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A CHARACTERIZATION OF BARYCENTRICALLY PREASSOCIATIVE
FUNCTIONS

JEAN-LUC MARICHAL AND BRUNO TEHEUX

ABSTRACT. We provide a characterization of the variadic functionsclvtare barycentri-
cally preassociative as compositions of length-presgrassociative string functions with
one-to-one unary maps. We also discuss some consequertbés afaracterization.

1. INTRODUCTION

Let X andY be arbitrary nonempty sets. Throughout this paper we reggidsx
in X™ asn-strings overX. We let X = U,5o X" be the set of all strings ove¥, with
the convention thak® = {¢} (i.e., ¢ denotes the uniqueé-string onX). We denote the
elements ofX * by bold roman letters, y, z. If we want to stress that such an element is
a letter of X', we use non-bold italic letters vy, z, etc. Thelengthof a stringx is denoted
by |x|. For instancelc| = 0. We endow the seX * with the concatenation operation, for
whiche is the neutral element, i.esx = xe = x. For instance, ik € X"™ andy € X, then
xy € X™*1. Moreover, for every string and every integer. > 0, the powerx™ stands for
the string obtained by concatenatingopies ofx. In particular we have = ¢.

As usual, amapg™ X™ — Y is said to be am-ary function(ann-ary operation onX if
Y = X). Also, a mapF: X* - Y is said to be aariadic function(a string function onX
if Y = X*; seel5]). For every variadic functiofi: X* — Y and every integen > 0, we
denote byF;, then-ary part F|x~ of F.

Recall that a variadic functioR: X* — Y is said to bepreassociativé6l[7] if, for any
x,y,y ,z € X*, we have

F(y)=F(y') = F(xyz)=F(xy'z).

Also, a variadic functionF: X* — Y is said to bebarycentrically preassociativéor B-
preassociativdor short) [8] if, for anyx,y,y’,z € X*, we have
lyl=ly'| and F(y)=F(y') = F(xyz)=F(xy'z).

Contrary to preassociativity, B-preassociativity resétle associativity-like property of
the barycenter (just regatl(x) as the barycenter of a setof identical homogeneous
balls in X = R™). In descriptive statistics and aggregation function tkiethis condition
says that the aggregated value of a series of humericalsatueains unchanged when
modifying a bundle of these values without changing theitigbaggregation.

B-preassociativity has been recently utilized by the argthio the following charac-
terization of thequasi-arithmetic pre-mean functionthus generalizing the well-known
Kolmogoroff-Nagumo'’s characterization of the quasitarietic mean functions.
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Theorem 1 ( [8]]). LetI be a nontrivial real interval, possibly unbounded. A fuonti
F:T* - R is B-preassociative and, for every> 1, the functionF), is symmetric, con-
tinuous, and strictly increasing in each argument if andyoifithere are continuous and
strictly increasing functiong:T — R and f,,:R - R (n > 1) such that

Fo(x) = fn(%if(%)), n2l.

Remarkl. If we add the condition that evedy, is idempotent (i.e.F,(z™) = x for every
x € X) in Theorent L, then we necessarily haye= f~! for everyn > 1, thus reducing this
result to Kolmogoroff-Nagumao's characterization of theagwarithmetic mean functions
[4l[9]. However, there are also many non-idempotent quidtsiraetic pre-mean functions.
Taking for instancef,,(x) = nx and f(x) = x over the reald = R, we obtain the sum
function. Takingf,(x) = exp(nz) and f(x) = In(x) overI = ]0, o[, we obtain the
product function.

In this paper we show that B-preassociative functions cafabirized as composi-
tions of length-preserving associative string functionthwne-to-one unary maps. We
also show how this factorization result generalizes a atar&ation of a noteworthy sub-
class of B-preassociative functions given by the authof8]inFinally, we mention some
interesting consequences of this new characterization.

The terminology used throughout this paper is the followiige domain, range, and
kernel of any functionf are denoted bylom( f), ran(f), andker(f), respectively. The
identity function on any nonempty set is denotedily For everyn > 1, the diagonal
sectiondy: X — Y of a functionF: X" — Y is defined agr(z) = F(2").

