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Higher Order Quasi Monte-Carlo Integration in
Uncertainty Quantification

Josef Dick, Quoc T. Le Gia, Christoph Schwab

Abstract We review recent results on dimension-robust higher order convergence
rates of Quasi-Monte Carlo Petrov-Galerkin approximations for response function-
als of infinite-dimensional, parametric operator equations which arise in computa-
tional uncertainty quantification.

1 Introduction

Computational uncertainty quantification (UQ) for partialdifferential equations
(PDEs) with uncertain distributed input data gives rise, upon uncertainty parametriza-
tion, to the task of numerical solution of parametric, deterministic operator equa-
tions. Due to the distributed nature of uncertain inputs, the number of parameters
(and, hence, the dimension of the parameter spaces) in such UQ problems is infi-
nite. The computation of response statistics corresponding to distributed uncertain
inputs of PDEs involves, in addition,numerical quadratureof all possible ‘uncertain
scenarios’, i.e., over the entire, infinite-dimensional parameter space.

This has lead to the widespread use of sampling, in particular Monte-Carlo (MC)
and Markov-Chain Monte-Carlo (MCMC) methods, in the numerical treatment of
these problems: MC methods afford convergencerateswhich are independent of the
parameter dimension if the variance of the integrand can be bounded independently
of the dimension (the computationalwork of MC methods, of course, increases
linearly with the space dimension). Thisdimension robustnessof MC methods is
purchased at the cost of low order: the convergence rate of simple MC methods is,
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generically, limited to 1/2: variance reduction and other devices can only reduced
the constant, not the rate in the convergence bounds. At the same time, however,
the parametric regularityrequired of integrand functions by MC methods is very
moderate: mere square integrability with respect to a probability measure on the
parameter space of the integrand functions is needed, and point evaluations of the
integrand functions must be defined. In UQ for problems whosesolutions exhibit
propagation of singularities (as, eg., nonlinear hyperbolic conservation laws with
random inputs, see eg. [14, 15] and the references there), this kind of regularity is
the best that can generally be expected. In other applications, the parametric depen-
dence of the response maps is considerably more regular: thesolutions’ dependence
on the parameters is, in fact,analytic. This observation has been the basis for the
widespread use of spectral- and polynomial chaos based numerical methods for ap-
proximating the parameter dependence in such problems (seeeg. [1, 2, 9] and the
references there).

Straightforward application of standard spectral techniques entails, however, the
curse of dimensionality: the spectral- or even exponential convergence rate afforded
by analytic parameter dependence is not realized in computational practice as soon
as the number of parameters is just moderately large. High order numerical methods
for infinite-dimensional problems require, therefore, a more refined analysis of an-
alytic parameter dependence where, for dimension-independent convergence rates,
the size of the domains of analyticity must increase with theproblem dimension.

The purpose of the paper is to present recent advances in the analysis of higher
orderQuasi Monte-Carlo (QMC)methods, which were proposed initially in [3] (see
also [6]), from [4, 5]. The presented results imply, for a particular type of analytic
parameter dependence encountered for a large class of operator equations with ran-
dom coefficients, dimension robust high order convergence rates, which are only
limited by a certain sparsity measure of the uncertain input.

2 Affine Parametric Operator Equations

We present a model setting of affine parametric operator equations, and their Petrov-
Galerkin (PG) discretizations, following the setting in [5]. We denote byX and
Y two separable and reflexive Banach spaces overR (all results will hold with
the obvious modifications also for spaces overC) with (topological) dualsX ′ and
Y ′, respectively. ByL (X ,Y ′), we denote the set of bounded linear operators
A : X → Y ′. We consideraffine-parametric operator equations: given f ∈ Y ′, for
everyy∈U find u(y) ∈ X such that

A(y)u(y) = f . (1)

For such parametrizations, the parametric operatorA(y) depends ony in an “affine”
manner: there exists a sequence{A j} j≥0 ⊂ L (X ,Y ′) such that
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∀y∈U : A(y) = A0+ ∑
j≥1

y j A j . (2)

After possibly rescaling, we restrict ourselves to the bounded (infinite-dimensional)
parameter domainU = [− 1

2,
1
2]

N. For everyf ∈Y
′ and for everyy∈U , we solve the

parametric operator equation (1), where the operatorA(y) ∈ L (X ,Y ′) is of affine
parameter dependence, see (2). We associate with theA j bilinear formsa j(·, ·) :
X ×Y → R via

∀v∈ X , w∈ Y : a j(v,w) = Y ′〈A jv,w〉Y , j = 0,1,2, . . . .

