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6 A CHARACTERIZATION OF BARYCENTRICALLY PREASSOCIATIVE

FUNCTIONS

JEAN-LUC MARICHAL AND BRUNO TEHEUX

ABSTRACT. We provide a characterization of the variadic functions which are barycentri-
cally preassociative as compositions of length-preserving associative string functions with
one-to-one unary maps. We also discuss some consequences ofthis characterization.

1. INTRODUCTION

Let X andY be arbitrary nonempty sets. Throughout this paper we regardtuplesx
in Xn asn-strings overX . We letX∗ = ⋃n⩾0X

n be the set of all strings overX , with
the convention thatX0 = {ε} (i.e., ε denotes the unique0-string onX). We denote the
elements ofX∗ by bold roman lettersx, y, z. If we want to stress that such an element is
a letter ofX , we use non-bold italic lettersx, y, z, etc. Thelengthof a stringx is denoted
by ∣x∣. For instance,∣ε∣ = 0. We endow the setX∗ with the concatenation operation, for
whichε is the neutral element, i.e.,εx = xε = x. For instance, ifx ∈ Xm andy ∈ X , then
xy ∈Xm+1. Moreover, for every stringx and every integern ⩾ 0, the powerxn stands for
the string obtained by concatenatingn copies ofx. In particular we havex0 = ε.

As usual, a mapF ∶Xn
→ Y is said to be ann-ary function(ann-ary operation onX if

Y = X). Also, a mapF ∶X∗ → Y is said to be avariadic function(a string function onX
if Y = X∗; see [5]). For every variadic functionF ∶X∗ → Y and every integern ⩾ 0, we
denote byFn then-ary partF ∣Xn of F .

Recall that a variadic functionF ∶X∗ → Y is said to bepreassociative[6, 7] if, for any
x,y,y′,z ∈ X∗, we have

F (y) = F (y′) ⇒ F (xyz) = F (xy′z).
Also, a variadic functionF ∶X∗ → Y is said to bebarycentrically preassociative(or B-
preassociativefor short) [8] if, for anyx,y,y′,z ∈ X∗, we have

∣y∣ = ∣y′∣ and F (y) = F (y′) ⇒ F (xyz) = F (xy′z).
Contrary to preassociativity, B-preassociativity recalls the associativity-like property of

the barycenter (just regardF (x) as the barycenter of a setx of identical homogeneous
balls inX = Rn). In descriptive statistics and aggregation function theory, this condition
says that the aggregated value of a series of numerical values remains unchanged when
modifying a bundle of these values without changing their partial aggregation.

B-preassociativity has been recently utilized by the authors in the following charac-
terization of thequasi-arithmetic pre-mean functions, thus generalizing the well-known
Kolmogoroff-Nagumo’s characterization of the quasi-arithmetic mean functions.
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Theorem 1 ( [8]). Let I be a nontrivial real interval, possibly unbounded. A function
F ∶ I∗ → R is B-preassociative and, for everyn ⩾ 1, the functionFn is symmetric, con-
tinuous, and strictly increasing in each argument if and only if there are continuous and
strictly increasing functionsf ∶ I→ R andfn∶R → R (n ⩾ 1) such that

Fn(x) = fn( 1
n

n∑
i=1

f(xi)), n ⩾ 1.
Remark1. If we add the condition that everyFn is idempotent (i.e.,Fn(xn) = x for every
x ∈X) in Theorem 1, then we necessarily havefn = f−1 for everyn ⩾ 1, thus reducing this
result to Kolmogoroff-Nagumo’s characterization of the quasi-arithmetic mean functions
[4,9]. However, there are also many non-idempotent quasi-arithmetic pre-mean functions.
Taking for instancefn(x) = nx andf(x) = x over the realsI = R, we obtain the sum
function. Takingfn(x) = exp(nx) andf(x) = ln(x) over I = ]0,∞[, we obtain the
product function.

In this paper we show that B-preassociative functions can befactorized as composi-
tions of length-preserving associative string functions with one-to-one unary maps. We
also show how this factorization result generalizes a characterization of a noteworthy sub-
class of B-preassociative functions given by the authors in[8]. Finally, we mention some
interesting consequences of this new characterization.

