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Abstract. The classification of toric Fano manifolds with large Picard
number corresponds to the classification of smooth Fano polytopes with large
number of vertices. A smooth Fano polytope is a polytope that contains the
origin in its interior such that the vertex set of each facet forms a lattice basis.
Casagrande showed that any smooth d-dimensional Fano polytope has at most
3d vertices. Smooth Fano polytopes in dimension d with at least 3d − 2 vertices
are completely known. The main result of this paper deals with the case of
3d − k vertices for k fixed and d large. It implies that there is only a finite
number of isomorphism classes of toric Fano d-folds X (for arbitrary d) with
Picard number 2d − k such that X is not a product of a lower-dimensional
toric Fano manifold and the projective plane blown up in three torus-invariant
points. This verifies the qualitative part of a conjecture in a recent paper by
the first author, Joswig, and Paffenholz.

1. Introduction and main results

Let us first recall the basic definitions. We refer to [19, 12] for more background.
Let N ∼= Zd be a lattice with associated real vector space NR := N ⊗Z R isomorphic
to Rd. A polytope P is a convex, compact set in NR, its 0-dimensional faces are
called vertices, and its faces of codimension 1 are called facets. If every facet F (of
dimension d− 1) of a d-dimensional polytope P has exactly d vertices (i.e., F is a
simplex), then P is called simplicial. The polytope P is called a lattice polytope if
its vertices are lattice points (i.e., elements of N).

Definition 1. (i) A polytope P ⊂ NR is called smooth Fano polytope, if
. P is a lattice polytope, and
. P is full-dimensional and contains the origin 0 as an interior point, and
. for each facet F of P , the vertex set VertF is a lattice basis of N .

(ii) Two smooth Fano polytopes are lattice equivalent, if their vertex sets are in
bijection by an affine-linear lattice automorphism.

Remark 2. We decided to keep the notion of a smooth Fano polytope in order to
be consistent with existing literature. However, we remark that there exists also the
definition of a smooth polytope as a lattice polytope with unimodular vertex cones.
A smooth Fano polytope is not a smooth polytope (but its dual polytope is).

Note that any smooth Fano polytope P is necessarily simplicial. In each dimension
there exist only finitely many smooth Fano polytopes up to lattice equivalence (we
refer to the survey [19]). In 2007, Øbro described an explicit classification algorithm
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Figure 1. The smooth Fano polygon P6 corresponding to the
del Pezzo surface S3

in each dimension d, see [21, 22]. His implementation gave complete classifications
of lattice equivalence classes of smooth Fano polytopes up to dimension 8 extending
the previous existing classification results up to dimension 5; see [2, 25, 4, 24, 16].
Using a variant of Øbro’s algorithm, the classification in dimension 9 was done by
Lorenz and Paffenholz [17]. The large number of 8 229 721 smooth Fano polytopes
in dimension 9 indicates that complete classifications in much higher dimensions
are not feasible. This motivates to focus on finding sharp bounds on important
invariants and to classify the extreme cases.

When considering smooth Fano polytopes with large number of vertices, one
needs to start with dimension two. Let P6 be the smooth Fano polygon with 6
vertices as given in Figure 1. This polygon has the maximal number of vertices
possible in dimension 2.

There is a natural direct sum operation on smooth Fano polytopes (also sometimes
called free sum).

Definition 3. Given smooth Fano polytopes Q ⊂ NR and Q′ ⊂ N ′R, we define their
direct sum as

Q⊕Q′ = conv(Q× {0} ∪ {0} ×Q′) ⊂ NR ×N ′R.
Direct sums of smooth Fano polytopes are again smooth Fano polytopes. A smooth
Fano polytope P splits into Q and Q′ if P is lattice equivalent to Q⊕Q′.

In 2006 Casagrande proved the following long-standing conjecture.

Theorem 4 (Casagrande [7]). Let P be a d-dimensional smooth Fano polytope.
Then P has at most 3d vertices, equality holds if and only if d is even and P is
lattice equivalent to (P6)⊕d/2.

By now, smooth Fano polytopes with at least 3d − 2 vertices are completely
classified [23, 1]. In [1, Conjecture 9] it was conjectured that in order to classify
smooth Fano polytopes P of dimension d with |VertP | = 3d− k it is enough to do
this up to dimension 3k. More precisely, if d > 3k, then P should be a direct sum
of P6 and a lower-dimensional smooth Fano polytope. The goal of this paper is to
verify the qualitative part of this conjecture.

Theorem 5. Let P be a d-dimensional smooth Fano polytope with 3d− k vertices
and d ≥ 15k2 + 37k + 2. Further let f(d, k) := bd−15k2−37k

2 c. Then P is lattice
equivalent to

Q⊕ P⊕f(d,k)
6

where Q is a smooth Fano polytope of dimension d− 2f(d, k).

Remark 6. Any smooth Fano polytope is a reflexive polytope, i.e., it contains the
origin in its interior (as the only interior lattice point) and its dual polytope is also a
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lattice polytope (we refer to [3, 18]). Reflexive polytopes always appear as dual pairs.
They correspond to Gorenstein toric Fano varieties and were introduced by Batyrev
in 1994 to provide a combinatorial framework for constructing mirror symmetric
pairs of Calabi-Yau hypersurfaces [3]. In fixed dimension only a finite number
of reflexive polytopes exist up to lattice equivalence. Still, Haase and Melnikov
showed that any lattice polytope is isomorphic to the face of some (possibly much
higher-dimensional) reflexive polytope, [14]. Interestingly, it is conjectured that
P
d/2
6 has the maximal number of vertices of a reflexive polytope in even dimension;

check [5]. Note that this is the dual reflexive polytope of P⊕d/26 .
1.1. The algebro-geometric viewpoint: background, applications, and con-
jectures. To make this paper accessible not only to combinatorialists but also to
algebraic geometers, we decided to split the introduction. In this section we will use
algebro-geometric language to describe the relevance in toric geometry, to discuss the
equality case, and to present more detailed conjectures (all toric geometry statements
can easily be translated into combinatorial ones). However, note that all proofs in
the following sections will be purely combinatorial.

