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Abstract

Any optimization algorithm based on the risk parity approach requires the formula-
tion of portfolio total risk in terms of marginal contributions. In this paper we use the
independence of the underlying factors in the market to derive the centered moments
required in the risk decomposition process when the modified versions of Value at Risk
and Expected Shortfall are considered.

The choice of the Mixed Tempered Stable distribution seems adequate for fitting
skewed and heavy tailed distributions. The ensuing detailed description of the optimiza-
tion procedure is due to the existence of analytical higher order moments. Better results
are achieved in terms of out of sample performance and greater diversification.

1 Introduction

Nowadays there is much more emphasis on the sources of risk rather than just only on
the levels. In addition to the interest on the marginal contribution to risk of a particular
factor, we have to deal with new concepts such as the Risk Parity. It is an approach
in portfolio management which focuses on allocation of risk rather than on the capital
allocation (see Denis et al., 2011, for further details) it suggests that in a well-diversified
portfolio all asset classes should have the same marginal contribution to the total risk of
the portfolio.

In financial literature non parametric methods based on historical simulation have
been studied deeply but, as observed in Meucci (2009), an approach that takes into ac-
count only past realizations of the variables of interest depends on the choice of the
time interval. Stability issues for estimates require large sample sizes (see for exam-
ple Martellini and Ziemann (2010), Hitaj and Mercuri (2013) in the context of sample
moments applied to the portfolio selection problem) but on the other hand realizations
observed in the farther past can be less realistic since market conditions may have changed
meanwhile. A simple answer to this problem is the use of exponentially decaying weights
for the observations, i.e instead of giving equal weight to each observation in the past
we consider as more relevant recent realizations. But in so doing we may wrongly give
little importance to scenarios in the past that realized in similar conditions to the today’s
market. Parametric distributions enough flexible to fit time series of financial returns can
be a starting point for procedures based on estimates of moments that present statistical
properties even for not so large sample sizes.

Recently a new class of distributions, named Mixed Tempered Stable distribution
(MixedTS hereafter), has been introduced in Rroji and Mercuri (2014a,b). The idea be-
hind is to generalize the Normal Variance Mean Mixtures (NVMM henceforth) substitut-
ing the normality assumption with the Tempered Stable distribution (Cont and Tankov,
2003, see). In this way the new distribution overcomes some limits of the NVMM. In par-
ticular the MixedTS is more flexible in capturing the higher moments since in the NVMM
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the sign of skewness is given by the sign of the drift parameters and the level depends on
the mixing random variable and drift parameter while in the MixedTS, the asymmetry
depends also on the tempering parameters of the Tempered Stable distribution.
A similar argument holds for the kurtosis since for particular choice of the tempering
parameters, the tail behavior of the MixedTS varies from semi-heavy (i.e. the tail decays
exponentially) to heavy (power law decay), while the tail behavior for the NVMM depends
only on the tail behavior of the mixing random variable (see Barndorff-Nielsen et al., 1982,
for a complete discussion on tail behavior). Here, we find an advantage of the MixedTS
in modeling financial returns since we do not need to know a priori if we have to consider
a heavy or semi-heavy distribution.

The main contribution of this paper is the introduction of a general setup for obtaining
risk parity portfolios by modeling directly the underlying factors in a given market. For
factor identification, we apply the Independent Component Analysis (ICA) introduced in
Comon (1994). Details and algorithms on this subject are given in Hyvarinen et al. (2001).
Exploiting the ability of ICA to decompose observed signals in independent random vari-
ables, in the proposed approach we need only to model each individual component since
the dependence structure of factors is captured by the mixing matrix obtained through
the algorithm.

From the Euler theorem for homogeneous functions we have that a homogenous risk
measure can be written as a weighted sum of the marginal risk contribution where the
weights are the exposures to the factors (see Tasche, 1999, for a complete treatment).
Consequently, risk parity portfolios are achieved as a solution of a constrained minimiza-
tion problem as proposed for example in Maillard et al. (2010).
In this paper we focus on three standard homogeneous risk measures: Volatility, Value at
Risk (VaR) and Expected shortfall (ES). In particular for the last two measures we con-
sider the modified versions proposed in Zangari (1996) for the VaR and in Boudt et al.
(2007) for the ES. The idea behind both modified measures is to consider asymptotic
expansions for the underlying distribution based on the first four moments that, in our
approach, can be easily derived using the ICA approach and assuming factors to be
MixedTS-distributed.

The outline of the paper is as follows. In Section 2 we briefly recall the risk parity
approach and its connection with other portfolio optimization methods. The main results
concerning the Mixed Tempered Stable distribution are reviewed in Section 3 while in
Section 4 we analyze the risk parity approach for portfolio optimization using the modified
VaR and the modified ES. Empirical results are given in Section 5 and Section 6 concludes
the paper.