The terminology used throughout this paper is the following. The domain, range, and
kernel of any functionf are denoted bydom(f), ran(f), andker(f), respectively. The
identity function on any nonempty set is denoted byid. For everyn ⩾ 1, the diagonal
sectionδF ∶X → Y of a functionF ∶Xn

→ Y is defined asδF (x) = F (xn).

Remark2. Although B-preassociativity was recently defined by the authors [8], the basic
idea behind this definition goes back to 1931 when de Finetti [1] introduced an associativity-
like property for mean functions. Indeed, according to de Finetti, for a real function
F ∶⋃n⩾1R

n
→ R to be considered as a mean, it is natural that it be “associative” in the

following sense: for anyu ∈ X and anyx,y,z ∈ X∗ such that∣xz∣ ⩾ 1 and ∣y∣ ⩾ 1, we
haveF (xyz) = F (xu∣y∣z) wheneverF (y) = F (u∣y∣).

2. MAIN RESULTS

As mentioned in the introduction, in this section we mainly show that B-preassociative
functions can be factorized as compositions of length-preserving associative string func-
tions with one-to-one unary maps. This result is stated in Theorem 8.

Recall that a string functionF ∶X∗ → X∗ is said to beassociative[5] if it satisfies the
equationF (xyz) = F (xF (y)z) for anyx,y,z ∈X∗.
Definition 2. We say that a string functionF ∶X∗ → X∗ is length-preservingif ∣F (x)∣ =
∣x∣ for everyx ∈X∗, or equivalently, ifran(Fn) ⊆Xn for everyn ⩾ 0.

Clearly, the identity function onX∗ is associative and length-preserving. The following
example gives nontrivial instances of associative and length-preserving string functions.
Further examples of associative string functions can be found in [5].

Example 3. Let (hn)n⩾1 be a sequence of unary operations onX . One can easily see that
the length-preserving functionF ∶X∗ →X∗ defined byF0(ε) = ε and

Fn(x1⋯xn) = h1(x1)⋯hn(xn), n ⩾ 1,
is associative if and only ifhn ○ hm = hn for all n,m ⩾ 1 such thatm ⩽ n. Using an
elementary induction, one can also show that the latter condition is equivalent tohn ○hn =



A CHARACTERIZATION OF BARYCENTRICALLY PREASSOCIATIVE FUNCTIONS 3

hn andhn+1 ○ hn = hn+1 for everyn ⩾ 1. To give an example, take any constant sequence
hn = h such thath ○ h = h (for instance, the positive part functionh(x) = x+ overX = R).
As a second example, consider the sequencehn of unary operations onX = {1,2,3, . . .}
defined byhn(k) = 1 if k ⩽ n + 1, andhn(k) = k, otherwise.

Proposition 4. LetF ∶X∗ →X∗ be a length-preserving function. ThenF is associative if
and only if it is B-preassociative and satisfiesFn = Fn ○ Fn for everyn ⩾ 0.

Proof. To see that the necessity holds, we recall from [5] that any associative string func-
tion is preassociative and hence B-preassociative. The second part of the statement is
immediate. For the sufficiency, we merely observe that we have F (F (y)) = F (y) for
everyy ∈ X∗ and therefore, by B-preassociativity, we also haveF (xF (y)z) = F (xyz)
for everyxyz ∈X∗, that is,F is associative. �

The following proposition, established in [8], shows how wecan construct new B-
preassociative functions from given B-preassociative functions.

Proposition 5 ( [8]). Let F ∶X∗ → Y be a B-preassociative function and let(gn)n⩾1
be a sequence of functions fromY to a nonempty setY ′. If gn∣ran(Fn) is one-to-one for
everyn ⩾ 1, then any functionH ∶X∗ → Y ′ such thatHn = gn ○ Fn for everyn ⩾ 1 is
B-preassociative.

Recall that a functiong is aquasi-inverse[10, Sect. 2.1] of a functionf if

f ○ g∣
ran(f) = id∣ran(f) and ran(g∣

ran(f)) = ran(g).
We denote the set of quasi-inverses of a functionf byQ(f). Under the assumption of the
Axiom of Choice (AC), the setQ(f) is nonempty for any functionf . In fact, the Axiom
of Choice is just another form of the statement “every function has a quasi-inverse”. Note
also that the relation of being quasi-inverse is symmetric:if g ∈ Q(f) thenf ∈ Q(g);
moreover, we haveran(g) ⊆ dom(f) andran(f) ⊆ dom(g) and the functionsf ∣

ran(g)

andg∣
ran(f) are one-to-one.