Similarly, for y ∈ U we associate with the affine-parametric operator familyA(y)
the parametric bilinear forma(y; ·, ·) : X ×Y →R via

∀v∈ X , w∈ Y : a(y;v,w) = Y ′〈A(y)v,w〉Y .

In order for the sum in (2) to converge, we impose

Assumption 1 The sequence{A j} j≥0 ⊂ L (X ,Y ′) in (2) satisfies:

1. A0 ∈ L (X ,Y ′) is boundedly invertible, i.e., there existsµ0 > 0 such that

inf
06=v∈X

sup
06=w∈Y

a0(v,w)
‖v‖X ‖w‖Y

≥ µ0 , inf
06=w∈Y

sup
06=v∈X

a0(v,w)
‖v‖X ‖w‖Y

≥ µ0 .

2. Thefluctuation operators{A j} j≥1 are small with respect to A0 in the following
sense: there exists a constant0< κ < 2 such that

∑
j≥1

β0, j ≤ κ < 2 , where β0, j := ‖A−1
0 A j‖L (X ,X ) , j = 1,2, . . . . (3)

Theorem 1 (cf. [17, Theorem 2]).Under Assumption 1, for every realization y∈U
of the parameter vector, the affine parametric operator A(y) given by(2) is bound-
edly invertible, uniformly with respect to y. In particular, for every f∈ Y

′ and for
every y∈U, the parametric operator equation

find u(y) ∈ X : a(y;u(y),w) = Y ′〈 f ,w〉Y ∀w∈ Y (4)

admits a unique solution u(y) which satisfies the a-priori estimate

‖u(y)‖X ≤
1
µ
‖ f‖Y ′ , with µ = (1−κ/2)µ0 .

2.1 Single-level and multi-level algorithms

The Quantity of Interest (QoI) in our study is the expected value of a linear func-
tionalG : X → R of the solutionu,
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I(G(u)) =
∫

U
G(u(y))dy.

In the following we discuss the approximation of the QoI by the algorithmQN,s(G(uh
s)),

whereQN,s is a quadrature rule (QMC rule) anduh
s is the Petrov-Galerkin (PG) ap-

proximation of the dimension truncated problem, which means that the set of pa-
rametersy∈ U is restricted toy of the form(y1,y2, . . . ,ys,0,0, . . .). The combined
error of thissingle-level algorithmcan be expressed as

I(G(u))−QN,s(G(uh
s))

= I(G(u))− I(G(us))
︸ ︷︷ ︸

truncation error

+ I(G(us))−QN,s(G(us))
︸ ︷︷ ︸

integration error

+QN,s(G(us−uh
s))

︸ ︷︷ ︸

PG error

, (5)

where ’PG error’ stands for the Petrov-Galerkin discretization error. We discuss the
three errors and the necessary background in the subsequentsections.

To reduce the computational cost required to achieve the same error, a novel
multi-levelalgorithm was introduced and analyzed in [13]. It takes the form

QL
∗(G(u)) :=

L

∑
ℓ=0

Qsℓ,Nℓ
(G(uhℓ

sℓ −u
hℓ−1
sℓ−1 )) . (6)

In [13] the authors considered the case where eachQsℓ,Nℓ
is a randomly shifted

lattice rule withNℓ points insℓ dimensions, and whereuh−1
s−1 := 0, whereas in [5] the

authors used an interlaced polynomial lattice rule.
It is well known [4] that under some assumptions the Petrov-Galerkin discretiza-

tion error is of the form
∣
∣
∣G(u(y))−G(uh(y))

∣
∣
∣ ≤ Cht+t′ ‖ f‖Y ′

t
‖G‖X ′

t′
. (7)

2.2 Parametric and spatial regularity of solutions

First we establish the regularity of the solutionu(y) of the parametric, variational
problem (4) with respect to the parameter vectory. This is important for the analysis
of the integration error using a QMC rule satisfying a dimension-independent error
bound.

