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FILTRATIONS OF TOTALLY REFLEXIVE MODULES

DENISE A. RANGEL TRACY

Abstract. In this paper, we will introduce a subcategory of to-
tally reflexive modules that have a saturated filtration by other
totally reflexive modules. We will prove these are precisely the to-
tally reflexive modules with an upper-triangular presentation ma-
trix. We conclude with an investigation of the ranks of Ext1 of two
such modules over a specific ring.

1. Introduction and Preliminaries

Totally reflexive modules were introduced by Auslander and Bridger
[1] as modules of Gorenstein dimension zero. It was not until 2002 when
Avramov and Martsinkovsky [3] first referred to them as totally reflex-
ive, to better emphasize their homological properties. Over Goren-
stein rings, totally reflexive modules are exactly the maximal Cohen-
Macaulay modules, whose representation theory is well developed, for
example see [12], [14]. However, over non-Gorenstein rings much less
is known. Something that is known from [6] is that if there exists a
non-free totally reflexive module over a non-Gorenstein local ring with
the residue field of characteristic 0, then there exist infinitely many
non-isomorphic indecomposable totally reflexive modules over the ring
as well. In fact in [5] and [10] infinite families of non-isomorphic in-
decomposable totally reflexive modules are constructed, both of which
arise from exact zero divisors.
Although totally reflexive modules were originally defined for a broader

class of rings, for this paper we assume R to be a commutative Noe-
therian local ring. A finitely generated R-module M is called totally
reflexive if the biduality map, δ : M → HomR(HomR(M,R), R) is
an isomorphism, ExtiR(M,R) = 0 and ExtiR(HomR(M,R), R) = 0 for
all i > 0. Projective modules are obviously totally reflexive. We call
a nonzero totally reflexive module nontrivial if it is not a projective
module. A complex is called acyclic if its homology is zero. A totally
acyclic complex is an acyclic complex A whose dual HomR(A, R) is
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also acyclic. A module being totally reflexive is equivalent to being a
syzygy in a totally acyclic complex of finitely generated free modules.
Recall that over a local ring (R,m) a complex (F, ∂) of free modules is
said to be minimal if im ∂Fi ⊆ mFi−1 for all i.
Through out this paper we will investigate these modules via their

presentation matrix, which is a matrix whose columns are a minimal
generating set of the module. Presentation matrices are not unique.
However, when over commutative Noetherian local rings two minimal
presentation matrices of the same module must be equivalent, see [11].
In this paper, we investigate the structure of totally reflexive mod-

ules over local non-Gorenstein Artinian rings by looking at their totally
reflexive submodules. We are most interested in the case when the
quotient module formed by the totally reflexive module and a totally
reflexive submodule is also totally reflexive and of minimal length. If
this occurs, then we say that the module has a saturated TR-filtration,
see Definition 6 for a more precise description. We prove that knowing
if a totally reflexive module has a saturated TR-filtration is directly
linked to the existence of a minimal presentation matrix of the module
that is upper triangular.

Theorem. Let (R,m) be a non-Gorenstein ring with m
3 = 0 6= m

2

that contains exact zero divisors, and suppose that T is a totally reflex-
ive R-module. There exists a saturated TR-filtration of T if and only
if T has an upper triangular presentation matrix.

From this theorem, we obtain two corollaries. Corollary 14 gives fur-
ther information about the form of this upper triangular presentation
matrix. Additionally, Corollary 13 proves the existence of a complete
resolution in which every differential can be simultaneously represented
by upper triangular matrices. We conclude with an extensive example
of the theory, including a study of the number of ways a saturated
TR-filtration can occur.

1.1. Previously Known Results. Since the results in this paper are
proven with the ring being commutative local non-Gorenstein with the
cube of the maximal ideal equaling zero, we give two previously known
theorems which provide useful facts about these types of rings and
totally reflexive modules over them. For a local Artinian ring (R,m, k),
set e = length(m/m2) to be the embedding dimension of R.

Theorem 1. [15, Theorem 3.1] Let (R,m, k) be a commutative local
Artinian non-Gorenstein ring with m

3 = 0 6= m
2. If there exist a non-

trivial totally reflexive R-module T, then the following conditions hold:
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(a) (0 :R m) = m
2

(b) length(0 :R m) = e− 1, in particular, length(R) = 2e.
(c) Let n be the minimal number of generators of T, then length(T ) =

ne.
(d) T has a minimal free resolution of the form

· · · → Rn d2−→ Rn d1−→ Rn → T → 0.