Lemma 6. Assume AC and letF ∶Xn
→ Y be a function. For anyg ∈ Q(F ), define the

functionH ∶Xn
→Xn byH = g ○F . Then we haveF = F ○H andH =H ○H . Moreover,

the mapF ∣ran(H) is one-to-one.

Proof. By definition ofH we haveF ○H = F ○ g ○ F = F andH ○H = g ○ F ○ g ○ F =
g ○ F =H . Also, the mapF ∣ran(H) = F ∣ran(g) is one-to-one. �

Lemma 7. Assume AC and letF ∶X∗ → Y be a function. The following assertions are
equivalent.

(i) F is B-preassociative.
(ii) For every sequence(gn ∈ Q(Fn))n⩾1, the functionH ∶X∗ → X∗ defined by

H0(ε) = ε andHn = gn ○Fn for everyn ⩾ 1 is associative and length-preserving.
(iii) There exists a sequence(gn ∈ Q(Fn))n⩾1 such that the functionH ∶X∗ → X∗

defined byH0(ε) = ε andHn = gn ○ Fn for everyn ⩾ 1 is associative and length-
preserving.

Proof. (i) ⇒ (ii). Let H ∶X∗ → X∗ be defined as indicated in the statement. We know by
Lemma 6 thatH ○H =H andH is length-preserving. Sincegn∣ran(Fn) is one-to-one, we
have thatH is B-preassociative by Proposition 5. It follows from Proposition 4 thatH is
associative.

(ii) ⇒ (iii). Trivial.
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(iii) ⇒ (i). By Proposition 4,H is B-preassociative. For everyn ⩾ 1, sincegn∣ran(Fn) is
a one-to-one map fromran(Fn) ontoran(gn) = ran(Hn), we haveFn = (gn∣ran(Fn))

−1
○

Hn. By Proposition 5 it follows thatF is B-preassociative. �

We are now ready to present our main result, which gives a characterization of any B-
preassociative function as a composition of a length-preserving associative string function
with one-to-one unary maps.

Theorem 8. Assume AC and letF ∶X∗ → Y be a function. The following assertions are
equivalent.

(i) F is B-preassociative.
(ii) There exist an associative and length-preserving functionH ∶X∗ → X∗ and a

sequence(fn)n⩾1 of one-to-one functionsfn∶ ran(Hn) → Y such thatFn = fn ○
Hn for everyn ⩾ 1.

If condition (ii) holds, then for everyn ⩾ 1 we havefn = F ∣ran(Hn) = Fn∣ran(Hn), f
−1
n ∈

Q(Fn), and we may chooseHn = gn ○ Fn for anygn ∈ Q(Fn).

Proof. (i) ⇒ (ii). Let H ∶X∗ → X∗ be defined byH0(ε) = ε andHn = gn ○ Fn for every
n ⩾ 1, wheregn ∈ Q(Fn). By Lemma 6 we haveFn = fn ○Hn for everyn ⩾ 1, where
fn = Fn∣ran(Hn) is one-to-one. By Lemma 7,H is associative and length-preserving.

(ii) ⇒ (i). H is B-preassociative by Proposition 4. By Proposition 5 it follows that also
F is B-preassociative.

If condition (ii) holds, then for everyn ⩾ 1 we haveFn ○Hn = fn ○Hn ○Hn = fn ○Hn

and henceFn∣ran(Hn) = fn. Moreover, sincefn is one-to-one, we haveHn = f−1n ○ Fn

and henceFn ○ f
−1
n ○ Fn = Fn ○Hn = fn ○Hn ○Hn = fn ○Hn = Fn, which shows that

f−1n ∈ Q(Fn). �

Remark3. (a) It is clear that the trivial factorizationFn = Fn ○Hn, whereHn = id,
holds for any functionF ∶X∗ → Y . This observation could make us wrongly think
that Theorem 8 is of no use. However, in our factorizationFn = fn ○Hn the outer
functionfn has the important feature that it is one-to-one.