While smooth Fano polytopes are interesting peculiar classes of lattice polytopes,
the main reason for their investigation originates in algebraic geometry. Toric Fano
manifolds are among the most intensively studied classes of toric varieties. We refer
to the surveys [11] and [19] and the references therein. By the toric dictionary (e.g.
[10, Chapter 8]), any d-dimensional smooth Fano polytope P corresponds one-to-one
to a d-dimensional toric Fano manifold X. Two smooth Fano polytopes are lattice
equivalent if and only if the corresponding toric Fano manifolds are isomorphic.
In each dimension d, there exists only a finite number of toric Fano d-folds up to
isomorphisms. As described in the previous section, they are completely classified
up to dimension 9. Their large number in higher dimensions motivates the study of
subclasses of special interest.

Let X be a toric Fano d-fold corresponding to a smooth Fano polytope P of
dimension d. Then the Picard number ρX of X equals |VertP | − d. For instance,
P6 corresponds to the del Pezzo surface S3 (P2 blown up in three torus-invariant
points), note that ρS3 = 4. A smooth Fano polytope P splits into two smooth Fano
polytopes if and only if X is isomorphic to the product of the corresponding toric
Fano manifolds.

Theorem 4, by Casagrande, implies that the Picard number ρX of any toric Fano
d-fold X is bounded from above by 2d. Moreover, the equality case is only attained
in even dimension d by (S3)d/2, the product of d/2 copies of the del Pezzo surface
S3. In 2008, Øbro showed that if the Picard number equals 2d− 1, then the variety
X is isomorphic to (S3)(d−2)/2 × S2 if d is even, where S2 is P2 blown up in two
torus-invariant points, and X is isomorphic to (S3)(d−3)/2 × Y if d is odd, where
Y is one of two toric Fano 3-folds with ρY = 5. Recently, a complete classification
of toric Fano d-folds X with ρX = 2d− 2 was given by Assarf, Joswig, Paffenholz.
Their result gave rise to the following conjecture:
Conjecture 7 ([1, Conjecture 9]). Let X be a toric Fano d-fold with ρX = 2d− k.
If d > 3k, then X is isomorphic to (S3)m × Y , where m is a positive integer and Y
is a toric Fano manifold of dimension at most 3k.

Note that necessarily here ρY = 2 dim(Y )−k, since ρS3 = 4. As will be explained
below, this conjecture would be best possible. It would generalize the mentioned
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classification results, moreover, its validity would reduce the classification of toric
Fano d-folds with ρX = 2d− 3 to the case of d ≤ 9, where complete classifications
already exist.

The main result of this paper is the verification of the following weaker version
of Conjecture 7.

Theorem 8. Let X be a toric Fano d-fold with ρX = 2d− k. If d > 15k2 + 37k+ 1,
then X is isomorphic to (S3)m × Y , where m is a positive integer and Y is a toric
Fano manifold of dimension at most 15k2 + 37k + 1.

This result is equivalent to Theorem 5. Let us remark that it seems to be a hard
open problem to improve the quadratic bound in Theorem 8 to a linear bound (as
expected by Conjecture 7). See also Remark 40.

Remark 9. Casagrande’s upper bound of 2d on the Picard number was proven in
more generality for Q-factorial Gorenstein toric Fano varieties [7] (corresponding
to simplicial reflexive polytopes). In [20] Øbro and the second author completely
classified all such varieties with ρX = 2d−1. These results suggest that Conjecture 7
(and Theorem 8) should also hold when X and Y are Q-factorial Gorenstein toric
Fano varieties.

We say a toric Fano manifold X is non-S3-splittable, if it is not a product of S3
and a lower-dimensional toric Fano manifold. Since there are only finitely many
toric Fano d-folds of dimension d ≤ 15k2 + 37k+ 1, we get the following consequence
from Theorem 8.

Corollary 10. For each k there is only a finite number of isomorphism classes of
non-S3-splittable toric Fano d-folds X with ρX ≥ 2d− k.

Let us illustrate the previous result by considering the number of isomorphism
classes of non-S3-splittable toric Fano manifolds for the known cases k = 0, 1, 2. For
k = 0 we have just 1 such manifold (namely a point), for k = 1 there are 3 (one
in each dimension 1, 2, and 3), and for k = 2 there are 15 isomorphism classes
where the highest dimension is 6 (the numbers are 2, 4, 7, 1, 1 from dimension 2 up
to dimension 6 respectively).

Regarding the sharpness of Conjecture 7, it is natural to reformulate and extend
it in the following way (for an explicit description of the extreme case see Section 3).

Conjecture 11. Let X be a non-S3-splittable toric Fano d-fold. Then ρX ≤ 5d
3 ,

with equality if and only if d = 3d′ (for d′ a positive integer) and X is isomorphic
to the d′-fold product of a uniquely determined toric S3-bundle over P1.

Remark 12. In the non-toric setting much less is known about the structure of
Fano manifolds with maximal Picard number. It is known that Fano 3-folds have
Picard number at most 10 with equality only for the product of a Del Pezzo surface
with P1. One conjecture in higher dimensions is that in even dimension d the
maximal Picard number equals 9d

2 and is attained only for products of del Pezzo
surfaces with Picard number 9. There are further results [8, 9] that indicate that also
in the non-toric setting extremizing the Picard number naturally leads to fibrations
of Del Pezzo surfaces over another Fano manifold.

Let us finish this introduction by proposing the following further refinement of
Casagrande’s upper bound [7], based upon classification results in low dimensions.
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We say a toric Fano manifold X is non-splittable if it is not a product of two
lower-dimensional toric Fano manifolds.
Conjecture 13. Let X be a non-splittable toric Fano d-fold, where d ≥ 3. Then
ρX ≤ 4d+3

3 , with equality if and only if d = 3d′ (for d′ a positive integer) and X is
isomorphic to a uniquely determined toric (S3)2d′ -bundle over Pd′ .

As mentioned above smooth Fano polytopes are already classified up to dimen-
sion 9. The conjectures are true for d ≤ 9; see Section 3.

1.2. Organization of the paper. This paper is organized as follows. Section 2
contains the combinatorial proof of Theorem 8. Section 3 discusses the equality
cases in Conjecture 11 and Conjecture 13.

