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A FUNCTIONAL CENTRAL LIMIT THEOREM FOR

BRANCHING RANDOM WALKS, ALMOST SURE WEAK

CONVERGENCE, AND APPLICATIONS TO RANDOM TREES

RUDOLF GRÜBEL AND ZAKHAR KABLUCHKO

Abstract. Let W∞(β) be the limit of the Biggins martingale Wn(β) associ-
ated to a supercritical branching random walk with mean number of offspring
m. We prove a functional central limit theorem stating that as n → ∞ the

process

Dn(u) := m
1
2
n

(

W∞

(

u√
n

)

−Wn

(

u√
n

))

converges weakly, on a suitable space of analytic functions, to a Gaussian
random analytic function with random variance. Using this result we prove
central limit theorems for the total path length of random trees. In the setting
of binary search trees, we recover a recent result of R. Neininger [Refined
Quicksort Asymptotics, Rand. Struct. and Alg., to appear], but we also prove
a similar theorem for uniform random recursive trees. Moreover, we replace
weak convergence in Neininger’s theorem by the almost sure weak (a.s.w.)
convergence of probability transition kernels. In the case of binary search
trees, our result states that

L
{

√

n

2 logn

(

EPL∞ − EPLn − 2n logn

n

)

∣

∣

∣

∣

∣

Gn

}

a.s.w.−→
n→∞

{ω 7→ N0,1},

where EPLn is the external path length of a binary search tree Xn with n

vertices, EPL∞ is the limit of the Régnier martingale, and L( · |Gn) denotes

the conditional distribution w.r.t. the σ-algebra Gn generated by X1, . . . ,Xn.
A.s.w. convergence is stronger than weak and even stable convergence. We
prove several basic properties of the a.s.w. convergence and study a number
of further examples in which the a.s.w. convergence appears naturally. These
include the classical central limit theorem for Galton–Watson processes and
the Pólya urn.

1. Introduction

The research that led to the present paper was motivated by a question from the
analysis of algorithms, specifically of the famous Quicksort and the closely re-
lated binary search tree (BST) algorithms. The question concerns the second-order
(distributional) asymptotics of the number of comparisons needed by Quicksort

or, equivalently, of the total path length of the associated random binary search
trees, if the input to the algorithm is random.
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Let the input sequence consist of independent random variables U1, U2, . . . dis-
tributed uniformly on the interval [0, 1]. In the version considered here the Quick-

sort algorithm applied to the list U1, . . . , Un proceeds as follows. It places U1,
the first element of the list, at the root of a binary tree and divides the remaining
elements into two sublists: The elements that are smaller than U1 are collected
into a sublist located to the left of U1, whereas the elements larger than U1 are
put into a sublist located to the right of U1. (Hence the first element of the list
serves as the pivot, that is, the element used to subdivide the list). The procedure
is then applied recursively to both sublists until only sublists of size 1 remain. The
random tree which is created in this way is called the binary search tree (BST); a
more detailed description will be provided in Section 5.5.1.

For the analysis of the complexity of Quicksort the number Kn of comparisons
needed to sort the list U1, . . . , Un is of major interest. In terms of the tree structure
of sublists this is the sum of the depths of the nodes (also called the internal path
length) of the binary search tree. As shown by Régnier [30], a suitable rescaling of
Kn leads to a martingale Zn that converges almost surely to some limit variable
Z∞ as n → ∞,

(1) Zn :=
Kn − EKn

n+ 1

a.s.−→
n→∞

Z∞.

The law L(Z∞) of the limit is known as the Quicksort distribution; it has been
characterized in terms of a stochastic fixed point equation by Rösler [35].

Very recently Neininger [28] obtained a central limit theorem (CLT) accompa-
nying (1) by proving the distributional convergence

(2)

√

n

2 logn
(Z∞ − Zn)

d−→
n→∞

N0,1,

where N0,1 is the standard normal distribution. Neininger used the contraction
method, which in the present context has been introduced by Rösler [35] in con-
nection with the distributional convergence in (1). A proof based on the method
of moments followed shortly [14].

The result (2) is surprising as for many martingales the step from a strong
convergence result to a second-order distributional limit theorem leads to a variance
mixture of normal distributions; see Hall and Heyde [17]. Quite generally, whenever

one has a martingale convergence result Zn
a.s.−→

n→∞
Z∞ it is natural to ask whether

there is a corresponding distributional limit theorem in the sense that, for some
normalizing sequence bn → ∞ and some non-degenerate random variable Y ,

(3) bn(Z∞ − Zn)
d−→

n→∞
Y.

Indeed, provided that appropriate technical conditions (which can be found in the
references cited below) are satisfied, a distributional limit theorem of the type (3)
is known to hold if

(a) Zn is the proportion of black balls in the Pólya urn after n draws; see Hall
and Heyde [17, pp. 80–81].

(b) Zn =
∑n

i=1 aiξi, where ξ1, ξ2, . . . are i.i.d. random variables with zero mean,
unit variance, and a1, a2, . . . is an appropriate square summable determin-
istic sequence; see Loynes [25].
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(c) Zn = Nn/m
n, whereNn is a supecritical Galton–Watson process with mean

number of offspring m; see Athreya [3] and Heyde [18].
(d) Zn is the Biggins martingale of the branching random walk; see Rösler et al.

[36].

In this list, (a), (c) and (d) can be related to the analysis of Quicksort, and in
all three cases, the limit distribution is a nondegenerate mixture of normals.

We will use the well-known connection between the BST algorithm and the
continuous-time branching random walk (BRW) to explain the degeneracy phe-
nomenon. The state at time t of a BRW is a random point measure πt recording
the particle positions at that time; see Section 2 for a detailed description. A spe-
cific choice of branching mechanism and shift distribution leads to a representation
of the point measure given by the depths of the external nodes in the BST with
input size n as the value πTn

at the random time Tn of the birth of the nth particle;
see Chauvin et al. [9], [8], as well as the earlier work by Devroye [10] that connected
Galton–Watson processes and random search trees. The BRW detour provides a
new and independent proof of Neininger’s result. In addition we obtain a stronger
mode of convergence. Again, this is a topic familiar in connection with martingale
central limit theorems, where it is known that a strengthening of distributional
convergence to Rényi’s concept of stable convergence is often possible. In our situ-
ation we can go beyond even the stable convergence, obtaining what we call almost
sure weak convergence: With (Gn)n∈N the martingale filtration we regard the con-
ditional distribution of the left hand side of (3) given Gn as a random variable with
values in the set of Borel probability measures on the real line, on this set we take
the topology of weak convergence, and we show that the conditional distribution
converges almost surely in this space as n → ∞. In the Quicksort context, with
Gn the σ-field generated by U1, . . . , Un, this results in

(4) L
{

√

n

2 logn
(Z∞ − Zn)

∣

∣

∣

∣

∣

Gn

}

a.s.w.−→
n→∞

{ω 7→ N0,1}.

This can be applied to obtain strong prediction intervals; see Remark 5.21.
It turns out that in our context the familiar encoding of the BRW point measures

by the Biggins martingale can best be exploited via a suitable functional central
limit theorem for the latter. The Biggins martingale arises as a suitably standard-
ized moment generating function of the point measures of particle positions and
may thus be regarded, together with its limit, as a stochastic process indexed by
a complex parameter β that varies over some open set containing 0. For β fixed,
an associated second order distributional limit has already been obtained by Rösler
et al. [36], see (d) in the above list. Noting that the Régnier martingale appears
as the derivative at β = 0 of this process we are lead to rescale β locally in order
to obtain a the functional version that captures the local behaviour. Of course, we
also want a non-trivial limit. This is indeed possible and leads to Theorems 3.1
and 5.1, which we regard as our main results. Again, we obtain almost sure weak
convergence, now on a suitable space of analytic functions. Further, the distribu-
tion of the limit can be represented as the distribution of the Gaussian random
analytic function given by

ξ(u) =

∞
∑

k=0

ξk
uk

√
k!
, u ∈ C,
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where ξ0, ξ1, . . . is a sequence of independent standard normals. Much as in the
classical case of Donsker’s theorem, see Billingsley [7], this may serve as the starting
point for distributional limit theorems for various functionals of the processes, but
we believe that, apart from its applicability to the question that we started with,
the BRW functional limit theorem is of interest in its own.

Finally, the above approach is not limited to binary search trees: We also obtain
an analogue of Neininger’s result for random recursive trees (RRTs). In fact, we
obtain a new result even in the setting of the Pólya urn, see Section 4.2, and we
treat Galton-Watson processes, BRW, BST, RRT with a unified method.

The paper is organized as follows. In Section 2 we define the branching random
walk and introduce the basic notation. The functional central limit theorem for
the BRW is stated in Section 3. In Section 4 we define the almost sure weak
convergence and prove some of its properties. A stronger version of the functional
CLT involving the notion of the a.s.w. convergence is stated in Section 5. In the
same section, we state a number of applications of the functional CLT including (2)
and its analogues for other random trees. Proofs are given in Sections 6, 7, and 8.

2. Branching random walk

2.1. Description of the model. An informal picture of a branching random walk
(BRW) is that of a time-dependent random cloud of particles located on the real line
and evolving through a combination of splitting (branching) and shifting (random
walk). The particles are replaced at the end of their possibly random lifetimes by
a random number of offspring, with locations relative to their parent being random
too. Our results will be valid for branching random walks both in discrete and
continuous time. Let us describe both models.

Discrete-time branching random walk. At time 0 we start with one particle located
at zero. At any time n ∈ N0 every particle which is alive at this time disappears
and is replaced (independently of all other particles and of the past of the process)
by a random, non-empty cluster of particles whose displacements w.r.t. the original
particle are distributed according to some fixed point process ζ on R. The number
of particles in a cluster ζ is (in general) random and is always assumed to be a.s.
finite. Let Nn be the number of particles which are alive at time n ∈ N0. Note that
{Nn : n ∈ N0} is a Galton–Watson branching process. Denote by z1,n ≤ . . . ≤ zNn,n

the positions of the particles at time n. Let

πn =

Nn
∑

j=1

δzj,n

be the point process recording the positions of the particles at time n. The only
parameter needed to identify the law of the discrete-time BRW is the law of the
point process ζ encoding the shifts of the offspring particles w.r.t. their parent.

Continuous-time branching random walk. At time 0 one particle is born at position
0. After its birth, any particle moves (independently of all other particles and
of the past of the process) according to a Lévy process. After an exponential
time with parameter λ > 0, the particle disappears and at the same moment of
time it is replaced by a random cluster of particles whose displacements w.r.t. the
original particle are distributed according to some fixed point process ζ. The new-
born particles behave in the same way. All the random mechanisms involved are
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independent. Denote the number of particles at time t ≥ 0 by Nt and note that
{Nt : t ≥ 0} is a branching process in continuous time. Let z1,t ≤ . . . ≤ zNt,t be the
positions of the particles at time t. Let

πt =

Nt
∑

j=1

δzj,t

be the point process recording the positions of the particles at time t. The law of
the continuous-time BRW is determined by the parameters of the Lévy process, the
intensity λ, and the law of the point process ζ.