Remark2. Although B-preassociativity was recently defined by théhats [8], the basic
idea behind this definition goes back to 1931 when de Fiifdtitnfroduced an associativity-
like property for mean functions. Indeed, according to deeki, for a real function
F:U,-1 R" - R to be considered as a mean, it is natural that it be “asseefdt the
following sense: for any, € X and anyx,y,z € X* such thatxz| > 1 and|y| > 1, we
haveF (xyz) = F(xu?!z) whenever (y) = F(uM).

2. MAIN RESULTS

As mentioned in the introduction, in this section we mairiipw that B-preassociative
functions can be factorized as compositions of lengtheykésg associative string func-
tions with one-to-one unary maps. This result is stated ieoréani 8.

Recall that a string functiof: X* — X* is said to beassociativd9] if it satisfies the
equationF'(xyz) = F(xF(y)z) foranyx,y,z € X*.

Definition 2. We say that a string functiof: X* - X* is length-preservingf |F'(x)| =
|x| for everyx € X*, or equivalently, ifran(F;,) ¢ X" for everyn > 0.

Clearly, the identity function oX * is associative and length-preserving. The following
example gives nontrivial instances of associative andtlepgeserving string functions.
Further examples of associative string functions can bedan [5].

Example 3. Let (h,,)n>1 be a sequence of unary operationsnOne can easily see that
the length-preserving functiofi: X* — X * defined byF;(¢) = ¢ and

Fn(xlxn) = hl(xl)hn(xn)a n2l,

is associative if and only if,, o h,, = h,, for all n,m > 1 such thatm < n. Using an
elementary induction, one can also show that the latteritionds equivalent tdy,, o h,, =
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h,, andh,,1 o h,, = h,41 fOor everyn > 1. To give an example, take any constant sequence
h,, = h such thati o h = h (for instance, the positive part functidifz) = * overX = R).

As a second example, consider the sequéncef unary operations oiX = {1,2,3,...}
defined byh,, (k) = 1if k <n+ 1, andh, (k) = k, otherwise.

Proposition 4. Let F: X* — X * be a length-preserving function. Théhis associative if
and only if it is B-preassociative and satisfigs = F;, o F,, for everyn > 0.

Proof. To see that the necessity holds, we recall from [5] that asg@&ative string func-
tion is preassociative and hence B-preassociative. Thendepart of the statement is
immediate. For the sufficiency, we merely observe that welidyF (y)) = F(y) for
everyy € X* and therefore, by B-preassociativity, we also h&\(eF (y)z) = F(xyz)
for everyxyz € X*, thatis,F' is associative. O

The following proposition, established inl[8], shows how wan construct new B-
preassociative functions from given B-preassociativefions.

Proposition 5 ( [8]). Let F: X* — Y be a B-preassociative function and g4, )..»1
be a sequence of functions framto a nonempty set”. If g,|.an(r,) IS ONe-to-one for
everyn > 1, then any functior: X* — Y’ such thatH,, = g,, o F}, for everyn > 1 is
B-preassociative.

Recall that a functiom is aquasi-inversg¢l10, Sect. 2.1] of a functioif if

Fo9lancsy = 1dlancp) and  ran(gl,,, ;) = ran(g).

We denote the set of quasi-inverses of a funciidsy Q( f). Under the assumption of the
Axiom of Choice (AC), the se®(f) is nonempty for any functiorf. In fact, the Axiom
of Choice is just another form of the statement “every funttias a quasi-inverse”. Note
also that the relation of being quasi-inverse is symmeifig € Q(f) thenf € Q(g);
moreover, we havean(g) ¢ dom(f) andran(f) < dom(g) and the functions|
andg,,, (s, are one-to-one.

ran(g)

Lemma 6. Assume AC and lef: X™ — Y be a function. For any € Q(F'), define the
functionH: X" - X" by H = go F. Thenwe havé’ = F'o H andH = H o H. Moreover,
the mapl'|,.. () is one-to-one.

Proof. By definition of H we haveF o H = Fogo F=FandHo H =goFogoF' =
go F =H. Also, the mapF|,,n(m) = Flran(g) iS ONe-to-one. O

Lemma 7. Assume AC and lef: X* — Y be a function. The following assertions are
equivalent.
(i) Fis B-preassociative.
(i) For every sequencég, € Q(F,))ns1, the functionH: X* — X* defined by
Hy(e) =eandH, = g, o F,, for everyn > 1 is associative and length-preserving.
(iii) There exists a sequen€e,, € Q(F),))n>1 such that the functiodl: X* - X*
defined byHy(¢) = € and H,, = g,, o F,, for everyn > 1 is associative and length-
preserving.

