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UPPER AND LOWER BOUNDS FOR NUMERICAL

RADII OF BLOCK SHIFTS

HWA-LONG GAU AND PEI YUAN WU∗

Dedicated to Professor Heydar Radjavi on his 80th birthday

Abstract. For any n-by-n matrix A of the form



0 A1

0
. . .

. . . Ak−1

0



,

we consider two k-by-k matrices

A′ =




0 ‖A1‖
0

. . .

. . . ‖Ak−1‖
0




and A′′ =




0 m(A1)

0
. . .

. . . m(Ak−1)
0



,

where ‖ · ‖ and m(·) denote the operator norm and minimum
modulus of a matrix, respectively. It is shown that the numer-
ical radii w(·) of A, A′ and A′′ are related by the inequalities
w(A′′) ≤ w(A) ≤ w(A′). We also determine exactly when either
of the inequalities becomes an equality.
Keywords: Numerical radius, block shift, minimum modulus.
MSC(2010): Primary: 15A60; Secondary: 47A12.

1. Introduction

An n-by-n complex matrix A is call a block shift if it is of the form



0 A1

0
. . .
. . . Ak−1

0


 ,

where the Aj ’s are in general rectangular matrices. In this paper, we
obtain sharp upper and lower bounds for the numerical radius w(A) of
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such an A. Recall that the numerical radius w(B) of an n-by-n matrix
B is the quantity

max{|〈Bx, x〉| : x ∈ C
n, ‖x‖ = 1},

where 〈·, ·〉 and ‖ · ‖ denote the standard inner product and norm of
vectors in Cn, respectively. Note that w(B) is the radius of the smallest
circular disc centered at the origin which contains the numerical range

W (B) = {〈Bx, x〉 : x ∈ C
n, ‖x‖ = 1}

of B. For properties of the numerical range and numerical radius, the
reader is referred to [3, Chapter 22] or [4, Chapter 1].

Note that if A is a block shift of the above form, then it is unitarily
similar to eiθA for all real θ. Hence its numerical range is a closed
circular disc centered at the origin with radius equal to its numerical
radius. To estimate the latter, we consider two k-by-k scalar matrices

A′ =




0 ‖A1‖
0

. . .

. . . ‖Ak−1‖
0


 and A′′ =




0 m(A1)

0
. . .
. . . m(Ak−1)

0


 ,

where ‖Aj‖ and m(Aj), 1 ≤ j ≤ k − 1, are the operator norm and
minimum modulus of Aj , respectively. Recall that the minimum mod-
ulus m(B) of an m-by-n matrix B is, by definition, min{‖Bx‖ : x ∈
Cn, ‖x‖ = 1}. In Sections 2 and 3 below, we show that w(A′′) ≤
w(A) ≤ w(A′) always hold, and that, under the extra condition that
the Aj ’s are all nonzero (resp., under A1 . . . Ak−1 6= 0), w(A) = w(A′)
(resp., w(A) = w(A′′)) implies that A′ (resp., A′′) is a direct summand
of A (cf. Theorems 2.1 and 3.1). Examples are given showing that the
nonzero conditions on the Aj’s are essential.

2. Upper bound

The main result of this section is the following theorem.

Theorem 2.1. Let

(2.1) A =




0 A1

0
. . .
. . . Ak−1

0


 on C

n = C
n1 ⊕ · · · ⊕ C

nk
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be an n-by-n block shift, where Aj is an nj-by-nj+1 matrix for 1 ≤ j ≤
k − 1, and let

A′ =




0 ‖A1‖
0

. . .

. . . ‖Ak−1‖
0


 on C

k.

Then (a) w(A) ≤ w(A′), and (b) under the assumption that Aj 6= 0
for all j, w(A) = w(A′) if and only if A is unitarily similar to A′ ⊕B,

where B is a block shift with w(B) ≤ w(A′).