Both models can be treated by essentially the same methods. To simplify the no-
tation, we will henceforth deal with the discrete-time BRW and indicate, whenever
necessary, how the proofs should be modified in the continuous-time case.

2.2. Standing assumptions and the Biggins martingale. Let us agree that
∑

z∈ζ means a sum taken over all points of the point process ζ, where the points
are counted with multiplicities. We make the following standing assumptions on
the BRW.

Assumption A: The cluster point process ζ is a.s. non-empty, finite, and the
probability that it consists of exactly one particle is strictly less than 1.

Assumption B: There are p0 > 2 and β0 > 0 such that for all β ∈ (−β0, β0),

(5) E

[(

∑

z∈π1

eβz

)p0
]

< ∞.

It follows from (5) that the function

(6) m(β) = E

[

∑

z∈π1

eβz

]

is well-defined and analytic in the strip {β ∈ C : |Re β| < β0}. Note that m(β)
is the moment generating function of the intensity measure of π1. Assumption A
implies that the BRW under consideration is supercritical, that is the mean number
of particles at time 1 satisfies

m := m(0) > 1.

In a sufficiently small neighborhood of 0 the function

(7) ϕ(β) = logm(β)

is well-defined and analytic, and the restriction of ϕ to real β is convex. By the
martingale convergence theorem, there is a random variable N∞ such that

(8)
Nn

mn

a.s.−→
n→∞

N∞.

Since EN2
1 < ∞ (by Assumption B) and the BRW never dies out (by Assump-

tion A), we have N∞ > 0 a.s. The assumption that ζ is non-empty could be re-
moved (while retaining supercriticality); all results would then hold on the survival
event.
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A crucial role in the study of the branching random walk is played by the Biggins
martingale:

(9) Wn(β) =
1

m(β)n

∑

z∈πn

eβz.

Uchiyama [39] and Biggins [6] proved that if Assumption (5) holds with some p0 ∈
(1, 2], then there is δ0 > 0 such that the martingale Wn(β) is bounded in Lp,
0 < p ≤ p0, uniformly over all β ∈ C with |β| ≤ δ0. Furthermore, there is a random
analytic function W∞(β) defined for |β| ≤ δ0 such that a.s.,

(10) lim
n→∞

sup
|β|≤δ0

|W∞(β)−Wn(β)| = 0.

Note that Wn(0) =
Nn

mn and W∞(0) = N∞, so that (10) contains (8) as a special
case.

Notation. We denote by N0,σ2 the normal distribution with mean 0 and variance
σ2. Given a non-negative random variable S2 we denote by N0,S2 the mixture of
zero mean normal distributions with random variance given by S2. Throughout
the paper we will use the notation

(11) σ2 = VarN∞ ≥ 0, d = ϕ′(0), τ2 = ϕ′′(0) ≥ 0.

A generic constant which may change from line to line is denoted by C.

3. Functional Central Limit Theorem for the Biggins martingale

3.1. Statement of the FCLT. Under suitable conditions, Rösler et al. [36] proved
for real β in a certain interval around 0 a CLT of the form

(12)
m

1
2n

√

VarW∞(β)
(W∞(β)−Wn(β))

d−→
n→∞

N0,W∞(β).

Taking here β = 0 and recalling that Wn(0) = Nn

mn one recovers the CLT for
Galton–Watson processes [3, 18]:

(13) m
1
2n

(

N∞ − Nn

mn

)

d−→
n→∞

N0,σ2N∞ .

See also [4, p. 53] (discrete time case), [4, p. 123] (continuous time case), [2,
Thm. 3.1, p. 28] (a statement with a stronger mode of convergence), [26, Ch. 9.2]
(statistical aspects).

We will prove a functional version of (12). That is, we will consider the left-
hand side of (12) as a random analytic function and prove weak convergence on a
suitable function space. In order to obtain a non-degenerate limit process it will be
necessary to introduce a spatial rescaling into the Biggins martingale. Namely, we
consider

(14) Dn(u) = m
1
2n

(

W∞

(

u√
n

)

−Wn

(

u√
n

))

.

We have to be explicit about the function space to which Dn belongs. Given R > 0
let DR (resp., DR) be the open (resp., closed) disk of radius R centered at the origin.
Denote by AR the set of functions which are continuous on DR and analytic in DR.
Endowed with the supremum norm, AR becomes a Banach space. Note that AR

is a closed linear subspace of the Banach space C(DR) of continuous functions on
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DR. Being closed under multiplication, AR is even a Banach algebra. We always
consider Dn as a random element with values in AR (which is endowed with the
Borel σ-algebra generated by the topology of uniform convergence). Recall that
Wn and W∞ are well defined on the disk Dδ0 for some δ0 > 0, so that Dn is indeed
well defined as an element of AR for n > (R/δ0)

2. Our results remain valid for
some other choices o f the function space, for example one could replace AR by the
Hardy space H2(DR). Recall that σ

2 = VarN∞ and τ2 = ϕ′′(0).

Theorem 3.1. Fix any R > 0. The following convergence of random analytic
functions holds weakly on the Banach space AR:

(15) {Dn(u) : u ∈ DR} w−→
n→∞

{σ
√

N∞ ξ(τu) : u ∈ DR},

where ξ is a random analytic function which is defined in Section 3.2 below, and
which is independent of N∞.

The proof of Theorem 3.1 will be given in Section 7. In fact, we will prove a
stronger statement (Theorem 5.1, below) in which weak convergence is replaced
by the almost sure weak convergence of conditional distributions. This mode of
convergence will be studied in detail in Section 4.

3.2. Gaussian analytic function. The random analytic function ξ appearing in
Theorem 3.1 is defined as follows. Let ξ0, ξ1, . . . be independent real standard
normal variables. Consider the random analytic function ξ : C → C defined by

(16) ξ(u) =

∞
∑

k=0

ξk
uk

√
k!
.

With probability 1, the series converges uniformly on every bounded set because
ξn = O(

√
logn) a.s. Note that for every d ∈ N and u1, . . . , ud ∈ C, the 2d-

dimensional real random vector (Re ξ(u1), Im ξ(u1), . . . ,Re ξ(ud), Im ξ(ud)) is Gauss-
ian with zero mean. The covariance structure of the process ξ is given by

E[ξ(u)ξ(v)] = euv, E[ξ(u)ξ(v)] = euv̄, u, v ∈ C.

It follows that ξ̃(u) := e−u2/2ξ(u), u ∈ R, is a stationary real-valued Gaussian
process with covariance function

E[ξ̃(u)ξ̃(v)] = e−
1
2 (u−v)2 , u, v ∈ R.

The spectral measure of ξ̃ is the standard normal distribution. We can view the

process ξ as an analytic continuation of the process eu
2/2ξ̃(u), u ∈ R, to the complex

plane.
A modification of ξ in which the variables ξ0, ξ1, . . . are independent complex

standard normal is a fascinating object called the plane Gaussian Analytic Function
(GAF) [38]. A remarkable feature of the plane GAF is that its zeros form a point
process whose distribution is invariant with respect to arbitrary translations and
rotations of the complex plane. The law of the zero set of ξ as defined in the
present paper is invariant with respect to real translations only. The function ξ
and its complex analogue appeared as limits of certain random partition functions;
see [21, 22].
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4. Almost sure weak convergence of probability kernels

Our results are most naturally stated using the notion of almost sure weak
(a.s.w.) convergence of probability kernels. This mode of convergence seems es-
pecially natural when dealing with randomly growing structures. In this section we
define a.s.w. convergence and study its relation to other modes of convergence.

4.1. Basic definitions. Let E be a complete separable metric (Polish) space en-
dowed with the Borel σ-algebra E . Let M1(E) be the space of probability measures
on (E, E). The weak convergence on M1(E) is metrized by the Lévy–Prokhorov
metric which turns M1(E) into a complete separable metric space.

Probability kernels. A (probability transition) kernel is a random variable Q : Ω →
M1(E) defined on a probability space (Ω,F ,P) and taking values in M1(E). We
will write Q(ω) for the probability measure on E corresponding to the outcome ω ∈
Ω, and Q(ω;B) = Q(ω)(B) for the value assigned by the probability measure Q(ω)
to a set B ∈ E . Instead of the above definition of kernels we can use the following:
A kernel from a probability space (Ω,F ,P) to (E, E) is a function Q : Ω × E → R

such that

(i) for every set B ∈ E , the map ω 7→ Q(ω;B) is F -Borel-measurable;
(ii) for every ω ∈ Ω, the map B 7→ Q(ω;B) defines a probability measure on

(E, E).
Probability kernels are also called random probability measures on E.

Conditional distributions. In this paper, kernels will mostly appear in form of a
conditional distribution of a random variable given a σ-algebra. Let X : Ω → E
be a random variable defined on (Ω,F ,P) and taking values in a Polish space E.
Given a σ-algebra G ⊂ F , a kernel Q : Ω → M1(E) is called (a version of) the
conditional distribution of X given G if

(i) Q is G-measurable as a map from Ω to M1(E),
(ii) for all bounded Borel functions f : E → R and all A ∈ G,

(17)

∫

A

f(X(ω))P(dω) =

∫

A

(∫

E

f(z)Q(ω; dz)

)

P(dω).

In this case we use the notation Q = L(X |G).
Almost sure weak convergence. A sequence Q1, Q2, . . . : Ω → M1(E) of kernels
defined on a common probability space (Ω,F ,P) is said to converge almost surely
with respect to weak convergence (a.s.w.) as n → ∞ if there exists a set A ∈ F with
P[A] = 1 such that, for all ω ∈ A, the probability measure Qn(ω) converges weakly
on E to the probability measure Q(ω), again as n → ∞.

Let us state the above definition in a slightly different (but equivalent) form.
Given a bounded Borel function f : E → R and a kernel Q consider the random
variable Qf : Ω → R defined by

Qf : ω 7→
∫

E

f(z)Q(ω; dz).

Then, a sequence of kernels Q1, Q2, . . . : Ω → M1(E) converges to a kernel Q in
the a.s.w. sense if and only if for every bounded continuous function f : E → R we
have

Qf
n

a.s.−→
n→∞

Qf .
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In fact, if we know that for every bounded continuous function f , the random
variable Qf

n converges to some limit in the a.s. sense, then there is a kernel Q such
that Qn converges to Q a.s.w.; see [5].

Remark 4.1. A.s.w. convergence contains a.s. convergence as a special case. Indeed,
let X,X1, X2, . . . be random variables on the probability space (Ω,F ,P). Then, the
sequence Xn converges a.s. to the random variable X if and only if the sequence of
kernels Qn : ω 7→ δXn(ω) a.s.w. converges to the kernel Q : ω 7→ δX(ω).

Remark 4.2. A.s.w. convergence contains weak convergence as a special case. Let
µ, µ1, µ2, . . . be probability measures on E. The sequence µn converges weakly to
µ if and only if the sequence of kernels Qn : ω 7→ µn converges a.s.w. to the kernel
Q : ω 7→ µ.

Remark 4.3. The central limit theorem can be extended to sequences of random
variables which are i.i.d. conditionally on some σ-algebra [16]. This and some
related results [29] fit into the framework of a.s.w. convergence.