Proof. (i) = (ii). Let H: X* - X* be defined as indicated in the statement. We know by
Lemmd that/ o H = H andH is length-preserving. Singg,|;an(r, ) is One-to-one, we
have thatH is B-preassociative by Propositibh 5. It follows from Prsjion[4 thatH is
associative.

(i) = (iii). Trivial.
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(iiiy = (i). By Propositior 4 is B-preassociative. For eveny> 1, SiNC&gy |.an(r, ) IS
a one-to-one map fromun(F,,) ontoran(g,,) = ran(H, ), we haveF,, = (gnlian(r,)) " ©
H,,. By Propositio b it follows thaf" is B-preassociative. O

We are now ready to present our main result, which gives aackenization of any B-
preassociative function as a composition of a length-pvasgassociative string function
with one-to-one unary maps.

Theorem 8. Assume AC and leff: X* — Y be a function. The following assertions are
equivalent.

(i) Fis B-preassociative.

(i) There exist an associative and length-preserving funciiblk* — X* and a
sequenc€ f,, ).>1 of one-to-one functiong,:ran(H,,) - Y such thatF,, = f,, o
H,, for everyn > 1.

If condition (ii) holds, then for every > 1 we havef,, = Flian(m,) = Fnlan(m,) fle
Q(F,), and we may choosH,, = g,, o F,, for anyg,, € Q(F},).

Proof. (i) = (ii). Let H: X* — X* be defined byH(¢) = ¢ andH,, = g, o F,, for every
n > 1, whereg,, € Q(F,). By Lemmd® we havé, = f,, o H, for everyn > 1, where
fn = Fulran(m,,) 1S ONe-to-one. By Lemnid # is associative and length-preserving.

(i) = (i). H is B-preassociative by Propositibh 4. By Proposifibn 5 lioies that also
Fis B-preassociative.

If condition (ii) holds, then for every. > 1 we haveF,, o H,, = f, o H, o H,, = f,, o H,
and hence", |,an(x,) = fn. Moreover, sincef, is one-to-one, we havl,, = floF,
and hence, o f,;' o F,, = F,,0 H,, = f, o H, o H, = f,, o H, = F,, which shows that
FleQE). O

Remark3. (a) Itis clear that the trivial factorizatioh,, = F,, o H,,, whereH,, = id,
holds for any functiorF: X* — Y. This observation could make us wrongly think
that Theoreriil8 is of no use. However, in our factorizafitn= f,, o H,, the outer
function f,, has the important feature that it is one-to-one.

(b) Similarly to Theorernl8, one can shdw [5] that any preaissive functionF: X* —
Y can be factorized as a compositibre fo H, whereH: X* — X * is associative
andf:ran(H) — Y is one-to-one.

In the rest of this section we show how Theofém 8 can be péatized to some nested
subclasses of B-preassociative functions, including tibelass of B-preassociative func-
tions F: X* — Y for which the equalityran(F},,) = ran(dg,) holds for everyn > 1
(seell8)]).

For any integersn,n > 1, definex?, = X° and

errzl _ {yznfmin{n,m}+l tyze Xmin{n,m}}.

ForinstanceX; = {z%: 2z € X}, X3 = {yz? :yz € X?}, and X2, = X3 for everym > 3.
Thus, we haveX™ = X" if m > nand X", = {yz""™" :yz e X"} if m <n. It
follows that for everym > 1 we haveX,’ ¢ X ., ¢ X"

Definition 9. Letm > 1 andn > 0 be integers. We say that a functiédfr X" — X"
has anm-generated rangd ran(H) ¢ X . We say that a functiof/: X* — X* has an
m-generated rangd H,, has anm-generated range for eveny? 0.
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Fact 10. If a function H: X" — X™ has anm-generated range, then it has &m + 1)-
generated range. If a functioA: X* — X* has anm-generated range, then it is length-
preserving.

Letm > 1 andn > 0 be integers. The:-diagonal sectiorof a functionF: X" - Y is
the mapys: X ™i{nm} vy defined byo = F, if n = 0, andd? (yz) = F(yz"min{nmi+l)
for everyyz e X™in{nm} otherwise. We clearly haven(d7) ¢ ran(6p+1).