2 Portfolio construction using the Risk Parity ap-

proach

Risk parity is an approach of allocating risk rather than capital. It overcomes some of
the limits of standard approaches like for example mean-variance optimization. Indeed,
as observed in Maillard et al. (2010), the mean-variance approach has two drawbacks in
practice. First, optimal portfolios seem to be concentrated in a few assets. Second, small
changes in the estimated parameters give rise to relevant modifications in the optimal
portfolio that as remarked by Merton (1980) is more relevant in the case of portfolio
expected return estimation. To avoid this lack of stability, researchers proposed several
regularization techniques. The most used are resampling of the objective function pro-
posed by Michaud (1989) and shrinkage estimators of the covariance matrix developed
in Ledoit and Wolf (2003). In literature we also find heuristic approaches that do not
require return estimation like Equally weighted (EW), Equal risk contributions (ERC) or
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Minimum Variance (MV) portfolios. Through these methods, we put constraints directly
on portfolio weights and do not require advanced programming issues. These methods
are not completely distant from each other. For example Equally weighted portfolios can
be seen as a particular case of Equal risk contributions supposed we have the same risk
and the same correlation for all the factors.
A common way of expressing portfolio returns is as a linear combination of factor returns
(F ) with weights given by the portfolio exposures in β:

r = β′F (1)

Identifying all factors that influence portfolio returns is not an easy task but once we get
them a very important concept when dealing with risk analysis is the marginal contribu-
tion to risk (MRC) of a factor or an asset class defined as:

MRCi =
∂R(r)

∂βi
(2)

This quantity represents the additional risk of our portfolio for each additional unit of
exposure to the i-th factor. Of particular interest is the product of the exposure with the
marginal contribution to risk known as total risk contribution (TRC):

TRCi = βi
∂R(r)

∂βi
(3)

The use of TRC makes risk attribution easier to understand as it becomes the split of risk
in portions that are additive and constitute the portfolio total risk.
Risk parity, as other portfolio optimization rules, aims at identifying portfolio weights (or
exposures) that satisfy a certain criteria. In practice, TRC must be the same for each
factor considered in the portfolio construction. Maillard et al. (2010) propose to perform
the following minimization to get the desired weights:

minimize
β

∑N

i=1

N
∑

j=1

(TRCi − TRCj)
2

subject to

N
∑

i=1

βi = 1,

0 ≤ βi ≤ 1 i = 1, . . . , N.

(4)

where the inequality constraints refer to the no-short selling conditions.
It is worth noting that the objective function in the optimization problem introduces a
penalty when TRCs are different from each other. In this way, the resulting portfolio has
similar TRC for each considered factor.

3 Mixed Tempered Stable distribution

In this section we review the main results on the Mixed Tempered Stable introduced
in Rroji and Mercuri (2014a) and investigate the methods for computing risk measures
in the univariate case. Before introducing the MixedTS we start from the definition of
Normal Variance Mean Mixtures.
NVMM models are based on the normality assumption while we try to generalize this
concept. In fact a Normal Variance Mean Mixture has the form :

Y = µ0 + µV + σ
√
V Z (5)

where the parameters µ0, µ ∈ ℜ and Z ∼ N(0, 1). V is continuously distributed on the
positive half-axis. The main idea behind the MixedTS is to substitute the normality
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assumption for the r.v. Z in formula (5) with the Tempered Stable that ensures more
flexibility to the new distribution.
We recall that the Tempered Stable distribution is obtained by multiplying the Lévy
density of an α-Stable with a decreasing tempering function (Cont and Tankov (2003)).
Tail behavior changes from heavy to semi-heavy characterized by exponential instead of
power decay and the existence of the conventional moments is ensured. Tweedie (1984)
introduced the one side Tempered Stable distribution by exponentially tilting the tail of a
positive Stable distribution. Rosinski (2007) generalized the tempered stable distributions
and classified them according to their Lévy measure. With this generalization it is also
possible to obtain distributions with the whole real axis as support. Küchler and Tappe
(2013) observed that the Tempered Stable defined on real axis can be obtained as a
difference of two independent one sided Tempered Stable. This distribution and the
corresponding process has been widely applied in finance (see Küchler and Tappe, 2014;
Mercuri, 2008, for modeling asset returns and the recent textbook Rachev et al. (2011)).

In this paper we consider a parametric distribution, the Mixed Tempered Stable, for
modeling asset returns and use it in risk computation. We say that a continuous random
variable Y follows a Mixed Tempered Stable distribution if:

Y
d
= µ0 + µV +

√
V X (6)

where X |V ∼ stdCTS(α, λ+

√
V , λ−

√
V ) is Standardized Classical Tempered Stable dis-

tributed (stdCTS Küchler and Tappe (2013)). V is an infinitely divisible distribution
defined on positive axis and its m.g.f always exists. The logarithm of the m.g.f. is:

ΦV (u) = ln [E [exp (uV )]] (7)

We compute the characteristic function for the new distribution and apply the law of
iterated expectation:

E
[

eiuY
]

= E
[

E
[

eiu(µ0+µV+
√
V X)

∣

∣

∣
V
]]

= eiuµ0E
[

e[uµ+LstdCTS(u; α, λ+, λ−)]V
]

= eiuµ0+ΦV (uµ+LstdCTS(u; α, λ+, λ−))

(8)

The characteristic function identifies the distribution at time one of a time changed Lévy
process and the distribution is infinitely divisible. Despite the fact that this distribution
has nice features from a theoretical point of view, it allows a dependence of the standard
higher moments not only on the mixing r.v but also on the Standardized Classical Tem-
pered Stable distribution parameters . As observed in Rroji (2013), it is important to
have a flexible distribution for accommodating the differences in terms of asymmetry and
tail heaviness.

