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OPTIMAL BOUNDS FOR AGGREGATION OF
AFFINE ESTIMATORS

BY PIERRE C. BELLEC1

ENSAE and Rutgers University

We study the problem of aggregation of estimators when the estimators
are not independent of the data used for aggregation and no sample splitting
is allowed. If the estimators are deterministic vectors, it is well known that the
minimax rate of aggregation is of order log(M), where M is the number of es-
timators to aggregate. It is proved that for affine estimators, the minimax rate
of aggregation is unchanged: it is possible to handle the linear dependence
between the affine estimators and the data used for aggregation at no extra
cost. The minimax rate is not impacted either by the variance of the affine
estimators, or any other measure of their statistical complexity. The minimax
rate is attained with a penalized procedure over the convex hull of the esti-
mators, for a penalty that is inspired from the Q-aggregation procedure. The
results follow from the interplay between the penalty, strong convexity and
concentration.

1. Introduction. We study the problem of recovering an unknown vector f =
(f1, . . . , fn)

T ∈ Rn from noisy observations:

(1.1) Yi = fi + ξi, i = 1, . . . , n,

where the noise random variables ξ1, . . . , ξn are i.i.d. N (0, σ 2) or i.i.d. sub-
Gaussian random variables. We measure the quality of estimation of the unknown
vector f with the squared Euclidean norm in Rn:

‖f − μ̂‖2
2,

for any estimator μ̂ of f. When the noise random variables are normal, (1.1) is the
Gaussian sequence model, which has been extensively studied; see, for example,
[22] and the references therein. Several estimators have been proposed to recover
the unknown vector f from the observations: the ordinary least squares, the ridge
estimator, the Stein estimator and the procedures based on shrinkage, to name a
few. Several of these estimators depend on a parameter that must be chosen care-
fully to obtain satisfying error bounds. These available estimators have different
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strengths and weaknesses in different scenarios, so it is important to be able to
mimic the best among a given family of estimators, without any assumption on
the unknown f. The problem of mimicking the best estimator in a given finite
set is the problem of model-selection type aggregation, which was introduced in
[30, 37]. More precisely, let μ̂1, . . . , μ̂M be M estimators of f based on the data
y = (Y1, . . . , Yn)

T . The goal is to construct with the same data y = (Y1, . . . , Yn)
T a

new estimator μ̂ called the aggregate, which satisfies with probability greater than
1 − δ the sharp oracle inequality2

(1.2) ‖μ̂ − f‖2
2 ≤ min

j=1,...,M
‖μ̂j − f‖2

2 + PRICEM(δ),

where PRICEM(·) is a function of δ that should be small. The term PRICEM(·) will
be referred to as the price to pay for aggregating the estimators μ̂1, . . . , μ̂M . If the
estimators μ̂1, . . . , μ̂M are deterministic vectors, the price to pay for aggregating
these estimators is of order σ 2 log(M/δ) and (1.2) is satisfied for an estimator μ̂
based on Q-aggregation [11]. Considering deterministic estimators is of interest if
two independent samples are available, so that μ̂1, . . . , μ̂M are based on the first
sample while aggregation is performed using the second sample. Then the first
sample can be considered as frozen at the aggregation step (for more details see
[39]). If the estimators are random (dependent on the data y used for aggregation),
two natural questions arise:

1. Does the price to pay for aggregation increase because of the dependence
between μ̂1, . . . , μ̂M and the data y, or is it still of order σ 2 log(M/δ)? Is there an
extra price to pay to handle the dependence?

2. A natural quantity that captures the statistical complexity of a given estimator
μ̂j is the variance defined by E‖μ̂j − Eμ̂j‖2

2. When the estimators are determin-
istic, their variances are all zero. Now that the estimators are random, does the
price to pay for aggregation depend on the statistical complexities of the estima-
tors μ̂1, . . . , μ̂M , for example, through their variances? Is it harder to aggregate
estimators with large statistical complexities?

The goal of this paper is to answer these questions for affine estimators.
Among the procedures available to estimate f, several are linear in the obser-

vations Y1, . . . , Yn. It is the case for the least squares and the ridge estimators,
whereas the shrinkage estimators and the Stein estimator are nonlinear functions
of the observations. Examples of estimators that are linear or affine in the observa-
tions is given in [12], Section 1.2, [1] and references therein. An affine estimator
is of the form μ̂j = Aj y + bj for a deterministic matrix Aj of size n × n and a
deterministic vector bj ∈ Rn. The linearity of the estimators μ̂1, . . . , μ̂M makes
it possible to explicitly treat the dependence between the estimators μ̂1, . . . , μ̂M

and the data y = (Y1, . . . , Yn)
T used to aggregate them. Donoho et al. [14] proved

2By sharp, we mean that the constant in front of the term minj=1,...,M ‖μ̂j − f‖2
2 is 1.
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that for orthosymmetric quadratically convex sets (which include all ellipsoids and
hyperrectangles), the minimax risk among all linear estimators is within 25% of
the minimax risk among all estimators.

The papers [10, 12, 27] derived different procedures that satisfy sharp oracle
inequalities for the problem of aggregation of affine estimators when the noise
random variables are Gaussian. Leung and Barron [27], Dalalyan and Salmon [12]
proposed an estimator μ̂

EW based on exponential weights, for which the following
sharp oracle inequality holds in expectation:

E
∥∥f − μ̂

EW∥∥2
2 ≤ min

j=1,...,M
E‖μ̂j − f‖2

2 + 8σ 2 logM,

under the assumption that all Aj are orthoprojectors [orthogonal projection ma-
trices; cf. (1.4)], or under a strong commutativity assumption on the matrices Aj .
The constant 8 can be reduced to 4 if all Aj are orthoprojectors. If the matrices
Aj are not symmetric, [12] achieved a similar oracle inequality by symmetrizing
the affine estimators before the aggregation step, which suggests that the symmetry
assumption can be relaxed. Although the estimator μ̂

EW achieves this inequality in
expectation, it was shown in [2, 11] that it cannot achieve a similar result in devia-
tion, with an unavoidable error term of order

√
n. In Dai et al. [10], a sharp oracle

inequality in deviation is derived for an estimator μ̂
Q based on Q-aggregation [11,

31]. Namely, [10] proves that if the matrices A1, . . . ,AM are symmetric and posi-
tive semidefinite, the estimator μ̂

Q satisfies with probability greater than 1 − δ:

(1.3)
∥∥f − μ̂

Q∥∥2
2 ≤ min

j=1,...,M

(‖μ̂j − f‖2
2 + 4σ 2 Tr(Aj )

) + Cσ 2 log(M/δ),

where the constant C is proportional to the largest operator norm of the ma-
trices A1, . . . ,AM . The term 4σ 2 Tr(Aj ) is intimately linked to the statistical
complexity of the estimator μ̂j = Aj y + bj . For instance, the variance of μ̂j is
E‖μ̂j − Eμ̂j‖2

2 = σ 2 Tr(AT
j Aj ). If μ̂j is a least squares estimator, Aj is an or-

thoprojector, and the variance becomes σ 2 TrAj . Thus, the statistical complexity
of the estimator μ̂j clearly appears in the right-hand side of the oracle inequal-
ity (1.3) proved in [10]. Thus, one may think that the price to pay for aggregating
affine estimators, that is, the function PRICEM(δ) in (1.2), depends on the statistical
complexity of the estimators to aggregate.

The bound (1.3) may lead to the conclusion that the price to pay for aggregation
of affine estimators can be substantially larger than σ 2 log(M/δ) which is the price
for aggregating deterministic vectors. Indeed, the extra term 4σ 2 Tr(Aj ) may be
large in common situation where the trace of some matrices Aj is large. For exam-
ple, if one aggregates the estimators μ̂1 = λ1y, . . . , μ̂M = λMy, for some positive
real numbers λ1, . . . , λM , then the term 4σ 2 Tr(Aj ) in the above oracle inequality
is of order σ 2nλj for each j = 1, . . . ,M , which can be greater than the optimal rate
σ 2 logM . This term 4σ 2 Tr(Aj ) makes the oracle inequality (1.3) suitable only for
scenarios where the matrices Aj have small trace. But more importantly, the term
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σ 2 TrAj suggests that the price to pay for aggregating affine estimators increases
with the statistical complexities of the estimators to aggregate.

The results discussed above rely on specific assumptions on the matrices
A1, . . . ,AM [10, 12, 27]. This raises a third question, although not as important
as the two questions above:

3. Does the nature of the matrices A1, . . . ,AM have an impact on the price to
pay to aggregate these affine estimators? Is the price in (1.2) substantially smaller
if the matrices are orthoprojectors, semipositive definite or symmetric?

The main contribution of the present paper is to answer the three questions
raised above:

1. It is proved in Theorem 2.1 that a penalized procedure over the simplex sat-
isfies the sharp oracle inequality (1.2) with PRICEM(δ) = cσ 2 log(M/δ) for some
absolute constant c > 0. This price is of the same order as for the problem of ag-
gregation of deterministic vectors. Thus, the dependence between the estimators
and the data used to aggregate them induces no extra cost.

2. The form of the affine estimators to aggregate has no impact on the price to
pay for aggregation. In particular, the sharp oracle inequalities of the present paper
do not involve quantities dependent on Aj such as σ 2 TrAj .

3. The only assumption made on the matrices A1, . . . ,AM is that maxj �=k |||Aj −
Ak|||2 is bounded from above, where ||| · |||2 is the operator norm. All other assump-
tions on the matrices A1, . . . ,AM can be dropped, in particular the matrices can
be nonsymmetric and have negative eigenvalues.