Remark 2. Part (d) of the previous theorem implies that every differ-
ential in a minimal free resolution of T can be presented by a square
matrix. Moreover, any minimal presentation matrix of T is a square
matrix. This fact holds for a complete resolution of T as well, since
any syzygy in a complete resolution of a totally reflexive modules is
also totally reflexive.

Theorem 3. [5, Theorem 5.3] Let (R,m) be a local ring with m
3 = 0

and e ≥ 3. Let x be an element of m/m2; the following conditions are
equivalent.

(i) The element x is an exact zero divisor in R.
(ii) The Hilbert series of R is 1 + eτ + (e− 1)τ 2, and there exists an

exact sequence of finitely generated free R-modules

F : F3 → F2 −→ F1
ψ
−→ F0 → F−1

such that HomR(F, R) is exact, the homomorphisms are repre-
sented by matrices with entries in m, and ψ is represented by a
matrix in which some row has x as an entry and no other entry
from m/m2.

An exact zero divisor is a special type of ring element, one that is
quite significant in these results, see Definition 7.

2. Filtrations and Upper Triangular Presentation

Matrices

Before we present the main theorem of this paper, we need to make
note of a few facts when considering modules via their presentation
matrices.

Lemma 4. Let (R,m, k) be a commutative local non-Gorenstein ring
with m

3 = 0 6= m
2 and M an R-module. If a presentation matrix of M

has a column whose entries are contained in m
2, then the first syzygy

of M contains a copy of k as a direct summand.

Proof. Let m = (x1, . . . , xe), where e is the embedding dimension of R,
and suppose M has the presentation matrix M = [c1, . . . , cs], where
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ci ∈ Rb0 . Also, after row and column operations, we may assume that
c1 ⊂ m

2Rb0 . Let

F : · · · → Rb2 N
−→ Rb1 M

−→ Rb0 → 0

be a deleted free resolution of M . Since MN = 0, for 1 ≤ i ≤ e we

have that the elements









xi
0
...
0









, are part of a minimal generating set

of the syzygies of M. Without loss of generality, assume that N has
the form









x1 . . . xe 0 . . . 0
0 . . . 0 ∗ . . . ∗
...

. . .
...

...
. . .

...
0 . . . 0 ∗ . . . ∗









.

Note that the entries in the first row, after the eth column, are all
zeroes. This is true since if there was a nonzero entry there, then
it would be a linear combination of the first e columns. Therefore,
cokerN ∼= k ⊕X, for some R-module X . �

Proposition 5. Let (R,m, k) be a non-Gorenstein ring with m
3 = 0 6=

m
2. If the nth syzygy of an R-module M , ΩRn (M) contains a copy of k

as a direct sum, then M is not totally reflexive.

Proof. Assume that for some R-module X, we have ΩRn (M) ∼= k ⊕ X .
Now suppose thatM is totally reflexive, and therefore, ΩRn (M) is totally
reflexive as well since it is a syzygy of M . Then, for all i > 0, we have
ExtiR(Ω

R
n (M), R) = 0 and thus ExtiR(k⊕X,R) = 0 for all i > 0, which

implies that ExtiR(k, R) = 0, for all i > 0. This holds if and only if
R is Gorenstein. However, we assumed R not to be Gorenstein, and
therefore M cannot be totally reflexive. �

Definition 6. For a totally reflexive R-module T , a TR-filtration of T
is a chain of submodules

0 = T0 ⊂ T1 ⊂ · · · ⊂ Tn−1 ⊂ Tn = T,

in which the following hold for all i = 1, . . . , n :

(i) Ti is totally reflexive
(ii) Ti/Ti−1 is totally reflexive
(iii) Ti/Ti−1 contains no proper nonzero totally reflexive submodules.

We say a filtration is a saturated TR-filtration if, in addition, we
have that
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(iv) Ti/Ti−1 is of minimal length among the totally reflexive R-modules.

In [9] the elements of the ring which play a vital role in the construc-
tion of these filtrations are defined as follows.

Definition 7. For a commutative ring A, a non-unit a ∈ A is said to
be an exact zero divisor if there exists b ∈ A such that (0 : a) = (b)
and (0 : b) = (a). If A is local then b is unique up to unit, and we call
(a, b) an exact pair of zero divisors.

