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Higher Order Quasi Monte-Carlo Integration in
Uncertainty Quantification

Josef Dick, Quoc T. Le Gia, Christoph Schwab

Abstract We review recent results on dimension-robust higher ordavergence
rates of Quasi-Monte Carlo Petrov-Galerkin approximagifmm response function-
als of infinite-dimensional, parametric operator equatiasich arise in computa-
tional uncertainty quantification.

1 Introduction

Computational uncertainty quantification (UQ) for partdifferential equations
(PDEs) with uncertain distributed input data gives ris@mupncertainty parametriza-
tion, to the task of numerical solution of parametric, deti@istic operator equa-
tions. Due to the distributed nature of uncertain inputs,ribmber of parameters
(and, hence, the dimension of the parameter spaces) in sQcprbblems is infi-
nite. The computation of response statistics correspgnmimistributed uncertain
inputs of PDEs involves, in additionumerical quadraturef all possible ‘uncertain
scenarios’, i.e., over the entire, infinite-dimensionabpaeter space.

This has lead to the widespread use of sampling, in partidltete-Carlo (MC)
and Markov-Chain Monte-Carlo (MCMC) methods, in the nuro@rtireatment of
these problems: MC methods afford convergeateswhich are independent of the
parameter dimension if the variance of the integrand carobadbed independently
of the dimension (the computationabrk of MC methods, of course, increases
linearly with the space dimension). Thiémension robustness MC methods is
purchased at the cost of low order: the convergence ratenpfisiMC methods is,
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generically, limited to 12: variance reduction and other devices can only reduced
the constant, not the rate in the convergence bounds. Atatime sime, however,
the parametric regularityrequired of integrand functions by MC methods is very
moderate: mere square integrability with respect to a fritibameasure on the
parameter space of the integrand functions is needed, antdg@luations of the
integrand functions must be defined. In UQ for problems whsmdetions exhibit
propagation of singularities (as, eg., nonlinear hypacbmbnservation laws with
random inputs, see eg. [14,]115] and the references thergkittd of regularity is
the best that can generally be expected. In other applitatthe parametric depen-
dence of the response maps is considerably more regulaohlhions’ dependence
on the parameters is, in fa@nalytic This observation has been the basis for the
widespread use of spectral- and polynomial chaos basedriaaimethods for ap-
proximating the parameter dependence in such problems(seé, 2] 9] and the
references there).

Straightforward application of standard spectral techefjentails, however, the
curse of dimensionalitghe spectral- or even exponential convergence rate atbrd
by analytic parameter dependence is not realized in cortipo# practice as soon
as the number of parameters is just moderately large. Hidgrorumerical methods
for infinite-dimensional problems require, therefore, aren@fined analysis of an-
alytic parameter dependence where, for dimension-indég@rconvergence rates,
the size of the domains of analyticity must increase withptodblem dimension.

The purpose of the paper is to present recent advances iméhgse of higher
orderQuasi Monte-Carlo (QMCinethods, which were proposed initially i [3] (see
also [6]), from [4]5]. The presented results imply, for ataar type of analytic
parameter dependence encountered for a large class otapegaations with ran-
dom coefficients, dimension robust high order convergeatssy which are only
limited by a certain sparsity measure of the uncertain input

2 Affine Parametric Operator Equations

We present a model setting of affine parametric operatortemqsaand their Petrov-
Galerkin (PG) discretizations, following the setting lir].[BVe denote byZ™ and

% two separable and reflexive Banach spaces @&v€all results will hold with
the obvious modifications also for spaces o@¢with (topological) duals2™ and

%', respectively. By.Z (2 ,%"), we denote the set of bounded linear operators
A: 2 — %'. We consideaffine-parametric operator equationgiven f € %, for
everyy € U find u(y) € £ such that

Aly)uly) = f. (1)

For such parametrizations, the parametric operatgy depends ory in an “affine
manner: there exists a sequefég}~o C £ (2 ,%") such that
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veU: Aly)=Ao+ ) ViAj. (2)
=1
After possibly rescaling, we restrict ourselves to the limeh(infinite-dimensional)
parameter domald = [—%, 11N For everyf € % and for every € U, we solve the

parametric operator equatidd (1), where the operafpr e £ (2 ,%") is of affine
parameter dependence, sek (2). We associate witAtidinear formsa;(-,-) :
Z x% — Rvia

WweZ,we#: aj(v,w) =g (AjvyW)g , j=0,12,....

