (6.5) provides a weak solution to (1.4) for quasi every starting point in Ω+
d,N , even

for boundary points.
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6 Application to the dynamical wetting model in (d+ 1)-dimension

Theorem 6.14. Suppose that Conditions 6.1 and 6.2 are satisfied. For all F ∈ L1
(
Ω+

d,N ;µNd,β,̺

)

it holds that

lim
t→∞

1

t

∫ t

0

F (φs)ds =

∫

Ω+
d,N

FdµNd,β,̺

P
Nd,β,̺

φ -a.s. for q.e. φ ∈ Ω+
d,N .

Proof. Use Remark 6.3 and apply Theorem 5.6.

Corollary 6.15. Under the Conditions of Theorem 6.14 we have that for all measurable Γ ⊂
∂Ω+

d,N =
⋃̇

B(Dd,N
Ω+,wet

d,N,B
it holds that

lim
t→∞

1

t

∫ t

0

1Γ

(
φs

)
ds = µNd,β,̺

(
Γ
)

P
Nd,β,̺

φ -a.s. for q.e. φ ∈ Ω+
d,N . In particular, under the condition that µNd,β,̺(Γ) > 0 for q.e. φ ∈

Ω+
d,N and P

Nd,β,̺

φ -a.a. ω ∈ Ω there exists T (ω, φ) ∈ [0,∞) and c(ω, φ) ∈ (0,∞) such that

∫ t

0

1Γ

(
φs(ω)

)
ds ≥ t c(ω, φ) for all t ≥ T (ω, φ). (6.6)

Corollary 6.16. Let x ∈ Dd,N and B 6= Dd,N . Then under the Conditions of Theorem 6.14 we
have that

lim
t→∞

1

t

∫ t

0

1{0}(φs(x))ds = µNd,β,̺

(
{φ(x) = 0}

)
> 0 (6.7)

and

lim
t→∞

1

t

∫ t

0

1Ω+,wet

d,N,B
(φs)ds = µNd,β,̺

(
Ω+,wet

d,N,B

)
> 0

P
Nd,β,̺

φ -a.s. for q.e. φ ∈ Ω+
d,N and (6.6) holds. Moreover, the right hand side of (6.7) is increasing

in β, converges to 1 as β → ∞ and converges to 0 as β → 0.

Proof. Use Remark 6.3 and apply Corollary 5.8.

Remark 6.17. Corollary 6.16 justifies that β is called strength of pinning.
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