The paper is organized as follows. In Section 1.1, we define the notation used
throughout the paper. Section 2 defines a penalized procedure over the simplex
and shows that it achieves sharp oracle inequalities in deviation for aggregation of
affine estimators. The role of the penalty is studied in Section 3 and Section 4. Prior
weights are considered in Section 5. Section 6 shows that the estimator is robust to
variance misspecification and to non-Gaussianity of the noise. Some examples are
given in Section 7. Section 8 is devoted to the proofs.

1.1. Notation. Let f = (f1, . . . , fn)
T ∈ Rn be an unknown regression vector.

We observe n random variables (1.1) where ξ1, . . . , ξn are sub-Gaussian random
variables, with E[ξi] = 0 and E[ξ2

i ] = σ 2. It can be rewritten in the vector form
y = f + ξ where y = (Y1, . . . , Yn)

T , f = (f1, . . . , fn)
T and ξ = (ξ1, . . . , ξn)

T .
For any estimator μ̂ of f, we measure the quality of estimation of f with the loss

‖μ̂ − f‖2
2, where ‖ · ‖2 is the Euclidean norm in Rn. Let M ≥ 2. We consider M

affine estimators of the form

μ̂j = Aj y + bj , j = 1, . . . ,M.



34 P. C. BELLEC

The matrices A1, . . . ,AM and the vectors b1, . . . ,bM ∈ Rn are deterministic. De-
fine the simplex in RM :

�M =
{
θ ∈ RM,

M∑
j=1

θj = 1,∀j = 1 · · ·M,θj ≥ 0

}
.

For any θ ∈ �M , let

Aθ =
M∑

j=1

θjAj , bθ =
M∑

j=1

θjbj , μ̂θ = Aθy + bθ .

Let e1, . . . , eM be the vectors of the canonical basis in RM . Then μ̂j = μ̂ej
for all

j = 1, . . . ,M .
An orthoprojector is an n × n matrix P such that

(1.4) P = P T = P 2.

Denote by In×n the n × n-identity matrix. For any n × n real matrix A =
(ai,j )i,j=1,...,n, define the operator norm of A, the Frobenius (or Hilbert–Schmidt)
norm of A and the nuclear norm of A respectively by

|||A|||2 = sup
x �=0

‖Ax‖2

‖x‖2
, ‖A‖F =

√ ∑
i,j=1,...,n

a2
i,j .

The following inequalities hold for any two squared matrices M , M ′:

(1.5)
∣∣∣∣∣∣MM ′∣∣∣∣∣∣

2 ≤ |||M|||2
∣∣∣∣∣∣M ′∣∣∣∣∣∣

2,
∥∥MM ′∥∥

F ≤ |||M|||2
∥∥M ′∥∥

F.

Finally, denote by log the natural logarithm with log(e) = 1.

2. A penalized procedure on the simplex. For any θ ∈ �M , define

(2.1) Cp(θ) := ‖μ̂θ‖2
2 − 2yT μ̂θ + 2σ 2 Tr(Aθ ),

which is Mallows [28] Cp-criterion. Next, define

(2.2) Hpen(θ) = Cp(θ) + 1

2
pen(θ),

where

(2.3) pen(θ) =
M∑

j=1

θj‖μ̂θ − μ̂j‖2
2.

We consider the estimator μ̂
θ̂pen

where

(2.4) θ̂pen ∈ argmin
θ∈�M

Hpen(θ).
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The function Hpen is quadratic and convex (cf. Lemma 8.2). Minimizing Hpen
over the simplex is a convex quadratic program for which efficient algorithms are
available. The convexity of Hpen also proves that θ̂pen is well defined, although
it may not be unique (e.g., if all μ̂j are the same then Hpen is constant on the
simplex).

We now explain the meaning of the terms that appear in (2.2). If θ is fixed,
Cp(θ) is an unbiased estimate of the quantity

(2.5) R(θ) := ‖μ̂θ‖2
2 − 2fT μ̂θ = ‖μ̂θ − f‖2

2 − ‖f‖2
2,

which is the quantity of interest ‖μ̂θ − f‖2
2 up to the additive constant ‖f‖2

2.
The penalty (2.3) is borrowed from the Q-aggregation procedure, which is a

powerful tool to derive sharp oracle inequalities in deviation when the loss is
strongly convex [4, 11, 26, 31]. Since the estimators μ̂1, . . . , μ̂M depend on the
data, the penalty (2.3) is data-driven, which is not the case if μ̂1, . . . , μ̂M are
deterministic vectors as in [11]. In order to give some geometric insights on the
penalty (2.3), let c ∈ Rn be a solution of M linear equations 2cT μ̂j = ‖μ̂j‖2

2,
j = 1, . . . ,M , and assume only in the rest of this paragraph that such a solution
exists, even though this assumption cannot be fulfilled for M > n. Then

(2.6) pen(θ) =
M∑

j=1

θj‖μ̂j‖2
2 − ‖μ̂θ‖2

2 = 2cT μ̂θ − ‖μ̂θ‖2
2 = ‖c‖2

2 − ‖μ̂θ − c‖2
2.

We can write pen(θ) = g(μ̂θ ) for some function g defined on the convex hull
of {μ̂1, . . . , μ̂M}. Equation (2.6) shows that the level sets of the function g are
Euclidean balls centered at c. The function g is nonnegative. It is minimal at the
extreme points μ̂1, . . . , μ̂M since g(μ̂j ) = 0 for all j = 1, . . . ,M and g is maximal
at the projection of c on the convex hull of {μ̂1, . . . , μ̂M}. Intuitively, the penalty
(2.3) pushes θ away from the center of the simplex towards the vertices. Thus, the
level sets of the function θ → pen(θ) in RM are ellipsoids centered at θc, where
θc is the unique point in RM such that μ̂θc

= c. If M > n or if the vector c is not
well defined, the level sets of pen(·) are more intricate and cannot be described in
such a simple way.

THEOREM 2.1 (Main result). Let M ≥ 2. For j = 1, . . . ,M , consider the
affine estimators μ̂j = Aj y + bj and let

(2.7) φ := max
(

1, max
j,k=1,...,M:j �=k

1

2
|||Aj − Ak|||2

)
.

Assume that the noise random variables ξ1, . . . ξn are i.i.d. N (0, σ 2). Let θ̂pen be
the estimator defined in (2.4). Then for all x > 0 the estimator μ̂

θ̂pen
satisfies with

probability greater than 1 − exp(−x),

(2.8) ‖μ̂
θ̂pen

− f‖2
2 ≤ min

j=1,...,M
‖μ̂j − f‖2

2 + 30φ2σ 2(x + 2 logM).
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Furthermore,

(2.9) E
[‖μ̂

θ̂pen
− f‖2

2
] ≤ E

[
min

j=1,...,M
‖μ̂j − f‖2

2

]
+ 60φ2σ 2 log(M).

The sharp oracle inequality in deviation given in [10] presents an additive term
proportional to σ 2 Tr(Aj ), as in (1.3). An improvement of the present paper is
the absence of this additive term which can be large for matrices Aj with large
trace. Our analysis shows that the quantities σ 2 Tr(Aj ) are not meaningful for the
problem of aggregation of affine estimators, and Theorem 2.1 improves upon the
earlier result of [10].

The quantity φ defined in (2.7) appears in the right-hand side of the oracle
inequalities of Theorem 2.1. Cohen [9] established that estimators of the form
μ̂j = Aj y with |||Aj |||2 > 1 are inadmissible. Thus, if μ̂1, . . . , μ̂M are admissible
affine estimators, then |||Aj |||2 ≤ 1 and the quantity (2.7) is equal to 1.

We relax all assumptions on the matrices A1, . . . ,AM , for instance, they may
be nonsymmetric and have negative eigenvalues. The above result shows that the
restrictions on the matrices A1, . . . ,AM introduced in [10, 12, 27] are not intrinsic
to the problem of aggregation of affine estimators.

The next proposition shows that the bounds of Theorem 2.1 are optimal in a
minimax sense. For any f ∈ Rn, we denote by Pf the probability measure of the
random variable y = f + ξ . A lower bound for aggregation of deterministic vec-
tors was proved in [32], Theorem 5.4 with S = 1. This lower bound implies the
following result.

PROPOSITION 2.1. There exist absolute constants c∗,C∗,p∗ > 0 such that
the following holds. For all M,n ≥ C∗, there exist b1, . . . ,bM ∈ Rn and orthopro-
jectors A1, . . . ,AM of rank one such that

inf
μ̂

sup
f∈Rn

Pf

(
‖μ̂ − f‖2

2 − min
k=1,...,M

‖bk − f‖2
2 ≥ c∗σ 2 log(M)

)
≥ p∗,(2.10)

inf
μ̂

sup
f∈Rn

Pf

(
‖μ̂ − f‖2

2 − min
k=1,...,M

‖Aky − f‖2
2 ≥ c∗σ 2 log(M)

)
≥ p∗,(2.11)

where the infima are taken over all estimators μ̂.

This implies that the bounds of Theorem 2.1 are rate minimax in terms of the
aggregation price. The lower bound can be constructed either with a dictionary of
deterministic vectors [cf. (2.10)], or with a dictionary of orthoprojectors of rank
one [cf. (2.11)].