This is equivalent to the existence of a free resolution of A/(a) of the
form

· · · → A
[b]
−→ A

[a]
−→ A

[b]
−→ A

[a]
−→ A→ 0

Remark 8. The complex in Definition 7 is totally acyclic and thus the
modules A/(a) and A/(b) are totally reflexive. In fact, in certain cases
the reverse it also true.

Lemma 9. Let (R,m) be a local ring with m
3 = 0 6= m

2, and let a ∈ R.
If R/(a) is a totally reflexive module, then a is an exact zero divisor.

Proof. Let R/(a) be a totally reflexive module, and so by Theorem 15
it has a free resolution of the form

F : · · · → R
b2−→ R

b1−→ R
a
−→ R → 0.

This implies that (0 : a) = (b1). Apply the Hom functor, we obtain the
complex

HomR(F, R) : 0 → HomR(R/(a), R) −→ R
a∗

−→ R
b∗
1−→ R → · · · ,

which is exact because R/(a) is totally reflexive. This is isomorphic to

0 → (R/(a))∗ −→ R
a
−→ R

b1−→ R → · · · .

Therefore, ker(a) = (b1) and we have that (0 : b1) = (a). Hence (a, b1)
are an exact pair of zero divisors. �

Lemma 10. Let (R,m) be a non-Gorenstein ring with m
3 = 0 6= m

2

and embedding dimension e. If a totally reflexive R-module T has a
minimal presentation matrix that contains a row with only one nonzero
entry, then there exists a totally reflexive submodule U ⊂ T such that
length (U) = length (T )− e.

Proof. Let

F : · · · → F2
W
−→ F1

T
−→ F0 → F−1 → · · ·
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be a complete free resolution of T, where W = (ωij) is a presentation
matrix of ΩR1 (T ) and let

T =









t11 · · · t1n
...

...
tn−11 · · · tn−1n

0 · · · 0 tnn









be a presentation matrix of T. From Theorem 3 we know that tnn is an
exact zero divisor of R. Let s generate (0 : tnn). Since TW = 0, we have
that tnnωnj = 0 for all j = 1, . . . , n. Thus, the ideal (ωn1, . . . , ωnn) ⊂
(0 : tnn) = (s). This, with Lemma 4, implies that for some i we have
ωni = s, up to units. Therefore, every entry in the nth row of W is a
multiple of s. We can apply column operations to W to assume that

W =





w11 · · · w1n
...

...
0 · · · 0 s





is another presentation matrix of ΩR1 (T ).
Define W’ to be the (n− 1) by (n− 1) matrix obtained by deleting

the nth row and nth column from W. Similarly, we define T’ to be the
(n − 1) by (n − 1) matrix obtained by deleting the nth row and nth
column from T. Note that W′T′ = 0, and now consider the following
commutative diagram:

0

��

0

��

0

��

G′ : Rn−1 W′

// Rn−1 T′

// Rn−1 // 0

G : Rn W
//

��

q

Rn T
//

��

q

Rn //
��

q

0

G′′ : R
[w]

//

��

p

R
[tnn]

//

��

p

R //

��

p

0

0
��

0
��

0
��
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where q :=









1 0
. . .

0 1
0 . . . 0









and p :=
[

0 . . . 0 1
]

. Thus we have an

exact sequence of complexes

0 → G
′ → G → G

′′ → 0

which yields the following long exact sequence of homology.

· · · → H1(G
′′) → H0(G

′) → H0(G) → H0(G
′′) → 0.

Note that H1(G
′′) = 0 since R

[w]
−→ R

[tnn]
−→ R is exact. Let cokerT′ and

so U ⊂ T . Therefore, H0(G
′′) = R/(tnn) ∼= T/U and we have the short

exact sequence

0 → U → T → T/U → 0.

To see that U is in fact totally reflexive, note that T/U ∼= R/(tnn) is
totally reflexive since (tnn) is an exact zero divisor. This, along with the
fact that T is totally reflexive, implies that U is as well, see [4, Corollary
4.3.5]. From Yoshino’s theorem, here listed as Theorem 1, part (b), we
know that the length of R/(tnn) is the number of its minimal generators
times the embedding dimension. Therefore, length(R/(tnn)) = e and
thus length(U) = length(T )− e. �

Theorem 11. Let (R,m) be a non-Gorenstein ring with m
3 = 0 6=

m
2 that contains exact zero divisors, and suppose that T is a totally

reflexive R-module. There exists a saturated TR-filtration of T if and
only if T has an upper triangular presentation matrix.