In the following, letNN
0 denote the set of sequencesν = (ν j) j≥1 of non-negative

integersν j , and let|ν| := ∑ j≥1 ν j . For |ν| < ∞, we denote the partial derivative of
orderν of u(y) with respect toy by

∂ ν
y u(y) :=

∂ |ν|

∂ ν1
y1 ∂ ν2

y2 · · ·
u(y), y∈U .
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Theorem 2 (cf. [2, 10]).Under Assumption 1, there exists a constant C0 > 0 such
that for every f∈ Y ′ and for every y∈U, the partial derivatives of the parametric
solution u(y) of the parametric operator equation(1) with affine parametric, linear
operator(2) satisfy the bounds

‖∂ ν
y u(y)‖X ≤ C0 |ν|! β ν

0 ‖ f‖Y ′ for all ν ∈ N
N
0 with |ν|< ∞ ,

where0! := 1, β ν
0 := ∏ j≥1 β ν j

0, j , with β0, j as in(3), and|ν|= ∑ j≥1 ν j .

Spatial regularity is inscales of smoothness spaces{Xt}t≥0, {Yt}t≥0, i.e.

X = X0 ⊃ X1 ⊃ X2 ⊃ ·· · , Y = Y0 ⊃ Y1 ⊃ Y2 ⊃ ·· · , and

X
′ = X

′
0 ⊃ X

′
1 ⊃ X

′
2 ⊃ ·· · , Y

′ = Y
′

0 ⊃ Y
′

1 ⊃ Y
′

2 ⊃ ·· · .

For self-adjoint operators, usuallyXt = Yt .

Assumption 2 (see [5, Assumption 2])There exists̄t ≥ 0 such that

1. For every t, t ′ satisfying0≤ t, t ′ ≤ t̄, we have

sup
y∈U

‖A(y)−1‖L (Y ′
t ,Xt ) < ∞ and sup

y∈U
‖(A∗(y))−1‖L (X ′

t′
,Yt′ )

< ∞ . (8)

Moreover, there exist summability exponents0≤ p0 ≤ pt ≤ pt̄ < 1 such that

∑
j≥1

‖A j‖
pt
L (Xt ,Y ′

t )
< ∞ . (9)

2. Let u(y) = (A(y))−1 f and w(y) = (A∗(y))−1G. For 0≤ t, t ′ ≤ t̄, there exist con-
stants Ct ,Ct′ > 0 such that for every f∈ Y ′

t and G∈ X ′
t′ holds

sup
y∈U

‖u(y)‖Xt ≤Ct‖ f‖Y ′
t

and sup
y∈U

‖w(y)‖Yt′
≤Ct′‖G‖X ′

t′
.

Moreover, for every0≤ t ≤ t̄ there exists a sequenceβ t = (βt, j) j≥1 satisfying

∑
j≥1

β pt
t, j < ∞ ,

such that for every0≤ t, t ′ ≤ t̄ and for everyν ∈ NN
0 with |ν|< ∞ we have

sup
y∈U

‖∂ ν
y u(y)‖Xt ≤ Ct |ν|! β ν

t ‖ f‖Y ′
t
,

sup
y∈U

‖∂ ν
y w(y)‖Yt′

≤ Ct′ |ν|! β ν
t′ ‖G‖X ′

t′
.

3. The operators Aj are enumerated so that the sequenceβ0 in (3) satisfies

β0,1 ≥ β0,2 ≥ ·· · ≥ β0, j ≥ ·· · . (10)
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2.3 Dimension truncation

We truncate the infinite sum in (2) tos terms and solve the corresponding opera-
tor equation (1) approximately using Galerkin discretization from two dense, one-
parameter families{X h} ⊂ X , {Y h} ⊂ Y of subspaces ofX andY : for s∈ N

andy∈U , we define

as(y;v,w) :=Y ′ 〈A(s)(y)v,w〉Y , with A(s)(y) := A0+
s

∑
j=1

y jA j .

For 0< h≤ h0 andy∈U , the dimension truncated PG-solution is defined by

find uh
s(y) ∈ X

h : as(y;uh
s(y),w

h) =Y ′ 〈 f ,wh〉Y ∀wh ∈ Y
h . (11)

By choosingy= (y1, . . . ,ys,0,0, . . .), the PG discretization error bound (7) remains
valid for the dimensionally truncated problem (11).