Proposition 1 The first four moments of the MixedTS have an analytic expression since:







































E [Y ] = µ0 + µE [V ]
V ar [Y ] = µ2V ar(V ) + E [V ]

m3 (Y ) = µ3m3 (V ) + 3µV ar(V ) + (2− α)
(λα−3

+
−λα−3

−
)

(λα−2

+
+λα−2

−
)
E [V ]

m4 (Y ) = µ4m4(V ) + 6µ2E
[

(V − E(V ))2 V
]

+ 4µ (2− α)
λα−3

+
−λα−3

−

λα−2
+

+λα−2
−

V ar(V )

+(3− α)(2− α)
(λα−4

+
+λα−4

−
)

(λα−2

+
+λα−2

−
)
E [V ]

(9)

Where m3() and m4() are the third and fourth central moments respectively.
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See Appendix A for details on the derivation of the moments.
The choice of using this distribution comes from the fact that if we assume that V ∼
Γ(a, σ2), we have as special cases some well-known distributions in modeling financial
returns. We get the Variance Gamma (Madan and Seneta, 1990; Loregian et al., 2012)
for α = 2 and the Standardized Classical Tempered Stable when σ = 1√

a
and a goes to

infinity.
Under the assumption that V ∼ Γ(a, σ2)

E [V ] = aσ2

V ar [V ] = aσ4

E
[

(V − E(V ))2 V
]

= E
[

(V −E(V ))3
]

+ E(V )V ar(V ) =
2√
a
a3/2σ6 + a2σ6

E
[

(V − E(V ))3
]

=
2√
a
a3/2σ6

E
[

(V − E(V ))4
]

=

(

3 +
6

a

)

a2σ8

Remark 2 From the scale property of the Gamma r.v. we have that

V
d
= σ2Ṽ

where Ṽ ∼ Γ(a, 1) and the definition in (6) can be written as:

Y
d
= µ0 + µ̃Ṽ + σ

√

Ṽ X̃

where µ̃ = µσ2 and X̃ ∼ stdCTS(α, λ+σ
√
V , λ−σ

√
V ). Note that in this formulation the

MixedTS distribution has the same structure of the NVMM defined in (5).

For univariate random variables, risk measures can be computed directly once we have
the characteristic function φY (t) of a r.v Y since we evaluate its distribution function
FY (y) using the formula based on the Inverse Fourier Transform:

FY (y) =
1

2
− 1

2π

∫ +∞

−∞

[

e−ityφY (t)
]

it
dt

The Value at Risk at he confidence level α is obtained inverting the distribution function:

V arα(Y ) = −FY (α)

Under the assumption of existence for the E (Y ), the Expected Shortfall is computed
using the formula:

ESα(Y ) = E [Y | Y ≤ yα] = yα − 1

α

∫ yα

−∞
F (u) du

In a multivariate context the distribution function can not obtained trivially since it is
based on a model that captures the dependence of assets and requires the computation of
multiple integrals. In the next section we present a methodology for computing the port-
folio risk measures where the dependence structure of its assets is reconstructed through
an ICA analysis and each signal is modeled through the MixedTS ditribution.
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4 Parametric risk decomposition

We focus on homogeneous continuously differentiable risk measures for which risk con-
tribution can be determined using the Euler’s theorem for homogeneous functions (see
Tasche, 1999, for more details).
Let R(r) be an positive homogeneous risk measure, applying the Euler’s theorem we get:

R(r) =

n
∑

i=1

βi
∂R(r)

∂βi
=

n
∑

i=1

TRCi (10)

where the Total Risk Contribution of the i-th risk factor is (see Tasche, 1999) defined in
equation (3). In particular the TRCi for the risk measures considered in this paper are
listed below.

• For volatility:

TRCi =
(Σβ)i√
β′Σβ

(11)

where Σ is the variance-covariance matrix of the factors.

• For the value-at-risk (see Gourieoux et al., 2000, for a complete treatment):

TRCi = −E [Fi |r = V aRα(r) ] βi (12)

where V aRα(r) is the value-at-risk of the portfolio evaluated at the level α.

• For the expected shortfall (see Tasche, 2002, for more details):

TRCi = −E [Fi |r ≤ −V aRα(r) ]βi (13)

The total risk contribution for a given factor can be easily computed using the historical
approach. Indeed, we need only the matrix containing in the first column the vector r

while in the other columns we put the factor returns. Consider for example to the Value
at Risk that is the quantile of a distribution. We take the complete data matrix and order
all the data following the column of portfolio returns. Observe that once sorted the matrix
we have all the information needed for risk decomposition. The marginal contribution to
risk for the factors is then computed on the sorted factor columns. However as observed
in Boudt et al. (2007) the estimating results obtained using historical Value-at-Risk and
historical Expected Shortfall, have a large variation in the out-of-sample observations than
those based on a correctly specified parametric class of distributions.
In a non-gaussian parametric framework, the modified VaR proposed in Zangari (1996)
and the modified ES developed in Boudt et al. (2007) seem to be attractive approaches
since both measures preserve the homogeneity property and they can be easily computed
once the multivariate moments of the factors are available. Using (1), we model each asset
return as a weighted average of factor returns. The mean vector for the factors is µ while
Σ is their variance-covariance matrix of dimension N ×N . Co-skewness factor matrix of
dimension N ×N2 is:

M3 = E[(F − µ)(F − µ)′ ⊗ (F − µ)′] (14)

while their co-kurtosis matrix is of dimension N ×N3:

M4 = E[(F − µ)(F − µ)′ ⊗ (F − µ)′ ⊗ (F − µ)′] (15)

where ⊗ denotes the Kronecker product. The second, third and fourth order centered
moments of the vector r are respectively:







m2 = β′Σβ
m3 = β′M3(β ⊗ β)
m4 = β′M4(β ⊗ β ⊗ β)

(16)
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The skewness (skew)and kurtosis (kurt) are defined based on the centered moments :

skew =
m3

m
2

3

2

(17)

and
kurt =

m4

m2
2

− 3 (18)

In order to compute Σ, M3 and M4 and consequently the centered moments, we need the
multivariate distribution for the factor returns or their dependence structure by means of
a copula function. Here we face the problem from a different point of view, that is we look
for the underlying independent factors that generate the observed returns. In practice,
the ICA analysis (see Hyvarinen, 1999) applied to the factors simplifies the computation
of Σ, M3 and M4 since:

F = AS (19)

where in S = [S1.....SN ]′ we have the original sources and A is the mixing matrix to be
estimated. Each signal is modeled using the MixedTS, i.e:

Si ∼ µi
0 + µiV i +

√
V iX̃i (20)

As shown in Appendix B the computation of the elements of the moment matrices is quite
easy and fast due to the factor independence:























Σik
2 =

∑N
j=1 aijakjσ

2(sj)

M ikl
3 =

∑N
j=1 aijakjaljskew(sj)

M iklm
4 =

∑N
j=1 aijakjaljamjkurt(sj)

(21)

Computed the moments and co-moments, the modified VaR is obtained using the formula
derived in Zangari (1996):

mV aRα(r) = −β′µ−√
m2Φ

−1(α) +
√
m2C(zα, skew, kurt) (22)

where the quantity:

C(zα, skew, kurt) =

[

−1

6
(z2α − 1)skew − 1

24
(z3α − 3zα)kurt+

1

36
(2z3α − 5zα)skew

2

]

(23)
corrects the Gaussian VaR by considering skewness (skew) and kurtosis (kurt) of the
return vector r and zα = Φ−1(α). Observe that Φ() denotes the distribution of the stan-
dard normal while its inverse is used for the quantile determination. Modified Expected
Shortfall defined in Boudt et al. (2007) is a linear transformation of the expected value
of the returns below the α−Cornish fisher quantile where the second order Edgeworth
expansion of the true distribution is considered:

mESα(r) = −β′µ−√
m2EG2

[z |z ≤ gα ] (24)

with gα = G−1
2 (α). The extended formula is:

EG2
[z |z ≤ gα ] = − 1

α

{

φ(gα) +
1

24

[

I4 − 6I2 + 3φ(gα)
]

kurt+
1

6

[

I3 − 3I
]

skew(25)

+
1

72

[

I6 − 15I4 + 45I2 − 15φ(gα)
]

skew2

}

(26)
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where

Iq =











∏q/2
j=1(

∏q/2
j=1

2j
∏i

j=1
2j
)g2iα φ(gα) + (

∏q/2
j=1 2j)φ(gα) for q even

∏q∗

j=0(
∏q∗

j=0
(2j+1)

∏i
j=0

(2j+1)
)g2i+1

α φ(gα)− (
∏q∗

j=0(2j + 1))φ(gα) for q odd

(27)
and q∗ = q−1

2 . The partial derivatives formulas for the centered moments are:











∂m2

∂βi
= 2 (Σβ)i

∂m3

∂βi
= 3 [M3(β ⊗ β)]i

∂m4

∂βi
= 4 [M4(β ⊗ β ⊗ β)]i

(28)

Modeling the source signals with the Mixed Tempered Stable makes the computations
easier. Partial derivatives allow us to obtain the total risk contribution for factors for
modified VaR using the following formula:

∂mV aRα(r)

∂βi
= −µi −

∂m2

∂βi

1

2
√
m2

Φ−1(α)

+
∂m2

∂βi

1√
m2

[

− 1

12
(z2α − 1)skew − 1

48
(z3α − 3zα)kurt+

1

72
(2z3α − 5zα)skew

2

]

+
√
m2

[

−1

6
(z2α − 1)

∂skew

∂βi
− 1

24
(z3α − 3zα)

∂kurt

∂βi
+

1

18
(2z3α − 5zα)skew

∂skew

∂βi

]

In the same way, total risk contributions for modified Expected Shortfall can be obtained
using a similar formula given in Boudt et al. (2007). The derivative of (24) requires
straightforward calculations but can be implemented directly using standard algebra in
any programming language.
In Figure 1 we give a detailed description of the entire procedure described in this Section.

Insert here Figure 1.

5 Empirical analysis

In this Section we show step-by step how to obtain a risk parity portfolio using the
MixedTS for modeling the source signals in the market. The dataset is composed by
daily log returns of the Vanguard Fund Index (VFIAX) which replicates the performance
of the S&P 500 and the the ten sector indexes: Utility, Telecommunications, Materials,
Information Technology, Industrial, Health, Financial, Energy, Consumption Staple and
Consumption Discretionary that are considered as risk factors. The dataset refers to
the period from 24/06/2010 to 10/07/2013. In Table 1 we give the main statistics of
the time series we use in this Section. Observe that they result to be negatively skewed
and with tails heavier than what can be predicted from the normal distribution. The
higher volatility of the Financial sector reflects the crisis that in this time frame was at
its ultimate phase.