Proof. Let T be totally reflexive R-module with minimal number of
generators µ(T ) = n and suppose there exists a saturated TR-filtering
of T . To show that T has an upper triangular presentation matrix we
will use induction on µ(T ). If µ(T ) = 1, then any presentation matrix
of T would be of size 1× 1 and thus trivially upper triangular.
Assuming true for µ(T ) = n, consider the case µ(T ) = n + 1. By

Lemma 10 there exists a totally reflexive R-module M ⊂ T such that
the sequence

0 →M → T → T/M → 0

is exact and T/M is cyclic. Define N := T/M and let F and G be free
resolutions of M and N respectively. Since R is local with m

3 = 0, we
can assume that Fi = Rn and Gi = R, for all i ≥ 0, [7]. By applying
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the Horseshoe Lemma, we get the following diagram:

(2.1) 0 // Rn //

dM
1

��

Rn ⊕R //

dT
1

��

R //

dN
1

��

σ1

{{①①
①
①
①
①
①
①
①
①
①
①
①

0

0 // Rn //

ǫM

��

Rn ⊕R //

ǫT

��

R //

ǫN

��

σ0

{{①①
①
①
①
①
①
①
①
①
①
①
①
①

0

0 // M // T // N // 0

0
��

0
��

0
��

where dT1 (f, g) 7→ dM1 (f)+σ1(g). Since d
M
1 (f) ∈ Rn and σ1(g) ∈ Rn⊕R,

when we consider them as columns in a presentation matrix of T we
have the matrix

(2.2)

[

dM1 f ′

0 g′

]

,

where σ1(g) = f ′ + g′ for some f ′ ∈ Rn and g′ ∈ R, we see that it
is upper triangular. This matrix is a presentation matrix of T . By
induction, the matrix representing dM1 (f) can be taken to be upper
triangular and therefore (2.2) is upper triangular.

Now suppose T has an upper triangular presentation matrix, say




t11 · · · t1n
. . .

...
0 tnn



 .

Again we will use induction on the minimal number of generators. If
n = 2, then by Lemma 10 there exists a totally reflexive R-module
T1 ∼= R/(t11) which is a submodule of T. Thus, T has a saturated
TR-filtration

0 = T0 ⊂ T1 ⊂ T2 = T

with T2/T1 ∼= R/(t22). Now assume that an n-generated totally reflexive
module with an upper triangular presentation matrix has a saturated
TR-filtration

0 = T0 ⊂ T1 ⊂ . . . . ⊂ Tn−1 ⊂ Tn
with Ti/Ti−1 being one generated and totally reflexive for i = 1, . . . , n.
Consider an (n + 1)-generated totally reflexive module T, which has
with an upper triangular presentation matrix. By Lemma 10, there
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exists a totally reflexive module Tn such that Tn is a submodule of T
and has presentation matrix of the form





t11 · · · t1n
. . .

...
0 tnn





with T/Tn ∼= R/tn+1n+1. This, combined with the induction hypothesis,
shows that T has a saturated TR-filtration. �

Definition 12. An upper triangular complex is a complex in which
every differential can simultaneously be represented by a square matrix
(aij) such that aij = 0 when i > j.

Corollary 13. Let (R,m) be a non-Gorenstein ring with m
3 = 0 6= m

2

that contains exact zero divisors. If T is a totally reflexive R-module
that has an upper triangular minimal presentation matrix, then it has
an upper triangular minimal complete resolution.

Proof. This will be done by induction on the number of minimal genera-
tors. Let T be a totally reflexive R-module that has an upper triangular
minimal presentation matrix with µ(T ) = n. and thus the matrix is of
size n× n. Let F be a free resolution of T. By [7, Theorem B], we have
that rankR F1 = n for all i ∈ Z. If µ(T ) = 1, then the free resolution of
T is trivially upper triangular.

Assume for µ(T ) = n that F is an upper triangular minimal free
resolution and consider the case when T has a presentation matrix of
the form





t11 · · · t1n+1

. . .
...

0 tn+1n+1



 .

By Theorem 11, there exists an saturated TR-filtration and thus the
short exact sequence

0 → Tn → T → R/(tn+1n+1) → 0.