Theorem 3 (cf. [4, Theorem 2.6]).Under Assumption 1, for every f∈Y ′, for every
G∈X ′, for every y∈U, for every s∈N and for every h>0, the variational problem
(11)admits a unique solution uh

s(y) which satisfies

|I(G(uh))− I(G(uh
s))| ≤ C‖ f‖Y ′ ‖G‖X ′

(

∑
j≥s+1

β0, j

)2

for some constant C> 0 independent of f , G and of s whereβ0, j is defined in(3). In
addition, if (9) and(10) hold with p0 < 1, then

∑
j≥s+1

β0, j ≤ min

(
1

1/p0−1
,1

)(

∑
j≥1

β p0
0, j

)1/p0

s−(1/p0−1) .

3 Quasi Monte-Carlo quadrature

In [12], Quasi-Monte Carlo rules of the formQN,s(G(uh
s)) =

1
N ∑N−1

n=0 G(uh
s(yn−

1
2)),

whereyn ∈ [0,1]s, have been used to approximate the dimension truncated integral
I(G(uh

s)) (see also [11]). The rules considered therein are so-calledrandomly shifted
lattice rules. Using so-called “product and order-dependent (POD) weights” a con-
vergence rate of orderO(N−min(1/p0−1,1−δ )), for anyδ > 0, was shown.

Noting that the integrand is actually analytic, the authorsof [4] usedinterlaced
polynomial lattice rules, as introduced in [8] (which are a special type of higher
order digital net [3]), to obtain improved rates of convergence. The rules can be
constructed using the fast component-by-component approach of [16]. A new func-
tion space setting was introduced in [4] which uses Banach spaces andsmoothness
driven product and order dependent (SPOD) weights.



Higher Order QMC for UQ 7

Theorem 4 (cf. [4, Theorem 3.1]).Let s≥ 1 and N= bm for m≥ 1 and prime b.
Let γ = (γ j ) j≥1 be a sequence of positive numbers, letγs = (γ j )1≤ j≤s, and assume
that

∃0< p≤ 1 :
∞

∑
j=1

γ p
j < ∞ .

Define Suppose we have an integrand F(y) whose partial derivatives satisfy

∀ν ∈ {0,1, . . . ,α}s : |(∂ ν
y F)(y)| ≤ c|ν|! γ̄ν

s

for some constant c> 0. Then, an interlaced polynomial lattice rule of orderα with
N points can be constructed using a fast component-by-component algorithm, with
costO(α sNlogN+α2s2N) operations, such that

|Is(F)−QN,s(F)| ≤ Cα ,γ ,b,pN−1/p ,

where Cα ,γ,b,p < ∞ is a constant independent of s and N.

4 Combined error bound

In the case of the single level algorithm, the combined error(5) satisfies the follow-
ing theorem.

Theorem 5 (cf. [4, Theorem 4.1]).Under Assumption 1 and conditions(8),G∈X ′
t′

and (10), the integration error using an interlaced polynomial lattice rule of order
α = ⌊1/p0⌋+1 with N= bm points (with b prime) in s dimensions, combined with
a Petrov-Galerkin method in the domain D with one common subspaceX h with
Mh = dim(X h) degrees of freedom and with linear costO(Mh), satisfies

|I(G(u))−QN,s(G(uh
s))| ≤ O

(

s−2(1/p0−1)+N−1/p0 +ht+t′
)

,

where the constant is independent of s, h and N.

The multi-level algorithm additionally requires the Assumptions 2. The correspond-
ing combined error bound using interlaced polynomial lattice rules is of the form
(see [5, Theorem 3.4])

|I(G(u))−QL
∗(G(uh

s))| ≤ O

(

s−2(1/p0−1)
L +ht+t′

L +
L

∑
ℓ=0

N−1/pt
ℓ

(

s−(1/p0−1/pt)
ℓ−1 +ht+t′

ℓ−1

)
)

.

The parameterssℓ andNℓ in (6) can be optimized using a Lagrange multiplier argu-
ment [13, 5], which, in most cases, yields an improvement compared to the single-
level algorithm.
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