Insert here Table 1.

As a first step we want to show the univariate risk measures we get when the MixedTS
distribution is used directly for modeling the observed time series. We fit the MixedTS
distribution to the returns of the VFIAX fund and compare the historical VaR and ES
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for the entire period with the respective parametric versions using formulas (22) and (24).
The analysis is done for confidence levels α ranging in (0.01; 0.1). The historical VaR for
α < 0.08 results to be lower than the VaR computed using the MixedTS as observed in
Figure 2. The difference becomes noticeable only for α < 0.05. The results concerning
the ES highlight more the importance of choosing parametric or non-parametric methods
for measuring risk. In fact, we have that the historical method for the ES gives higher
values than the MixedTS based ES. The difference is bigger for α ∈ (0.04 : 0.08). Notice
that ES is a conditional mean and is highly influenced by extreme values. We consider
the comparison with the empirical (robust see Cont et al. (2010)) ES that is a trimmed
mean since its definition for 0 < α1 < α2 < 1 is:

ESEmpi
α (Y ) =

1

(α2 − α1)

∫ α2

α1

V aRu(FY )du (29)

The robust ES is less sensible to extreme values and the empirical quantities we get are
similar to the MixedTS based ES.

Insert Figure 2.

In the next step we consider the returns of the VFIAX fund as a linear combination
of the sector returns. As described in the previous section, we perform an ICA analysis
on the matrix whose rows are the sector indexes returns. The output of this algorithm
is the mixing matrix in Table 2 and the time series of the underlying signals. Following
the idea of the algorithm, each market return time series is a linear transformation of the
independent factors that lead the market.

Insert here Table 2.

We fit the MixedTS to the independent factor time series. The fitted parameters
refered to the first window are reported in Table 3. Particular attention deserves the
parameter α since for α = 2 we get the Variance Gamma distribution. We notice that
only the fourth and the fifth components can be modeled with the Variance Gamma.
The first four moments of each component are computed once we have the parameters.
As discussed before, the independence hypothesis in the ICA algorithm gives rise to the
analytic higher order moments for the matrix of the portfolio factors, i.e we compute the
moments of the matrix whose rows are the returns of each sector.

Insert here Table 3.

Insert here Figure 3.

To have an intuition about our procedure we perform a rolling analysis and compare
the out-of sample performances of the VFIAX fund with the three risk based portfolios.
We consider the period 24/06/2011 till 10/07/2013 with 250 closing prices as in sample
data and the following 50 closing prices as out of sample data. In Table 4 we report
the mean of returns for the S&P 500 index, the VFIAX Fund index, and for the risk
parity parametric portfolios for three risk measures: Volatility, VaR and ES. in the rolling
window analysis. First we give the results for each out of sample window and then the
mean and standard deviation of all out of sample results. Observe that the choice of the
risk measure does not have a great effect on the weights given to each sector based on our
analysis and considering the MixedTS distribution for modeling the source signals.

Insert here Table 4.

In Figure 4 we plot the out of sample performance of two portfolios: the VFIAX fund
and the risk parity portfolio when the risk measure considered is the Expected Shortfall.
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From this plot we can immediately observe that the risk parity portfolio has better out-of
sample performance. This result is valid for the other two risk parity based portfolios
but we decided to show only one comparison since we think three similar plots would be
redundant.

Insert here Figure 4.

Then we decide to assess the statement that risk parity portfolios are well-diversified
and consider the Gini index for measuring diversification. In fact the Gini index for
equally weighted portfolios equals 0 and 1 when all the weight is given to one asset i.e for
perfectly concentrated portfolios. In Table 5 we give the concentration measures for our
portfolio based on the consistent estimator of the Gini index G:

G =
1

N − 1

(

N + 1− 2

(

∑N
i=1(N + 1− i)yi
∑N

i=1 yi

))

(30)

where the observations are ordered, i.e yi ≤ yi+1.

Insert here Table5.

In particular, we report the respective indexes for each window of the rolling analysis.
We find that risk parity portfolios based on the two risk measures Volatility and ES
(its modified version) are less concentrated almost in all windows. The VFIAX fund
weights follow the market capitalization of the sectors though the Gini index computed on
these weights follows the market. Risk parity portfolios based on VaR (modified version)
seems to be more concentrated than the alternative optimized portfolios. In order to
make an investment decision we have to consider both performance and desired level of
concentration. However, based on our results we have that risk parity portfolios are less
concentrated and show better out-of sample performances than a passive strategy that
can be for example investing on a fund as the VFIAX that replicates the S&P500 returns.

6 Conclusion

In this paper we give the steps required in a parametric risk decomposition framework.
The idea of applying the ICA analysis on the factors and modeling each source signal
with the MixedTS distribution gives rise to the possibility of having analytical formulas
for the moments and flexibility in capturing tail behavior. This approach can be applied
to any setup that considers an homogeneous risk measure. In the paper we consider the
Volatility, the VaR and ES being the three most used in the practice and in academia.
Our results suggest that the decision of which risk measure to consider is not so relevant
for the portfolio composition but we observe that the risk parity strategy generates well-
diversified portfolios with good out-of sample performances.