3. The penalty (2.3) improves upon model selection based on Cp . In order
to explain the role of the penalty (2.3) for the problem of aggregation of affine
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estimators, consider first the standard empirical risk minimization scheme based
on the Cp criterion. Define Ĵ as

(3.1) Ĵ ∈ argmin
j=1,...,M

Cp(ej ),

where Cp(·) is defined in (2.1). Using that Cp(e
Ĵ
) ≤ Cp(ek) for all k = 1, . . . ,M

together with the definition of Cp(·) and R(·) given in (2.1) and (2.5), the following
holds almost surely:

(3.2) ‖μ̂
Ĵ

− f‖2
2 ≤ min

k=1,...,M
‖μ̂k − f‖2

2 + max
j,k=1,...,M

	jk,

where 	jk := Cp(ek) − Cp(ej ) − (R(ek) − R(ej )). Thus, it is possible to prove
an oracle inequality for the estimator μ̂

Ĵ
if we can control the quantities 	jk uni-

formly over all pairs j, k = 1, . . . ,M . These quantities can be rewritten as

	jk = 2ξT (
(Aj − Ak)f + bj − bk

)
+ 2

(
ξT (Aj − Ak)ξ − σ 2 Tr(Aj − Ak)

)
.

(3.3)

Two stochastic terms appear in 	jk . The first is a centered Gaussian random vari-
able with variance 4σ 2‖(Aj −Ak)f+bj −bk‖2

2. The second is a centered quadratic
form in ξ , and it can be shown that its variance is of order σ 4‖Aj − Ak‖2

F. This
quadratic term is sometimes called a Gaussian chaos of order 2. The deviations of
these two terms are governed by the following concentration inequalities. For any
vector v ∈ Rn, a standard Gaussian tail bound gives

(3.4) P
(
vT ξ > σ‖v‖2

√
2x

) ≤ exp(−x) ∀x > 0.

For the Gaussian chaos of order 2, the following is proved in [7], Example 2.12.

LEMMA 3.1. Assume that ξ ∼ N (0, σ 2In×n). For any squared matrix B of
size n,

(3.5) P
(
ξT Bξ − σ 2 TrB > 2σ 2‖B‖F

√
x + 2σ 2|||B|||2x

) ≤ exp(−x),

where σ 2 TrB = E[ξT Bξ ].
We set v = 2((Aj −Ak)f+bj −bk) and B = 2(Ak −Aj) to study the deviations

of the random variable 	jk . If |||Aj − Ak|||2 is small, (3.4) and (3.5) yield that the
deviations of 	jk are of order of the two quantities

(3.6) σ
∥∥(Aj − Ak)f + bj − bk

∥∥
2, σ 2‖Aj − Ak‖F,

that is, the standard deviations of the two terms in 	jk . The concentration inequal-
ities (3.4) and (3.5) are known to be tight [23], thus there is little hope to bound the
deviations of 	jk independently of f, Aj and Ak in order to prove a sharp oracle
inequality. It is possible to refine the above analysis and to prove the following
oracle inequality, though with a leading constant greater than 1.
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PROPOSITION 3.1. There exist absolute constants c,C > 0 such that the fol-
lowing holds. Let 0 < ε < c and let Ĵ be the estimator defined in (3.1). For all
x > 0, the estimator μ̂

Ĵ
satisfies with probability greater than 1 − 2 exp(−x):

(3.7) ‖μ̂
Ĵ

− f‖2
2 ≤ (1 + ε) min

k=1,...,M
‖μ̂k − f‖2

2 + Cφ2σ 2(x + 2 logM)/ε,

where φ is defined in (2.7).

The proof of Proposition 3.1 is given in Section 8.6. The estimator μ̂
Ĵ

fails
to achieve an oracle inequality with leading constant 1 [the leading constant in
(3.7) is 1 + ε] and with an error term of order σ 2 logM . This drawback cannot
be repaired for all procedures of the form μ̂

K̂
where K̂ is an estimator valued in

{1, . . . ,M}. Indeed, it is proved in [16], Section 6.4.2 and Proposition 6.1, that
there exist f1, f2 ∈ Rn and orthoprojectors A1, A2 such that for any estimator K̂

valued in {1,2}
sup

f∈{f1,f2}

(
E‖A

K̂
y − f‖2

2 − min
j=1,2

E‖Aj y − f‖2
2

)
≥ σ 2√n/4,

provided that n is larger than some absolute constant. Inspection of the proof of
this result reveals that

σ
∥∥(A2 − A1)f + b2 − b1

∥∥
2 ≥ σ 2√n ∀f ∈ {f1, f2},

where we set b1 = b2 = 0. Thus, this lower bound of order
√

n is related to the
Gaussian component of the random variable 	12, that is, to the term ξT ((A1 −
A2)f + b1 − b2); cf. (3.3).

The procedure μ̂
Ĵ

fails to achieve a sharp oracle inequality because the vari-
ances of the two components of 	jk may be large and cannot be controlled. The
role of the penalty (2.3) is exactly to control the deviations of 	jk by controlling
the terms (3.6). The following proposition makes this precise.

PROPOSITION 3.2. Let θ̂pen be the estimator (2.4). Then almost surely,

(3.8) ‖μ̂
θ̂pen

− f‖2
2 ≤ min

q=1,...,M

(‖μ̂q − f‖2
2
) + max

j,k=1,...,M

(
	jk − 1

2
‖μ̂j − μ̂k‖2

2

)
,

where 	jk is the quantity (3.3). Furthermore, for all j, k = 1, . . . ,M ,

(3.9) E
[

1

2
‖μ̂j − μ̂k‖2

2

]
= 1

2

∥∥(Aj − Ak)f + bj − bk

∥∥2
2 + σ 2

2
‖Aj − Ak‖2

F.

The proof of (3.8) is given in Section 4 below. A bias-variance decomposition
directly yields (3.9), since E[μ̂j − μ̂k] = (Aj − Ak)f + bj − bk and E‖μ̂j − μ̂k −
E[μ̂j − μ̂k]‖2

2 = E‖(Aj − Ak)ξ‖2
2 = σ 2‖Aj − Ak‖2

F.
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Compared with (3.2), the right-hand side of (3.8) presents the quantities
−1

2‖μ̂j − μ̂k‖2
2. We will explain below that these quantities appear because of

the interplay between the penalty (2.3) and the strong convexity of Hpen.
From (3.8), an outline of the proof of Theorem 2.1 is as follows. By combining

the simple inequality (8.5) and Proposition 8.1 below, we will prove that for any
pair (j, k) we have

E exp
(
λ0

(
	jk − 1

2
‖μ̂j − μ̂k‖2

2

))
≤ 1

for λ0 = (30φ2σ 2)−1 if the noise ξ has distribution N (0, σ 2In×n). Thus, one has

E exp
(
λ0 max

j,k=1,...,M

(
	jk − 1

2
‖μ̂j − μ̂k‖2

2

))
≤ M2.

Then Jensen’s inequality yields (2.9) while a Chernoff bound yields (2.8). This
explains the success of the penalty (2.3) for the problem of model selection type
aggregation: the penalty and the strong convexity of Hpen provide the quantity
−1

2‖μ̂j −μ̂k‖2
2, and this quantity is exactly what is needed to control the deviations

of the random variable 	jk .

4. Strong convexity and the penalty (2.3). To further understand the inter-
play between the penalty (2.3) and the strong convexity of Hpen, we now give the
proof of (3.8).

PROOF OF (3.8). Let k = 1, . . . ,M be fixed. The simplex �M is a convex set
and the function Hpen is convex, hence we have

∇Hpen(θ̂pen)
T (ek − θ̂pen) ≥ 0;

cf. [8], Section 4.2.3, equation (4.21). Inequality (3.8) follows from

‖μ̂
θ̂pen

− f‖2
2 − ‖μ̂k − f‖2

2

≤ ‖μ̂
θ̂pen

− f‖2
2 − ‖μ̂k − f‖2

2 + ∇Hpen(θ̂pen)
T (ek − θ̂pen),(4.1)

=
M∑

j=1

θ̂pen,j

(
	jk − 1

2
‖μ̂j − μ̂k‖2

2

)
,(4.2)

≤ max
j=1,...,M

(
	jk − 1

2
‖μ̂j − μ̂k‖2

2

)
.(4.3)

Equality (4.2) is obtained by simple algebra while (4.3) is a consequence of∑M
j=1 θ̂pen,j = 1 and θ̂pen,j ≥ 0 for all j = 1, . . . ,M . �
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It is possible to interpret this argument in light of the interplay between strong
convexity and the penalty (2.3). The right-hand side of (4.1) satisfies

‖μ̂
θ̂pen

− f‖2
2 − ‖μ̂k − f‖2

2 + ∇Hpen(θ̂pen)
T (ek − θ̂pen)

=
M∑

j=1

θ̂pen,j	jk − 1

2

[
pen(θ̂pen) + ‖μ̂

θ̂pen
− μ̂k‖2

2
]
.

The term ‖μ̂
θ̂pen

− μ̂k‖2
2 comes from the strong convexity of the function Hpen. By

simple algebra or using (8.10) with g = μ̂k , we have

(4.4) pen(θ̂pen) + ‖μ̂
θ̂pen

− μ̂k‖2
2︸ ︷︷ ︸

Term given by the
strong convexity of Hpen

=
M∑

j=1

θ̂pen,j ‖μ̂j − μ̂k‖2
2.︸ ︷︷ ︸

Term that controls
the deviations of 	jk

Formula (4.4) highlights a feature of the penalty (2.3): the penalty transforms the
quadratic term given by strong convexity into the linear term given by the right-
hand side of (4.4).