From the Horseshoe Lemma, a diagram similar to (2.1) can be ob-
tained and extended to include the first syzygies. By a similar argu-
ment to the proof of Theorem 11, we see that the first syzygy of T
has an upper triangular presentation matrix. Finally, any syzygy in a
free resolution of totally reflexive module is also totally reflexive [4].
Therefore, we can apply this corollary to the nth syzygy to see that
the n+ 1 the syzygy has an upper triangular presentation matrix. �
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Corollary 14. Let (R,m) be a non-Gorenstein ring with m
3 = 0 6= m

2

that contains exact zero divisors. For an R-module M that has an
upper triangular presentation matrix, the non-zero entries on the main
diagonal of that presentation matrix are exact zero divisors if and only
if M is totally reflexive.

Proof. Both directions of this proof rely on the existence of a satu-
rated TR-filtration. First, suppose M is totally reflexive and has an
upper triangular presentation matrix. Hence, we have a saturated TR-
filtration

0 =M0 ⊂M1 ⊂ · · · ⊂Mn−1 ⊂Mn =M,

as well as short exact sequences

0 →Mi−1 → Mi →Mi/Mi−1 → 0

for all i = 2, · · · , n. If i = 2, then for some u, v, α ∈ R we have

0 → R/(u) → coker

[

u α
0 v

]

→ R/(v) → 0.

From Lemma 9 both u and v are exact zero divisors. Assume this holds
for n− 1, and consider

0 →Mn−1 →Mn → Mn/Mn−1 → 0.

By the induction hypothesis, Mn−1 has a upper triangular presentation
matrix with exact zero divisors on the main diagonal. If M = (aij) is a
presentation matrix of Mn, then Mn/Mn−1

∼= R/(ann). Since R/(ann)
is totally reflexive, ann is an exact zero divisor. Therefore, for all i, aii
are exact zero divisors.
Now suppose M has an upper triangular presentation matrix where

the non-zero entries on the main diagonal are exact zero divisors. By
the inductive part of the proof of Theorem 11,M is totally reflexive. �

3. Filtrations and Yoneda Ext

Recall that the Yoneda definition [8, Appendix A3] of Ext1R(N,M)
for two R-modules M,N gives a correspondence between the elements
of Ext1R(N,M) and equivalence classes of exact sequences of the form

0 →M → X → N → 0.

If an R-module T has a TR-filtration,

0 = T0 ⊂ T1 ⊂ · · · ⊂ Tn−1 ⊂ Tn = T,

then there exist short exact sequences

0 → Ti−1 → Ti → Ti/Ti−1 → 0
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and hence an element in Ext1R(Ti/Ti−1, Ti−1). In this section, we inves-
tigate the number of possible nonequivalent short exact sequences of
the above form for a specific ring. We start with brief discussion on
the Yoneda definition of Ext1 .
Let

· · · −→ F2
∂2−→ F1

∂1−→ F0 −→ N −→ 0

be a free resolution of N, and so we have an exact sequence

0 → im ∂1 → F0 → N → 0.

If we have some (a + im ∂∗1) ∈ Ext1R(N,M), then a ∈ Hom(F0,M).
Define a′ to be a restricted to im ∂1 and ι to be the natural inclusion
from im ∂1 to F0. We can obtain the following commutative diagram
using the pushout of a′ and ι.

0 // im ∂1

a′

��

ι
// F0

//

��

N // 0

0 // M // (M ⊕ F0)/I // N // 0

where I = (−a′(r), ι(r)|r ∈ im ∂1). When considering filtrations, (M ⊕
Rb0)/I is the next larger submodule on the chain of submodules. In
order to gain a better understanding of how this translates to a presen-
tation matrix, we will compute this for the second module in a filtration
over a specific ring.
For the reminder of this paper, let S = k[X, Y, Z]/(X2, Y 2, Z2, Y Z),

and define x, y, and z to be the image of X, Y, and Z, respectively.
Also, let T1 = S/(x + by + cz) and N = S/(x + dy + fz) where
b, c, d, f ∈ k, so they are the cokernal of an exact zero divisor. When
considering Ext1S(N, T1) by the Yoneda definition, a non-zero element
of Ext1S(N, T1) corresponded to a short exact sequence of the form

0 → T1 → T2 → N → 0.

If Ext1S(N, T1) 6= 0, then this will allow us to have a saturated TR-
filtration of T2,

0 ⊂ T1 ⊂ T2.