Appendix A Derivation of the moments

We derive the mean, variance, third and fourth order central moments of a MixedTS
Random Variable. A continuous random variable Y is a Mixed Tempered Stable if it can
be written as:

Y = µ0 + µV +
√
V X

whereX given V is a standardized tempered stable with parameters stdCTS
(

α, λ+

√
V , λ−

√
V
)

.

We recall the formula for the cumulant of order n of the standardized tempered stable
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with parameters (α, λ+, λ−):

cn (X) = Γ (n− α)
(

λα−n
+ + (−1)n λα−n

−

)

C, n = 2, . . .

where the constant C is fixed in order to ensure the standardization condition

C =
1

Γ (2− α)
(

λα−2
+ + λα−2

−

) .

In following we show how to determine the moments.
Mean:

E [Y ] = µ0 + µE [V ] .

Variance:

V ar [Y ] = E

{

[

µ (V − E(V )) +
√
V X

]2
}

= E
{

µ2 (V − E(V ))2 + V X2 + 2µ (V − E(V ))
√
V X

}

Applying the linearity and the iteration properties of the expected value, we obtain:

V ar [Y ] = µ2V ar(V ) + E
[

V E
(

X2 |V )
]

= µ2V ar(V ) + E [V ]

Third central moment:

m3 (Y ) = E

{

[

µ (V − E(V )) +
√
V X

]3
}

= E
{[

µ3 (V − E(V ))3 + 3µ2 (V − E(V ))2
√
V X + 3µ (V − E(V ))V X2 + V 3/2X3

]}

Applying the iteration property we show that:

E
[

σµ2 (V − E(V ))2
√
V X

]

= 0

then
m3 (Y ) = µ3m3 (V ) + 3µE

[

(V − E(V ))V X2
]

+ E
[

V 3/2X3
]

Using:
E
[

(V − E(V ))V X2
]

= V ar(V )

and:

E
[

V 3/2X3
]

= E
[

V 3/2E
(

X3 |V )
]

= E



V 3/2
Γ (3− α)

(

λα−3
+ + (−1)3 λα−3

−

)

Γ (2− α)
(

λα−2
+ + λα−2

−

)

V α/2−3/2

V α/2−2/2





By straightforward calculation and using the property of the Gamma function, we get:

E
[

V 3/2X3
]

= (2− α)

(

λα−3
+ − λα−3

−

)

(

λα−2
+ + λα−2

−

)E [V ]

Finally the third central moment is:

m3 (Y ) = µ3m3 (V ) + 3µV ar(V ) + (2− α)

(

λα−3
+ − λα−3

−

)

(

λα−2
+ + λα−2

−

)E [V ]
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Fourth central moment:

m4 (Y ) = E

{

[

µ (V − E(V )) +
√
V X

]4
}

= µ4k (V ) + 4E
{[

µ3 (V − E(V ))3
√
V X

]}

+ 6E
{[

µ2 (V − E(V ))2 V X2
]}

+ 4µE
{[

(V − E(V ))V 3/2X3
]}

+ E
[

V 2X4
]

We need to calculate explicitly only the last two terms since the others were determined
before.

E
[

(V − E(V ))V 3/2X3
]

= (2− α)
λα−3
+ − λα−3

−

λα−2
+ + λα2

−

V ar(V )

E
[

V 2X4
]

= E
[

V 2E
[

X4 |V
]]

= E

[

V 2Γ (4− α)

Γ (2− α)

(

λα−4
+ + λα−4

−

)

(

λα−2
+ + λα−2

−

)

V α/2−2

V α/2−1

]

= (3− α)(2 − α)

(

λα−4
+ + λα−4

−

)

(

λα−2
+ + λα−2

−

)E [V ]

then

m4 (Y ) = µ4m4(V ) + 6µ2E
[

(V −E(V ))2 V
]

+ 4µ (2− α)
λα−3
+ − λα−3

−

λα−2
+ + λα−2

−

V ar(V )

+ (3− α)(2 − α)

(

λα−4
+ + λα−4

−

)

(

λα−2
+ + λα−2

−

)E [V ]

Appendix B Moments using ICA

We derive the components of the variance-covariance Σ matrix in (21)

Σik
2 = E [{ri − E [ri]} {rk − E [rk]}]

= E











N
∑

j=1

aij (sj − E[sj ])













N
∑

j=1

akj (sj −E[sj ])











=

N
∑

j=1

aijakjσ
2(sj)

Let us now compute the element M ikl
3 as:

M ikl
3 = E [{ri − E [ri]} {rk − E [rk]} {rl − E [rl]}]

= E











N
∑

j=1

aij (sj − E[sj ])













N
∑

j=1

akj (sj − E[sj])













N
∑

j=1

alj (sj −E[sj ])











=

N
∑

j=1

aijakjaljskew(sj)

Let us now compute the element M iklm
4 as:
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M iklm
4 = E [{ri − E [ri]} {rk − E [rk]} {rl − E [rl]} {rm − E [rm]}]

=
N
∑

j=1

aijakjaljamjkurt(sj)
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Maillard, S., T. Roncalli, and J. Tëıletche (2010). The properties of equally weighted risk
contribution portfolios. The Journal of Portfolio Management 36, 60–70.

13



Martellini, L. and V. Ziemann (2010). Improved estimates of higher-order comoments and
implications for portfolio selection. Review of Financial Studies 23 (4), 1467–1502.