Stable and mixing convergence. The a.s.w. convergence is related to the stable con-
vergence which was introduced by Rényi [31], [32], [33]. We recall the definition of
stable convergence referring to [1] for more details and references. A sequence of
kernels Q1, Q2, . . . : Ω → M1(E) converges stably to a kernel Q : Ω → M1(E) if
for every set A ∈ F and every bounded continuous function f : E → R, we have

(18) lim
n→∞

∫

A

(∫

E

f(z)Qn(ω; dz)

)

P(dω) =

∫

A

(∫

E

f(z)Q(ω; dz)

)

P(dω).

Of particular interest for us will be the following special case of this definition.
Let X1, X2, . . . be a sequence of random variables defined on a probability space
(Ω,F ,P) and taking values in a Polish space E. We say that Xn converges stably
to a kernel Q : Ω → M1(E) if the sequence of kernels Qn : ω 7→ δXn(ω) converges
stably to Q. That is to say, for every set A ∈ F and every bounded continuous
function f : E → R, we have

(19) lim
n→∞

∫

A

f(Xn(ω))P(dω) =

∫

A

(∫

E

f(z)Q(ω; dz)

)

P(dω).

Taking in this definition A = Ω we see that stable convergence implies weak con-
vergence of Xn to the law obtained by mixing Q(ω) over P(dω).

A special case of stable convergence is the mixing convergence. We say that Xn

converges to a probability distribution µ on E in the mixing sense if Xn converges
stably to the kernel Q : ω 7→ µ. In this case, we write

Xn
mix−→
n→∞

µ.

By the above, mixing convergence implies weak convergence to the same limit.
Another way of expressing these definitions is the following: A sequence of ran-

dom variables Xn : Ω → E converges stably if for every event A ∈ F with P[A] > 0
the conditional distribution of Xn given A converges weakly to some probability
distribution µA on E. The limiting probability distribution is given by

µA :=
1

P[A]
E[Q1A]
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and, in general, depends on A. The limiting kernel Q can be seen as the Radon–
Nikodym density of the M1(E)-valued measure A 7→ P[A]µA. If the limiting distri-
bution µA does not depend on the choice of A, then we have mixing convergence.

4.2. An example of a.s.w. convergence: The Pólya urn. Consider an urn
initially containing b black and r red balls. In each step, draw a ball from the urn
at random and replace it together with c balls of the same color. Let Bn and Rn

be the number of black and red balls after n draws and let Fn be the σ-algebra
generated by the first n draws. It is well-known that the proportion Zn of black
balls after n draws is a martingale w.r.t. to the filtration {Fn}n∈N and that

(20) Zn :=
Bn

Bn +Rn

a.s.−→
n→∞

Z∞ ∼ Beta

(

b

c
,
r

c

)

.

We claim that

(21) Qn := L
{√

n(Z∞ − Zn)
∣

∣

∣Fn

}

a.s.w.−→
n→∞

{ω 7→ N0,S2(ω)} =: Q∞,

where S2(ω) = Z∞(ω)(1 − Z∞(ω)). The kernel Q∞ on the right-hand side maps
an outcome ω to the centered normal distribution on R with variance S2(ω). We
will prove in Proposition 4.7 and Remark 4.8 below that (21) implies distributional
convergence to the normal mixture:

(22)
√
n(Z∞ − Zn)

d−→
n→∞

N0,S2 .

One can establish (22) as a direct consequence of the de Moivre–Laplace CLT by
noting that conditionally on Z∞ = p, the results of individual draws are i.i.d.
Bernoulli variables with parameter p. Of course, (22) is well-known; see [20, Sec-
tion 3] or [17, pp. 80–81] (where it is deduced as a special case of the CLT for
martingales), but (21) is stronger than (22).

Proof of (21). The random variables Bn, Rn, Zn are Fn-measurable. For the con-
ditional law of Z∞ given Fn we have, recalling (20),

L(Z∞|Fn) ∼ Beta

(

Bn

c
,
Rn

c

)

.

So, the conditional law Qn on the left-hand side of (21) is given by the kernel

Qn : ω 7→ L
{√

n

(

B 1
c
Bn(ω), 1

c
Rn(ω) −

Bn(ω)

Bn(ω) +Rn(ω)

)}

,

where Bα,β denotes a random variable with Beta(α, β) distribution.
We will use the following CLT for the Beta distribution. Let αn, βn > 0 be two

sequences such that αn, βn → +∞ and αn

αn+βn
→ p ∈ (0, 1), as n → ∞. Then,

(23) Un :=
√

αn + βn

(

Bαn,βn
− αn

αn + βn

)

d−→
n→∞

N0,p(1−p).

The proof of (23) is standard and proceeds as follows. Denote by Γαn
,Γβn

inde-
pendent random variables having Gamma distributions with shape parameters αn

and βn respectively, and scale parameter 1. Since Bαn,βn
has the same distribution

as
Γαn

Γαn+Γβn
, we can rewrite the left-hand side of (23) as follows:

Un
d
=

βnΓαn
− αnΓβn

√

αnβn(αn + βn)
·

√
αnβn

Γαn
+ Γβn

.
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The first factor converges weakly to the standard normal distribution (as one can
easily see by computing its characteristic function), whereas the second factor con-
verges in probability to 1. Slutsky’s lemma completes the proof of (23).

Now, we apply (23) to αn = 1
cBn(ω) and βn = 1

cRn(ω). Noting that for a.a.
ω ∈ Ω, we have p(ω) := limn→∞

αn

αn+βn
= Z∞(ω) and αn + βn ∼ n, we obtain that

Qn(ω) converges weakly to N0,S2(ω), for a.a. ω ∈ Ω. �

4.3. Properties of the a.s.w. convergence. Taken together, the following propo-
sition and examples show that a.s.w. convergence is strictly stronger than stable
convergence.

Proposition 4.4. Let Q1, Q2, . . . : Ω → M1(E) be a sequence of kernels converging
to a kernel Q : Ω → M1(E) in the a.s.w. sense. Then, Qn converges to Q stably.

Proof. Let f : E → R be a bounded continuous function. By definition of the
a.s.w. convergence, the sequence Qf

n(ω) =
∫

E f(z)Qn(ω; dz) converges to Qf (ω) =
∫

E
f(z)Q(ω; dz) for a.a. ω ∈ Ω. Also, Qf

n(ω) is bounded by ‖f‖∞. By the domi-
nated convergence theorem, (18) holds. So, Qn converges to Q stably. �

Example 4.5. Let us show that, in general, stable convergence does not imply
a.s.w. convergence. Let ξ1, ξ2, . . . be non-degenerate i.i.d. random variables with
probability distribution µ. Then, the sequence of kernels Qn : ω 7→ δξn(ω) converges
stably (in fact, mixing) to the kernel Q : ω 7→ µ. This is equivalent to saying that
the i.i.d. sequence ξ1, ξ2, . . . is mixing in the sense of ergodic theory. Alternatively,
note that by the i.i.d. property, limn→∞ P[ξn ≤ x|ξk ≤ x] = P[ξ1 ≤ x] for every
fixed k ∈ N, and apply [31, Thm. 2]. However, Qn does not converge a.s.w. because
the sequence ξn does not converge a.s.

Many classical distributional limit theorems hold, in fact, even in the sense of
mixing convergence [31, 33]. In particular, this is the case for the central limit
theorem.

Example 4.6. Let ξ1, ξ2, . . . be i.i.d. random variables with Eξi = 0, Var ξi =
1. Consider the random variables Xn = 1√

n
(ξ1 + . . . + ξn). Then, the kernels

Qn : ω 7→ δXn(ω) converge stably (in fact, mixing) to the kernel Q : ω 7→ N0,1;
see [31, Thm. 4] or [1, Thm. 2]. However, Qn does not converge a.s.w. because the
sequence Xn does not converge a.s. On the other hand, the central limit theorems
for branching random walks which we will state and prove below hold not only
stably but even in the a.s.w. sense.

Proposition 4.7. Let {Fn}n∈N be a filtration on a probability space (Ω,F ,P).
Let X1, X2, . . . be a sequence of random variables defined on (Ω,F ,P) and taking
values in a Polish space E. Assume that for every n ∈ N, the random variable
Xn is measurable w.r.t. the σ-algebra F∞ =

∨

k∈N
Fk (but not necessarily w.r.t.

Fn). If the sequence of conditional laws Qn = L{Xn|Fn} converges to a kernel
Q : Ω → M1(E) in the a.s.w. sense, then Xn converges stably to Q.

Remark 4.8. In particular, Xn converges in distribution to the probability measure
EQ obtained by mixing the probability measures Q(ω) over P(dω). That is, for
every Borel set B ⊂ E,

(EQ)(B) =

∫

Ω

Q(ω;B)P(dω).
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Proof of Proposition 4.7. Let f : E → R be a bounded continuous function. We
will show that for every bounded F -measurable function g : Ω → R,

(24) lim
n→∞

∫

Ω

f(Xn(ω))g(ω)P(dω) =

∫

Ω

g(ω)

(
∫

E

f(z)Q(ω; dz)

)

P(dω).

By taking g = 1A in (24) we obtain the required relation (19).
Let first g = 1A for some A ∈ Fk, where k ∈ N is fixed. Because of the

filtration property, A ∈ Fn for all n ≥ k. Applying (17) to the conditional law
Qn = L(Xn|Fn), we obtain that for all n ≥ k,

∫

A

f(Xn(ω))P(dω) =

∫

A

(∫

E

f(z)Qn(ω; dz)

)

P(dω).

For a.a. ω ∈ Ω the probability measureQn(ω) converges weakly to Q(ω), and hence,
the sequence Qf

n(ω) =
∫

E
f(z)Qn(ω; dz) (which is bounded by ‖f‖∞) converges as

n → ∞ to Qf (ω) =
∫

E f(z)Q(ω; dz). By the dominated convergence theorem we
immediately obtain (24).

A standard approximation argument extends (24) to all F∞-measurable bounded
functions g : Ω → R. Finally, let g be F -measurable and bounded. In this case,
one can reduce (24) to the case of F∞-measurable function g̃ = E[g|F∞]. Namely,
since Xn is F∞-measurable, we have

∫

Ω

f(Xn(ω))g(ω)P(dω) =

∫

Ω

f(Xn(ω))g̃(ω)P(dω),

Similarly, since the M1(E)-valued map ω 7→ Q(ω) is F∞-measurable (as an a.s.
limit of F∞-measurable maps ω 7→ Qn(ω)),

∫

Ω

g(ω)

(∫

E

f(z)Q(ω; dz)

)

P(dω) =

∫

Ω

g̃(ω)

(∫

E

f(z)Q(ω; dz)

)

P(dω).

So, it suffices to establish (24) for the function g̃ instead of g, but this was already
done above since g̃ is F∞-measurable and bounded. �

We will need the following variant of the martingale convergence theorem; see [24,
p. 409, 10d]. An even more general result can be found in [23].