(b) Similarly to Theorem 8, one can show [5] that any preassociative functionF ∶X∗ →
Y can be factorized as a compositionF = f ○H , whereH ∶X∗ →X∗ is associative
andf ∶ ran(H)→ Y is one-to-one.

In the rest of this section we show how Theorem 8 can be particularized to some nested
subclasses of B-preassociative functions, including the subclass of B-preassociative func-
tions F ∶X∗ → Y for which the equalityran(Fn) = ran(δFn

) holds for everyn ⩾ 1

(see [8]).
For any integersm,n ⩾ 1, defineX0

m =X0 and

Xn
m = {yzn−min{n,m}+1

∶ yz ∈ Xmin{n,m}}.

For instanceX3

1
= {z3 ∶ z ∈X}, X3

2
= {yz2 ∶ yz ∈X2}, andX3

m =X3 for everym ⩾ 3.
Thus, we haveXn

m = Xn if m ⩾ n andXn
m = {yzn−m+1 ∶ yz ∈ Xm} if m ⩽ n. It

follows that for everym ⩾ 1 we haveXn
m ⊆Xn

m+1 ⊆Xn.

Definition 9. Let m ⩾ 1 andn ⩾ 0 be integers. We say that a functionH ∶Xn
→ Xn

has anm-generated rangeif ran(H) ⊆ Xn
m. We say that a functionH ∶X∗ → X∗ has an

m-generated rangeif Hn has anm-generated range for everyn ⩾ 0.
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Fact 10. If a functionH ∶Xn
→ Xn has anm-generated range, then it has an(m + 1)-

generated range. If a functionH ∶X∗ → X∗ has anm-generated range, then it is length-
preserving.

Let m ⩾ 1 andn ⩾ 0 be integers. Them-diagonal sectionof a functionF ∶Xn
→ Y is

the mapδmF ∶X
min{n,m}

→ Y defined byδmF = F , if n = 0, andδmF (yz) = F (yzn−min{n,m}+1)
for everyyz ∈ Xmin{n,m}, otherwise. We clearly haveran(δmF ) ⊆ ran(δm+1F ).

Definition 11. Let m ⩾ 1 andn ⩾ 0 be integers. We say that a functionF ∶Xn
→ Y is

m-quasi-range-idempotentif ran(F ) = ran(δmF ).
By definition, anym-quasi-range-idempotent functionF ∶Xn

→ Y is (m + 1)-quasi-
range-idempotent. We also observe that the property of being m-quasi-range-idempotent
is preserved under left composition with unary maps: ifF ∶Xn

→ Y is m-quasi-range-
idempotent, then so isg ○ F for any mapg∶Y → Y ′, whereY ′ is a nonempty set.

Proposition 12. If F ∶X∗ →X∗ is associative andFk has anm-generated range for some
k,m ⩾ 1, then for any integerp ⩾ 0 the functionFk+p is (m + p)-quasi-range-idempotent.
In particular,Fk ism-quasi-range-idempotent.

Proof. Let x ∈ Xp andx′ ∈ Xk. Then, there existsyz ∈ Xmin{k,m} such that

Fk+p(xx
′) = Fk+p(xFk(x

′)) = Fk+p(xyz
k−min{k,m}+1)

= Fk+p(xyz
(k+p)−min{k+p,m+p}+1) = δ

m+p
Fk+p
(xyz),

which shows thatran(Fk+p) ⊆ ran(δm+pFk+p
). The converse inclusion is obvious. �

Lemma 13. Letm,n ⩾ 1 be integers. Any mapF ∶Xn
→ Y satisfyingF = F ○H , where

H ∶Xn
→Xn has anm-generated range, ism-quasi-range-idempotent.

Proof. Sinceran(H) ⊆ Xn
m, we haveran(F ) = ran(F ○ H) ⊆ ran(δmF ). Since the

converse inclusionran(F ) ⊇ ran(δmF ) holds for any mapF ∶Xn
→ Y , we have thatF is

m-quasi-range-idempotent. �

Lemma 14. Under the assumptions of Lemma 6, ifF is m-quasi-range-idempotent for
somem ⩾ 1, theng can always be chosen so thatran(g) ⊆ Xn

m and thereforeH has an
m-generated range. Conversely, ifH has anm-generated range for somem ⩾ 1, thenF
ism-quasi-range-idempotent.