Definition 11. Letm > 1 andn > 0 be integers. We say that a functiégh X™ — Y is
m-quasi-range-idempoteiftran(F') = ran(dy ).

By definition, anym-quasi-range-idempotent functidin X™ — Y is (m + 1)-quasi-
range-idempotent. We also observe that the property ofjbelguasi-range-idempotent
is preserved under left composition with unary mapsFifX™ — Y is m-quasi-range-
idempotent, then so igo F' for any mapg: Y — Y’, whereY” is a nonempty set.

Proposition 12. If F: X* — X * is associative and’, has anm-generated range for some
k,m > 1, then for any integep > 0 the functionF}., is (m + p)-quasi-range-idempotent.
In particular, Fy, is m-quasi-range-idempotent.

Proof. Letx € X? andx’ € X*. Then, there existgz ¢ X™*{*"} sych that

Frop(ex') = Frop(Fi(x')) = Fryp(xyshmintbmien)
_ Fk+p(Xyz(k+p)fmin{k+p,m+p}+1 ) _ 5;’::1; (XyZ),
which shows thatan(Fy.,) € ran(ég:ﬁ). The converse inclusion is obvious. O

Lemma 13. Letm,n > 1 be integers. Any map: X" — Y satisfyingF’ = F' o H, where
H:X™ - X" has anm-generated range, is1-quasi-range-idempotent.

Proof. Sinceran(H) < X, we haveran(F') = ran(F o H) ¢ ran(dy). Since the
converse inclusioman(F') 2 ran(d%) holds for any mag: X" — Y, we have thaf’ is
m-quasi-range-idempotent. O

Lemma 14. Under the assumptions of Lemia 6Fifis m-quasi-range-idempotent for
somem > 1, theng can always be chosen so that(g) ¢ X, and thereforeH has an
m-generated range. Conversely,Af has anm-generated range for some > 1, thenF
is m-quasi-range-idempotent.

Proof. If F' is m-quasi-range-idempotent for some > 1, then there always exists ¢
Q(F) such thatran(g) ¢ X7 ; indeed, ify € ran(F) = ran(é%), then we can take
g(y) € (%) Ny} c X. ThereforeH = g o F has anm-generated range. Conversely,
if H has anm-generated range for some > 1, thenF' is m-quasi-range-idempotent by

Lemmd13. O

Corollary 15. For anym > 1, the equivalence in Lemrha 7 holds if we add the condition
that everyF,, (n > 1) is m-quasi-range-idempotentin assertion (i) and the condgithat
ran(g,) € X} (n > 1) and H has anm-generated range in assertions (ii) and (iii).

Theorem 16. For anym > 1, the equivalence between (i) and (ii) in Theofdm 8 still kold
if we add the condition that evedy,, (n > 1) is m-quasi-range-idempotent in assertion
(i) and the condition that/ has anm-generated range in assertion (ii). In this case the
conditionran(g,,) € X/, (n > 1) must be added in the last part of the statement.

Proof. Follows from the results above. O
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Settingm = 1 in Theoreni 16, we immediately derive a factorization of argrBasso-
ciative function whosew-ary partF,, is 1-quasi-range-idempotent for eveny> 1. An
alternative factorization for such functions is given ie tiollowing theorem, established
in [8]. Recall that a functionF: X* — X u {e} is barycentrically associativéor B-
associativefor short) [8] if it satisfies the equatioR'(xyz) = F(xF(y)¥/z) for any
x,y,z € X*. (B-associativity is also known akcomposabilitysee([2, 3]).

Theorem 17([8]). Assume AC and I€t: X* — Y be a function. The following assertions
are equivalent.
(i) Fis B-preassociative anfi,, is 1-quasi-range-idempotent for evemny> 1.
(i) There exists a B-associative functiéh X* — X u {¢} such thatH (¢) = ¢ and
a sequenc€ f,,),>1 of one-to-one functiong,:ran(H,,) — Y such thatF,, =
fn o H, foreveryn > 1.
If condition (ii) holds, then for every > 1 we haveF,, = g, o H,, fn = 0F, [ran(H,.)
71 eQ(6F,), and we may choosH,, = g, o F, foranyg, € Q(Jr, ).