Lemma 4.9. Let {Fn}n∈N be a filtration on a probability space (Ω,F ,P). Write
F∞ =

∨

k∈N
Fk. Let ξ, ξ1, ξ2, . . . be random variables defined on (Ω,F ,P) such that

ξn → ξ a.s. and |ξn| < M for some constant M . Then,

E[ξn|Fn]
a.s.−→

n→∞
E[ξ|F∞].

Proposition 4.10. Let {Fn}n∈N be a filtration on a probability space (Ω,F ,P). Let
Xn, Yn, n ∈ N, be complex-valued random variables defined on (Ω,F ,P). Suppose
that for some kernel Q : Ω → M1(R),

(25) L(Xn|Fn)
a.s.w.−→
n→∞

Q.

(a) If Yn → 0 a.s., then L(Xn + Yn|Fn) converges to Q a.s.w.
(b) If Yn → 1 a.s., then L(XnYn|Fn) converges to Q a.s.w.

Remark 4.11. Note that we do not assume Yn to be Fn-measurable. With this
assumption, the proposition would become trivial.
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Proof of part (a). We can find a sequence of uniformly continuous, bounded func-
tions f1, f2, . . . : R → R with the property that a sequence of probability measures
µ1, µ2, . . . converges weakly on R to a probability measure µ if and only if for every
i ∈ N,

lim
n→∞

∫

R

fidµn =

∫

R

fidµ.

Fix some i ∈ N. We know from (25) that

(26) E[fi(Xn)|Fn]
a.s.−→

n→∞
Qfi ,

where Qfi denotes the random variable ω 7→
∫

R
fi(z)Q(ω; dz). Since fi is uniformly

continuous and Yn → 0 a.s., we have

ξn := fi(Xn + Yn)− fi(Xn)
a.s.−→

n→∞
0.

Also, |ξn| ≤ 2‖fi‖∞. By Lemma 4.9 with ξ = 0, we have E[ξn|Fn] → 0 a.s. and
hence, recalling (26),

E[fi(Xn + Yn)|Fn]
a.s.−→

n→∞
Qfi .

This holds for every i ∈ N. Hence, L(Xn + Yn|Fn) converges a.s.w. to Q.

Proof of part (b). Part (b) can be reduced to part (a) by noting that XnYn =
Xn +Xn(Yn − 1) and Y ′

n := Xn(Yn − 1) converges a.s. to 0. �

The following result shows that a.s.w. convergence of conditional laws is pre-
served under filtration coarsening.

Proposition 4.12. Let {Fn}n∈N be a filtration on a probability space (Ω,F ,P).
Let ξ1, ξ2, . . . be random variables defined on (Ω,F ,P) and taking values in a Polish
space E. Suppose that the sequence of conditional laws Qn := L(ξn|Fn) converges

as n → ∞ to the kernel Q in the a.s.w. sense. Let {F̃n}n∈N be another filtration

on (Ω,F ,P) such that F̃n ⊂ Fn and let F̃∞ =
∨∞

n=1 F̃n. Then,

Q̃n := L(ξn|F̃n)
a.s.w.−→
n→∞

E[Q|F̃∞].

Proof. Let f1, f2, . . . : E → R be bounded continuous functions such that a sequence
of probability measures µ1, µ2, . . . on E converges weakly to µ if and only if

∫

E fidµn

converges to
∫

E
fidµ as n → ∞, for all i ∈ N. Let Qfi

n : Ω → R be the function

ω 7→
∫

E
fi(z)Qn(ω; dz) and define Q̃fi

n similarly. Then, Qn → Q a.s.w. means that

Qfi
n → Qfi a.s., for all i ∈ N. Using the definition of conditional distributions, it is

easy to check that Q̃fi
n = E[Qfi

n |F̃n]. By Lemma 4.9, we have

Q̃fi
n = E[Qfi

n |F̃n]
a.s.−→

n→∞
E[Qfi |F̃∞].

Since this holds for every i ∈ N we obtain that Q̃n → E[Q|F̃∞] a.s.w. �

5. Conditional Functional Central Limit Theorem and applications

to random trees

5.1. Statement of the conditional FCLT. We are almost ready to state a
stronger version of Theorem 3.1. Consider a branching random walk in discrete
or continuous time defined on a probability space (Ω,F ,P) and satisfying the as-
sumptions of Section 2.2. Denote by Ft = σ{πj : 0 ≤ j ≤ t} the σ-algebra generated
by the BRW up to time t ∈ N0 (discrete-time case) or t ≥ 0 (continuous-time case).
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For our applications to the analysis of algorithms we need to state a functional CLT
valid over an arbitrary increasing sequence of stopping times. Let 0 ≤ T1 ≤ T2 ≤ . . .
be a monotone increasing sequence of stopping times w.r.t. the filtration {Ft} such
that a.s.,

(27) lim
n→∞

Tn = +∞.

In the discrete-time case we assume additionally that Tn takes values in N0. Two
special cases (which make sense both for discrete and continuous time) will be of
interest to us:

(1) Tn = n.
(2) Tn is the time at which the n-th particle is born.

The second special case will be needed for the above-mentioned applications. Let
FTn

be the σ-algebra generated by the branching random walk up to the stopping
time Tn.

Fix R > 0. Consider the following random analytic function on the disk DR:

(28) DTn
(u) = m

1
2Tn

(

W∞

(

u√
Tn

)

−WTn

(

u√
Tn

))

.

We will prove that the conditional distribution of DTn
under FTn

converges to
some limiting kernel Q∞ : Ω → M1(AR), in the a.s.w. sense. To describe the
limiting kernel Q∞, we use the random variable N∞ from (8) (defined on the same
probability space as the branching random walk) and the random analytic function
ξ described in Section 3.2 (ξ may be defined on a different probability space). For
ω ∈ Ω we define Q∞(ω) to be the distribution (on AR) of the random analytic
function

Ξ( · ;ω) : DR → C, u 7→ σ
√

N∞(ω) ξ
(

τu
)

, u ∈ DR,

where we recall that σ2 = VarN∞ and τ2 = ϕ′′(0). Note that the dependence of Ξ
on its arguments factorizes.

The following is our main result.

Theorem 5.1. As n → ∞, the conditional distribution Qn := L(DTn
|FTn

) con-
verges to the kernel Q∞ defined above, almost surely and with respect to weak con-
vergence:

(29) L
(

DTn
(·)
∣

∣

∣FTn

)

a.s.w.−→
n→∞

{ω 7→ L (Ξ(·;ω))} .
Recalling Proposition 4.7 and Remark 4.8, we obtain the following

Corollary 5.2. The following convergence of random analytic functions holds
weakly on AR for every R > 0:

{

DTn
(u) : u ∈ DR

} w−→
n→∞

{

σ
√

N∞ ξ
(

τu
)

: u ∈ DR

}

,

where N∞ and ξ are independent.

The proof of Theorem 5.1 will be given in Section 7.

Remark 5.3. The functionDTn
(u) may not be defined on the eventAn := {R/

√
Tn >

δ0}. Since we do not assume that Tn → ∞ uniformly, it is possible that the prob-
ability of An is strictly positive for every n ∈ N. On the other hand, we have
1An

→ 0 a.s. since Tn → ∞ a.s. Hence, on the event An we can define DTn
(u) in

an arbitrary way (say, as 0) and by Proposition 4.10, part (a), this does not affect
Theorem 5.1 and Corollary 5.2.
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Remark 5.4. Theorems 3.1 and 5.1 deal with the behavior of Wn(β) in a small
neighborhood of 0. It is possible to obtain analogues of these results in a neigh-
borhood of an arbitrary real β∗ from an appropriate interval; however, for our
applications we need only the case β∗ = 0.

5.2. CLT for Galton–Watson processes. In this section we show how Theo-
rem 5.1 can be used to rederive and generalize the classical CLT for Galton–Watson
processes due to Athreya [3] and Heyde [18]. Consider a Galton–Watson process
Nn starting at time 0 with one particle. Suppose that N1 has mean m > 1, variance
σ2 > 0 and finite p0-th moment, for some p0 > 2. Let P[N1 = 0] = 0 (otherwise,
we have to restrict everything to the survival event). The limit

(30) N∞ := lim
n→∞

Nn

mn
> 0

exists a.s. By considering a branching random walk in which the particles split
according to Nn while not moving away from 0, we can identify Nn/m

n with Wn(β),
for every β ∈ C. In this setting, Theorem 5.1 takes the form

Theorem 5.5. For every sequence (Tn)n∈N of stopping times with Tn ↑ ∞ a.s. as
n → ∞ we have

(31) L
(√

mTn

(

N∞ − NTn

mTn

)

∣

∣

∣

∣

∣

FTn

)

a.s.w.−→
n→∞

{

ω 7→ N0,σ2N∞(ω)

}

.

Indeed, f 7→ f(0) is a continuous map from AR to C. Observe also that
ξ(0) ∼ N0,1 by (16). The continuous mapping theorem justifies taking u = 0
in Theorem 5.1 and yields (31).

One may ask whether it is possible to move N∞(ω) from the right-hand side
of (31) to the left. This would have the advantage that the limiting distribution
would be normal rather than a mixture of normals. The question is non-trivial
because the random variable N∞ is not FTn

-measurable. Nevertheless, the answer
is positive:

Theorem 5.6. For every sequence (Tn)n∈N of stopping times with Tn ↑ ∞ a.s. as
n → ∞ we have

(32) L





√

mTn

N∞

(

N∞ − NTn

mTn

)

∣

∣

∣

∣

∣

FTn





a.s.w.−→
n→∞

{

ω 7→ N0,σ2

}

.

Proof. Note that by (30) and (27),

(33)

√

mTn

NTn

a.s.−→
n→∞

1√
N∞

.

The random variable on the right-hand side is FTn
-measurable. Applying Slutsky’s

lemma pointwise to Theorem 5.5 we obtain that

L
(
√

mTn

NTn

√
mTn

(

N∞ − NTn

mTn

)

∣

∣

∣

∣

∣

FTn

)

a.s.w.−→
n→∞

{

ω 7→ N0,σ2

}

.

By Proposition 4.10 (b) we can multiply the random variable on the left-hand side by

Yn :=
√

NTn
/(mTnN∞) because Yn converges to 1 a.s. by (33). This yields (32). �
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By Proposition 4.7 and Remark 4.8 we obtain the following corollary of Theo-
rems 5.5 and 5.6.

Corollary 5.7. It holds that

√
mTn

(

N∞ − NTn

mTn

)

d−→
n→∞

N0,σ2N∞ ,(34)

√

mTn

N∞

(

N∞ − NTn

mTn

)

mix−→
n→∞

N0,σ2 .(35)

Taking Tn = n we recover the original CLT for Galton–Watson processes; see (13).
Note that we need the condition ENp0

1 < ∞ for some p0 > 2 (which is slightly
stronger than the condition EN2

1 < ∞ needed in the CLT for Galton–Watson pro-
cesses). This is due to the fact for general Tn’s we need to use Lyapunov’s CLT in
the proof of Theorem 5.1.

5.3. Sum of the particle positions in the BRW: Martingale convergence.

In this and the next section we will be interested in the sum of the positions of the
particles in a branching random walk at time n:

(36) Sn =

Nn
∑

j=1

zj,n.