The strong convexity of Cp(·) and Hpen(·) is understood with respect to the
pseudometric

‖μ̂θ − μ̂θ ′‖2, θ , θ ′ ∈ RM,

so it is not the strong convexity in the Euclidean norm. We say that a function V (·)
is strongly convex with coefficient γ > 0 over the simplex if for all θ, θ ′ ∈ �M ,

V (θ) ≥ V
(
θ ′) + ∇V

(
θ ′)T (

θ − θ ′) + γ ‖μ̂θ − μ̂θ ′‖2
2.

The strong convexity of Hpen could be used because Hpen is minimized over the
simplex and not just over the vertices. Indeed, minimizing a strongly convex func-
tion over a discrete set, as in the definition of Ĵ , only grants the inequalities

Cp(e
Ĵ
) ≤ Cp(ek) for all k = 1, . . . ,M.

Because the simplex is a convex set, minimizing the strongly convex function Hpen
over the simplex grants the inequalities

Hpen(θ̂pen) ≤ Hpen(θ) − 1

2
‖μ̂θ − μ̂

θ̂pen
‖2

2 for all θ ∈ �M.

One could also consider the estimator θ̂C ∈ argminθ∈�M Cp(θ). Because of the
strong convexity of Cp(·), this estimator enjoys the inequalities:

Cp(θ̂C) ≤ Cp(θ) − ‖μ̂θ − μ̂
θ̂pen

‖2
2 for all θ ∈ �M.

The above displays highlight the fact that Cp(·) and Hpen(·) have different
strong convexity coefficients. This is because Hpen(·) = Cp(·) + (1/2)pen(·) and
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(1/2)pen(·) is strongly concave with coefficient 1/2, thus the strong convexity co-
efficient of Hpen(·) is less than that of Cp(·). We refer to Lemma 8.2 for a rigorous
proof of the strong convexity of Hpen and Cp .

The estimator μ̂
θ̂C

is another candidate for the problem of aggregation of affine
estimators. It is close to the estimator μ̂

θ̂pen
, except that the penalty (2.3) has been

removed from the function to minimize. It was proved in [11], Section 2.2, that
the estimator μ̂

θ̂C
performs poorly: for large enough M and n, there exist f and

b1, . . . ,bM ∈ Rn such that with probability greater than 1/4,

‖μ̂
θ̂C

− f‖2
2 ≥ min

j=1,...,M
‖μ̂j − f‖2

2 + σ 2√n

48
,

where μ̂j = bj for all j = 1, . . . ,M .

5. Prior weights. We consider now the problem of aggregation of M affine
estimators with a prior probability distribution π = (π1, . . . , πM)T on the finite set
of indices {1, . . . ,M}.

THEOREM 5.1. Let M ≥ 2. For j = 1, . . . ,M , consider the estimator μ̂j =
Aj y+bj and let φ be defined in (2.7). Let π = (π1, . . . , πM)T ∈ �M . Assume that

the noise ξ has distribution N (0, σ 2In×n). Let θ̂π ∈ argminθ∈�M Vpen(θ) where

(5.1) Vpen(θ) := Hpen(θ) + 30φ2σ 2
M∑

j=1

θj log
1

πj

.

Then for all x > 0, with probability greater than 1 − exp(−x),

(5.2) ‖μ̂
θ̂π

− f‖2
2 ≤ min

j=1,...,M

(
‖μ̂j − f‖2

2 + 60φ2σ 2 log
1

πj

)
+ 30φ2σ 2x.

Furthermore,

(5.3) E‖μ̂
θ̂π

− f‖2
2 ≤ E min

j=1,...,M

(
‖μ̂j − f‖2

2 + 60φ2σ 2 log
1

πj

)
.

The prior probability distribution π = (πj )j=1,...,M is deterministic and does
not depend on the data y = (Y1, . . . , Yn)

T . The only difference between the func-
tion (2.2) and the function minimized in (5.1) is the term proportional to

(5.4) φ2σ 2
M∑

j=1

θj log
1

πj

.

This term allows us to weight the candidates μ̂1, . . . , μ̂M with the prior probabil-
ity distribution (πj )j=1,...,M based on some prior knowledge about the estimators
μ̂1, . . . , μ̂M . For example, if the estimators are orthoprojectors, one can set prior
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weights that decrease with the rank the orthoprojectors [32, 34]. The same term
is used in [26] whereas [10] uses the Kullback–Leibler divergence of θ from π .
It is shown in [11] that for aggregation of deterministic vectors, one may use
a quantity of the form

∑M
j=1 θj log(ρ(θj )/πj ) where ρ(·) satisfies ρ(t) ≥ t and

t → t log(ρ(t)) is convex. This suggests that we could use the Kullback–Leibler
divergence of θ from π instead of (5.4), but in their current form our proofs only
hold with the “linear entropy” (5.4).

6. Robustness of the estimator μ̂
θ̂pen

. We prove in this section that the pro-

cedure (2.4) is robust to non-Gaussian noise distributions and to variance misspec-
ification.

6.1. Robustness to non-Gaussian noise. The following result shows that the
penalized procedure (2.4) is robust to non-Gaussian noise distributions.

THEOREM 6.1. Let M ≥ 2. Let σ̄ > 0. For j = 1, . . . ,M , consider the estima-
tor μ̂j = Aj y + bj and assume that |||Aj |||2 ≤ 1 for all j = 1, . . . ,M . Assume that
the noise components ξ1, . . . , ξn are i.i.d., centered with variance σ 2 and satisfy
for all b ∈ Rn, all matrices B and all x > 0:

P
(
ξT b > σ̄

√
2x

) ≤ exp(−x),(6.1)

P
(
ξT Bξ − σ 2 TrB > 2σ σ̄‖B‖F

√
x + 2σ̄ 2|||B|||2x

) ≤ exp(−x).(6.2)

Let θ̂pen be the estimator defined in (2.4). Then for all x > 0, the estimator μ̂
θ̂pen

satisfies with probability greater than 1 − 2 exp(−x),

(6.3) ‖μ̂
θ̂pen

− f‖2
2 ≤ min

j=1,...,M
‖μ̂j − f‖2

2 + 46σ̄ 2(2 logM + x).

Let K > 0. If the random variables ξ1, . . . , ξn are i.i.d., centered with variance
σ 2 and K-sub-Gaussian in the sense that log E[etξi ] ≤ K2t2/2 for all t ∈ R and
all i = 1, . . . , n, then (6.1) is satisfied with σ̄ = cK for some absolute constant
c > 0 [40], Section 5.2.3. As σ ≤ K , (6.1) is also satisfied with σ̄ = cK2/σ . By
the Hanson–Wright inequality [20, 35, 41], (6.2) also holds with σ̄ = cK2/σ for
another absolute constant c > 0. Thus, for i.i.d. K-sub-Gaussian random variables
with variance σ 2, (6.3) yields

(6.4) ‖μ̂
θ̂pen

− f‖2
2 ≤ min

j=1,...,M
‖μ̂j − f‖2

2 + C
(
K4/σ 2)

(2 logM + x),

for some absolute constant C > 0. For most common examples of sub-Gaussian
random variables, the standard deviation σ is of the same order as the sub-Gaussian
norm K , so the bound (6.4) is satisfying. This bound may not be tight if the stan-
dard deviation is pathologically small compared to the sub-Gaussian norm.
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6.2. Robustness to variance misspecification. In order to construct the estima-
tor (2.4) by minimizing (2.2), the knowledge of the variance of the noise is needed.
However, the following proposition shows that the procedure (2.4) is robust to vari-
ance misspecification, that is, the result still holds if the variance is replaced by an
estimator σ̂ 2 as soon as σ̂ 2 is consistent in a weak sense defined below.

THEOREM 6.2 (Aggregation under variance misspecification). Let M ≥ 2.
For j = 1, . . . ,M , consider the estimator μ̂j = Aj y + bj . Assume that the noise
random variables ξ1, . . . ξn are i.i.d. N (0, σ 2). Let σ̂ 2 be an estimator and assume
that

(6.5) ∀j = 1, . . . ,M, Aj = AT
j = A2

j , δ := P
(∣∣σ 2 − σ̂ 2∣∣ > σ 2/8

)
< 1.

Let θ̂ σ̂ = argminθ∈�M Wpen(θ) where

(6.6) Wpen(θ) := ‖μ̂θ‖2
2 − 2yT μ̂θ + 2σ̂ 2 Tr(Aθ ) + 1

2
pen(θ).

Then for all x > 0, with probability greater than 1 − δ − exp(−x),

‖μ̂
θ̂ σ̂

− f‖2
2 ≤ min

j=1,...,M
‖μ̂j − f‖2

2 + 48σ 2(x + 2 logM).