Proof. (a) Let x = [x1 . . . xk]
T be a unit vector in C

n such that
|〈Ax, x〉| = w(A). Hence

w(A) =

∣∣∣∣∣∣∣∣∣

〈



0 A1

0
. . .
. . . Ak−1

0







x1
...
xk


 ,




x1
...
xk



〉
∣∣∣∣∣∣∣∣∣

=
∣∣∣
k−1∑

j=1

〈Ajxj+1, xj〉
∣∣∣

≤
k−1∑

j=1

|〈Ajxj+1, xj〉|

≤
k−1∑

j=1

‖Aj‖‖xj+1‖‖xj‖(2.2)

=
〈



0 ‖A1‖
0

. . .

. . . ‖Ak−1‖
0







‖x1‖
...

‖xk‖


 ,




‖x1‖
...

‖xk‖



〉

≤w(A′),(2.3)

where the last inequality follows from the fact that [‖x1‖ . . . ‖xk‖]T is
a unit vector in Ck.

(b) Assume that Aj 6= 0 for all j, and that w(A) = w(A′). Then
we have equalities throughout the chain of inequalities in (a). Since
A′ is an (entrywise) nonnegative matrix with irreducible real part, the
equality in (2.3) yields, by [5, Proposition 3.3], that xj 6= 0 for all j.
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Let x̂j = [0 . . . 0 xj
jth

0 . . . 0]T for 1 ≤ j ≤ k, and let K be the

subspace of Cn spanned by the x̂j ’s. The equality in (2.2) implies that

(2.4) |〈Ajxj+1, xj〉| = ‖Ajxj+1‖‖xj‖ = ‖Aj‖‖xj+1‖‖xj‖.
Hence Ajxj+1 = ajxj for some scalar aj . Therefore, Ax̂1 = 0 and

Ax̂j = [0 . . . 0 Aj−1xj

(j−1)st

0 . . . 0]T = [0 . . . 0 aj−1xj−1

(j−1)st

0 . . . 0]T = aj−1x̂j−1

is in K for all j, 2 ≤ j ≤ k. This shows that AK ⊆ K.

We next prove that A∗K ⊆ K. Indeed, we have A∗x̂j = [0 . . . 0 A∗

jxj

(j+1)st

0 . . . 0]T

for 1 ≤ j ≤ k − 1. Since

|aj|‖xj‖2 = ‖ajxj‖‖xj‖ = ‖Ajxj+1‖‖xj‖ = ‖Aj‖‖xj+1‖‖xj‖
by (2.4), the nonzeroness of the Aj ’s and xj ’s yields the same for the
aj’s. Letting Bj = Aj/‖Aj‖ and yj = (‖Aj‖/aj)xj+1, we have Bjyj =
(1/aj)Ajxj+1 = xj with ‖Bj‖ = 1 and

‖yj‖ =
‖Aj‖
|aj |

‖xj+1‖ =
‖Ajxj+1‖

|aj|
= ‖xj‖

by (2.4). It follows from an extended lemma of Riesz and Sz.-Nagy that
B∗

jxj = yj (cf. [7, p. 215]). Therefore, we have A
∗

jxj = (‖Aj‖2/aj)xj+1,

which shows that A∗

j x̂j = (‖Aj‖2/aj)x̂j+1 is in K for 1 ≤ j ≤ k − 1.
Moreover, we also have A∗x̂k = 0. Thus A∗K ⊆ K as asserted.

Since {x̂j/‖xj‖}kj=1 is an orthonormal basis of K, A(x̂1/‖x1‖) = 0,
and

A(
x̂j

‖xj‖
) =

aj−1‖xj−1‖
‖xj‖

x̂j−1

‖xj−1‖
=

aj−1

|aj−1|
‖aj−1xj−1‖

‖xj‖
x̂j−1

‖xj−1‖

=
aj−1

|aj−1|
‖Aj−1xj‖

‖xj‖
x̂j−1

‖xj−1‖
=

aj−1

|aj−1|
‖Aj−1‖

x̂j−1

‖xj−1‖
for 2 ≤ j ≤ k by (2.4), we derive that the restriction A|K is unitarily
similar to A′. Thus A is unitarily similar to A′ ⊕ (A|K⊥). We now
show that A|K⊥ is also unitarily similar to a block shift. Indeed, let