We now will find a presentation matrix for possible T2.
Let

FN : · · · −→ S
∂3−→ S

∂2−→ S
∂1−→ S → 0

be a (deleted) minimal free resolution of N where

∂i =

{

[x+ dy + fz], if i is odd
[x− dy − fz], if i is even.
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For (a+im ∂∗1) ∈ Ext1S(N, T1) where α ∈ ker(HomS(∂2, T1)), we have
that α ∈ HomS(S, T1) ∼= T1. We will identify elements of HomS(S, T1)
with T1 under the natural isomorphism. Using the previous description,

0 // im ∂1

α′

��

ι
// S //

��

N // 0

0 // T1 // (T1 ⊕ S)/I // N // 0

we find that the push out is T2 := (T1 ⊕ S)/I. To find a presentation
matrix for T2, we need to find a matrix T2 in which the following
complex is exact

S2 T2−→ S2 p
−→ T2 = (T1 ⊕ S)/I → 0.

Take e1, e2 to be the standard basis in S2 and define p(e1) = (1, 0)+I
and p(e2) = (0, 1) + I. To find the image of T2 we just need to find
the kernel of p which is shown below.

(x+ by+ cz)p(e1) ≡ 0 and −αp(e1) + (x+ dy+ fz)p(e2) ≡ 0

where α ∈ S/(x+ by + cz). Therefore, a presentation matrix for T2 is

T2 =

[

x+ by + cz −α̃
0 x+ dy + fz

]

,

where α̃ is a preimage of α in S.

3.1. The Rank of Ext1S(N, T1). Since every element in Ext1 can be
viewed as a short exact sequence, to get a sense of how many nonequiv-
alent sequences exist we study the k-vector space rank of Ext1 . As
before, let T1 = S/(x+ by + cz) and N = S/(x+ dy + fz). If

FN : → S
∂2−→ S

∂1−→ S → 0

is a (deleted) free resolution of N , then the complex HomS(FN , T1) has
the form

0 → T1
HomS(∂1,T1)
−−−−−−−→ T1

HomS(∂2,T1)
−−−−−−−→ T1

HomS(∂3,T1)]
−−−−−−−−→ T1 → · · ·

and Ext1S(N, T1) = H1(HomS(FN , T1)) = ker(HomS(∂2, T1))/ im(HomS(∂1, T1)).
We can compute the kernels and images of these maps:

ker(HomS(∂2, T1)) =

{

(1) ∼= T1, if b = −d and c = −f
(y, z), otherwise

im(HomS(∂1, T1)) = ((b− d)y + (c− f)z).
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Therefore,

Ext1S(N, T1) =

{

T1/((d− b)y + (f − c)z), if b = −d and c = −f
(y, z)/((d− b)y + (f − c)z), otherwise,

and, provided char(k) 6= 2, we have

rank(Ext1S(N, T1)) =







3, if b = c = d = f = 0
2, if b = −d and c = −f, or if b = d and c = f
1, otherwise.

Suppose (u, v) are an exact pair of zero divisors. Then for some
f1, f2 ∈ k, we have u = x + f1y + f2z and v = x − f1y − f2z. From
the above computations, for some [α] ∈ Ext1S(S/u, S/v) and some S-
module M, there exists the short exact sequence

λ : 0 → S/v →M → S/u→ 0,

where M has a presentation matrix

M =

[

v −α
0 u

]

.

In this case, 1S is a possibility for −α since 1 ∈ ker(HomS(∂2, S/v)).
However

cokerM = coker

[

v 1S
0 u

]

∼= S.

This implies that λ represents part of the complete resolution of R/v.
Since this is always the case when we have a pair of exact zero divisors,
we exclude it to focus on when the non-syzygy cases occurs. Hence, we
define ΓS(N, T1) to represent the rank of the elements in Ext1S(N, T1)
which are not part of a complete resolution of T1. Therefore,

(3.1) ΓS(N, T1) :=

{

2 if b = c = d = f = 0 or b = d and c = f,
1 otherwise.