The proof of Theorem 6.2 is given in Section 8.3. In (6.5), the matrices
A1, . . . ,AM are assumed to be orthoprojectors, so Theorem 6.2 is a result for ag-
gregation of least squares estimators. As soon as an estimator σ̂ 2 satisfies with
high probability |σ̂ 2 − σ 2| ≤ σ 2/8, optimal aggregation of least squares estima-
tors is possible. This condition is weaker than consistency, as any estimator σ̂ 2

that converges to σ 2 in probability satisfies this condition for n large enough.
The proof of Theorem 6.2 exploits the form of the penalty (2.3) and the strong

convexity of the function (6.6). Similar to Proposition 3.2, we will prove that al-
most surely

‖μ̂
θ̂ σ̂

− f‖2
2 ≤ min

q=1,...,M
‖μ̂q − f‖2

2

+ max
j,k=1,...,M

(
	jk − 1

2
‖μ̂j − μ̂k‖2

2

+ 2
(
σ 2 − σ̂ 2)

Tr(Aj − Ak)

)
,

(6.7)

where 	jk is the quantity (3.3). The only difference from (3.8) is in the extra term
2(σ 2 − σ̂ 2)Tr(Aj − Ak) that appears because we used σ̂ 2 instead of σ 2 in the
definition of Wpen(·). On the event |σ̂ 2 − σ 2| ≤ σ 2/8, it is easy to check that (cf.
Lemma 8.1)

2
(
σ 2 − σ̂ 2)

Tr(Aj − Ak) ≤ σ 2

4
‖Aj − Ak‖2

F.
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As explained in the discussion that follows Proposition 3.2, the quantity 1
2‖μ̂j −

μ̂k‖2
2 is given by the interplay between the penalty (2.3) and the strong convex-

ity of the function that is minimized. By (3.9), the expectation of this quantity is
greater than (σ 2/2)‖Aj − Ak‖2

F. Thus, the penalty (2.3) and the strong convexity
of Wpen provide exactly what is needed to compensate the difference between σ̂ 2

and σ 2. Hence, the proof of Theorem 6.2 reveals that the robustness to variance
misspecification is in fact due to the interplay between the penalty (2.3) and the
strong convexity of Wpen.

The papers [3, 17, 18] aim at performing aggregation of least squares estimators
when σ 2 is unknown, but unlike Theorem 6.2 the oracle inequalities that they
established have a leading constant greater than 1. To our knowledge, Theorem 6.2
is the first aggregation result, with leading constant 1, that is robust to variance
misspecification.

In the following, we describe several situations where the suitable estimator σ̂ 2

is available.

EXAMPLE 6.1 (An estimator σ̂ 2 that does not depend on y). In [12], Sec-
tion 3.1, two contexts are given where an unbiased estimator of the covariance
matrix, independent from y, is available. For example, the noise level can be esti-
mated independently if the signal is captured multiple times by a single device, or
if several identical devices capture the same signal.

EXAMPLE 6.2 (Difference based estimators). In nonparametric regression
where the nonrandom design points are equi-spaced in [0,1], a well-known estima-
tor of the noise level is the difference based estimator 1/(2n−2)

∑n−1
i=1 (yi+1−yi)

2.
This technique can be refined with more complex difference sequences [13, 19],
and extends to design points in a multidimensional space [29]. For images, where
the underlying space is 2-dimensional, there exist efficient methods which require
no multiplication [21].

EXAMPLE 6.3 (Consistent estimation of σ 2 in high-dimensional linear regres-
sion). In a high-dimensional setting, it is possible to estimate σ 2 under classical
assumptions in high-dimensional regression. First, the scaled Lasso [36] allows a
joint estimation of the regression coefficients and of the noise level σ 2. The esti-
mator σ̂ 2 of the scaled Lasso converges in probability to the true noise level σ 2

[36], Theorem 1, and σ̂ 2/σ 2 is asymptotically normal [36], equation (19). Second,
[5] proposes to estimate σ 2 with with a recursive procedure that uses Lasso resid-
uals, and nonasymptotic guarantees are proved in the supplementary material [5].
Third, [6] provides nonasymptotic bounds on the estimation of σ 2 by the residuals
of the square-root Lasso ([6], Theorem 2), and these bounds imply consistency.
In Theorem 6.2, we require that |σ̂ 2/σ 2 − 1| ≤ 1/8 with high-probability and this
requirement is far weaker than the guarantees obtained in [5, 36].
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7. Examples.

7.1. Adaptation to the smoothness. For all n ≥ 1, given continuous parameters
β ≥ 1 and L > 0, we consider subsets �(β,L) ⊂ Rn. We assume that for each
β ≥ 1, there exists a squared matrix Aβ of size n with |||Aβ |||2 ≤ 1 such that for all
L > 0, as n → +∞,

(7.1) inf
f̂

sup
f∈�(β,L)

1

n
E‖f − f̂‖2

2 ∼ sup
f∈�(β,L)

1

n
E‖f − Aβy‖2

2 ∼ C∗n
−2β
2β+1 ,

where an ∼ bn if and only if an/bn → 1 as n → +∞, the infimum is taken over
all estimators and the constant C∗ > 0 may depend on β,L and σ . The above
assumption holds for Sobolev ellipsoids in nonparametric regression, and in this
case one can choose the Pinsker filters for the matrices Aβ (cf. [38], Theorem 3.2).
For Sobolev ellipsoids, there exist different estimators that adapt to the unknown
smoothness [12, 15, 38].

Consider the following aggregation procedure. Assume that n ≥ 3 and let M =
�120 log(n)(log logn)2�. For all j = 1, . . . ,M , let

βj = (
1 + 1/

(
log(n) log logn

))j−1
.

We aggregate the linear estimators (μ̂j = Aβj
y)j=1,...,M using the procedure (2.4)

of Theorem 2.1, and denote by μ̃ the resulting estimator. The following adaptation
result is a direct consequence of Theorem 2.1.

PROPOSITION 7.1. For all n ≥ 3, β ≥ 1 and L > 0, let �(β,L) ⊂ Rn such
that as n → +∞, (7.1) is satisfied for some matrices Aβ with |||Aβ |||2 ≤ 1. Assume
that the sets �(β,L) are ordered, that is, �(β,L) ⊂ �(β ′,L) for any β > β ′ and
any L > 0. For all β ≥ 1 and L > 0, the estimator μ̃ defined above satisfies as
n → +∞

lim
n→+∞ sup

f∈�(β,L)

1

n
E‖f − μ̃‖2

2n
2β

2β+1 = C∗.

Proposition 7.1 is proved in Section 8.7. The above procedure adapts to the
unknown smoothness in exact asymptotic sense by aggregating only

log(n)(log logn)2

estimators so its computational complexity is small. Another feature is that the
minimax rate and the minimax constant C∗ are not altered by the aggregation step.

7.2. The best convex combination as a benchmark. We consider convex com-
binations of the estimators μ̂1, . . . , μ̂M to construct the estimator (2.4). The goal
of this section is to study the performance of the estimator (2.4) if the benchmark
is minθ∈�M ‖μ̂θ − f‖2

2 instead of mink=1,...,M ‖μ̂k − f‖2
2.
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FIG. 1. Penalty (2.3) heatmaps. Largest penalty in red, smallest in blue.

The penalty (2.3) vanishes at the extreme points: pen(ej ) = 0 for all j =
1, . . . ,M , and it pushes μ̂

θ̂pen
towards the points {μ̂1, . . . , μ̂M}. This can be seen

in Figure 1. Consider a noise-free problem where σ = 0. Let f ∈ Rn and let v ∈ Rn

be such that vT f = 0 and ‖v‖2
2 = 3‖f‖2

2 > 0. Let also ρ = 4‖v‖2
2. Consider es-

timators μ̂1 = 2f, μ̂2 = f + v and μ̂3 = f − v. These estimators are such that
‖μ̂j‖2

2 = ρ > 0 for all j = 1, . . . ,3 (here M = and the estimators are determin-
istic because σ = 0). Then by simple algebra we have pen(θ) = ρ − ‖μ̂θ‖2

2 and
Hpen(θ) = (1/2)‖μ̂θ − 2f‖2

2 + c where c is constant that depends on f but not on θ .
For this example, although f lies in the convex hull of {μ̂1, μ̂2, μ̂3}, the estimator
μ̂

θ̂
defined in (2.4) will be equal to 2f instead of f and is likely to be a bad procedure

with respect to the benchmark minθ∈�M ‖μ̂θ − f‖2
2. This fact is not surprising since

the penalty penalizes heavily some regions of the convex hull of the estimators.
Furthermore, this procedure is tailored for the benchmark mink=1,...,M ‖μ̂k − f‖2

2
and its goal is not to mimic the best convex combination of the estimators.

It is possible to modify the procedure (2.4) to construct an estimator that per-
forms well with respect to the best convex combination of M linear estimators.
Let

(7.2) m :=
⌊√

n

log(1 + M/
√

n)

⌋
.

If m ≥ 1, define the set �M
m ⊂ �M as

(7.3) �M
m :=

{
1

m

m∑
q=1

uq,u1, . . . ,um ∈ {e1, . . . , eM}
}
.

Denote by |�M
m | the cardinality of �M

m . We aggregate the affine estimators
(μ̂u)u∈�M

m
using the procedure (2.4) and denote by μ̂�M

m
the resulting estimator.

PROPOSITION 7.2. Let M,n ≥ 1. For j = 1, . . . ,M , consider the estimator
μ̂j = Aj y + bj for any n × n matrix Aj and vector bj ∈ Rn. Assume that ξ ∼
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N (0, σ 2In×n) and that for some constant R > 0,

1

n
‖f‖2

2 ≤ R2,
1

n
‖bj‖2

2 ≤ R2, |||Aj |||2 ≤ 1 ∀j = 1, . . . ,M.

For all x > 0, the estimator θ̂C ∈ argminθ∈�M Cp(θ) satisfies with probability
greater than 1 − 2 exp(−x),

1

n
‖μ̂

θ̂C
− f‖2

2 ≤ min
θ∈�M

1

n
‖μ̂θ − f‖2

2 + 8
(
σ 2 + σR

√
2
)√x + 2 logM

n

+ 8σ 2(x + 2 logM)

n
.