Ĥj = 0⊕ · · · ⊕ 0⊕Cnj

jth

⊕0⊕ · · · ⊕ 0, Kj = Cnj ⊖
∨
{xj}, and K̂j = 0⊕

· · ·⊕0⊕Kj
jth

⊕0⊕· · ·⊕0 for 1 ≤ j ≤ k. Then K⊥ = K1⊕· · ·⊕Kk. Since

AĤj+1 ⊆ Ĥj and A∗x̂j ∈
∨
{x̂j+1} from before, we have AK̂j+1 ⊆ K̂j

for 1 ≤ j ≤ k − 1. Moreover, AĤk = {0} implies that AK̂k = {0}.
We conclude that B ≡ A|K⊥ is unitarily similar to a block shift with
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w(B) ≤ w(A) = w(A′). This proves one direction of (b). The converse
is trivial. �

Corollary 2.2. Let A be an n-by-n block shift as in (2.1), and let

M = maxj ‖Aj‖. Then
(a) w(A) ≤ M · cos(π/(k + 1)), and
(b) w(A) = M · cos(π/(k+1)) if and only if A is unitarily similar to

(M · Jk)⊕B, where B is a block shift with w(B) ≤ M · cos(π/(k+1)).

Here Jk denotes the k-by-k Jordan block




0 1

0
. . .
. . . 1

0


 ,

whose numerical range is known to be {z ∈ C : |z| ≤ cos(π/(k + 1))}
(cf. [6]).

Proof of Corollary 2.2. (a) is an easy consequence of Theorem 2.1 (a)
and [8, Lemma 5 (1)] while (b) follows from Theorem 2.1 (b) and [8,
Lemma 5 (2)]. �

We remark that the assertion in Theorem 2.1 (b) still holds for n ≤ 5
even without the nonzero assumption on the Aj’s. This can be proven
via a case-by-case verification by invoking, in most cases, the known
result on the numerical ranges of square-zero matrices (cf. [9, Theorem
2.1]), which we omit. This is no longer the case for n ≥ 6. Here we
give a counterexample for n = 6.

Example 2.3. Let

A =




0
√
2
0 0

0 1 0
0 0 0
0 0 1

0



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with A1 = [
√
2], A2 = [0], A3 = [1 0] and A4 =

[
0
1

]
. Then

A′ =




0
√
2
0 0

0 1
0 1

0



,

and A and A′ are unitarily similar to

[
0

√
2

0 0

]
⊕

[
0 1
0 0

]
⊕
[
0 1
0 0

]
and

[
0

√
2

0 0

]
⊕




0 1
0 1

0


 ,

respectively. Hence w(A) = w(A′) =
√
2/2, but A′ is not a direct

summand of A. To see the latter, note that kerA ∩ kerA∗ = {0}.
Hence A cannot have the 1-by-1 zero matrix [0] as a direct summand,
and thus A cannot be unitarily similar to A′ ⊕ [0], or A′ is not a direct
summand of A.

3. Lower bound

Here is the main result of this section.

Theorem 3.1. Let A be an n-by-n block shift as in (2.1), and let

A′′ =




0 m(A1)

0
. . .
. . . m(Ak−1)

0


 on C

k.

Then (a) w(A) ≥ w(A′′), and (b) under the assumption that A1 . . . Ak−1 6=
0, w(A) = w(A′′) if and only if A is unitarily similar to A′′ ⊕C, where

C is a block shift with w(C) ≤ w(A′′).

Our first lemma gives some basic properties of the minimum modulus
of a rectangular matrix. For a square matrix (or, for that matter,
an operator on a possibly infinite-dimensional Hilbert space), these
appeared in [2, Theorem 1].