Proof. If F is m-quasi-range-idempotent for somem ⩾ 1, then there always existsg ∈
Q(F ) such thatran(g) ⊆ Xn

m; indeed, if y ∈ ran(F ) = ran(δmF ), then we can take
g(y) ∈ (δmF )−1{y} ⊆ Xn

m. ThereforeH = g ○ F has anm-generated range. Conversely,
if H has anm-generated range for somem ⩾ 1, thenF is m-quasi-range-idempotent by
Lemma 13. �

Corollary 15. For anym ⩾ 1, the equivalence in Lemma 7 holds if we add the condition
that everyFn (n ⩾ 1) ism-quasi-range-idempotent in assertion (i) and the conditions that
ran(gn) ⊆Xn

m (n ⩾ 1) andH has anm-generated range in assertions (ii) and (iii).

Theorem 16. For anym ⩾ 1, the equivalence between (i) and (ii) in Theorem 8 still holds
if we add the condition that everyFn (n ⩾ 1) is m-quasi-range-idempotent in assertion
(i) and the condition thatH has anm-generated range in assertion (ii). In this case the
conditionran(gn) ⊆Xn

m (n ⩾ 1)must be added in the last part of the statement.

Proof. Follows from the results above. �
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Settingm = 1 in Theorem 16, we immediately derive a factorization of any B-preasso-
ciative function whosen-ary partFn is 1-quasi-range-idempotent for everyn ⩾ 1. An
alternative factorization for such functions is given in the following theorem, established
in [8]. Recall that a functionF ∶X∗ → X ∪ {ε} is barycentrically associative(or B-
associativefor short) [8] if it satisfies the equationF (xyz) = F (xF (y)∣y∣z) for any
x,y,z ∈ X∗. (B-associativity is also known asdecomposability, see [2,3]).

Theorem 17( [8]). Assume AC and letF ∶X∗ → Y be a function. The following assertions
are equivalent.

(i) F is B-preassociative andFn is 1-quasi-range-idempotent for everyn ⩾ 1.
(ii) There exists a B-associative functionH ∶X∗ → X ∪ {ε} such thatH(ε) = ε and

a sequence(fn)n⩾1 of one-to-one functionsfn∶ ran(Hn) → Y such thatFn =
fn ○Hn for everyn ⩾ 1.

If condition (ii) holds, then for everyn ⩾ 1 we haveFn = δFn
○Hn, fn = δFn

∣ran(Hn),
f−1n ∈ Q(δFn

), and we may chooseHn = gn ○ Fn for anygn ∈ Q(δFn
).

We now show how Theorem 17 can be easily derived from Theorem 16.
For everym ⩾ 1 and everyx ∈ X∗, denote byx[m] them-prefixof x, that is the string

in ⋃m
i=0X

i defined as follows: if∣x∣ ⩽ m, thenx[m] = x; otherwise, ifx = x
′
x
′′, with

∣x′∣ =m, thenx[m] = x′.
If H ∶X∗ →X∗ has anm-generated range, then by definition it can be assimilated with

the functionH[m]∶X
∗
→ ⋃m

i=0 X
i defined byH[m](x) = H(x)[m]. Indeed,H can be

reconstructed fromH[m] by setting

H(x) =
⎧⎪⎪
⎨
⎪⎪⎩

H[m](x), if ∣x∣ ⩽m,

H[m](x)z
n−m, otherwise,

wherez is the last letter ofH[m](x).
Thus we can prove Theorem 17 from Theorem 16 as follows.

Proof of Theorem 17 as a corollary of Theorem 16.By settingm = 1 in Theorem 16, we
see thatH has a1-generated range. By the observation above,H can then be assimilated
with H[1] through the identityH(x) = H[1](x)∣x∣ for everyx ∈ X∗. It is then clear that
H is associative if and only ifH[1] is B-associative. The other parts of Theorem 17 follow
immediately. �

Remark4. The question of generalizing Theorem 17 by dropping the1-quasi-range-idem-
potent condition on everyFn was raised in [8]. Clearly, Theorem 8 answers this question.