2. Proof of the main theorem

2.1. Preliminaries of the proof. Let P be a d-dimensional smooth Fano polytope
and F a facet of P . Let us define some important notions and fix the notation (we
refer to [22, 18]).

For every vertex v ∈ F there exists a unique neighboring facet N(F, v) that
intersects with F in a (d− 2)-dimensional face that does not contain v. The unique
vertex of N(F, v) that is not contained in F is called the opposite vertex of v with
respect to F and will be denoted by opp(F, v); see Figure 2.

v

w
opp(F,v)

opp(F,w)

F

N(F,v)

N(F,w)

Figure 2. Neighboring facets and opposite vertices

We define the dual lattice of N as M := HomZ(N,Z) ∼= Zd with the pairing
〈·, ·〉 : M ×N → Z. For VertF = {v1, . . . , vd}, a lattice basis of N , we get the dual
lattice basis uF,v1 , . . . , uF,vd

of M . In other words, for v ∈ VertF the lattice point
uF,v ∈ M is characterized by 〈uF,v, v〉 = 1 and 〈uF,v, w〉 = 0 for w ∈ VertF \ {v}.
Moreover, it holds that uF :=

∑d
i=1 uF,vi

∈M is the unique primitive outer normal
of F , i.e., for every x ∈ VertF we have 〈uF , x〉 = 1 and for every y ∈ P we have
〈uF , y〉 ≤ 1.

Let j ∈ Z. We define the set of vertices of P of level j as
V (F, j) := {v ∈ VertP : 〈uF , v〉 = j} .

Moreover, we set ηFj := |V (F, j)|. Note that ηF1 = d as P is smooth and therefore
simplicial. The vector ηF := (ηF1 , ηF0 , ηF−1, . . .) is called the ηF -vector of P .

An important role is played by the vertex sum sP of P :

sP :=
∑

v∈VertP
v .
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We say that F is a special facet [23], if sP is in the cone spanned by F . Note that
in this case necessarily 〈uF , sP 〉 ≥ 0. Special facets were the crucial tool in Øbro’s
classification algorithm for smooth Fano polytopes [21].

2.2. General assumptions of the proof. By a suitable lattice equivalence we
can assume that we are from now on in the following situation:
. P is a d-dimensional smooth Fano polytope,
. |VertP | = 3d− k where d ≥ 3 and k ≥ 3 (for the case k ≤ 2 see [7, 21, 1]),
. F denotes a special facet which has outer normal vector uF ,
. we write ηj := ηFj for the number of vertices of F on level j. We also use the

notation η≤j :=
∑
i≤j ηi.

2.3. Distribution of the vertices. Let us start by recalling some basic properties
of vertices on level 0:

Lemma 14 (Nill [18, Lem. 5.5]). Let x ∈ V (F, 0). Then there exists a vertex
v ∈ VertF such that x = opp(F, v). Moreover, for v ∈ VertF we have

x = opp(F, v) ⇐⇒ 〈uF,v, x〉 < 0 ⇐⇒ 〈uF,v, x〉 = −1.

Here the second equivalence follows from the smoothness of P (for a more general
statement see Lemma 18, where the opposite vertex is not necessarily assumed to
be on level zero).

Lemma 15. The η-vector of any special facet of P has the following properties:

η1 = d,

d− k ≤ η0 ≤ d,
d− 2k ≤ η−1 ≤ d,

η≤−2 ≤ 2k,
ηj = 0 for j < −k − 1.

Proof. The first equation is trivial, because P is a smooth Fano polytope and
therefore simplicial. The upper bound on η0 follows from Lemma 14, since there
are at most d opposite vertices to the d vertices in a given facet. The upper bound
for η−1 comes from the fact that we are looking at a special facet F and therefore
we have

0 ≤ 〈uF , sP 〉 =
∑
i≤1

i · ηi = d+
∑
i≤−1

i · ηi .

Now the upper bound follows from:

d ≥
∑
i≤−1

|i| · ηi ≥
∑
i≤−1

ηi .

With this inequality we also get the lower bound on η0 since |VertP | =
∑
i≤1 ηi

gives us
3d− k = d+ η0 +

∑
i≤−1

ηi ≤ d+ η0 + d .

Solving this for η0 we get d− k ≤ η0.
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The lower bound for η−1 follows with a similar argument. From the equality
|VertP | =

∑
i≤1 ηi we get

3d− k − η1 − η0 − η−1 =
∑
i≤−2

ηi .

Using the fact that we have a special facet and using the upper bounds on η0 and
η1 gives us

0 ≤ 〈uF , sP 〉

=
∑
i≤1

i · ηi

= d− η−1 +
∑
i≤−2

i · ηi

≤ d− η−1 − 2
∑
i≤−2

ηi

= d− η−1 − 2(3d− k − η1 − η0 − η−1)
≤ d− η−1 − 6d+ 2k + 2d+ 2d+ 2η−1

= η−1 − d+ 2k .

Now, the upper bound for η≤−2 is a direct consequence of the previous lower bounds:∑
i≤−2

ηi = 3d− k − η1 − η0 − η−1

≤ 3d− k − d− (d− k)− (d− 2k) = 2k .

Finally, let j < 0 be the minimal level with ηj 6= 0. Let v ∈ V (F, j). Then there are
at least 3d− k− η1 − η0 − 1 = 2d− k− 1− η0 vertices on negative levels apart from
v. In particular,

0 ≤ 〈uF , sP 〉
≤ d− (2d− k − 1− η0) + j

= −d+ k + 1 + η0 + j ,

hence j ≥ d− η0 − k − 1 ≥ −k − 1, since η0 ≤ d. �

Lemma 16. The level of sP is at most k.

Proof. The maximal level of sP is achieved by having d vertices on level 1, d vertices
on level 0, and the remaining vertices (d− k many) on level −1. �

2.4. Partitioning the vertex set of F . We will use the following notation intro-
duced in [1].

Definition 17. We call a vertex v of the facet F good if opp(F, v) is contained in
V (F, 0).