(7.4)

If M ≤ √
n(exp(n) − 1), then for all x > 0, the estimator μ̂�M

m
defined above

satisfies with probability greater than 1 − 3 exp(−x),

1

n
‖μ̂�M

m
− f‖2

2 ≤ min
θ∈�M

1

n
‖μ̂θ − f‖2

2

+ C max
(
R2, σ 2)√ log(1 + M/

√
n)

n
+ Cσ 2x

n
.

(7.5)

Proposition 7.2 is proved in Section 8.8. To our knowledge, this is the first re-
sult that provides a sharp oracle inequality for the problem of aggregation of affine
estimators with respect to the convex oracle. However, there is a large literature
on convex aggregation when the estimators to aggregate are deterministic, which
corresponds to the particular case Aj = 0 for all j = 1, . . . ,M . When the error is
measured with the scaled squared norm 1

n
‖ · ‖2

2, the minimax rate of convex ag-

gregation is known to be of order M/n if M ≤ √
n and

√
log(1 + M/

√
n)/n if

M >
√

n. For our setting, this is proved in [32]. This elbow effect was first estab-
lished for regression with random design [37] and then extended to other settings
in [31, 33]. All these results assume that the estimators to aggregate are deter-
ministic or independent of the data used for aggregation. The lower bound [32],
Theorem 5.3 with S = M , δ = σ and R = log(1 + eM), yields that there exist ab-
solute constants c,C > 0 such that if log(1+ eM)2 ≤ Cn, there exist deterministic
vectors μ̂1 = b1, . . . , μ̂M = bM such that for all estimators μ̂,

sup
f∈Rn

Pf

(
1

n
‖μ̂ − f‖2

2 − min
θ∈�M

1

n
‖μ̂θ − f‖2

2 ≥ cσ 2
(

M

n
∧

√
log(1 + M/

√
n)

n

))
≥ c.

Thus, if M ≥ √
n, (7.5) is optimal in a minimax sense up to absolute constants, and

(7.4) is optimal up to logarithmic factors. However, we do not know whether the
minimax rate is M/n when M <

√
n, as in the case of aggregation of deterministic

vectors.
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The problem of linear aggregation of affine estimators remains open. It is only
known that for linear aggregation of deterministic vectors, the least squares estima-
tor on a linear space of dimension M achieves the rate σ 2M/n, which is optimal
in a minimax sense [31–33, 37].

A bound similar to (7.4) can be obtained by the Lasso estimator for for ag-
gregation of deterministic vectors, that is, in the case Aj = 0 and μ̂j = bj for
all j = 1, . . . ,M . Let xj = (

√
n/‖bj‖2)bj for all j = 1, . . . ,M and let X be the

n × M matrix with columns x1, . . . ,xM . The Lasso estimator is defined by

β̂ ∈ argmin
β∈RM

1

2n
‖y − Xβ‖2

2 + 4σ
√

log(M)/n‖β‖1,

where ‖β‖1 = ∑M
j=1 |βj |. This estimator satisfies with probability at least 1−1/M

the oracle inequality

1

n
‖f − Xβ̂‖2

2 ≤ min
β∈RM

(
1

n
‖f − Xβ‖2

2 + cσ‖β‖1

√
log(M)/n

)
,

where c > 0 is a numerical constant. This oracle inequality is proved in Theorem 4
in Sun and Zhang [36]. If we assume 1

n
‖bj‖2 ≤ R2 for all j = 1, . . . ,M as in

Proposition 7.2 above, then the right-hand side of the previous display is bounded
from above by

min
θ∈�M

(
1

n
‖f − bθ‖2

2 + cσR
√

log(M)/n

)
.

Hence, the Lasso estimator satisfies a bound similar to the oracle inequalities of
Proposition 7.2 for aggregation of deterministic vectors, that is, if Aj = 0 and
μ̂j = bj for all j = 1, . . . ,M .

8. Proofs.

8.1. Preliminaries. The following notation will be useful. Define for all j, k =
1, . . . ,M :

Qj,k :=
(
−2In×n − 1

2
(Ak − Aj)

T

)
(Ak − Aj),(8.1)

vj,k := (−2In×n − (Ak − Aj)
T )(

(Ak − Aj)f + bk − bj

)
.(8.2)

Let Bjk = Ak − Aj , so that μ̂k − μ̂j = Bjkξ + (Bjkf + bk − bj ). Then

‖μ̂k − μ̂j‖2
2 = ‖Bjkξ‖2

2 + ‖Bjkf + bk − bj‖2
2 + 2ξT BT

jk(Bjkf + bk − bj ).

Thus, simple algebra yields that the quantity 	jk defined in (3.3) satisfies

	jk − 1

2
‖μ̂k − μ̂j‖2

2 = ξT Qj,kξ − E
[
ξT Qj,kξ

] + ξT vj,k

− σ 2

2
‖Aj − Ak‖2

F − 1

2

∥∥(Ak − Aj)f + bk − bj

∥∥2
2,

(8.3)
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where we used the equality σ 2‖Aj − Ak‖2
F = E[‖(Aj − Ak)ξ‖2

2] and the above
definitions of Qj,k and vj,k . Furthermore, using (1.5) and (2.7) we have

|||Qj,k|||2 ≤ 6φ2, ‖Qj,k‖F ≤ 3φ‖Ak − Aj‖F,

‖vj,k‖2 ≤ 4φ
∥∥(Ak − Aj)f + bk − bj

∥∥
2

(8.4)

for all j, k = 1, . . . ,M . This yields that

	jk − 1

2
‖μ̂k − μ̂j‖2

2 ≤ ξT Qj,kξ − E
[
ξT Qj,kξ

] + ξT vj,k

− σ 2

18φ2 ‖Qj,k‖2
F − 1

32φ2 ‖vj,k‖2
2.

(8.5)

PROPOSITION 8.1. Let v ∈ Rn and let Q be any squared matrix of size n.
Assume that ξ1, . . . , ξn are i.i.d. N (0, σ 2) random variables. Then for all u > 0
such that 2uσ 2|||Q|||2 < 1 we have

(8.6) E
[
eu(ξT Qξ−E[ξT Qξ ]+ξT v)] ≤ exp

(
u2σ 2

(
σ 2‖Q‖2

F + ‖v‖2
2

2

1 − 2σ 2|||Q|||2u
))

.

Furthermore, for some φ ≥ 1, define

ZQ,v := ξT Qξ − E
[
ξT Qξ

] + ξT v − σ 2

18φ2 ‖Q‖2
F − 1

32φ2 ‖v‖2
2,

YQ,v := ξT Qξ − E
[
ξT Qξ

] + ξT v − σ 2

36φ2 ‖Q‖2
F − 1

32φ2 ‖v‖2
2.

If |||Q|||2 ≤ 6φ2, then for u = 1/(30φ2σ 2) and u′ = 1/(48φ2σ 2) we have

E
[
euZQ,v

] ≤ 1, E
[
eu′YQ,v

] ≤ 1.

The proof relies on an argument similar to that of [24], Lemma 1.

PROOF. If Q is not symmetric, let Qs = (Q + QT )/2. We have ‖Qs‖F ≤
‖Q‖F, |||Qs |||2 ≤ |||Q|||2 and almost surely ξT Qξ = ξT Qsξ so that if (8.6) holds
for Qs then

E
[
eu(ξT Qξ−E[ξT Qξ ]+ξT v)] ≤ e

u2σ 2(
σ2‖Qs‖2

F+ ‖v‖2
2

2
1−2σ2|||Qs |||2u

) ≤ e
u2σ 2(

σ2‖Q‖2
F+ ‖v‖2

2
2

1−2σ2|||Q|||2u
)
.

Thus, the result for the symmetric matrix Qs implies the result for Q.
We now assume that Q is symmetric. There exists a matrix P with P T P =

PP T = In×n such that Q = P T diag(λ1, . . . , λn)P , where λ1, . . . , λn are the
eigenvalues of Q. Let w = (1/σ)P v and define the random variables g1, . . . , gn
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by (g1, . . . , gn)
T = (1/σ)P ξ . By the rotational invariance of the Gaussian distri-

bution, g1, . . . , gn are i.i.d. N (0,1) random variables. Thus, the random variable
ξT Qξ − E[ξT Qξ ] + ξT v has the same distribution as

σ 2
n∑

i=1

Wi where Wi := λi

(
g2

i − 1
) + giwi.

For all i = 1, . . . , n and for all t > 0 such that maxi=1,...,n 2t |λi | < 1, integration
using the probability density function of gi yields

E
[
etWi

] = 1√
1 − 2λit

e
t2w2

i
2(1−2λi t)

−tλi ≤ e
λ2
i
t2

1−2|λi |t +
t2w2

i
2(1−2λi t) ,

where we used the inequalities

log
(

1√
1 − 2v

)
≤ v + v2

1 − 2v
= v + v2

1 − 2|v| for all v ∈ [0,1/2),

log
(

1√
1 − 2v

)
≤ v + v2 ≤ v + v2

1 − 2|v| for all v ∈ (−1/2,0].
This can be shown by comparing the power series expansions. As |λi | ≤ |||Q|||2 for
all i = 1, . . . , n, by independence of W1, . . . ,Wn we obtain

E
[
et

∑n
i=1 Wi

] ≤ exp
(
t2

(‖Q‖2
F + ‖w‖2

2
2

1 − 2|||Q|||2t
))

.

By definition of w, we have ‖v‖2 = σ‖w‖2, so setting t = uσ 2 completes the proof
of (8.6).