Lemma 3.2. Let A be an m-by-n matrix. Then

(a) m(A) > 0 if and only if A is left invertible, and

(b) m(A) equals the minimum singular value of A. In particular, if

m < n, then m(A) = 0.
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Proof. (a) Note that m(A) > 0 means that there is a c > 0 such that
‖Ax‖ ≥ c‖x‖ for all x in Cn, which is equivalent to the well-definedness
of the linear transformation Ax 7→ x from the range of A to C

n, or to
the left-invertibility of A.

(b) Consider the polar decomposition of A: A = V (A∗A)1/2, where
V is an m-by-n partial isometry with ker V = kerA (cf. [3, Problem
134]). Then

m(A) = min{‖Ax‖ : x ∈ C
n, ‖x‖ = 1}

= min{‖V (A∗A)1/2x‖ : x ∈ C
n, ‖x‖ = 1}

= min{‖(A∗A)1/2x‖ : x ∈ C
n, ‖x‖ = 1}

=minimum eigenvalue of (A∗A)1/2

=minimum singular value of A.

�

To prove Theorem 3.1 (b), we need another lemma to get around the
restriction A1 . . . Ak−1 6= 0.

Lemma 3.3. If Aj is an nj-by-nj+1 matrix, 1 ≤ j ≤ k − 1, such that

A1 . . . Ak−1 = 0, then for any ε > 0, there are nj-by-nj+1 matrices Bj

such that ‖Bj − Aj‖ < ε for all j and B1 . . . Bk−1 6= 0.

Proof. This is proven by induction on k. The case of k = 2 is trivial.
We now assume that k = 3 and A1A2 = 0. Consider the following four
cases separately:

(i) A1 = 0 and A2 = 0. Let B1 (resp., B2) be the n1-by-n2 (resp.,
n2-by-n3) matrix with its (1, 1)-entry equal to ε/2 and all other entries
0. Then B1B2 has the (1, 1)-entry ε2/4, and hence is nonzero.

(ii) A1 6= 0 and A2 = 0. Assume that aij, the (i, j)-entry of A1,
is nonzero. Let B1 = A1 and let B2 be the n2-by-n3 matrix with its
(j, 1)-entry equal to ε/2 and all others 0. Then the (i, 1)-entry of B1B2

is aijε/2, which is nonzero. Hence B1B2 6= 0.

(iii) A1 = 0 and A2 6= 0. By symmetry, this case can be dealt with
as in (ii).

(iv) A1, A2 6= 0. Assume that xT
i , the ith row of A1, and yj, the jth

column of A2, are nonzero. Since x
T
i yj = 0, we may perturb yj slightly

to a column vector zj such that xT
i zj 6= 0. Let B1 = A1 and B2 be

obtained from A2 by replacing its yj by zj . Then B1B2 6= 0.
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Note that in (ii) and (iv) above, we have actually shown that if
A1A2 = 0 and A1 6= 0, then for any ε > 0 there is a matrix B2 such
that ‖B2 − A2‖ < ε and A1B2 6= 0. This will be used in the induction
process below.

Assume that our assertion is true for k−2 and that A1 . . . Ak−1 = 0.
If A1 . . . Ak−2 = 0, then the induction hypothesis implies, for each
ε > 0, the existence of matrices B1, . . . , Bk−2 such that ‖Bj −Aj‖ < ε
for 1 ≤ j ≤ k − 2 and B1 . . . Bk−2 6= 0. If (B1 . . . Bk−2)Ak−1 6= 0, then
simply let Bk−1 = Ak−1; otherwise, from (ii) and (iv) above, there is a
matrix Bk−1 such that ‖Bk−1 − Ak−1‖ < ε and (B1 . . . Bk−2)Bk−1 6= 0.
On the other hand, if A1 . . . Ak−2 6= 0, then, since (A1 . . . Ak−2)Ak−1 =
0, (ii) and (iv) above yields a matrix Bk−1 such that ‖Bk−1−Ak−1‖ < ε
and (A1 . . . Ak−2)Bk−1 6= 0. Letting Bj = Aj for 1 ≤ j ≤ k − 2 proves
our assertion. �

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. (a) First assume that A1 . . . Ak−1 6= 0. Since
A′′ is an (entrywise) nonnegative matrix, there is a unit vector y =
[y1 . . . yk]

T in Ck with yj ≥ 0 for all j such that 〈A′′y, y〉 = w(A′′)
(cf. [5, Proposition 3.3]). Let u be a unit vector in Cnk such that
A1 . . . Ak−1u 6= 0, let xj = AjAj+1 . . . Ak−1u/‖AjAj+1 . . . Ak−1u‖ for
1 ≤ j ≤ k − 1 and xk = u, and let v = [y1x1 . . . ykxk]

T . Then v is a
unit vector in Cn since

‖v‖ =
(
|y1|2‖x1‖2 + · · ·+ |yk|2‖xk‖2

)1/2
=

(
|y1|2 + · · ·+ |yk|2

)1/2
= 1.

Moreover,

〈Av, v〉 =
k−1∑

j=1

〈Aj(yj+1xj+1), yjxj〉 =
k−1∑

j=1

yj+1yj〈Ajxj+1, xj〉.

Note that

〈Ajxj+1, xj〉 =
〈AjAj+1 . . . Ak−1u

‖Aj+1 . . . Ak−1u‖
,

Aj . . . Ak−1u

‖Aj . . . Ak−1u‖
〉

=
‖Aj . . . Ak−1u‖
‖Aj+1 . . . Ak−1u‖

≥ m(Aj).

Hence

(3.1) 〈Av, v〉 ≥
k−1∑

j=1

yj+1yjm(Aj) = 〈A′′y, y〉 = w(A′′).

It follows that w(A) ≥ w(A′′) as asserted.
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Now if A1 . . . Ak−1 = 0, then, for any ε > 0, let B1, . . . , Bk−1 be as
in Lemma 3.3, and let

B =




0 B1

0
. . .
. . . Bk−1

0


 on C

n and B′′ =




0 m(B1)

0
. . .
. . . m(Bk−1)

0


 on C

k.

From the first half of the proof, we have w(B) ≥ w(B′′). Since

‖A′′ − B′′‖ = max
j

|m(Aj)−m(Bj)| ≤ max
j

‖Aj −Bj‖ < ε

(cf. [10, Lemma 2.2 (1)]), we infer from the continuity of w(·) that
w(A) ≥ w(A′′) (cf. [3, Problem 220]). This completes the proof of (a).

(b) Assume that A1 . . . Ak−1 6= 0 and w(A) = w(A′′). Let y =
[y1 . . . yk]

T ∈ Ck, u ∈ Cnk , xj ∈ Cnj for 1 ≤ j ≤ k, and v ∈ Cn be as
in the first half of the proof of (a). Let x̂j = [0 . . . 0 xj

jth

0 . . . 0]T for

1 ≤ j ≤ k, and let K be the subspace of Cn spanned by the x̂j ’s. Since
Ax̂1 = 0 and
(3.2)

Ax̂j =
[
0 . . . 0

Aj−1Aj . . . Ak−1u

‖Aj . . . Ak−1u‖
(j−1)st

0 . . . 0]T =
‖Aj−1 . . . Ak−1u‖
‖Aj . . . Ak−1u‖

x̂j−1, 2 ≤ j ≤ k,

we obtain AK ⊆ K.

We next show that A∗K ⊆ K. Indeed, since w(A) = w(A′′), we have
an equality in (3.1), which yields that ‖Aj . . . Ak−1u‖/‖Aj+1 . . . Ak−1u‖ =
m(Aj) for all j, 1 ≤ j ≤ k − 1. This is because Aj 6= 0 for all j and
thus A′′ is a nonnegative matrix with irreducible real part, from which
we infer that yj > 0 for all j (cf. [5, Proposition 3.3]). Since the
xj ’s are unit vectors satisfying ‖Ajxj+1‖ = m(Aj), we have 〈(A∗

jAj −
m(Aj)