As the following well-known result shows, the second condition of a good vertex
given in [1] is automatically true in our setting because we assume smoothness.

Lemma 18. If v is a vertex of F , then 〈uF,v, opp(F, v)〉 = −1.
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e1

e2φ(e1)− e1

−e1

−e2 φ(e2)− e2

Figure 3. The hexagon P6 with labeled vertices.

Let us also recall the notation of the φ-function (of a facet F ) used in [1]:

(1) φ : VertF → VertF ∪ {0} , v 7→
{
w if w := opp(F, v) + v ∈ VertF
0 otherwise .

Note that if φ(v) 6= 0, then v is a good vertex of F , but there are good vertices
for which φ(v) = 0, so the converse is not true.

Definition 19. We will partition the set VertF of size d into three different groups:
. A := {u ∈ VertF : u is good, φ(u) 6= 0},
. B := {v ∈ VertF : v is good, φ(v) = 0},
. C := {w ∈ VertF : w is not good}.

The following result clarifies the geometric meaning of a good vertex being in A
or B.

Lemma 20. Let v be a good vertex of the facet F (i.e., v ∈ A ∪ B). Then
opp(F,w) 6= opp(F, v) for every vertex w of F other than v if and only if φ(v) 6= 0
(i.e., v ∈ A).

Proof. The ‘only if’ part is proven in [1, Lemma 25]. For the converse assume that
φ(v) 6= 0 and x := opp(F,w) = opp(F, v) for some vertex w 6= v of F . By the second
condition, x and v lie in the neighboring facet N(F,w). Hence, x+ v cannot be a
vertex of P , a contradiction to φ(v) 6= 0. �

Example 21. In Figure 3 the behaviour of the φ-function is illustrated. The vertices
e1 and e2 are both good and belong to the partition set A. We have φ(e1) = e2 and
φ(e2) = e1.

Let us deduce the following observations on the sizes of the sets A,B,C.

Lemma 22.
d− 2k ≤ |A|, |B|+ |C| ≤ 2k, |C| ≤ k.

Proof. By Lemma 14 every vertex on level 0 must be opposite to some vertex in F ,
and clearly two different vertices on level 0 cannot be opposite to the same vertex in
F , as opposite vertices are unique. Therefore, the bound η0 ≥ d− k, see Lemma 15,
implies that at least d− k vertices have pairwise distinct opposite vertices on level
0. In particular, at least d− k vertices of F must be good, i.e., |C| ≤ k. Moreover,
there can be at most k of these d− k good vertices, say v, that have the property
that there exists another vertex v̄ ∈ VertF with opp(F, v̄) = opp(F, v). Therefore,
Lemma 20 implies |A| ≥ d− 2k, and thus |B|+ |C| ≤ 2k. �
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Example 23. The reader should be aware that we do not claim that |B| ≤ k. In
fact, |B| = 2k is possible as the following example shows. For this, consider the
convex hull of the following 10 points in dimension d = 4:

e1, e2, e3, e4

−e1 − e2 + e3 + e4, −e3 − e4 + e1 + e2

−e1, −e2, −e3, −e4 .

This polytope is indeed a smooth Fano polytope with 10 vertices, so k = 2, as
3 · d = 12. The vertices e1, e2, e3, e4 form a special facet F . Here, all the vertices
of F are in the partition set B, e.g., e1 and e2 share the same opposite vertex
−e1 − e2 + e3 + e4. Therefore |B| = 4 = 2k. This example can be generalized to
higher dimensions, where all the vertices of a special facet F are good, and yet k
pairs of vertices share an opposite vertex.

Let us summarize what we know about the opposite vertices (keep in mind that
VertF forms a lattice basis).

Proposition 24. Let z ∈ VertF .
(i) If z ∈ A, then opp(F, z) = −z + φ(z).
(ii) If z ∈ B, then

opp(F, z) = −z +
∑
u∈A

auu+
∑

v∈B\{z}

bvv +
∑
w∈C

cww

with au, cw ∈ Z≥0 and bv ∈ Z≥−1 for all u ∈ A, v ∈ B\{z} and w ∈ C. Further
it holds∑
u∈A

au +
∑

v∈B\{z}

bv +
∑
w∈C

cw = 1,
∑
u∈A

au ≤ k + 1,
∑

v∈B\{z}

bv ≥ −k .

(iii) If z ∈ C, then

opp(F, z) = −z +
∑
u∈A

auu+
∑
v∈B

bvv +
∑

w∈C\{z}

cww

with au, bv, cw ∈ Z for all u ∈ A, v ∈ B and w ∈ C\{z}. Further it holds∑
u∈A

au +
∑
v∈B

bv +
∑

w∈C\{z}

cw ≤ 0 .

Proof. (i) Follows by definition.
(ii) The first statement is a consequence of Lemma 14 and Lemma 20. The

second equation follows since opp(F, v) is on level 0. Finally, as in the
proof of Lemma 22, we note that for z ∈ B, there can be at most k other
vertices z̄ ∈ VertF (necessarily, z̄ ∈ B) with opp(F, z̄) = opp(F, z). By
Lemma 14 this implies that there are at most k other vertices z̄ ∈ B, z̄ 6= z,
with bz̄ = 〈uF,z̄, opp(F, z)〉 < 0 (equivalently, equal to −1). We deduce
that

∑
v∈B\{z} bv ≥ −k. Since opp(F, z) ∈ V (F, 0), this implies also that∑

v∈A au ≤ k + 1.
(iii) This is as before a direct consequence of Lemma 18 together with the fact that

z is not a good vertex and so the opposite vertex must lie on a level below 0.
�
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2.5. Vertices on negative levels. Let us recall some of Øbro’s observations.

Lemma 25 (Øbro [23, Lem. 1 and 2]). Let G be a facet of P , z a vertex of G, and
G′ := N(G, z). Then uG′ = uG + (〈uG′ , z〉 − 1)uG,z. Moreover, for x ∈ P we have
〈uG, x〉 − 1 ≤ 〈uG,z, x〉. In case of equality we have x = opp(G, z).

Corollary 26. If z ∈ A ∪B, then uF ′ = uF − uF,z for F ′ := N(F, z).