The claims about ZQ,v and YQ,v are direct consequences of (8.6). �

8.2. Proof of the main results.

PROOF OF THEOREM 2.1. By Proposition 3.2, it is enough to prove that

(8.7) D1 := E
[
eumaxj,k=1,...,M(	jk− 1

2 ‖μ̂j−μ̂k‖2
2)

] ≤ M2

for u = 1/(30φ2σ 2). Then, Jensen’s inequality yields (2.9) and a Chernoff bound
yields (2.8).

We now prove (8.7). By (8.4), for all j, k = 1, . . . ,M we have |||Qj,k|||2 ≤ 6φ2.
Using (8.5) and Proposition 8.1, we have

D1 ≤
M∑

j=1

M∑
k=1

E
[
eu(	jk− 1

2 ‖μ̂j−μ̂k‖2
2)

] ≤
M∑

j=1

M∑
k=1

E
[
e
uZQj,k,vj,k

] ≤ M2,

where for any matrix Q and any v ∈ Rn, the random variable ZQ,v is defined in
Proposition 8.1. �
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PROOF OF THEOREM 5.1. Let β = 30φ2σ 2. Let θ̂ = θ̂π for notational sim-
plicity. The only difference between Hpen and Vpen is the linear term (5.4). As in the
proof of (3.8) in Section 4, by convexity of Vpen we have that for all k = 1, . . . ,M ,

‖μ̂
θ̂
− f‖2

2 − ‖μ̂k − f‖2
2

≤ ‖μ̂
θ̂
− f‖2

2 − ‖μ̂k − f‖2
2 + ∇Vpen(θ̂)T (ek − θ̂)

= 2β log
1

πk

+
M∑

j=1

θ̂j

(
	jk − 1

2
‖μ̂j − μ̂k‖2

2 − β log
1

πjπk

)

≤ 2β log
1

πk

+ max
j=1,...,M

(
	jk − 1

2
‖μ̂j − μ̂k‖2

2 − β log
1

πjπk

)
,

where 	jk is defined in (3.3). For all u > 0, let

D2 := E
[
exp

(
u max

j,k=1,...,M

(
	jk − 1

2
‖μ̂j − μ̂k‖2

2 − β log
1

πjπk

))]
.

We now bound from above this moment generating function using (8.5) and Propo-
sition 8.1. If u = 1/β = 1/(30φ2σ 2), then

D2 ≤
M∑

j=1

M∑
k=1

πjπkE
[
eu(	jk− 1

2 ‖μ̂j−μ̂k‖2
2)

]

≤
M∑

j=1

M∑
k=1

πjπkE
[
e
uZQj,k,vj,k

] ≤
M∑

j=1

M∑
k=1

πjπk = 1.

(8.8)

As in the proof of Theorem 2.1, Jensen’s inequality yields (5.2) while a Chernoff
bound completes the proof of (5.2). �

PROOF OF THEOREM 6.1. For a fixed pair (j, k), we apply (6.1) to the vector
vj,k and (6.2) to the matrix Qj,k . Using (8.4),

ξT Qj,kξ − E
[
ξT Qj,kξ

] ≤ σ̄ 212x + 6σ σ̄‖Ak − Aj‖F
√

x

≤ 30σ̄ 2x + σ 2

2
‖Ak − Aj‖2

F,

ξT vj,k ≤ σ̄4
∥∥(Ak − Aj)f + bk − bj

∥∥
2

√
2x

≤ 16σ̄ 2x + 1

2

∥∥(Ak − Aj)f + bk − bj

∥∥2
2.

Combining this bound with (6.7), (8.3) and the union bound completes the proof.
�
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8.3. Proof of Theorem 6.2. The following inequality will be useful.

LEMMA 8.1 (Projection matrices). Let A,B be two squared matrices of size
n with AT = A = A2 and BT = B = B2. Then

(8.9)
∣∣Tr(A − B)

∣∣ ≤ ‖A − B‖2
F.

PROOF. Without loss of generality, assume that TrA ≥ TrB . As ‖A − B‖2
F =

‖A‖2
F + ‖B‖2

F − 2 Tr(AB) and ‖A‖2
F = TrA, (8.9) is equivalent to 2 Tr(AB) ≤

2 Tr(B). Notice that for projection matrices, Tr(AB) = ‖AB‖2
F ≤ |||A|||22‖B‖2

F ≤
‖B‖2

F = Tr(B) and the proof is complete. �

PROOF OF THEOREM 6.2. Let θ̂ = θ̂ σ̂ for notational simplicity. Since the
matrices Aj are orthoprojectors, the quantity φ defined in (2.7) is equal to 1. As
in the proof of (3.8) in Section 4, by convexity of Wpen we have that for all k =
1, . . . ,M ,

‖μ̂
θ̂
− f‖2

2 − ‖μ̂k − f‖2
2

≤ ‖μ̂
θ̂
− f‖2

2 − ‖μ̂k − f‖2
2 + ∇Wpen(θ̂)T (ek − θ̂)

=
M∑

j=1

θ̂j

(
	jk + 2

(
σ̂ 2 − σ 2)

Tr(Aj − Ak) − 1

2
‖μ̂j − μ̂k‖2

2

)

≤ max
j=1,...,M

(
	jk + 2

(
σ̂ 2 − σ 2)

Tr(Aj − Ak) − 1

2
‖μ̂j − μ̂k‖2

2

)
=: D3,

where 	jk is defined in (3.3). The assumption on σ̂ 2 and (8.9) yield that on an
event �0 of probability greater than 1 − δ,

2
∣∣(σ̂ 2 − σ 2)

Tr(Aj − Ak)
∣∣ ≤ σ 2

4
‖Aj − Ak‖2

F for all j, k = 1, . . . ,M.

Using (8.3) and (8.4), we obtain that on the event �0,

D3 ≤ max
j,k=1,...,M

(
ξT Qj,kξ − E

[
ξT Qj,kξ

] + ξT vj,k − σ 2

36
‖Qj,k‖2

F − 1

32
‖vj,k‖2

2

)

= max
j,k=1,...,M

YQj,k,vj,k
,

where Qj,k and vj,k are defined in (8.1) and (8.2) while YQ,v is defined in Proposi-
tion 8.1 for any matrix Q and any v ∈ Rn. Using Proposition 8.1, for u = 1/(48σ 2)

we have

E
[
exp

(
u max

j,k=1,...,M
YQj,k,vj,k

)]
≤

M∑
j=1

M∑
k=1

E
[
exp(uYQj,k,vj,k

)
] ≤ M2.
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By a Chernoff bound, this proves that on an event �1 of probability greater than
1−e−x , we have maxj,k=1,...,M YQj,k,vj,k

,≤ 48σ 2(x+2 logM). On the event �0 ∩
�1, we have D3 ≤ 48σ 2(x + 2 logM) and the union bound yields that P(�0 ∩
�1) ≥ 1 − e−x − δ. �

8.4. Strong convexity. The penalty (2.3) satisfies for any g ∈ Rn and any θ ∈
�M :

(8.10)
M∑

k=1

θk‖μ̂k − g‖2
2 = ‖μ̂θ − g‖2

2 + pen(θ).

This can be shown by using simple properties of the Euclidean norm, or by noting
that the equality above is a bias-variance decomposition. For g = 0, (8.10) yields
pen(θ) = −‖μ̂θ‖2

2 + ∑M
k=1 θk‖μ̂k‖2

2.

LEMMA 8.2. Let F be any one of the functions Hpen, Vpen or Wpen defined
in (2.2), (5.1) and (6.6), respectively. Then F is convex, differentiable and satisfies
for all θ , θ0 ∈ �M ,

(8.11) F(θ) = F(θ0) + ∇F(θ0)
T (θ − θ0) + 1

2
‖μ̂θ − μ̂θ0

‖2
2.

Furthermore, if θ̂ is a minimizer of F over the simplex then for all θ ∈ �M ,

(8.12) F(θ) ≥ F(θ̂) + 1

2
‖μ̂θ − μ̂

θ̂
‖2

2.

PROOF. Using (8.10) with g = 0, we obtain that the function F is a poly-
nomial of degree 2, of the form F(θ) = affline(θ) + 1

2‖μ̂θ‖2
2 where affine(·) is

an affine function of θ . This shows that F is convex and differentiable. The re-
sult (8.11) follows by uniqueness of the Taylor expansion of F [or by an explicit
calculation of ∇F(θ0)]. Inequality (8.12) is a consequence of [8], 4.2.3, equation
(4.21). �

8.5. Lower bound.

PROOF OF PROPOSITION 2.1. The lower bounds of [32], Theorem 5.4, are
stated in expectation, but inspection of the proof of [32], Theorem 5.3 with S = 1,
δ = ∞ and R = log(1+eM), reveals that the lower bound holds also in probability
since it is an application of [38], Theorem 2.7. This result yields that there exist
absolute constants p, c,C > 0 and f1, . . . , fM ∈ Rn such that for any estimator μ̂,

sup
j=1,...,M

Pfj (�j ) ≥ p, �j := {‖μ̂ − fj‖2
2 ≥ cσ 2 log(M)

}
,
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provided that log(M) ≤ cn and n,M > C. Set bj = fj for all j = 1, . . . ,M . This
lower bound implies that for any estimator μ̂

sup
f∈Rn

Pf

(
‖μ̂ − f‖2

2 − min
k=1,...,M

‖bk − f‖2
2 ≥ cσ 2 log(M)

)
≥ p.