Let d = ϕ′(0). The sum Sn is related to the first derivative W ′
n(0) via

(37) Ln := W ′
n(0) =

Sn − dnNn

mn
.

¿From the martingale property of Wn(β) it follows that Ln = W ′
n(0) is a martingale

as well.

Proposition 5.8. The limit L∞ := W ′
∞(0) = limn→∞ Ln exists a.s. and in Lp for

every 0 < p ≤ p0.

Proof. Recall from Section 2.2 that Wn, considered as a random element taking
values in the Banach space Aδ0 , converges a.s. to W∞, as n → ∞. The mapping
f 7→ f ′(0) is continuous from Aδ0 to C by the Cauchy integral formula. Hence,
Ln = W ′

n(0) converges to L∞ = W ′
∞(0) in the a.s. sense.

The proof of the Lp-convergence is based on a moment estimate forWn(β) stated
in Proposition 6.1 below. It suffices to show that the martingale Ln = W ′

n(0) is
bounded in Lp0 . By the Cauchy integral formula, for any sufficiently small r > 0
we have

E|W ′
n(0)|p0 = E

∣

∣

∣

∣

1

2π

∫ 2π

0

Wn(re
iϕ)

reiϕ
dϕ

∣

∣

∣

∣

p0

≤ CE

∫ 2π

0

|Wn(re
iϕ)|p0dϕ,

where the last step is by Jensen’s inequality. Interchanging the expectation and
the integral by the Fubini theorem and applying Proposition 6.1, we obtain the
required Lp0 -boundedness: E|W ′

n(0)|p0 ≤ C. �

Remark 5.9. Since EWn(β) = 1 for all |β| ≤ δ0, we have ELn = EL∞ = 0.
Consequently, ESn = dnmn.
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Remark 5.10. With trivial modifications, the proof of Proposition 5.8 can be ex-
tended to derivatives of arbitrary order k ∈ N0. Namely, a.s. and in Lp, for every
0 < p ≤ p0, we have

(38) W (k)
n (0) −→

n→∞
W (k)

∞ (0).

The k-th derivative W
(k)
n (0) can be expressed through the “empirical BRW mo-

ments”

S(l)
n =

Nn
∑

j=1

zlj,n

with l = 0, . . . , k. It is possible to generalize the results obtained here for Sn = S
(1)
n

to such higher moments.

We will need a generalization of Proposition 5.8 to arbitrary increasing sequences
of stopping times. Let 0 ≤ T1 ≤ T2 ≤ . . . be stopping times as in Section 5.1.

Proposition 5.11. A.s. and in Lp for every 0 < p < p0 it holds that

(39) LTn
=

STn
− dTnNTn

mTn
−→
n→∞

L∞.

Proof. Since Tn → +∞ a.s., we have LTn
→ L∞ a.s. by Proposition 5.8. We

have |LTn
| ≤ supk∈N

|Lk|, and Lk is a martingale bounded in Lp0 ; see the proof
of Proposition 5.8. By Doob’s inequality, the sequence LTn

is uniformly bounded
in Lp0 . By the Vitali convergence theorem, it follows that (39) holds in Lp for all
0 < p < p0. �

Remark 5.12. It remains open what moment assumption on the BRW is necessary
and sufficient for Propositions 5.8 and 5.11 to hold. Our standing assumption B is
certainly not the best possible. In fact, the proofs given above remain valid if we
require (5) to hold with some p0 > 1. Anyway, in our applications to the analysis
of algorithms condition (5) is satisfied with arbitrarily large p0.

5.4. Sum of the particle positions in the BRW: Conditional CLT. Now we
are ready to state a CLT for LTn

. Let 0 ≤ T1 ≤ T2 ≤ . . . be stopping times as in
Section 5.1.

Theorem 5.13. We have

L







√

mTn

Tn
(L∞ − LTn

)

∣

∣

∣

∣

∣

FTn







a.s.w.−→
n→∞

{

ω 7→ N0,σ2τ2N∞(ω)

}

.(40)

Proof. Note that f 7→ f ′(0) is a linear continuous map from AR to C by Cauchy’s
integral theorem; we will apply this map to both sides of (29). Note that by (28),

D′
Tn

(0) =

√

mTn

Tn
(W ′

∞(0)−W ′
Tn

(0)) =

√

mTn

Tn
(L∞ − LTn

).

Observe also that ξ′(0) ∼ N0,1 by (16). By the continuous mapping theorem, the
a.s.w. convergence in (29) is preserved when applying the derivative map, hence we
obtain (40). �

Remark 5.14. With the same justification as in Theorem 5.6, we can move N∞
from the right-hand side of (40) to the left-hand side.



18 RUDOLF GRÜBEL AND ZAKHAR KABLUCHKO

In particular, Proposition 4.7 (see also Remark 4.8) yields the following analogue
of Corollary 5.7.

Corollary 5.15. We have
√

mTn

Tn
(L∞ − LTn

)
d−→

n→∞
N0,σ2τ2N∞ ,(41)

√

mTn

N∞Tn
(L∞ − LTn

)
mix−→
n→∞

N0,σ2τ2 .(42)

5.5. Applications to random trees. In this section we show how our results can
be applied to binary search trees and random recursive trees. These models are
random trees grown by attaching one new node in each step, according to certain
random rules. By randomizing the times T1, T2, . . . at which the new nodes are
attached, these random trees can be embedded into a suitable BRW in continuous
time; see Chauvin et al. [9], Chauvin and Rouault [8]. This procedure can be seen
as an instance of poissonization. The embeddings are constructed such that the
positions of the particles in the BRW correspond to the depths of external (or
internal) nodes of the random tree. Let (Ω,F ,P) be the probability space on which
the random trees are defined. The times T1, T2, . . . form a Yule process on some
other probability space (Ω′,F ′,P′), and the BRW is then defined on the product
space. Using our results on the BRW we will obtain, after a depoissonization,
results on random trees.

The Yule process. Fix an intensity λ > 0. Let (Ω′,F ′,P′) be a probability space
carrying independent random variables τ1, τ2, . . . with

τn ∼ Exp(λn).

We regard Tn+1 = τ1 + . . .+ τn, n ∈ N, T1 = 0, as times at which the n-th particle
in a continuous-time BRW is born. We denote by Nt =

∑∞
n=1 1Tn≤t the number

of particles at time t ≥ 0. Then {Nt : t ≥ 0} is a continuous-time Markov process
(called the Yule process) with values in N and transition rates

n
intensity λn

−−−−−→ n+ 1.

One can imagine that each particle splits into two new particles with intensity λ,
independently of the other particles and of the past of the process. Note, however,
that the random variables specifying which particle splits are not defined on the
probability space (Ω′,F ′,P′). The expected number of particles at time t ≥ 0 is
ENt = eλt and hence, m = EN1 = eλ. Also, it is known that

(43) N∞ = lim
t→∞

Nt

eλt
∼ Exp(1).

In particular, in all examples below we have σ2 = VarN∞ = 1.

Genealogical structure and displacements. Consider a continuous-time BRW in
which the particles split at times T1, T2, . . . introduced above. In any such splitting,
a particle disappears and generates exactly two new particles. We assume that the
particles do not move between the splittings. In order to specify the BRW we
need to specify the particle that splits at time Tn (genealogical structure), and
the displacements of its offspring. We further assume that the random variables
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describing the genealogical structure and displacements are defined on a probability
space (Ω,F ,P). Then, the BRW can be defined on the product space (Ω,F ,P) =
(Ω′,F ′,P′)⊗ (Ω,F ,P). Finally, we assume that (5) holds for arbitrary p0 > 0 since,
as is easy to verify, this is true in all our examples.

Recall that we denote the positions of the particles at time Tn by z1,Tn
≤ . . . ≤

zn,Tn
. The variable

(44) STn
=

n
∑

j=1

zj,Tn

will be interpreted below as the internal or external path length of a random tree.
It is easy to see that the random variable STn

= STn(ω′)(ω
′, ω) (which is defined

on the product space Ω = Ω′ × Ω) depends on the second coordinate ω only. So,
we can consider STn

as a random variable defined on Ω. The next theorem (whose
proof we defer to Section 8.1) differs from Proposition 5.11 by a more convenient
choice of normalization.

Theorem 5.16. Under the assumptions of the present section, on the probability
space (Ω,F ,P) we have

(45) L̃Tn
:=

STn
− d

λn logn

n
−→
n→∞

L̃∞

a.s. and in Lp for every p > 0, where

(46) L̃∞ =
L∞
N∞

− d

λ
logN∞.

Remark 5.17. In the proof of Theorem 5.16 we will see that the random variable
L̃∞ (defined originally on the product space Ω = Ω′ × Ω) depends only on the

second component ω ∈ Ω. By discarding the first component we can consider L̃∞
as a random variable on Ω.

The following central limit theorem is an analogue of Theorem 5.13. The proof
will be given in Section 8.2. First, we need to introduce several σ-algebras. Let
F ′

n ⊂ F ′ be the σ-algebra on Ω′ generated by T1, . . . , Tn. This σ-algebra contains
information about the birth times of the particles, but it does not contain infor-
mation on the genealogical and spatial structure of the BRW. Denote by Gn ⊂ F
the σ-algebra on Ω containing the information about the genealogical structure and
the displacements of the first n particles in the BRW. Recall that FTn

⊂ F ′ ⊗ F
is the σ-algebra on Ω = Ω′ × Ω generated by the BRW up to time Tn. Clearly,
FTn

= F ′
n ⊗ Gn.

Theorem 5.18. Under the assumptions of the present section, on the probability
space (Ω,F ,P) we have

(47) L
{
√

λn

logn

(

L̃∞ − STn
− d

λn logn

n

)∣

∣

∣

∣

∣

Gn

}

a.s.w.−→
n→∞

{

ω 7→ N0,σ2τ2

}

.

Using Proposition 4.7 we obtain

Corollary 5.19. The following convergence holds in the mixing (and hence, dis-
tributional) sense:

(48)

√

λn

logn

(

L̃∞ − STn
− d

λn logn

n

)

mix−→
n→∞

N0,σ2τ2 .
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Remark 5.20. Note that the variance of the limiting distribution is deterministic,
which is in sharp contrast to Theorem 5.13. See Remark 7.1 for an explanation.

Now we are ready to apply these results to random trees.

5.5.1. Binary search trees. This model appears for example in the analysis of the
Quicksort algorithm. Let V= ∪∞

k=0{0, 1}k be the set of all finite words over the
alphabet {0, 1} (including the empty word ∅). One can consider V as the set of
nodes of an infinite binary tree with root ∅. Each node (ε1, . . . , εk) of depth k is
connected to two nodes (ε1, . . . , εk, 0) and (ε1, . . . , εk, 1) of depth k + 1. A binary
tree is a non-empty finite subset X ⊂ V with the property that together with every
node (ε1, . . . , εk) 6= ∅ it contains its predecessor (ε1, . . . , εk−1). The external nodes
of a binary tree X are those nodes (ε1, . . . , εk) ∈ V\X for which (ε1, . . . , εk−1) ∈ X .
It is easy to see that the number of external nodes of X exceeds the number of nodes
of X by 1.