3.2. Bounds on the Ranks of Ext1R(Ti/Ti−1, Ti−1). Let Tn be a to-
tally reflexive module over (R,m, k) with m

3 = 0 that has an n × n
upper triangular minimal presentation matrix. From Theorem 1.4 in
[5], we know that if there exists one nontrivial totally reflexive modules
and if k is of characteristic zero, then there are infinitely many non-
isomorphic indecomposable totally reflexive modules of each admissible
length, specifically a multiple of the embedding dimension of the ring.
Assume that R is also a finite dimension k-algebra. We investigate the
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rank of Ext1R(Ti/Ti−1, Ti−1) to get a sense of the complexity (or sim-
plicity) of modules of each possible length. Consider the short exact
sequence

0 → Ti−1 → Ti → Ti/T−1 → 0.

From this short exact sequence we can obtain a long exact sequence
of Ext

· · · → Ext1R(Ti/Ti−1, Ti−1) → Ext1R(Ti/Ti−1, Ti) → Ext1R(Ti/Ti−1, Ti/Ti−1) → · · · .

We then have the inequality

rank(Ext1R(Ti/Ti−1, Ti)) ≤
rank(Ext1R(Ti/Ti−1, Ti/Ti−1)) + rank(Ext1R(Ti/Ti−1, Ti−1)).

Now we will find an upper bound for Γ(Ti/Ti−1, Ti−1) over the ring
S = k[X, Y, Z]/(X2, Y 2, Z2, Y Z). By (3.1), if we consider the case when
i = 2, then we also have that 1 ≤ Γ(T2/T1, T1) ≤ 2. Therefore

rankΓS(T2/T1, T2) ≤ 4.

By induction we see that

ΓS(Ti/Ti−1, Ti) ≤ 2n for i = 2, 3 . . . .

In fact, we know of cases when this rank is bounded below by one.
That is, there exists a nontrivial short exact sequence beginning in Ti
and ending in Ti/Ti−1. To find such a case, per [5], we define the b× b
upper triangular matrix

(3.2) Mb(s, t, u, v) =



















s u 0 0 0 . . .
0 t v 0 0 . . .
0 0 s u 0 . . .
0 0 0 t v

0 0 0 0 s
. . .

...
...

...
...

. . .



















,

and consider the following theorem.

Theorem 15. [5, Theorem 3.1] Let (R,m) be a local ring and assume
that s and t are elements in m\m2 that form an exact pair of zero
divisors. Assume further that u and v are elements in m\m2 with
uv = 0 and that one of the following conditions holds:
(a) The elements s, t, and u are linearly independent modulo m

2.
(b) One has s ∈ (t) +m

2 and u, v /∈ (t) +m
2.

For every b ∈ N, the R-module Mb(s, t, u, v) is indecomposable, totally
reflexive, and non-free. Moreover cokerMb(s, t, u, v) has constant Betti
numbers, equal to b.
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Over S the all of the exact pairs of zero divisors are of the form
(x+ αy + βz, x − αy − βz) for α, β ∈ k ??. Now consider the choices
for u, v ∈ m\m2 whose product is zero. From part (a) of Theorem 15,
x+αy+βz, x−αy−βz and umust be linearly independent in m/m2. For
γ, η, λ, τ ∈ k let u = γy + ηz and v = λy + τz. Therefore, for γ 6= ±2α
and η 6= ±2β we have thatMb(x+αy+βz, x−αy−βz, γy+ηz, λy+τz)
is a presentation matrix of a nontrivial indecomposable totally reflexive
S-module.
Although Theorem 15 is useful in finding some of the indecomposable

totally reflexive modules that have an upper triangular presentation
matrix, it says nothing about whether the choices of s, t, u, and v will
lead to non-isomorphic modules. In fact, notice that for the choices
above of u and v over S, neither one of them contains an x term. This
is because if either of them did, then one can always find an equivalent
presentation matrix, and thus an isomorphic module, which does not
have an x term on the super diagonal.

4. Over Finite Fields

Let us now consider the ring Z2[X, Y, Z]/(X
2, Y 2, Z2, Y Z). Now we

can list the four one-generated totally reflexive modules:

(x), (x+ y), (x+ z), (x+ y + z),

all of which are non-isomorphic. From here we can construct all possible
totally reflexive modules that have a 2×2 upper triangular presentation
matrix, say

(4.1)

[

u a
0 t

]

.