We now show how Theorem 117 can be easily derived from Theb&m 1

For everym > 1 and every € X *, denote byx[,,,) them-prefixof x, that is the string
in UjZ, X* defined as follows: ifx| < m, thenx(,,) = x; otherwise, ifx = x'x", with
Ix'| = m, thenxp,,; = x'.

If H: X* — X* has ann-generated range, then by definition it can be assimilatéd wi
the functionHy,,,: X* — U}Z, X" defined byH(,,)(x) = H(x)[,,]- Indeed,H can be
reconstructed front/[,,,; by setting

H(x) Hpp(x), if |x| < m,
X =
Hppp(x)2"™™,  otherwise

wherez is the last letter of1[,,1(x).
Thus we can prove Theordm|17 from Theoter 16 as follows.

Proof of Theorerh 17 as a corollary of Theorem By settingm = 1 in Theoreni 1B, we
see thatH has al-generated range. By the observation abd¥esan then be assimilated
with Hpy; through the identityH (x) = Hp;p(x)™ for everyx e X*. Itis then clear that
H is associative if and only iff[,} is B-associative. The other parts of Theoterh 17 follow
immediately. O

Remark4. The question of generalizing Theorém 17 by droppingltiggiasi-range-idem-
potent condition on every,, was raised in[[8]. Clearly, Theordm 8 answers this question.

3. SOME CONSEQUENCES OF THE FACTORIZATION RESULT

Since any associative functidn X * — X is preassociative and, in turn, B-preassocia-
tive, it can be factorized as indicated in Theorlem 8. Theegfap to one-to-one unary
maps, the associative string functions can be completedgribed in terms of length-
preserving associative string functions, and similarlytfe preassociative and B-preasso-
ciative functions. This is an important observation whittows that in a sense any of
these nested classes can be described in terms of the droakkesamely the subclass of
associative and length-preserving string functions (sgeré1).

Example 18. Let a ¢ X be fixed. Let the mag: X* — X* be defined inductively
by F(z) = zif z # a, F(a) = ¢, andF(xz) = F(x)F(z) for everyxz ¢ X*. Thus
defined, F'(x) is obtained fromx by removing all the ‘a’ letters (if any). Sincg is
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B-preassociative functions

Preassociative functions

Associative functions

Associative and length-preserving
functions

FIGURE 1. Nested subclasses of B-preassociative functions

associative (seel[5] for more details), itis B-preasso@and therefore it can be factorized
as indicated in Theorelm 8. For every 1, define the functiom,,: U™, (X ~ {a})? - X"
by gn(x) = xa" ™. SinceF, o g, o F,, = F,, for everyn > 1, we see thay,, ¢ Q(F},).
By TheoreniB, the functio#/: X* — X*, defined byHy(¢) = ¢ andH,, = g, o F,, for
everyn > 1, is associative and length-preserving. Moreover, we Haye f, o H,, for
everyn > 1, wheref,, = Fy|;an(m,)- Thus definedH,(x) is obtained fromx by moving
all the ‘a’ letters (if any) to the rightmost positions. Fostance H11(mathematics) =
mthemticsaa.

As observed in the previous section, setting= 1 in Theorem 1B, we can derive
a factorization of any B-preassociative function whesary part F,, is 1-quasi-range-
idempotent for every, > 1 (Theoreni1F). In the following example, we derive a similar
factorization explicitly directly from Theorem 8 (withousing Theorerh 16).

Example 19. If we assume thak;, is 1-quasi-range-idempotentfor every: 1 in assertion
(i) of Theoreni8, then the factorization given in assertignc@n be obtained by defining
H, = g,o F,, whereg,(z) = h,(x)" andh,, € Q(dr,). Indeed, since’, is 1-quasi-
range-idempotent, we have

(Fnognan)(x) = (5Fn°hn°Fn)(x) = Fn(x),
which shows thay,, € Q(F,).

It is clear that the B-associativity property, originallgfthed for functionsF: X* —
X u {e} can be immediately extended to string functidnsy* - X*.

Definition 20. We say that a string functioR: X* — X is barycentrically associative
(or B-associativeor short) if it satisfies the equatioR(xyz) = F(xF (y)™Iz) for any
X,y,z€X".