Mercuri, L. (2008). Option pricing in a garch model with tempered stable innovations.
Finance research letters 5 (3), 172–182.

Merton, R. C. (1980). On estimating the expected return on the market: An exploratory
investigation. Journal of Financial Economics 8 (4), 323–361.

Meucci, A. (2009). Risk and asset allocation. Springer.

Michaud, R. O. (1989). The markowitz optimization enigma: is’ optimized’optimal?
Financial Analysts Journal , 31–42.

Rachev, S. T., Y. S. Kim, M. L. Bianchi, and F. J. Fabozzi (2011). Financial models with
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[ r1,p . . . rt,p . . . rT,p ] =

β
′

[ β1 . . . βi . . . βn ]

F

















︸ ︷︷ ︸

ICA:

F =

A
︷ ︸︸ ︷
















S
︷ ︸︸ ︷
















Modeling Components:

si = µ0,i + µiVi +
√

ViX̃i ∀ i

Vi ∼ Γ
(
ai, σ

2
i

)

X̃i|Vi ∼ stdCTS
(

αi, λ+,i

√

Vi, λ−,i

√

Vi

)

Parameters Estimation:

µ0,i, µi, σi, ai, αi, λ+,i, λ−,i ∀ i

Factor Moments:

Σ, M3, M4

Centered Moments:

m2, m3, m4, skew, kurt

∂m2

∂βi

,
∂m3

∂βi

,
∂m4

∂βi

∂mV aR

∂βi

TRCi = βi
∂mV aR

∂βi

⇓

minβ
∑

i,j (TRCi − TRCj)
2

Figure 1: Here we describe the main steps required in parametric risk parity portfolio construc-
tion. We start with a linear model for modeling portfolio returns and apply the ICA algorithm
on the factor matrix. Each source signal si is then modeled using the MixedTS distribution.
The fitted parameters on the time series of each si are used for the computation of the mo-
ments. The marginal risk contribution formulas (here we consider the modified VaR) require
the partial derivatives of the centered moments that in our setup can be computed due to the
independence assumption for the source signals. The last step for the portfolio construction is
the optimization.
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Mean Std Skewness Kurtosis Max Min
VFIAX 5.22E-04 0.0111 -0.4990 7.4284 0.0463 -0.0690
COND 7.93E-04 0.0119 -0.5873 6.4336 0.0472 -0.0690
CONS 5.67E-04 0.0076 -0.4175 6.0214 0.0332 -0.0390
ENRS 4.77E-04 0.0145 -0.4215 6.8501 0.0687 -0.0864
FINL 4.00E-04 0.0159 -0.3977 7.9692 0.0789 -0.1052
HLTH 6.69E-04 0.0096 -0.4605 6.7295 0.0456 -0.0540
INDU 5.08E-04 0.0129 -0.4854 6.3092 0.0495 -0.0711
INFT 4.31E-04 0.0121 -0.2512 5.2089 0.0445 -0.0596

MATR 3.73E-04 0.0147 -0.3828 5.9989 0.0593 -0.0756
TELS 5.25E-04 0.0096 -0.2754 5.5523 0.0426 -0.0550
UTIL 3.07E-04 0.0086 -0.1836 7.2391 0.0414 -0.0563

Table 1: Main statistics of the VFIAX and of the Sector Indexes for the period considered.
Note that they are all negatively skewed and their tails are heavier than the tails predicted from
the normal distribution. The returns of the Financial sector have a higher volatility that is
confirmed from the broader interval defined from the minimum and the maximum observation.
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Mixed TS VaR

Hist ES
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Figure 2: In the figure we show the Value at Risk of the VFIAX index computed for the
period 24/06/2010 - 10/07/2013 for α ∈ (0.01 : 0.1) using both the historical approach and
the inversion formula for the MixedTS characteristic function. For the Expected Shortfall we
perform the same analysis but in addition we give the empirical (robust) ES since it does not
consider in the mean the data lower than an α1- quantile that is we do not into account extreme
values.
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Mixing Matrix
-0.0113 0.0024 -0.0040 0.0029 -0.0016 -0.0009 -0.0078 -0.0033 0.0012 -0.0022
-0.0066 0.0010 -0.0007 0.0038 -0.0039 -0.0004 -0.0029 -0.0005 0.0015 -0.0002
-0.0140 0.0007 -0.0069 0.0008 -0.0062 0.0013 -0.0072 -0.0023 0.0051 0.0023
-0.0173 0.0010 -0.0091 0.0050 -0.0030 0.0037 -0.0034 -0.0037 0.0039 -0.0040
-0.0095 0.0011 -0.0039 0.0032 -0.0032 -0.0004 -0.0048 0.0019 0.0004 -0.0010
-0.0117 -0.0004 -0.0053 0.0037 -0.0038 0.0019 -0.0085 -0.0014 0.0040 -0.0031
-0.0103 0.0032 -0.0053 0.0024 -0.0005 -0.0024 -0.0069 -0.0009 0.0061 -0.0017
-0.0128 0.0022 -0.0074 0.0000 -0.0068 0.0004 -0.0078 -0.0021 0.0046 -0.0043
-0.0091 -0.0036 -0.0017 0.0022 -0.0026 -0.0026 -0.0018 -0.0012 0.0016 -0.0011
-0.0095 0.0000 0.0017 0.0009 -0.0025 0.0011 -0.0019 0.0009 0.0014 -0.0006

Table 2: In this Table we show the Mixing Matrix obtained when we apply the ICA algorithm on
the matrix whose vectors are the historical time series of returns from 24/06/2010 to 24/06/2011
of the ten sector indexes of the S&P500.