Consider a growing sequence X1, X2, . . . of random binary trees constructed as
follows. Let X1 be the tree with one node ∅. Inductively, given Xn (which is a
binary tree with n nodes), choose uniformly at random one of the n + 1 external
nodes of Xn and attach it to the tree. Denote the tree thus constructed by Xn+1

and proceed further in the same manner. The random tree Xn is called the binary
search tree with n nodes. For more details we refer to Drmota [12, Ch. 6]. We
will be interested in the external path length of Xn, denoted by EPLn, which is the
sum of depths of all n + 1 external nodes of Xn. For example, the number Kn of
comparisons used by the Quicksort algorithm applied to a random permutation of
n elements has the same distribution as EPLn−2n. Let (Ω,F ,P) be the probability
space on which X1, X2, . . . are defined and let Gn ⊂ F be the σ-algebra generated
by X1, . . . , Xn.

Let us construct an embedding of the binary search trees into a BRW. Consider
a continuous-time BRW in which the particles do not move between the splittings
and each particle (located, say, at x) splits with intensity λ = 1 into two particles
located at x+ 1:

δx
intensity 1

−−−−−→ 2δx+1.

The particles of the BRW correspond to the external nodes, and their positions at
time Tn correspond to the depths of the external nodes in the binary search tree
with n nodes. Hence, STn

can be interpreted as the external path length EPLn of
the binary search tree with n nodes. We have

ϕ(β) = 2eβ − 1, λ = ϕ(0) = 1, d = ϕ′(0) = 2, τ2 = ϕ′′(0) = 2.

From Theorem 5.16 we obtain that there is a limit random variable EPL∞ such
that a.s. and in Lp, for all p > 0,

(49)
EPLn − 2n logn

n
−→
n→∞

EPL∞.

For p = 2, this recovers a result of Régnier [30]. In view of the a.s. convergence, con-
vergence in Lp for general p > 0 follows from Rösler’s [35] result on the convergence
of the respective distributions in the Wasserstein dp-metric. From Theorem 5.18
we obtain that on the probability space (Ω,F ,P),

(50) L
{

√

n

2 logn

(

EPL∞ − EPLn − 2n logn

n

)

∣

∣

∣

∣

∣

Gn

}

a.s.w.−→
n→∞

{ω 7→ N0,1}.



FUNCTIONAL CLT FOR BRANCHING RANDOM WALKS 21

In particular, we obtain the following CLT

(51)

√

n

2 logn

(

EPL∞ − EPLn − 2n logn

n

)

mix−→
n→∞

N0,1.

Thus, we recovered the CLT of Neininger [28], but we have a stronger (mixing as
compared to weak) mode of convergence. By the properties of mixing convergence,
see [1, Prop. 2], we also have the joint convergence

(52)

(√

n

2 logn

(

EPL∞ − EPLn − 2n logn

n

)

,EPL∞

)

d−→
n→∞

(Z,EPL∞),

where Z ∼ N0,1 is independent of EPL∞. This is of interest, for example, in
connection with the asymptotic distribution of the ratio of the standardized path
length and its limit.

Remark 5.21. One can use (50) to construct strong prediction intervals for EPL∞.
By a strong (asymptotic) prediction interval at level 1−α for EPL∞ we mean two
sequences of random variables θ−n and θ+n defined on (Ω,F ,P) such that

(1) θ−n and θ+n are measurable w.r.t. Gn;
(2) limn→∞ P[θ−n ≤ EPL∞ ≤ θ+n |Gn] = 1− α a.s.

It follows from (50) that a strong prediction interval for EPL∞ is given by

θ±n =
EPLn − 2n logn

n
±
√

2 logn

n
z1−α

2
,

where z1−α
2
is the (1 − α

2 )-quantile of the standard normal distribution.

5.5.2. Random recursive trees. This well-known model, see Drmota [12, Ch. 6], is
defined as follows. Consider a sequence of random trees X1, X2, . . . generated as
follows. EachXn is a tree with n nodes labelled by 1, . . . , n. The tree X1 consists of
one node (root) labelled by 1. Inductively, given the tree Xn, we construct the tree
Xn+1 as follows. Among the n nodes of Xn we choose one uniformly at random,
attach to it a new direct descendant labeled by n + 1, and denote the resulting
tree by Xn+1. Denote by (Ω,F ,P) the probability space on which X1, X2, . . . are
defined. Let Gn ⊂ F be the σ-algebra generated by X1, . . . , Xn.

Let us interpret the depths of the nodes of a random recursive tree in terms of a
suitable BRW. Consider a continuous-time BRW in which the particles do not move
between the splittings and each particle (located, say, at x) splits with intensity 1
into one particle located at x and one particle located at x+ 1:

δx
intensity 1

−−−−−→ δx + δx+1.

It is easy to see that the positions of the n particles of the BRW at time Tn have
the same distribution as the depths of the nodes in a random recursive tree with n
nodes. Here, the depth means the distance to the node labelled by 1. The random
variable STn

can be interpreted as the internal path length, denoted by IPLn, of
the random recursive tree with n nodes. We have

ϕ(β) = eβ , λ = ϕ(0) = 1, d = ϕ′(0) = 1, τ2 = ϕ′′(0) = 1.

From Theorem 5.16 we obtain that there is a limit random variable IPL∞ such that
a.s. and in Lp for every p > 0,

(53)
IPLn − n logn

n
−→
n→∞

IPL∞.
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This recovers results of Mahmoud [27], who proved a.s. and L2-convergence; Lp-
convergence for arbitrary p > 0 has been shown by Dobrow and Fill [11], see Grübel
and Michailow [15] for a different approach. Dobrow and Fill [11] also obtained a
characterization of the distribution of IPL∞ in terms of a stochastic fixed-point
equation, similar to Rösler’s result [35] for the Quicksort distribution that we
mentioned above.

From Theorem 5.18 we obtain that on the probability space (Ω,F ,P),

(54) L
{√

n

logn

(

IPL∞ − IPLn − n logn

n

)

∣

∣

∣Gn

}

a.s.w.−→
n→∞

{ω 7→ N0,1}.

In particular, we obtain an analogue of Neininger’s CLT for random recursive trees:

(55)

√

n

logn

(

IPL∞ − IPLn − n logn

n

)

mix−→
n→∞

N0,1.

The results (54) and (55) seem to be new. By [1, Prop. 2], we have the joint
convergence

(56)

(√

n

logn

(

IPL∞ − IPLn − n logn

n

)

, IPL∞

)

d−→
n→∞

(Z, IPL∞),

where Z ∼ N0,1 is independent of IPL∞.

5.5.3. Trees and urns. It is well known that random trees of the type considered
above are closely related to urn models; for example, in Evans et al. [13] the corre-
sponding process boundaries were obtained by regarding the trees as nested Pólya
urns of the type considered in Section 4.2. Similarly, the process of node depth
profiles of the external resp. internal nodes in the case of binary search trees and
random recursive trees is the same as the color distribution process for a suitably
chosen urn model with infinitely many colors: If the colors are numbered by the
nonnegative integers then we start at time 0 with 1 ball of color 0 in both cases and
proceed as follows. In the step from n to n+ 1 we choose one of the then available
n+ 1 balls uniformly at random; let j be its color. In the binary search tree case
we then put back two balls with color j + 1, in the recursive tree case we put back
the original ball and add one ball with color j + 1. Thus, our approach leads to
results for a class of Pólya type urn models with infinitely many colors.

5.6. Conjectures: Laws of the iterated logarithm. A central limit theorem is
usually accompanied by a law of iterated logarithm (LIL). For example, the CLT
for Galton–Watson processes [18] is accompanied by Heyde’s LIL proved in [19].

More generally, let a zero mean, L2-bounded martingale Zn =
∑n

i=1 Xi be given.
Denote by Z∞ the a.s. and L2-limit of Zn and write σ2

n = Var(Z∞−Zn) → 0. Heyde
[18] provided sufficient conditions for the CLT of the form

(57)
Z∞ − Zn

σn

d−→
n→∞

N0,S2 .

The most important of these conditions is this one: For some random variable S2,

1

σ2
n

∞
∑

i=n

X2
i

P−→
n→∞

S2.
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Under slightly stronger conditions, Heyde [18] proved a law of the iterated logarithm
of the form

(58) lim sup
n→∞

Z∞ − Zn

S
√

2σ2
n log | log σn|

= 1.

Comparing (57) with (51) suggests that in the setting of binary search trees with

Zn being the Régnier martingale EPLn−2n logn
n , we should have S = 1, σ2

n = 2 logn
n .

So, in view of (58), it is natural to conjecture that in the setting of binary search
trees the following LIL holds:

lim sup
n→∞

√
n

2
√
logn log logn

(

EPL∞ − EPLn − 2n logn

n

)

= 1.

An analogous conjecture can be stated for random recursive trees:

lim sup
n→∞

√
n√

2 logn log logn

(

IPL∞ − IPLn − n logn

n

)

= 1.

Similarly, the lim inf’s should be equal to −1.

6. A moment estimate for the Biggins martingale

The aim of this section is to prove that the Biggins martingale Wn(β) is Lp-
bounded uniformly in |β| ≤ ε0, for some sufficiently small ε0 > 0.

Proposition 6.1. For every 0 < p ≤ p0 there exist an ε0 > 0 and a constant C > 0
such that for all n ∈ N and β ∈ Dε0 we have

E|Wn(β)|p < C.

Remark 6.2. Biggins [6] proved this result for p ∈ (1, 2] using the von Bahr–Esseen
inequality [40]. For the case 2 ≤ p ≤ p0 we will use the Rosenthal inequality [34].
It states that for p ≥ 2 and any independent random variables X1, . . . , Xn ∈ Lp

with zero mean we have

(59) E|X1 + . . .+Xn|p ≤ Kp







n
∑

j=1

E|Xj |p +





n
∑

j=1

E|Xj |2




p/2





,

where Kp is a constant depending only on p.

Proof of Proposition 6.1. Let 2 ≤ p ≤ p0. Decomposing the particles in the (n+1)-
st generation of the BRW into clusters according to their predecessor zj,n, j =
1, . . . , Nn, in the n-th generation, we obtain

Wn+1(β)−Wn(β) =

Nn
∑

j=1

eβzj,n

m(β)n
gj,n(β),

where g1,n(β), g2,n(β) . . . are i.i.d. copies of W1(β) − 1 which are also independent
of the σ-algebra Fn generated by the first n generations of the BRW. By Jensen’s
inequality and (5) we have the estimate, valid for all β ∈ C with |Reβ| < β0,

(60) E|g1,n(β)|p ≤ 2p−1(1 + E|W1(β)|p) ≤ C + CE

(

∑

z∈π1

e(Re β)z

)p

≤ C.
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Noting that the random variables eβzj,n and Nn are Fn-measurable, Egj,n(β) = 0,
and applying the Rosenthal inequality to the conditional distributions, we obtain

E

[

|Wn+1(β)−Wn(β)|p
∣

∣

∣Fn

]

= E





∣

∣

∣

∣

∣

∣

Nn
∑

j=1

eβzj,n

m(β)n
gj,n(β)

∣

∣

∣

∣

∣

∣

p
∣

∣

∣Fn



 ≤ Kp(An(β)+Bn(β)),

where An(β) and Bn(β) are two terms (corresponding to the two sums on the
right-hand side of (59)) which will be estimated below. The term An(β) is given
by

An(β) =

Nn
∑

j=1

ep(Re β)zj,n

|m(β)|pn E|g1,n(β)|p ≤ C

(

m(pRe β)

|m(β)|p
)n

Wn(pRe β).

where we used (9) and (60). The term Bn(β) is given by

Bn(β) =





Nn
∑

j=1

e(2Re β)zj,n

|m(β)|2n E|g1,n(β)|2




p/2

≤ C

(

m(2Re β)1/2

|m(β)|

)pn

|Wn(2Reβ)|p/2,

where we again used (9) and the estimate E|g1,n(β)|2 < C following from (60). We
can choose ε0 > 0 so small that for all |β| < ε0,

m(pRe β)

|m(β)|p < k < 1,
m(2Re β)1/2

|m(β)| < k < 1.