It is easy to see that any B-associative string funclioX * — X * is B-preassociative
and hence can be factorized as indicated in Thebtem 8. Mergany B-associative string
function satisfyingran(F;,) ¢ X for everyn > 1 is also such thaF;, is 1-quasi-range-
idempotent for every: > 1 (see [8]) and therefore it can be factorized as described in
Exampld_ID. In this case we ha¥g, o F), = F;,, which shows thaid|,.,(r,) € Q(dr, ) for
everyn > 1. Therefore, from Example 19 we immediately derive the foitgg corollary.



8 JEAN-LUC MARICHAL AND BRUNO TEHEUX

Corollary 21. Let F: X* — X* be a B-associative function satisfyingn(F,,) ¢ X for
everyn > 1. Then, for every: > 1, we haveF,, = f,, o H,, whereH: X* — X* is the
length-preserving associative function definediy(x) = F,(x)™ for everyn > 1 and
fniran(H,) — X is the one-to-one function defined iy(xz™) = x for everyn > 1.

We end this section by an additional application of Thedrem 8

Definition 22. We say that a functiot: X* — Y has acomponentwise defined kerriel
there exists a family{ F,, : n > 1} of equivalence relations ol such that for any: > 1
and anyx,y € X", we haveF'(x) = F(y) ifand only if (z;,y;) € E; fori=1,...,n. In
this case, we say that the fami{yZ,, : n > 1} defines the kernel df componentwise

This concept can be interpreted, e.g., in decision makisgfohows. A function
F: X* - Y has a componentwise defined kernel if the equivalence battmer:-profiles
x,y € X™ can be defined attributewise.

The following proposition and corollary give charactetiaas of those B-preassociative
functions which have a componentwise defined kernel.

Proposition 23. Assume AC and lef: X* — Y have a kernel defined componentwise by
the family{ F,, : n > 1} of equivalence relations oX. ThenF is B-preassociative if and
only if £, ¢ E,,,, for everyn > 1.

Proof. Let F: X* — Y be defined as indicated in the statement. For the necesgifypse
that F' is B-preassociative and €, y) € F,, for somen > 1. Then we have'(z") =
F(z"1y) and hence'(2"*!) = F(a™y) by B-preassociativity. It follows thatz,y) ¢
E, 1. For the sufficiency, for any > 1 and anyx,y € X" such thatF'(x) = F(y), we
haveF'(xz) = F(yz) for everyz € X* by definition of F'. SinceE,, ¢ E,,., for everyn >
1, we also havé’(zx) = F(zy) for everyz ¢ X *. ThereforeF' is B-preassociative. [

Corollary 24. Assume AC and lgt: X* — Y be a function. The following assertions are
equivalent.

(i) Fis B-preassociative and has a componentwise defined kernel

(i) There exists a sequen(, )1 of unary operations oX and a sequencgf, )n>1
of one-to-one mapg,: {h1(z1)--hn(zy) : z1--x, € X"} - Y such thath,, o
ha = by Bps1 © hyy = hpy1, and B (x) = fr(h1(21)---hyn(2,)) for everyn > 1
and everyx € X,

Proof. (i) = (ii). By Propositior{ 28, the kernel aF is defined by some family of equiv-
alence relationg F,, : n > 1} on X satisfyingE,, ¢ E,,; for everyn > 1. For every
ce X/E,, lets,(c) € cbe arepresentative ofand define the malp,: X — X by h,,(z) =
sn(z/Ey,). The mapg,:ran(F,) - X" defined byg, (F(x)) = hi(z1)-hn(z,) IS
a quasi-inverse of’,. Indeed, sincgz;, h;(x;)) € E; for everyx ¢ X™ and every
1e{l,...,n}, we have

(FhognoFy)(x1-xy) = Fp(hi(z)hn(z,)) = Fo(xrxy).

By Theoreni8, settind?,, = g, o F, for everyn > 1, there is a one-to-one function
fairan(H,) - Y such thatF,, = f,, o H,, and such that the mafi: X* — X* obtained
by settingHy(e) = ¢ is associative and length-preserving. The conclusiomyil from
ExampldB.

(i) = (i) By Exampld3 and Propositidd 4 we obtain tiats B-preassociative. More-

over, the kernel of" is defined by the familyfker(#;) : ¢ > 1} of equivalence relations on
X. O
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