Proof. This follows from plugging in x := opp(F, z) into Lemma 25. �

The following observation is contained in Øbro’s PhD thesis [22, Lemma 1.9(5)].

Lemma 27. Let x be a vertex of P with x 6= opp(F, z) for some vertex z ∈ VertF .
Then the inequality 〈uF,z, x〉 < 0 implies 〈uF , x〉 < 〈uF , opp(F, z)〉. In other words,
if z has a negative contribution to x then the vertex x must lie on a level strictly
lower than the opposite vertex of z.

As we know that for all w ∈ C the vertex opp(F,w) lies strictly below level 0, we
get the following consequence.

Corollary 28. There is at most one vertex x ∈ V (F,−1) with 〈uF,w, x〉 < 0 for
some w ∈ C. If such a vertex x exists, then x = opp(F,w).

Let us make some auxiliary considerations regarding vertices on negative levels.

Lemma 29. Let z ∈ A ∪ B. For every z̄ ∈ VertF there is at most one vertex
x ∈ V (F,−1) with 〈uF,z, x〉 = −1 and 〈uF,z̄, x〉 < 〈uF,z̄, opp(F, z)〉.

Proof. Let us denote y = opp(F, z). We have 〈uF , y〉 = 0, since z is good. Suppose
there are two vertices x, x̄ ∈ V (F,−1) with 〈uF,z, x〉 = 〈uF,z, x̄〉 = −1 and 〈uF,z̄, x〉 <
〈uF,z̄, y〉 as well as 〈uF,z̄, x̄〉 < 〈uF,z̄, y〉 for some z̄ ∈ VertF . We rewrite x, x̄ and y
as:

x =
∑

v∈VertF

λv:=︷ ︸︸ ︷
〈uF,v, x〉 v , x̄ =

∑
v∈VertF

µv:=︷ ︸︸ ︷
〈uF,v, x̄〉 v , y =

∑
v∈VertF

αv :=︷ ︸︸ ︷
〈uF,v, y〉 v.

Considering the neighboring facet F ′ := N(F, z) and its outer facet normal uF ′ ,
Corollary 26 implies uF ′ = uF − uF,z, so x and x̄ both lie on level 0 with respect to
F ′. We rewrite x and x̄ in terms of the new lattice basis VertF ′ = VertF \{z}∪{y}:

x = y +
∑
v 6=z

(λv − αv)︸ ︷︷ ︸
=〈uF ′,v,x〉

v , x̄ = y +
∑
v 6=z

(µv − αv)︸ ︷︷ ︸
=〈uF ′,v,x̄〉

v,

where we used λz = µz = αz = −1. Our assumptions on z̄ gives us that λz̄ < αz̄
and µz̄ < αz̄. So Lemma 14 yields x = opp(F ′, z̄) = x̄. �

Lemma 30. Let x, x̄ ∈ VertP with 〈uF , x〉 < 〈uF , x̄〉. Then there must exist at
least one vertex z ∈ VertF with 〈uF,z, x〉 < 〈uF,z, x̄〉.

Proof. Suppose this is not true, so 〈uF,z, x〉 ≥ 〈uF,z, x̄〉 for every z ∈ VertF . Then
we get a contradiction from

〈uF , x〉 =
∑

z∈VertF
〈uF,z, x〉 ≥

∑
z∈VertF

〈uF,z, x̄〉 = 〈uF , x̄〉.

�
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Lemma 31 (Øbro [23, Lem. 5]). Let v and w 6= v be good vertices of the facet F
with opp(F, v) 6= opp(F,w). Then there exists no vertex x ∈ V (F,−1) such that
〈uF,v, x〉 = 〈uF,w, x〉 = −1.

Now we can give a rough classification of vertices in V (F,−1).

Proposition 32. Any vertex x ∈ V (F,−1) is one of the following three types:
(i) x = opp(F, z) for some z ∈ C with 〈uF,z, x〉 < 0.
(ii) 〈uF,z, x〉 = −1 for some z ∈ B, 〈uF,v, x〉 ≥ −1 for all v ∈ B, and 〈uF,w, x〉 ≥ 0

for all w ∈ A ∪ C.
(iii) x = −z for some z ∈ A.

There are at most |C| vertices of type (i), at most (k + 1)|B| vertices of type (ii),
and at least η−1 − |C| − |B|(k + 1) vertices of type (iii).

Proof. We consider the following situation: x ∈ V (F,−1) and z ∈ VertF with
〈uF,z, x〉 < 0 (clearly, such a z must exist). The proof proceeds in three steps.

First, suppose z ∈ C. Corollary 28 implies that x is the only vertex on level −1
which satisfies 〈uF,z, x〉 < 0 (namely, the opposite vertex to z). Hence, x is of type
(i).

Secondly, let us look at the remaining vertices x on level −1 (of which there are at
least η−1−|C| many), i.e., 〈uF,z̄, x〉 ≥ 0 for any z̄ ∈ C. Suppose we have z ∈ B with
〈uF,z, x〉 < 0. Lemma 25 implies 〈uF,z, x〉 = −1. We define y := opp(F, z) ∈ V (F, 0).
We claim that 〈uF,z̄, x〉 ≥ 0 for all z̄ ∈ VertF which satisfy opp(F, z̄) 6= y. Clearly,
this is automatically true for z̄ ∈ C by our choice of x. Otherwise, z̄ is good, and
the claim follows from Lemma 31. Hence, we get (use Lemmas 14, 18 and 25 again):

(2)
z̄ ∈ VertF with opp(F, z̄) 6= y =⇒ 〈uF,z̄, y〉 ≥ 0 and 〈uF,z̄, x〉 ≥ 0
z̄ ∈ VertF with opp(F, z̄) = y =⇒ 〈uF,z̄, y〉 = −1 and 〈uF,z̄, x〉 ≥ −1

Here we see that 〈uF,z̄, x〉 = −1 is only possible if z̄ ∈ B with opp(F, z̄) = y (see
also Proposition 24(ii)). From these observations we deduce that x is of type (ii).
Now, Lemma 30 implies that there must exist at least one vertex z̄ ∈ VertF with
〈uF,z̄, x〉 < 〈uF,z̄, y〉 because x lies on level −1 and y is on level 0. From (2) we
observe that this implies 〈uF,z̄, y〉 > 0. By Proposition 24(ii), y can have at most
(k + 1) many negative coordinates and lies on level 0 so we see that 〈uF,z̄, y〉 > 0 is
only possible for at most (k+ 1) choices for z̄ ∈ VertF . But Lemma 29 tells us that
x is uniquely determined by x ∈ V (F,−1), 〈uF,z, x〉 = −1 and 〈uF,z̄, x〉 < 〈uF,z̄, y〉
for given z̄ ∈ VertP . Therefore, for given vertex z ∈ B, there are at most (k + 1)
vertices x ∈ V (F,−1) that are not opposite to a vertex in C and satisfy 〈uF,z, x〉 < 0.