I II III IV V VI VII VIII IX X
µ0 0.0989 0.1915 1.0361 -0.0555 0.4227 0.5418 0.9911 0.7190 0.3449 0.7476
µ -0.0719 -0.0745 -0.3914 0.0579 -0.0674 -0.0991 -0.1763 -0.1094 -0.0688 -0.1386
σ 0.6847 0.5991 0.5766 0.5132 0.3285 0.4095 0.3798 0.3729 0.4490 0.4705
a 2.1983 2.5824 2.6360 3.8144 6.6537 6.0530 5.8454 6.3537 5.0876 5.0049
α 0.8740 1.7955 0.6383 2.0000 1.9904 0.0594 0.0100 1.5698 0.0100 0.1282
λ+ 1.1631 1.3175 1.2307 1.2924 1.2891 1.5148 1.9890 1.6767 1.6033 1.8090
λ
−

1.2186 1.4375 2.1308 2.9084 2.9103 2.6869 2.4690 4.0004 2.5576 2.4291

Table 3: In this Table we report the fitted parameters of the MixedTS distribution to the
independent components obtained by applying the ICA algorithm the matrix containing the
returns from 24/06/2010 to 24/06/2011 of the ten sector indexes of the S&P500. The valies
of the parameters α are important in order to have an immediate idea of which special case of
the MixedTS can better fit the return time series.
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Figure 3: The four pies show the portfolio composition respectively of the VFIAX fund and
the three risk parity portfolios for the homogeneous risk measures: volatility, VaR and ES. The
fund weights refer to the closing date 24/06/2011 and the risk parity portfolios are computed
at the same date with 250 days ahead of data. Observe that the choice of the risk measure does
not have a great effect on the weights given to each sector based on our analysis and considering
the MixedTS distribution for modeling the source signals.
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Figure 4: In this Figure we plot the out of sample performance of two portfolios: the VFIAX
fund and the risk parity portfolio when the risk measure considered is the Expected Shortfall.
The analysis refers to the period 24/06/2011 till 10/07/2013 and we have rolling windows of
250 closing prices as in sample data and the following 50 closing prices as out of sample data
where we compare in terms of performance the strategy of the VFIAX fund and the parametric
risk parity portfolio.
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Out-of-sample results for each window
w mean SPX mean VFIAX mean RPV olatility mean RPV aR mean RPES

1 -0.0213% -0.0209% 0.0278% 0.0312% 0.0302%
2 0.0293% 0.0311% 0.0189% 0.0208% 0.0200%
3 0.2045% 0.2058% 0.1654% 0.1631% 0.1698%
4 0.0290% 0.0289% 0.0235% 0.0229% 0.0231%
5 -0.1132% -0.1102% -0.0876% -0.0895% -0.0934%
6 -0.0920% -0.0867% -0.0442% -0.0455% -0.0491%
7 0.0481% 0.0466% 0.0503% 0.0502% 0.0509%
8 0.1327% 0.1315% 0.1015% 0.1008% 0.1034%
9 0.2913% 0.2940% 0.2467% 0.2473% 0.2564%

10 -0.1267% -0.1275% -0.0672% -0.0672% -0.0719%
Global out-of-sample results

SPX VFIAX RPV olatility RPV aR RPES

mean 0.0382% 0.0393% 0.0435% 0.0434% 0.0439%
std 0.01242 0.01241 0.01090 0.010862 0.011040

Table 4: In this Table we give the mean of returns of the S&P 500 index, VFIAX Fund index,
risk parity parametric portfolios for three risk measures: volatility, VaR and ES. for the rolling
windows analysis in the period 24/06/2011 till 10/07/2013 with 250 closing prices as in sample
data and the following 50 closing prices as out of sample data. First we give the results for each
out of sample window and then the mean and standard deviations of all out of sample results.

w GV FIAX GV olRP GV aRRP GESRP

1 0.301 0.194 0.247 0.197
2 0.301 0.166 0.248 0.235
3 0.302 0.178 0.222 0.189
4 0.301 0.194 0.247 0.197
5 0.300 0.198 0.244 0.185
6 0.297 0.200 0.231 0.198
7 0.297 0.186 0.218 0.203
8 0.294 0.181 0.206 0.177
9 0.299 0.193 0.246 0.150
10 0.301 0.179 0.233 0.187

Table 5: In the Table we report the Gini index computed for each rolling window, in the period
24/06/2011 till 10/07/2013 with 250 closing prices as in sample data and the following 50
closing prices as out of sample data, for the VFIAX fund and for the three risk parity portfolios
based respectively on the homogeneous risk measures: Volatility, VaR and ES. Following the
risk parity approach we get less concentrated portfolios especially in the Volatily and mES
based risk parity portfolios.

19


	1 Introduction
	2 Portfolio construction using the Risk Parity approach
	3 Mixed Tempered Stable distribution
	4 Parametric risk decomposition
	5 Empirical analysis
	6 Conclusion
	Appendices
	Appendix A Derivation of the moments
	Appendix B Moments using ICA