2Inj+1
)xj+1, xj+1〉 = 0, 1 ≤ j ≤ k−1. From A∗

jAj ≥ m(Aj)
2Inj+1

,

we infer that A∗

jAjxj+1 = m(Aj)
2xj+1 and hence A∗

jAjAj+1 . . . Ak−1u =

m(Aj)
2Aj+1 . . . Ak−1u. This shows that A

∗

jxj is a multiple of xj+1 and
thus A∗x̂j is a multiple of x̂j+1 for 1 ≤ j ≤ k − 1. Therefore, A∗x̂j is
in K for all j, 1 ≤ j ≤ k − 1. Together with A∗x̂k = 0, these imply
that A∗K ⊆ K. Hence A is unitarily similar to (A|K)⊕ (A|K⊥). Since
Ax̂1 = 0 and Ax̂j = m(Aj−1)x̂j−1, 2 ≤ j ≤ k, from (3.2), we have
the unitary similarity of A|K and A′′. On the other hand, the unitary
similarity of A|K⊥ to a block shift follows as in the last part of the
proof of Theorem 2.1 (b). �
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Corollary 3.4. Let A be an n-by-n block shift as in (2.1), and let

m = minj m(Aj). Then
(a) w(A) ≥ m · cos(π/(k + 1)), and
(b) w(A) = m · cos(π/(k+1)) if and only if A is unitarily similar to

(m · Jk)⊕ C, where C is a block shift with w(C) ≤ m · cos(π/(k + 1)).

This can be proven as Corollary 2.2 by using Theorem 3.1 and [8,
Lemma 5].

Analogous to the situation in Section 2, Theorem 3.1 (b) remains
true for n ≤ 3 without the assumption A1 . . . Ak−1 6= 0. This is no
longer the case for n ≥ 4. A counterexample for n = 4 is given below.

Example 3.5. Let

A =




0 1 1
0 0 1
0 0 −1

0




with A1 = [1 1] and A2 =

[
1
−1

]
. In this case, A1A2 = [0] and

A′′ =




0 0

0
√
2
0


 .

Since A2 = 0, we have w(A) = ‖A‖/2 =
√
2/2 (cf. [9, Theorem 2.1]).

On the other hand, we also have w(A′′) =
√
2/2. But A′′ is not a direct

summand of A. This is because if it is, then A will be unitarily similar
to A′′ ⊕ [0], which is impossible since kerA ∩ kerA∗ = {0}.

A larger parameter than the minimum modulus of an m-by-n matrix
A is its reduced minimum modulus γ(A) defined by

γ(A) =

{
min{‖Ax‖ : x ∈ Cn, x ⊥ kerA, ‖x‖ = 1} if A 6= 0,
0 if A = 0.

A general reference for γ(A) (when A is an operator on a possibly
infinite-dimensional Hilbert space) is [1]. For an n-by-n block shift A
of the form (2.1), consider the k-by-k matrix

A′′′ =




0 γ(A1)

0
. . .
. . . γ(Ak−1)

0


 .
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We may expect to have w(A′′′) as a lower bound for w(A) under some
extra conditions on A. The next theorem shows that this is indeed the
case for small values of k.

Theorem 3.6. (i) Let A =

[
0 A1

0 0

]
and A′′′ =

[
0 γ(A1)
0 0

]
. Then

(a) w(A) ≥ w(A′′′), and
(b) w(A) = w(A′′′) if and only if A is unitarily similar to A′′′⊕· · ·⊕

A′′′ ⊕ 0.

(ii) Let

A =




0 A1

0 A2

0


 on C

n = C
n1⊕C

n2⊕C
n3 and A′′′ =




0 γ(A1)
0 γ(A2)

0


 on C

3.

Assume that rankA1 + rankA2 > n2. Then

(a) w(A) ≥ w(A′′′), and
(b) w(A) = w(A′′′) if and only if A is unitarily similar to A′′′ ⊕ C,

where C is a block shift with w(C) ≤ w(A′′′).

The proof is quite similar to the one for Theorem 3.1, which we
omit. For larger values of k, the extra conditions on the Aj ’s are two
cumbersome to be of any practical use.
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