Finally, consider the remaining vertices x on level −1, of which there are at least
η−1 − |C| − |B|(k + 1) many, i.e., 〈uF,z̄, x〉 ≥ 0 for all z̄ ∈ B ∪ C. In this case, we
must have z ∈ A with 〈uF,z, x〉 < 0 for such an x. Again, Lemma 25 shows that
this is equivalent to 〈uF,z, x〉 = −1. Now, Lemma 31 implies 〈uF,z̄, x〉 ≥ 0 for all
z̄ ∈ A \ {z}. Since

∑
v∈VertF 〈uF,v, x〉v = x with

∑
v∈VertF 〈uF,v, x〉 = −1 and there

is only one negative summand which is already −1, we must have x = −z, so x is of
type (iii). �

2.6. Construction of the splitting. We will now restrict our set A.

Definition 33. Let
A′ := {v ∈ A : −v ∈ VertP}.
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Lemma 34 (Assarf, Joswig, Paffenholz [1, Lemma 29]). If v ∈ A′, in particular
φ(v) 6= 0, then φ(φ(v)) ∈ {0, v}.

We want to restrict A′ further to a subset of elements v that have the desirable
property φ(φ(v)) = v. For this, let us first recall the following result.

Lemma 35 (Casagrande [6, Lemma 3.3]). If z, x, x′, y, y′ ∈ VertP with x 6= x′

such that x+ z = y and x′ + z = y′, then y′ = −x.

Corollary 36. Let z ∈ VertF . Then
| {v ∈ A′ |φ(v) = z} | ≤ 1.

Proof. Assume there exist v, v′ ∈ A′, v 6= v′ with φ(v) = z = φ(v′). We define
x := −v, x′ := −v′, y := opp(F, v) = z − v, y′ := opp(F, v′) = φ(v′)− v′

Then Lemma 35 implies φ(v′)− v′ = y′ = −x = v, a contradiction since φ(v′)− v′
is on level 0, while v is on level 1. �

Next, let us write the vertex sum as a linear combination of vertices of F :

sP =
∑

z∈VertF
γz z.

Note that γz ≥ 0 for any z ∈ VertF . Now, we can restrict the set of good vertices
further.

Definition 37. Let
Ā := {v ∈ A′ : φ(v) ∈ A′, γv = 0 = γφ(v)}.

Note that Lemma 34 implies φ(φ(v)) = v for v ∈ Ā. In particular, v ∈ Ā implies
φ(v) ∈ Ā.

The reason for including the condition on the vertex sum in the definition of Ā
is that changing the special facet will be useful in the upcoming proofs, and this
condition will ensure that the new facet will still be special.

Note that Ā splits into disjoint pairs, each pair, say v, φ(v), giving rise to the
following configuration of vertices of P (see also Example 21 and Figure 3):

v , φ(v)
v − φ(v) , φ(v)− v
−φ(v) , −v

We can now estimate the size of the set Ā.

Proposition 38.
|Ā| ≥ 2|A′| − d− 2k.

Proof. We have by Corollary 36
|{v ∈ A′ : φ(v) ∈ B ∪ C} ∪ {v ∈ A′ : φ(v) ∈ A \A′}| ≤ |B|+ |C|+ |A| − |A′|.

This shows that
{v ∈ A′ : φ(v) ∈ A′} ≥ |A′| − (|B|+ |C|+ |A| − |A′|) = 2|A′| − d.

Finally, from Lemma 16 we see that there are at most k vertices in F with nonzero
γ-coordinate. Hence, we have to potentially remove k pairs, so 2k vertices from the
previous estimate. �
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In order to finally prove that we indeed have a splitting into a sufficiently
large subset of these hexagons it is necessary to bound the number of its nonzero
coordinates in Ā for each vertex on a negative level.

Lemma 39. For x ∈ V (F,≤ −1) it holds
|
{
z ∈ Ā

∣∣ 〈uF,z, x〉 6= 0
}
| ≤ 2k + 2.

Proof. Let x be a vertex in V (F,≤ −1). Suppose there exists a vertex v0 ∈ Ā with
〈uF,v0 , x〉 < 0, then we consider the neighboring facet F1 := N(F, v0). Note that
by our assumption on Ā, the facet F1 is still a special facet, as F1 has vertices
VertF \ {v0} ∪ {φ(v0) − v0}. Hence, uF1 = uF − uF,v0 . In particular, we get
〈uF1 , x〉 > 〈uF , x〉.

Now, suppose there exists another vertex v1 ∈ Ā with v1 6∈ {v0, φ(v0)} such that
〈uF,v1 , x〉 < 0. Note that by the choice of v1 and by Lemma 25 and the fact that
uF1,v1 = uF,v1 , the opposite vertex of v1 with respect to F1 is the same as for F ,
that is opp(F1, v1) = opp(F, v1) = φ(v1)− v1. Consider F2 := N(F1, v1). Again, by
Lemma 14, the facet F2 has vertices

VertF \ {v0, v1} ∪ {φ(v0)− v0} ∪ {φ(v1)− v1}
and therefore is also a special facet. Hence, uF2 = uF − uF,v0 − uF,v1 . In particular,
〈uF2 , x〉 > 〈uF1 , x〉.

Continuing with this argumentation we might end up with a facet F` where
〈uF`

, x〉 = 0 and vertices
VertF \ {v0, . . . , v`} ∪ {φ(v0)− v0} ∪ · · · ∪ {φ(v`−1)− v`−1} .