Similarly, fory € U we associate with the affine-parametric operator farhily)
the parametric bilinear form(y;-,-) : 2" x # — R via

WeZ,we®Z: a(y;v,w) = g (AY)V,W) g .
In order for the sum i {2) to converge, we impose

Assumption 1 The sequencgA;}j>o C £ (£2,%") in (@) satisfies:
1. A e L (Z,%")is boundedly invertible, i.e., there exigts > 0 such that

ap(V, W)

V|| 2

inf  sup M > Uo, inf

= > Ho -
0Ave 2 oxwew |Vl 2 [|W 2 0AWED 0Ly 9

Wl —

2. Thefluctuation operator$A, }j~1 are small with respect to Ain the following
sense: there exists a constént k < 2 such that

Z BOJ <K< 21 where ﬁOJ = HAalAJ Hf(%ﬁl’) ) J = 11 21 cee e (3)
=1

Theorem 1 (cf. [17, Theorem 2])Under Assumptio] 1, for every realizatioreyJ
of the parameter vector, the affine parametric operat@y)Ayiven by(2) is bound-
edly invertible, uniformly with respect to y. In particuléor every fc 2 and for
every ye U, the parametric operator equation

find uy)e 2 : alyuly),w) =g/ (f,wgy Ywe® 4)

admits a unigque solution(y) which satisfies the a-priori estimate

1 .
Ol < Tl with p=(1=K/2)ko.

2.1 Single-level and multi-level algorithms

The Quantity of Interest (Qol) in our study is the expecteld@af a linear func-
tionalG: 2" — R of the solutionuy,
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)= | ewuy)dy

In the following we discuss the approximation of the Qol by #gorithmQy s(G(uf)),
whereQy s is a quadrature rule (QMC rule) an is the Petrov-Galerkin (PG) ap-
proximation of the dimension truncated problem, which nsetfat the set of pa-
rametersy € U is restricted toy of the form(y1,y2,...,¥s,0,0,...). The combined
error of thissingle-level algorithntan be expressed as

1(G(u))—Qns(G(WD))
=1(G(u)) — 1(G(us)) +1(G(Us)) — Qn.s(G(Us)) + Qus(G(Us — ud)), (5)

truncation error integration error PG error

where 'PG error’ stands for the Petrov-Galerkin discreitwaerror. We discuss the
three errors and the necessary background in the subsespations.

To reduce the computational cost required to achieve thes ssmor, a novel
multi-levelalgorithm was introduced and analyzed[ini[13]. It takes trenf

L h
Z Qs Nz - uSz[ 11)) (6)

In [13] the authors considered the case where €¢h, is a randomly shifted
lattice rule withN, points ins, dimensions, and wheléjl1 := 0, whereas in[5] the
authors used an interlaced polynomial lattice rule.

Itis well known [4] that under some assumptions the Petraletkin discretiza-
tion error is of the form

G(u(y)) — G(U"(y))| < CHH [[£]|4

(7)

2.2 Parametric and spatial regularity of solutions

First we establish the regularity of the solutiofy) of the parametric, variational
problem[[4) with respect to the parameter vegtdrhis is important for the analysis
of the integration error using a QMC rule satisfying a dimensndependent error
bound.

In the following, letN} denote the set of sequenaes- (vj)j>1 of non-negative
integersvj, and let|v| := ¥ -, v;. For|v| < o, we denote the partial derivative of
orderv of u(y) with respect to/ by

oVl

= Juigm Uy, yeu.
1 YY2
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Theorem 2 (cf. [2,[10]).Under Assumptionl 1, there exists a constant-Q0 such
that for every fe #" and for every ye U, the partial derivatives of the parametric
solution Uy) of the parametric operator equatidfl) with affine parametric, linear
operator (@) satisfy the bounds

16y u(y)

whereQ! := 1, Bg = ﬂjzlﬁé"j, with B j asin(3), and|v| = ¥ j>1Vj.

2 < ColV|! By Tl forall ve Ny with |v| <o,

Spatial regularity is irscales of smoothness spa€e®; }t>o, {# }i>o0, i.€.
X =D D%%D, H=%D%ND%>D---, and
X' =D DX D, W= OW DU D
For self-adjoint operators, usuall§; = %.
Assumption 2 (seel[5, Assumption 2])There exist$ > 0 such that

1. For every tt’ satisfying0 < t,t’ < t, we have

?EUUP||A(V)71||2(U;W,£{) <o and sup|(A" () Mlgam) <@ (8)

yeU i

Moreover, there exist summability exponehts pg < pr < pr< 1such that

|| P
JZl”AJ Hg(%,gyt/) <. (9)