For all j = 1, . . . ,M , let Aj = (1/‖fj‖2
2)fj fTj so that Aj is the orthogonal projec-

tion on the linear span of fj . The orthoprojector Aj has rank one so under Pfj ,
‖Aj y − fj‖2

2/σ
2 is a χ2 random variable with one degree of freedom. Let �′

j be

the event {‖Aj y − fj‖2
2 ≤ cσ 2 log(M)/2} and let �̄′

j be its complementary event.

A two-sided bound on the Gaussian tail implies that Pfj (�̄
′
j ) ≤ 2/(Mc/4), which

is smaller than p/2 if M is larger than some absolute constant, so that we have
Pfj (�̄j ∪ �̄′

j ) ≤ 1 − p + p/2 where �̄j is the complementary of �j , which im-
plies Pfj (�j ∩ �′

j ) ≥ p/2. Thus, for any estimator μ̂ and M large enough,

sup
f∈{f1,...,fM }

Pf

(
‖μ̂ − f‖2

2 − min
k=1,...,M

‖Aky − f‖2
2 ≥ cσ 2 log(M)/2

)
≥ p/2 =: p∗. �

8.6. Proof of Proposition 3.1.

PROOF OF PROPOSITION 3.1. Let a ∈ (0,1). By definition of Ĵ , we have for
all k = 1, . . . ,M ,

‖μ̂
Ĵ

− f‖2
2 ≤ ‖μ̂k − f‖2

2 + 	
Ĵk

− a

2
‖μ̂

Ĵ
− μ̂k‖2

2 + a

2
‖μ̂

Ĵ
− μ̂k‖2

2

≤ ‖μ̂k − f‖2
2 + 1

a
max

j,k=1,...,M

(
a	jk − 1

2
‖aμ̂

Ĵ
− aμ̂k‖2

2

)

+ a
(‖μ̂

Ĵ
− f‖2

2 + ‖f − μ̂k‖2
2
)
.

By rearranging, we have almost surely

(8.13) ‖μ̂
Ĵ

− f‖2
2 ≤ 1 + a

1 − a
min

k=1,...,M
‖μ̂k − f‖2

2 + �

a(1 − a)
,

where

� := max
j,k=1,...,M

(
2ξT (

μ̂
′
j − μ̂

′
k

) − 2σ 2 Tr
(
A′

j − A′
k

) − 1

2

∥∥μ̂′
j − μ̂

′
k

∥∥2
2

)
,

and for all j = 1, . . . ,M , μ̂
′
j := aμ̂j = A′

j y + b′
j , A′

j := aAj , b′
j := abj . Simple

algebra yields that

1

2
max
j �=k

∣∣∣∣∣∣A′
j − A′

k

∣∣∣∣∣∣
2
≤ aφ ≤ φ,
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where φ is defined in (2.7). By Proposition 8.1, as in the proof of Theorem 2.1, we
have � ≤ 30φ2σ 2(x + 2 logM) with probability greater than 1 − exp(−x).

Set ε = 3a and choose the absolute constant c > 0 such that for all ε < c, (1 +
a)/(1 − a) ≤ 1 + ε and 1/(1 − a) ≤ 2. �

8.7. Smoothness adaptation.

PROOF OF PROPOSITION 7.1. Because the ellipsoids are ordered, if f ∈
�(β,L) then

E‖f − μ̃‖2
2 ≤ min

j :βj≤β
E‖f − Aβj

y‖2
2 + 60σ 2 logM ≤ min

j :βj≤β
C∗n

1
2βj +1 (

1 + o(1)
)
.

If β ∈ [βj ,βj+1) for some j , then βj+1 − βj = βj/(log(n) log logn) and simple
algebra yields

n
1

2βj +1 − 1
2β+1 ≤ n

2βj+1−2βj
(2β+1)(2βj +1) = n

2βj
(2β+1)(2βj +1) log(n) log logn

≤ n
1

(2β+1) log(n) log logn ≤ e
1

3 log logn ,

where we used that β ≥ 1 for the last inequality.
Now assume that β ≥ βM . Let εn = 1/(log(n) log logn), and let c = 120 log(1+

ε3)/ε3. By definition of M ,

βM = e
M log(1+ 1

log(n) log logn
) ≥ e

120 log log(n)
log(1+εn)

εn

≥ ec log log(n) = log(n)c,

since the function t → log(1 + t)/t is decreasing and n ≥ 3. A numerical approx-
imation gives c ≥ 1.01. Thus,

n
1

2βM+1 n
−1

2β+1 ≤ n
1

2βM+1 ≤ e
logn
2βM ≤ e

1
2 log(n)c−1 .

In summary, we have proved that minj :βj≤β n
1

2βj +1 ≤ n
1

2β+1 (1 + o(1)), thus

sup
f∈�(β,L)

E‖f − μ̃‖2
2 ≤ C∗n

1
2β+1

(
1 + o(1)

)
.

�

8.8. Convex aggregation.

LEMMA 8.3 (Maurey argument). Let m and �M
m be defined in (7.2) and (7.3).

Let Q(θ) = θT �θ + vT θ + a for some semidefinite matrix �, v ∈ RM and a ∈ R.
Then

(8.14) min
θ∈�M

m

Q(θ) ≤ min
θ∈�M

Q(θ) + 4 maxj=1,...,M �jj

m
.
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PROOF. Let θ∗ ∈ �M ∈ argminθ∈�M Q(θ). Let η be a random variable valued
in {e1, . . . , eM} such that P(η = ej ) = θ∗

j for all j = 1, . . . ,M , and let η1, . . . , ηm

be m i.i.d. copies of η. The random variable η̄ = 1
m

∑m
q=1 is valued in �M

m and
Eη̄ = θ∗. A bias variance decomposition and the independence of η1, . . . , ηm yield

EQ(η̄) = Q
(
θ∗) + E[(η1 − θ∗)T �(η1 − θ∗)]

m
.

Using the triangle inequality,

E
[(

η1 − θ∗)T
�

(
η1 − θ∗)] ≤ 2

(
θ∗)T

�θ∗ + 2E
[
ηT

1 �η1
] ≤ 4 max

j=1,...,M
�jj .

Since η̄ is valued in �M
m , minθ∈�M

m
Q(θ) ≤ EQ(η̄) and the proof is complete. �

PROOF OF (7.5) OF PROPOSITION 7.2. The condition on M , n implies that
m ≥ 1 where m is defined in (7.2). Let C > 0 be an absolute constant whose value
may change from line to line. Applying Theorem 2.1 yields that on an event of
probability greater than 1 − 2 exp(−x),

(8.15)
1

n
‖μ̂�M

m
− f‖2

2 ≤ min
θ∈�M

m

1

n
‖μ̂θ − f‖2

2 + Cσ 2(log(|�M
m |) + x)

n
.

By [25], page 8, we have log |�M
m | ≤ m log 2eM

m
. We use (8.14) with Q(θ) = ‖μ̂θ −

f‖2
2 to get

min
θ∈�M

m

1

n
‖μ̂θ − f‖2

2 ≤ min
θ∈�M

1

n
‖μ̂θ − f‖2

2 + 4

nm
max

j=1,...,M
‖μ̂j‖2

2.

We have (1/n)maxj=1,...,M ‖μ̂j‖2
2 ≤ C(‖ξ‖2

2/n + R2) ≤ C(σ 2(2 + 3x) + R2) on
an event of probability at least 1 − exp(−x), where for the second inequality we
used (3.5) with B = In×n. Thus, with probability greater than 1 − e−x ,

(8.16) min
θ∈�M

m

1

n
‖μ̂θ − f‖2

2 ≤ min
θ∈�M

1

n
‖μ̂θ − f‖2

2 + C(σ 2(2 + 3x) + R2)

m
.

Simple algebra yields that

1

m
≤ C

√
log(1 + M/

√
n)

n
,

m log(2eM/m)

n
≤ C

√
log(1 + M/

√
n)

n
.

(8.17)

Combining (8.15), (8.16) and (8.17) with the union bound completes the proof.
�
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PROOF OF (7.4) OF PROPOSITION 7.2. Let θ ∈ �M . By definition of θ̂C ,
Cp(θ̂) ≤ Cp(θ). This can be rewritten as

‖μ̂
θ̂C

− f‖2
2 ≤ ‖μ̂

θ̂
− f‖2

2 + 2ξT (μ̂
θ̂
− μ̂θ ) − 2σ 2 Tr(A

θ̂
− Aθ ).

The function (θ ′, θ) → 2ξT (μ̂
θ̂
− μ̂θ ) − 2σ 2 Tr(A

θ̂
− Aθ ) is linear in θ and linear

in θ̂ , thus it is maximized at vertices of the simplex and

2ξT (μ̂
θ̂
− μ̂θ ) − 2σ 2 Tr(A

θ̂
− Aθ ) ≤ max

j,k=1,...,M
2ξT (μ̂k − μ̂j ) − 2 Tr(Aj − Ak)

= max
j,k=1,...,M

	jk,

where 	jk is defined in (3.3). Fix some pair (j, k). Let B = Aj − Ak and b =
(Aj − Ak)f + bj − bk . We have |||B|||2 ≤ 2, ‖B‖F ≤ |||B|||2‖In×n‖F ≤ 2

√
n and

‖b‖2 ≤ 4R
√

n. We apply (3.5) to the matrix B and (3.4) to the vector b, which
yields that with probability greater than 1 − 2 exp(−x),

	jk ≤ 8
(
σ 2 + σR

√
2
)√

nx + 8σ 2x.

The union bound over all pairs j, k = 1, . . . ,M completes the proof. �
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