At this moment there cannot exist another vertex v` ∈ Ā with 〈uF,v`
, x〉 < 0,

since Lemma 14 shows that x = opp(F`, v`) = φ(v`) − v` ∈ V (F, 0) (note that
uF`,v`

= uF,v`
and due to our choices the opposite vertices of VertF` ∩ Ā do not

change). A contradiction.
So the number of vertices v with 〈uF,v, x〉 < 0 is at most 2 · |〈uF , x〉|, where the

factor 2 comes from the fact that 〈uF,φ(vi), x〉 could be zero or not.
One can repeat the same argument with 〈uF,v, x〉 > 0. In this case, since all the

facets were special, we can use that −k−1 is the lowest possible level (Lemma 15) to
deduce that there are at most 2 · (k+ 1− |〈uF , x〉|) vertices v ∈ Ā with 〈uF,v, x〉 > 0.
Putting this together we get the desired statement. �

2.7. The proof of Theorem 5. Let us define

W :=
⋃
v∈Ā

{v, φ(v), φ(v)− v, v − φ(v), −v, −φ(v)} .

Note that the convex hull of these vertices splits into hexagons as desired. Our goal
is now to bound the number of vertices v ∈ Ā for which there exists some vertex
x ∈ VertP \W with 〈uF,v, x〉 6= 0. Then after removing these undesired vertices v
(and their hexagons) from W , the remaining vertices of W live in a subspace that is
transversal to all other vertices of P .

First let us consider the case that x ∈ V (F, 0)\W with 〈uF,v, x〉 6= 0 for some
v ∈ Ā. In particular, x is not opposite to any vertex in Ā (since x 6∈ W ). By
Lemma 14, this implies 〈uF,v, x〉 > 0, and x = opp(F, v′) for some v′ ∈ VertF with
v′ ∈ (A\ Ā)∪B. We distinguish two cases. If v′ ∈ A\ Ā, then Proposition 24 implies
φ(v′) = v and x = v− v′. (Since in this case each choice of v′ uniquely determines x
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and thus v, there are at most |A \ Ā| many possibilities for v.) We can say more for
v′ ∈ B. Let us partition B into disjoint subsets B1, . . . , Bt, where two vertices of B
are in the same subset Bi (for i ∈ {1, . . . , t}) if and only if their opposite vertices
are the same. Let us assume that v′ ∈ Bj for some j ∈ {1, . . . , t}. By Lemma 14
and Proposition 24, the vertex x has negative coordinates only in Bj , so x has at
most |Bj | many positive coordinates in Ā, since x is on level 0. So, in this second
case there are at most t possibilities for x, and at most |B1|+ · · ·+ |Bt| = |B| many
possibilities for v. Hence, the number of vertices v ∈ Ā for which there exists some
vertex x ∈ V (F, 0) \W with 〈uF,v, x〉 6= 0 is bounded by

(3) |A| − |Ā|+ |B|.

Next we notice that there are at most 2k vertices in V (F,≤ −2) by Lemma 15.
For each such vertex x, Lemma 39 implies that 〈uF,v, x〉 6= 0 can be satisfied for at
most 2k + 2 many choices of v ∈ Ā. Therefore, the number of vertices v ∈ Ā for
which there exists some vertex x ∈ V (F,≤ −2) \W with 〈uF,v, x〉 6= 0 is bounded
by

(4) (2k + 2)2k.

This leaves the case where x ∈ V (F,−1) with −x 6∈ Ā and 〈uF,v, x〉 6= 0 for some
v ∈ Ā. By Proposition 32 the vertex x must be of type (i) or (ii). Lemma 39 shows
that the number of vertices v ∈ Ā for which there exists some vertex x ∈ V (F,−1)\W
of type (i) with 〈uF,v, x〉 6= 0 is bounded by

(5) (2k + 2)|C|.

Let us define two sets. Ṽ is the set of vertices in V (F,−1) of type (ii), and
Ã is the set of vertices v ∈ Ā where there exists some x ∈ Ṽ with 〈uF,v, x〉 6= 0
(necessarily, > 0). Note that by the description of a vertex x ∈ Ṽ in Proposition 32
it holds that, since x ∈ V (F,−1), if j many coordinates of x in Ā are positive, then
at least j + 1 many coordinates of x in B must be equal to −1. Hence,

|Ã|+ |Ṽ | ≤
∑
x∈Ṽ

(|{v ∈ Ã : 〈uF,v, x〉 > 0}|+ 1)

≤
∑
x∈Ṽ

|{v ∈ B : 〈uF,v, x〉 = −1}|

=
∑
v∈B
|{x ∈ Ṽ : 〈uF,v, x〉 = −1}|

≤ (k + 1)|B|,

where we used Proposition 32 for the last inequality. This shows that the number
of vertices v ∈ Ā for which there exists some vertex x ∈ V (F,−1) \W of type (ii)
with 〈uF,v, x〉 6= 0 is bounded by

(6) (k + 1)|B| − Ṽ .

Summing up Equations (3),(4),(5), and (6) we get that the number of vertices
v ∈ Ā for which there exists some vertex x ∈ VertP \W with 〈uF,v, x〉 6= 0 is
bounded by

|A| − |Ā|+ |B|+ (2k + 2)2k + (2k + 2)|C|+ (k + 1)|B| − |Ṽ |.
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Using |A| + |B| + |C| = d and |Ṽ | ≥ η−1 − |C| − |A′| (see Proposition 32), this
expression can be bounded from above by

(2k + 2)2k + (2k + 2)|C|+ (k + 1)|B|+ |A′| − |Ā| − η−1 + d.

Now, we want to remove all these vertices v together with φ(v). So, we deduce
that the number of vertices v ∈ Ā for which there exists no vertex x ∈ VertP \W
with 〈uF,v, x〉 6= 0 or 〈uF,φ(v), x〉 6= 0 is at least

|Ā| − 2
(

(2k + 2)2k + (2k + 2)|C|+ (k + 1)|B|+ |A′| − |Ā| − η−1 + d
)

= 3|Ā| − 8(k + 1)k − 4(k + 1)|C| − 2(k + 1)|B| − 2|A′|+ 2η−1 − 2d.