2. Let uy) = (A(y))~*f and Wy) = (A*(y))"1G. For0 < t,t’ < t, there exist con-
stants €,Cy > O such that for every £ %’ and Ge 2/ holds

suplu(y)l| zi <Cllfllse and  supw(y)|lz, <Cv||Gll4; -
yeu yeu

Moreover, for everf) <t <t there exists a sequene = (/3 j)j>1 satisfying

20 <

such that for everg < t,t’ < t and for every € N§ with |v| < o we have
SuupllayVU(y)H% < GV BY Il
ye

sup||dyw(y)llz, < Cu[VI!By |Gl -
yeu

3. The operators Aare enumerated so that the sequefigen (3) satisfies

Boi>PBo2 > >Poj> . (10)
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2.3 Dimension truncation

We truncate the infinite sum ifl(2) ®terms and solve the corresponding opera-
tor equation[{lL) approximately using Galerkin discretmatfrom two dense, one-
parameter familie§ 2"} ¢ 27, {#"} ¢ # of subspaces of” and#: for s€ N
andy € U, we define

S
as(y;uW) i=ur (AT (yvw)z, with A(y):=Ac+ 5 yjA;.
j=1

For 0< h < hg andy € U, the dimension truncated PG-solution is defined by
findul(y) e 2":  as(y;ull(y), W) =4 (W W' ez (11)

By choosingy = (y1,-..,Y¥s,0,0,...), the PG discretization error bourid (7) remains
valid for the dimensionally truncated problem}11).

Theorem 3 (cf. [4, Theorem 2.6])Under Assumption 1, for everysf %, for every
Ge 27, forevery ye U, for every s= N and for every h> 0, the variational problem
(1) admits a unique solutiony) which satisfies

2
H(G(UM) —1(G(u) scunmew( 3 ﬁo,j)

j>s+1

for some constant & 0 independent of f, G and of s wheg; is defined in(3). In
addition, if (@) and (Z0) hold with @ < 1, then

1 e\ 7™ 1/00-1)
Bo.j < min (7,1> ( B ) s WP
jz;rl J 1/po—1 J; o)

3 Quasi Monte-Carlo quadrature

In [22], Quasi-Monte Carlo rules of the for@n s(G(ul)) = & S5 G(ul(y, — 3)),
wherey,, € [0, 1]5, have been used to approximate the dimension truncategtéhte
1(G(uD)) (see alsd[11]). The rules considered therein are so-calfetbmly shifted
lattice rules. Using so-callegfoduct and order-dependent (POD) weidhdscon-
vergence rate of ordef (N~ "M"(1/po~11-9)) for anyd > 0, was shown.

Noting that the integrand is actually analytic, the authafrft] usedinterlaced
polynomial lattice rulesas introduced in_[8] (which are a special type of higher
order digital net[[3]), to obtain improved rates of converge. The rules can be
constructed using the fast component-by-component appmafd1€]. A new func-
tion space setting was introduced in [4] which uses Banaahespandmoothness
driven product and order dependent (SPOD) weights
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Theorem 4 (cf. [4, Theorem 3.1])Let s> 1 and N= b™ for m> 1 and prime b.
Lety = (yj)j>1 be a sequence of positive numberslet (yj)1<j<s, and assume
that

Jo<p<l: yP <o,
2y

Define Suppose we have an integran@)Fwhose partial derivatives satisfy
Yve {01, ..,a}*: [(&YF)(y)l <clv|'yg

for some constante 0. Then, an interlaced polynomial lattice rule of ordeemwith
N points can be constructed using a fast component-by-coemt@lgorithm, with
costO(a sNlogN + a?<’N) operations, such that

|IS(F) - QN,S(F)| S Ca’y’b!pNil/p s

where G b p <  is a constant independent of s and N.

4 Combined error bound

In the case of the single level algorithm, the combined gfpsatisfies the follow-
ing theorem.

Theorem 5 (cf. [4, Theorem 4.1])Under Assumptidnl 1 and conditio@,G € .2,/
and (@0), the integration error using an interlaced polynomial ia# rule of order

a = [1/po] + 1 with N=b™ points (with b prime) in s dimensions, combined with
a Petrov-Galerkin method in the domain D with one common pates.2 " with

Mh = dim(:2°") degrees of freedom and with linear ca&tMy,), satisfies

[1(G() — Qus(G(WE))| < ﬁ(372(1/p071>+N*1/Po+ht+t') ’

where the constant is independent of s, h and N.

The multi-level algorithm additionally requires the Assutiond 2. The correspond-
ing combined error bound using interlaced polynomial dattiules is of the form
(seel[5, Theorem 3.4])

L
1(6(u) —~QHGW) < & (sf“/ P Y NP (5 h%*tl)) -

The parameters andN; in (@) can be optimized using a Lagrange multiplier argu-
ment [13] 5], which, in most cases, yields an improvementgamed to the single-
level algorithm.
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