However, there may be many modules that have isomorphic presen-
tation matrices. Recall from [11, Theorem 4.3], that two modules are
isomorphic if and only if they have equivalent presentation matrices.
To discover which ones do, we start with the assumption that a does
not contain an x term. Since u and t both must have an x term, we

have that

[

u a
0 t

]

is equivalent to

[

u a− t
0 t

]

. Define

T = {x, x+ y, x+ z, x+ y + z} and N = {y, z, y + z},

and hence u, t ∈ T and a ∈ N . We will also impose an ordering on the
elements in T and N as the order listed above from smallest to largest.
For i = 1, 2 let ui, ti ∈ T and ai ∈ N , the for two matrices

M1 =

[

u1 a1
0 t1

]

and M2 =

[

u2 a2
0 t2

]
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define M1 to be smaller than M2 if

u1 < u2 or

u1 = u2 and t1 < t2 or

u1 = u2, t1 = t2 and a1 < a2.

Through the use of the CAS Magma, we can find the isomorphism
classes of all totally reflexive modules that have a 2 × 2 upper trian-
gular presentation matrix. We chose the smallest presentation matrix
to represent each class. There are 24 non-isomorphic indecomposable
totally reflexive modules with an upper triangular presentation matrix.
In the below table, we list representatives for each isomorphism class.

For a matrix in the form of (4.1), the options for a which represent non-
isomorphic indecomposable totally reflexive modules are listed in the
center of the table.

u ↓ t → x x+ y x+ z x+ y + z

x y, z, y + z z y y
x+ y z y, z, y + z y y
x+ z y y y, z, y + z z
x+ y + z y y z y, z, y + z

Something to note about these modules when the coefficient field is
Z2 is that it is not possible to interchange u and t,while keeping the
same a, and have them be isomorphic to each other. However, this is
not the case if instead we consider modules over Z3[x, y, z]/(x

2, y2, z2, yz).

Over this ring, a module with presentation matrix

[

u a
0 t

]

is isomor-

phic to one with

[

t a
0 u

]

as a presentation matrix.

Theorem 11 is useful in determining how the totally reflexive sub-
modules of a totally reflexive module are contained in one another in
this special case. However, there are totally reflexive modules which
do not have an upper triangular presentation matrix and thus do not
have a saturated TR-filtration. We conclude with an example of such
a module.

5. An example with no upper triangular presentation

matrix

Example 16. Consider the S-module T with a presentation matrix of

T :=

[

x z
y x

]

,
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where S is the same ring defined previously, with char(k) = 0. This is
a totally reflexive module. Take a free resolution of it

FT : · · · → S2





x z
y x





−−−−−−→ S2





x −z
−y x





−−−−−−−−−→ S2





x z
y x





−−−−−−→ S2 → 0

and apply the functor HomS( , S).

HomS(FT , S) : 0 → S2





x z
y x





−−−−−−→ S2





x −z
−y x





−−−−−−−−−→ S2





x z
y x





−−−−−−→ S2 → · · ·

Therefore, HomS(FT , S) ∼= FT and hence the complex HomS(FT , S)
is also exact. This implies that T is a totally reflexive S-module. In
particular, this module is not isomorphic to a totally reflexive module
that has an upper triangular presentation matrix. This can be done
by showing that the matrix T is not equivalent to an upper triangular
matrix.

Proposition 17. For T =

[

x z
y x

]

, a totally reflexive S-module, the

totally reflexive module T = coker(T) is not isomorphic to a totally
reflexive module that has a upper triangular presentation matrix.

Proof. Suppose that for an upper triangular matrixU we have cokerT ∼=
cokerU, and hence T would be equivalent to U. That is, there would

exist two invertible matrices

[

a b
c d

]

and

[

e f
g h

]

where a, b, . . . , h ∈

k such that

[

a b
c d

]

T

[

e f
g h

]

= U.(5.1)

For α, β, γ, ζ, ϕ, ψ, and λ in k, let

U :=

[

x+ αy + βz ζx+ ϕy + ψz
0 x+ γy + λz

]

Computing the products in (5.1) gives us
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[

a b
c d

] [

x z
y x

] [

e f
g h

]

=

[

x+ αy + βz ζx+ ϕy + ψz
0 x+ γy + λz

]

[

(ae+ bg)x+ bey + agz (af + bh)x+ bfy + ahz
(ce+ dg)x + edy + cgz (cf − dh)x+ dfy + chz

]

=

[

x+ αy + βz ζx+ ϕy + ψz
0 x+ γy + λz

]

.

These yield a system of equations that one can show to be inconsis-
tent. Therefore, T is not equivalent to U and thus T is not isomorphic
to another totally reflexive module that has a upper triangular presen-
tation matrix. �
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