From |Ā| ≥ 2|A′| − d− 2k (Proposition 38) we get that this expression is at least

4|A′| − 6k − 8(k + 1)k − 4(k + 1)|C| − 2(k + 1)|B|+ 2η−1 − 5d.

Using |A′| ≥ η−1 − |C| − |B|(k + 1) (Proposition 32) we get that the previous
expression is at least

−6k − 8(k + 1)k − 4(k + 2)|C| − 3(k + 1)|B|+ 6η−1 − 5d.

Plugging in η−1 ≥ d− 2k (Lemma 15) we deduce that the previous expression is at
least

−18k − 8(k + 1)k − 4(k + 2)|C| − 3(k + 1)|B|+ d.

Finally, we use |B|+ |C| ≤ 2k and |C| ≤ k (Lemma 22) to show that the previous
expression is at least

d− 15k2 − 37k.

Summing up, we have proved that there are at least d− 15k2 − 37k vertices v ∈ Ā
such that all vertices x ∈ VertP \ W satisfy 〈uF,v, x〉 = 0 and 〈uF,φ(v), x〉 = 0.
Hence, if d ≥ 15k2 − 37k + 2, then P splits such that there are at least⌊

d− 15k2 − 37k
2

⌋
≥ 1

hexagons P6 as splitting factors. This finishes the proof.
�

Remark 40. The reader may wonder why our proof does not achieve a linear bound.
In fact, the quadratic order comes from (4), (5), and (6). These inequalities rely on
several worst-case bounds such as Lemma 39. The main bottleneck at this crucial
point in the proof is the separate application of these estimates when the worst cases
may actually exclude each other. Hence, in order to get an overall linear bound it
would be desirable to find a direct and unified approach to these estimates.

3. Extremal smooth Fano polytopes

In this section, we explain why Conjecture 11 and Conjecture 13 would be sharp.
These conjectures were found using polymake [13]. We analyzed all smooth Fano
polytopes up to dimension 9 (and checked the validity) using the database extension
poly_db [15], where all the polytopes found in [17] are part of the database.
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Definition 41. Let d = 3 · d′ for some positive integer d′. Let e1, . . . , ed be the
standard basis of Rd. We define v to be the following vector in Rd

v :=
d′∑
i=1

ed′+2i −
d′∑
i=1

ei .

It consists of −1 in the first d′ coordinates and then the coordinates alternate
between 0 and 1. We define S to be the simplex S := conv{v, e1, e2, . . . , ed′} ⊆ Rd.
Let P6 ⊂ R2 be the hexagon from Figure 1. Finally, we define Bd′ as the combined
convex hull

Bd′ := conv
(
S ∪

(
{0}d

′
× P⊕d

′

6

))
.

Remark 42. Let us recall the following construction (generalizing Definition 3).
Given two polytopes Q,Q′ ⊂ Rd whose affine hulls intersect precisely in a point
(not necessarily a lattice point), then the convex hull of Q and Q′ is a combinatorial
free sum (also called direct sum or linear join) of Q,Q′. This means that its
combinatorial type is dual to the product of the combinatorial dual polytope of Q
and the combinatorial dual polytope of Q′. In particular, the combinatorial type of
a combinatorial free sum of Q and Q′ only depends on the combinatorial types of Q
and Q′.

Proposition 43. Bd′ is a smooth Fano polytope of dimension 3d′ with 7d′ + 1
vertices that does not split into lower-dimensional smooth Fano polytopes.

Proof. The polytope Q := {0}d′ × P⊕d
′

6 is a 2d′-dimensional smooth Fano polytope
(considered as P⊕d

′

6 in R2d′) with 6d′ vertices. Since S is a d′-dimensional simplex
containing e1, . . . , ed′ , the polytope Bd′ has clearly dimension 3d′ and thus is full-
dimensional. We observe that the barycenter of S equals x :=

∑d′

i=1
1

d′+1ed′+2i
which is a point in the interior of Q. This is the only intersection point of Q and S.
Hence, in the notation of Remark 42, Bd′ is a combinatorial free sum of Q and S.
In particular, Bd′ is simplicial and every facet F of Bd′ is the convex hull of a facet
in S and a facet in Q.

Our goal is now to show that each facet forms a lattice basis. As P⊕d
′

6 is a
2d′-dimensional smooth polytope we know that F contains a lattice basis for the
subspace {0}d′ × R2d′ . Let us distinguish whether v ∈ F or not. Suppose v 6∈ F
then the facet contains the points e1, e2, . . ., ed′ , which is a lattice basis of the
space Rd′ × {0}2d′ . If on the other hand v ∈ F then one of those cartesian basis
vectors is missing, let this be e1 without loss of generality. It is sufficient to show
that we can write e1 as an integer linear combination of vertices of F . Consider
e1 = −v −

∑d′

i=2 ei +
∑d′

i=1 ed′+2i. This integer linear combination consists either of
vertices of F or of points which can be expressed as an integer linear combination
of vertices of F since we already know that the vertices form a lattice basis for
{0}d′ × R2d′ . This shows that Bd′ is a smooth Fano polytope.

Finally, assume thatBd′ would decompose as a direct sum of two lower-dimensional
smooth Fano polytopes P1 and P2. Say, v is a vertex of P1. Since v is a linear
combination of e1, . . . , ed′ and ed′+2i for i = 1, . . . , d′, these vertices must also be
vertices of P1. However, no hexagon P6 splits, so all vertices of P are in P1, a
contradiction. �
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Regarding the sharpness of Conjecture 11, we see that B⊕m1 has dimension
d := 3m with 8m vertices. Hence, the associated toric Fano manifold has Picard
number 5m = 5d

3 . This example and its toric variety was already considered in [1].
Regarding the sharpness of Conjecture 13, we observe that the toric Fano manifold

associated to Bd′ has dimension d := 3d′ and Picard number 4d+3
3 . We refer to

the book [10] for the explanation why this defines a toric fiber bundle as stated in
Conjecture 13.
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