Indeed, as β → 0, the terms on the left-hand side converge to m1−p and m−p/2

which are both smaller than 1 by the supercriticality assumption m > 1. Now, we
can estimate the expectation of An(β) and Bn(β) as follows:

E[An(β)] ≤ CknEWn(pRe β) = Ckn,

E[Bn(β)] ≤ CkpnE|Wn(2Re β)|p/2 ≤ Ckpn,

where in the last step we assumed that p ∈ (2, 4] and used the Biggins [6] estimate
E|Wn(2Reβ)|p/2 < C valid for sufficiently small ε0 > 0 and all |β| ≤ ε0. We obtain
that for all n ∈ N,

E

[

|Wn+1(β)−Wn(β)|p
]

≤ Ckpn,

which implies the required bound E|Wn(β)|p ≤ C for p ∈ (2, 4].
Now, it is easy to drop the assumption on p ≤ 4 inductively: If the statement was

established for p ∈ (2k−1, 2k], then one can repeat the above argument to obtain it
for p ∈ (2k, 2k+1]. �

Remark 6.3. It is straightforward to state a continuous-time analogue of Proposi-
tion 6.1, just replace n ∈ N by t ≥ 0. The continuous-time case can be handled by
considering a discrete skeleton of the process in the same way as in [6].

7. Proof of the Functional Central Limit Theorem

The aim of this section is to prove Theorem 5.1. The main idea is a decomposition
of W∞(β)−WTn

(β) stated in (61), below. Similar decompositions appeared in the
proof of the CLT for Galton–Watson processes and in the work of Rösler et al. [36].
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7.1. The basic decomposition. Let l ∈ N0 be fixed. By the Markov property,
the behavior of any particle after time Tn depends only on the position of this
particle at time Tn but otherwise not on the behavior of the BRW before time Tn.
In particular, for all l ∈ N,

m(β)TnWTn+l(β) =

N ′
n

∑

j=1

eβzj,TnW
(l)
j,Tn

(β),

where N ′
n := NTn

denotes the number of particles at time Tn, and W
(l)
j,Tn

(β), j =

1, . . . , N ′
n, are i.i.d. random analytic functions (independent of the σ-algebra FTn

)
with the same distribution as Wl(β). Note that these random analytic functions are
defined on the same probability space as the BRW. Letting l → ∞ while keeping n
fixed, we obtain

m(β)TnW∞(β) =

N ′
n

∑

j=1

eβzj,TnWj,Tn
(β),

where Wj,Tn
is the a.s. limit of W

(l)
j,Tn

as l → ∞; see (10). Subtracting from both

sides m(β)TnWTn
(β), we obtain the basic decomposition

(61) m(β)Tn(W∞(β)−WTn
(β)) =

N ′
n

∑

j=1

eβzj,Tn (Wj,Tn
(β)− 1).

In the rest of the proof we exploit the fact that the summands on the right-hand
side of (61) are conditionally independent given the σ-algebra FTn

. Essentially, we
will prove that conditionally on FTn

it is possible to apply the Lyapunov CLT to
these summands.

Remark 7.1. At this point we can explain why the variance of the limiting normal
distribution is random in the CLT for Galton–Watson processes (13) and constant in
Neininger’s CLT (2). In (13) we observe a Galton–Watson process at the fixed time
Tn = n, so that the number of summands in (61) is random, and this randomness
persists in the large n limit. In Neininger’s CLT (2), we consider a binary search
tree with n nodes meaning that the time Tn is such that N ′

n = n. So, the number of
summands in (61) is deterministic and there is no reason for the limiting variance
to be random.

7.2. The conditional distribution. Recalling the formula for DTn
(u), see (28),

we obtain the representation

(62) DTn
(u) =

N ′
n

∑

j=1

aj,n(u)

(

Wj,Tn

(

u√
Tn

)

− 1

)

where

(63) aj,n(u) = m
1
2Tnm

(

u√
Tn

)−Tn

e
u√
Tn

zj,Tn .

We regard the random analytic function DTn
as a random element with values

in the Banach algebra AR. Note that the random analytic functions aj,n and
the random variables Tn, N

′
n (“the past”) are FTn

-measurable, while the random
analytic functions Wj,Tn

(“the future”) are independent of FTn
by the Markov

property. All these random objects are defined on the same probability space, say
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(Ω,F ,P), as the branching random walk. We will write aj,n(u;ω), Tn(ω), N
′
n(ω) if

we want to stress the dependence of these random elements on ω ∈ Ω.
We are interested in the conditional distribution L(DTn

|FTn
) of DTn

given the
σ-algebra FTn

. To describe it, it will be convenient to “decouple” the “future” from
the “past” by introducing independent random analytic functions wj,n(·), j ∈ N,
which have the same law as Wj,Tn

(·)−1 (equivalently: the same law as W∞(·)−1),
but which are defined on a different probability space, say (Ω∗,F∗,P∗). With this
notation, the conditional law L(DTn

|FTn
) is given by the kernel

(64) Qn : Ω → M1(AR), ω 7→ L∗(Sn(u;ω)), ω ∈ Ω,

where L∗ denotes the law w.r.t. the probability measure P∗, and Sn(u;ω) is a
“decoupled” version of DTn

given by

(65) Sn(u;ω) :=

N ′
n(ω)
∑

j=1

aj,n(u;ω)wj,n

(

u
√

Tn(ω)

)

, u ∈ DR.

Keeping ω ∈ Ω fixed, we regard Sn(u;ω) as a random element, defined on the
probability space (Ω∗,F∗,P∗) and taking values in AR. For any fixed ω ∈ Ω,
decomposition (65) provides a representation of Sn(u;ω) as a sum of independent
(but not identically distributed) random elements defined on (Ω∗,F∗,P∗). Our aim
is to show that for P-a.a. ω ∈ Ω0, Sn(u;ω) satisfies a central limit theorem in the
sense that weakly on AR,

(66) Sn(u;ω)
w−→

n→∞
S∞(u;ω),

where the limit is defined as follows:

(67) S∞(u;ω) = σ
√

N∞(ω) ξ
(

τu
)

.

Here, ξ is as in Section 3.2. Let Ω0 ⊂ Ω be the set of all ω ∈ Ω for which the
conditions

lim
n→∞

Tn(ω) = +∞,(68)

lim
n→∞

sup
|β|<δ0

|W∞(β)−WTn
(β)| = 0(69)

are satisfied, cf. (10) and (27). Clearly, P[Ω0] = 1. For the rest of the proof of
Theorem 5.1

we keep ω ∈ Ω0 fixed.

The probability space (Ω∗,F∗,P∗) is the only remaining source of randomness.
The proof of (66) will be divided into two parts: convergence of finite-dimensional
distributions (Section 7.3) and tightness (Section 7.4).

7.3. Convergence of finite-dimensional distributions. Fix some u1, . . . , ud ∈
C. Our aim is to prove that

(Sn(u1;ω), . . . , Sn(ud;ω))
f.d.d.−→
n→∞

(S∞(u1;ω), . . . , S∞(ud;ω)).

This is done by verifying the conditions of the Lyapunov central limit theorem for
the decomposition (65). We can treat aj,n(u;ω), N

′
n(ω), Tn(ω) as deterministic,
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while wj,n are considered as AR-valued random elements defined on the probability
space (Ω∗,F∗,P∗).

Step 1: Convergence of covariances. Take some u, v ∈ C. We show that

lim
n→∞

E∗[Sn(u;ω)Sn(v;ω)] = σ2 N∞(ω) eτ
2uv,(70)

lim
n→∞

E∗[Sn(u;ω)Sn(v;ω)] = σ2 N∞(ω) eτ
2uv̄.(71)

Here, E∗ denotes the expectation operator w.r.t. the probability measure P∗. We
prove only (70) since the proof of (71) is analogous. Since aj,n(u) and aj,n(v) are
deterministic, we have

E∗[Sn(u)Sn(v)] =





N ′
n

∑

j=1

aj,n(u)aj,n(v)



E∗

[

wj,n

(

u√
Tn

)

wj,n

(

u√
Tn

)]

The proof of (70) will be accomplished after we have shown that

lim
n→∞

N ′
n

∑

j=1

aj,n(u)aj,n(v) = N∞ eτ
2uv,(72)

lim
n→∞

E∗

[

w1,n

(

u√
Tn

)

w1,n

(

v√
Tn

)]

= σ2.(73)

Proof of (72). Using first the definition of aj,n, see (63), and then the uniformity
in (10), we obtain that

N ′
n

∑

j=1

aj,n(u)aj,n(v) = e
Tn

(

ϕ(0)−ϕ
(

u√
Tn

)

−ϕ
(

v√
Tn

)) N ′
n

∑

j=1

e
u+v√

n
zj,Tn

∼ N∞e
Tn

(

ϕ(0)−ϕ
(

u√
Tn

)

−
(

v√
Tn

)

+ϕ
(

u+v√
Tn

))

.

Expanding ϕ into a Taylor series at 0, we obtain (72).

Proof of (73). Recall that limn→∞ Tn = +∞. Since w1,n has the same law as
W∞ − 1 and as such is continuous at 0, we have, P∗-a.e.,

(74) lim
n→∞

w1,n

(

u√
Tn

)

w1,n

(

v√
Tn

)

= w2
1,n(0).

We have to prove the uniform integrability in order to be able to conclude the
convergence of expectations. By Proposition 6.1,

(75) E

∣

∣

∣

∣

w1,n

(

u√
Tn

)∣

∣

∣

∣

2+δ

< C, E

∣

∣

∣

∣

w1,n

(

v√
Tn

)∣

∣

∣

∣

2+δ

< C,

where C = C(ω) may depend on ω. By the Cauchy–Schwarz inequality, the se-

quence w1,n(u/
√
Tn)w1,n(v/

√
Tn) is bounded in L1+ δ

2 (Ω∗,F∗,P∗), which implies
that it is uniformly integrable. It follows from (73) that

lim
n→∞

E∗

[

w1,n

(

u√
Tn

)

w1,n

(

v√
Tn

)]

= E∗[w
2
1,n(0)] = VarW∞(0) = σ2,
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where in the last step we used that under P∗ the random variable w1,n(0) has the
same distribution as the random variable W∞(0)− 1 = N∞ − 1 under P.

Step 2: Lyapunov condition. We verify that for every u ∈ C, the Lyapunov condi-
tion limn→∞ Rn(u) = 0 holds, where

Rn(u) =

N ′
n

∑

j=1

E∗

∣

∣

∣

∣

aj,n(u)wj,n

(

u√
Tn

)∣

∣

∣

∣

2+δ

.

Using (75) and recalling the definition of aj,n, see (63), we obtain

Rn(u) ≤ C

N ′
n

∑

j=1

|aj,n(u)|2+δ
= Ce

Tn

(

2+δ
2 ϕ(0)−(2+δ)ϕ

(

Reu√
Tn

)) N ′
n

∑

j=1

e
(2+δ)(Reu)

zj,Tn√
Tn .

Using (69) we obtain that uniformly in u ∈ DR,

Rn(u) ≤ CN∞e
Tn

(

2+δ
2 ϕ(0)−(2+δ)ϕ

(

Reu√
Tn

)

+ϕ
(

(2+δ) Re u
√

Tn

))

.

Expanding ϕ into a Taylor series at 0, we obtain the estimate

Rn(u) ≤ CN∞e−(
δ
2+o(1))Tn .

This completes the verification of the Lyapunov condition.

7.4. Tightness. We prove that for every ω ∈ Ω0, the sequence of random analytic
functions Sn(u;ω), n ∈ N, is tight on AR.

Lemma 7.2. Fix R > 0. There exist random variables M : Ω → R and N : Ω → N

such that for all ω ∈ Ω0, n > N(ω), u ∈ DR,

(76) E∗|Sn(u;ω)|2 ≤ M(ω).

The required tightness can be now established as follows. A result of Shirai
[37] (see Lemma 2.6 in [37] and the remark thereafter) states that if f1, f2, . . . are
random analytic functions defined on the disk D2R such that for some q > 0, C > 0
and all n ∈ N, u ∈ D2R, we have E|fn(u)|q < C, then the sequence fn is tight on
the space of analytic functions on the smaller disk DR. Since Lemma 7.2 holds with
R replaced by 2R, the result of Shirai implies that for every ω ∈ Ω0, the sequence
Sn(u;ω), n ∈ N, is tight on the space of analytic functions on the disc DR.

Proof of Lemma 7.2. For every ω ∈ Ω0 we have limn→∞ Tn(ω) = +∞ and hence,
we can choose a large enough N(ω) such that for all n > N(ω) the argument of the
function wj,n in the definition of Sn(u;ω), see (65), is small enough so that Sn(u;ω)
is well-defined for all u ∈ DR.

Fix some ω ∈ Ω0 and let in the sequel n > N(ω). Note that E∗Sn(u;ω) = 0.
Using the additivity of the variance and (75) we obtain that for some C1 = C1(ω)
and all n > N(ω),

E∗|Sn(u)|2 =

N ′
n

∑

j=1

|aj,n(u)|2 E∗

∣

∣

∣

∣

wj,n

(

u√
Tn

)∣

∣

∣

∣

2

≤ C1

N ′
n

∑

j=1

|aj,n(u)|2.
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Recalling the definition of aj,n, see (63), and using (69), we obtain that

E∗|Sn(u)|2 ≤ C1e
Tn

(

ϕ(0)−2Reϕ
(

u√
Tn

)) N ′
n

∑

j=1

e
2(Re u)zj,Tn√

Tn

= C1e
Tn

(

ϕ(0)−2Reϕ
(

u√
Tn

)

+ϕ
(

2Re u√
Tn

))

WTn

(

2Reu√
Tn

)

.

Expanding ϕ into a Taylor series at 0, we see that the argument of the exponential
function can be estimated by C2 = C2(ω). Also, for all ω ∈ Ω0,

lim
n→∞

WTn

(

2Reu√
Tn

;ω

)

= W∞(0;ω),

thus proving (76). �

8. Proofs of the random tree results

This section contains depoissonization arguments justifying the passage from
BRW to random trees.

8.1. Proof of Theorem 5.16. Recall that

(77) LTn
=

STn
− dnTn

eλTn
, L̃Tn

=
STn

− d
λn logn

n
, L̃∞ =

L∞
N∞

− d

λ
logN∞.

We are going to show that on the product probability space (Ω,F ,P) it holds that

L̃Tn
→ L̃∞ a.s. and in Lp for all p > 0.

Step 1: Proof of the a.s. convergence. Let us show that L̃Tn
→ L̃∞ a.s. By (77),

(78) L̃Tn
= LTn

eλTn

n
+

d

λ
(λTn − logn) .

By Proposition 5.11 (in the continuous-time version) we have

(79) LTn

a.s.−→
n→∞

L∞.

The a.s. convergence of the martingale Nt

eλt to N∞ as t → +∞ implies, with t = Tn,
that

(80)
n

eλTn

a.s.−→
n→∞

N∞, λTn = logn− logN∞ + o(1) a.s.

Inserting (79) and (80) into (78) yields that L̃Tn
→ L̃∞ a.s.

Since L̃Tn
depends only on ω ∈ Ω (and not on ω′ ∈ Ω′), the same is true for the

limit random variable L̃∞. Hence, we can regard L̃Tn
and L̃∞ as random variables

on the probability space (Ω,F ,P), and the convergence L̃Tn
→ L̃∞ holds on this

probability space as well.

In the next two steps we prove that L̃Tn
→ L̃∞ in Lp(Ω,F ,P) for every p > 0.

In fact, by the Vitali convergence theorem, it suffices to prove that the sequence
L̃Tn

is bounded in Lp for every p > 0.

Step 2: Proof that L∗
Tn

is bounded in Lp. Consider first

L∗
Tn

:=
STn

− d
λn logn

eλTn
= LTn

+
d

λ

n

eλTn
(λTn − logn).
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By Proposition 5.11 we know that LTn
is bounded in Lp. By the Minkowski and

Hölder inequalities it suffices to show that for some Cp > 0 depending only on
p > 0,

(81) E

( n

eλTn

)p

< Cp, E|λTn − logn|p < Cp.

Recall that Tn is the time at which the n-th particle is born in a Yule process with
intensity λ. This means that

Ek := λk(Tk+1 − Tk), k ∈ N,

are i.i.d. exponential random variables with parameter 1. We have the representa-
tion

(82) λTn =

n−1
∑

k=1

Ek

k
.

It follows that for every r > −1,

(83) E

( n

eλTn

)r

= nr
n−1
∏

k=1

1

1 + r
k

−→
n→∞

Γ(r + 1).

This implies the first estimate in (81). Also, for any 0 < ε < 1 we have

E|λTn − logn|p ≤ CE

( n

eλTn

)ε

+ CE

( n

eλTn

)−ε

< Cp.

This proves the second estimate in (81).

Step 3: Proof that L̃Tn
is bounded in Lp. We proved that the sequence L∗

Tn
is

bounded in Lp, but we need a similar statement for the sequence L̃Tn
. Note that

the random variables STn
and Tn are independent. We have, by Step 2,

Cp > E|L∗
Tn

|p = E

∣

∣

∣
L̃Tn

n

eλTn

∣

∣

∣

p

= E|L̃Tn
|p E

( n

eλTn

)p

> cpE|L̃Tn
|p,

where cp > 0 and the last inequality is by (83). Hence, the sequence E|L̃Tn
|p is

bounded. �

8.2. Proof of Theorem 5.18. We have to show that on the probability space
(Ω,F ,P),

(84) L
{
√

λn

logn

(

L̃∞ − STn
− d

λn logn

n

)∣

∣

∣

∣

∣

Gn

}

a.s.w.−→
n→∞

{

ω 7→ N0,σ2τ2

}

,

where we recall from (46) that L̃∞ = L∞
N∞

− d
λ logN∞. Instead, we will show that

on the product space (Ω,F ,P),

(85) L
{
√

λn

logn

(

L̃∞ − STn
− d

λn logn

n

) ∣

∣

∣

∣

∣

FTn

}

a.s.w.−→
n→∞

{

ω 7→ N0,σ2τ2

}

.

Assuming that we have established (85), let us prove (84). Note that FTn
= F ′

n⊗Gn,
so that Proposition 4.12 allows us to replace FTn

in (85) by the smaller σ-algebra
{∅,Ω} ⊗ Gn. But since the random variable on the left-hand side of (85) (defined
on the product space Ω = Ω′ × Ω) depends only on the coordinate ω ∈ Ω, we can
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discard the component Ω′ and obtain (84). In the sequel, we are occupied with the
proof of (85).

Step 1: Proof strategy. Recalling that Tn is the time at which the n-th particle
is born and using (80), we can write Theorem 5.13 in the following form: On the
product space (Ω,F ,P),

(86) L







√

eλTn

TnN∞

(

L∞ − STn
− dnTn

eλTn

)

∣

∣

∣

∣

∣

FTn







a.s.w.−→
n→∞

{

ω 7→ N0,σ2τ2

}

.

Inserting (80) into equation (86) formally, we obtain the required relation (85).
However, in order to obtain (85) rigorously we need slightly more precise asymp-
totics than those given in (80).

Step 2: Precise asymptotics for Tn. We prove that

(87) lim sup
n→∞

∣

∣N∞eλTn − n
∣

∣

√
2n log logn

= lim sup
n→∞

∣

∣

∣λTn − log n
N∞

∣

∣

∣

√

2n−1 log logn
= 1 a.s.

We need Kendall’s theorem; see [4, Thm. 2 on p. 127]. It states that conditionally
on N∞ = y > 0, the points Pn := y(eλTn − 1), n ≥ 2, form a homogeneous Poisson
point process on (0,∞). By the law of the iterated logarithm for the Poisson
process, we have

lim sup
n→∞

|Pn − n|√
2n log logn

= 1.

After standard transformations, we obtain (87). Alternatively, the second limit
in (87) could be computed using Heyde’s [19] law of the iterated logarithm applied
to the Yule process Nt evaluated at time t = Tn.

Step 3: Completing the proof. We can represent the random variable on the left-
hand side of (85) as a sum of three terms:

(88)

√

λn

logn

(

L̃∞ − STn
− d

λn logn

n

)

=

√

λTn

logn

eλTnN∞
n

·
√

eλTn

TnN∞

(

L∞ − STn
− dnTn

eλTn

)

+

√

λn

logn
L∞

(

1

N∞
− eλTn

n

)

+

√

λn

log n

d

λ

(

log
n

N∞
− λTn

)

Denote the three summands on the right-hand side of (88) by R
(1)
n , R

(2)
n , R

(3)
n . It

follows from (87) and (80) that

(89) lim
n→∞

R(2)
n = lim

n→∞
R(3)

n = 0 a.s., lim
n→∞

√

λTn

logn

eλTnN∞
n

= 1 a.s.

Applying to the decomposition on the right-hand side of (88) equations (86) and (89)
together with Proposition 4.10, we obtain the required equation (85). �
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