3. SOME CONSEQUENCES OF THE FACTORIZATION RESULT

Since any associative functionF ∶X∗ →X∗ is preassociative and, in turn, B-preassocia-
tive, it can be factorized as indicated in Theorem 8. Therefore, up to one-to-one unary
maps, the associative string functions can be completely described in terms of length-
preserving associative string functions, and similarly for the preassociative and B-preasso-
ciative functions. This is an important observation which shows that in a sense any of
these nested classes can be described in terms of the smallest one, namely the subclass of
associative and length-preserving string functions (see Figure 1).

Example 18. Let a ∈ X be fixed. Let the mapF ∶X∗ → X∗ be defined inductively
by F (z) = z if z ≠ a, F (a) = ε, andF (xz) = F (x)F (z) for everyxz ∈ X∗. Thus
defined,F (x) is obtained fromx by removing all the ‘a’ letters (if any). SinceF is
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B-preassociative functions

Preassociative functions

Associative functions

Associative and length-preserving
functions

FIGURE 1. Nested subclasses of B-preassociative functions

associative (see [5] for more details), it is B-preassociative and therefore it can be factorized
as indicated in Theorem 8. For everyn ⩾ 1, define the functiongn∶⋃n

i=0(X ∖ {a})
i
→Xn

by gn(x) = xan−∣x∣. SinceFn ○ gn ○ Fn = Fn for everyn ⩾ 1, we see thatgn ∈ Q(Fn).
By Theorem 8, the functionH ∶X∗ → X∗, defined byH0(ε) = ε andHn = gn ○ Fn for
everyn ⩾ 1, is associative and length-preserving. Moreover, we haveFn = fn ○Hn for
everyn ⩾ 1, wherefn = Fn∣ran(Hn). Thus defined,Hn(x) is obtained fromx by moving
all the ‘a’ letters (if any) to the rightmost positions. For instance,H11(mathematics) =
mthemticsaa.

As observed in the previous section, settingm = 1 in Theorem 16, we can derive
a factorization of any B-preassociative function whosen-ary partFn is 1-quasi-range-
idempotent for everyn ⩾ 1 (Theorem 17). In the following example, we derive a similar
factorization explicitly directly from Theorem 8 (withoutusing Theorem 16).

Example 19. If we assume thatFn is1-quasi-range-idempotent for everyn ⩾ 1 in assertion
(i) of Theorem 8, then the factorization given in assertion (ii) can be obtained by defining
Hn = gn ○ Fn, wheregn(x) = hn(x)

n andhn ∈ Q(δFn
). Indeed, sinceFn is 1-quasi-

range-idempotent, we have

(Fn ○ gn ○ Fn)(x) = (δFn
○ hn ○ Fn)(x) = Fn(x),

which shows thatgn ∈ Q(Fn).

It is clear that the B-associativity property, originally defined for functionsF ∶X∗ →
X ∪ {ε} can be immediately extended to string functionsF ∶X∗ →X∗.

Definition 20. We say that a string functionF ∶X∗ → X∗ is barycentrically associative
(or B-associativefor short) if it satisfies the equationF (xyz) = F (xF (y)∣y∣z) for any
x,y,z ∈ X∗.

It is easy to see that any B-associative string functionF ∶X∗ → X∗ is B-preassociative
and hence can be factorized as indicated in Theorem 8. Moreover, any B-associative string
function satisfyingran(Fn) ⊆ X for everyn ⩾ 1 is also such thatFn is 1-quasi-range-
idempotent for everyn ⩾ 1 (see [8]) and therefore it can be factorized as described in
Example 19. In this case we haveδFn

○Fn = Fn, which shows thatid∣ran(Fn) ∈ Q(δFn
) for

everyn ⩾ 1. Therefore, from Example 19 we immediately derive the following corollary.
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Corollary 21. LetF ∶X∗ → X∗ be a B-associative function satisfyingran(Fn) ⊆ X for
everyn ⩾ 1. Then, for everyn ⩾ 1, we haveFn = fn ○Hn, whereH ∶X∗ → X∗ is the
length-preserving associative function defined byHn(x) = Fn(x)n for everyn ⩾ 1 and
fn∶ ran(Hn) →X is the one-to-one function defined byfn(x

n) = x for everyn ⩾ 1.

We end this section by an additional application of Theorem 8.

Definition 22. We say that a functionF ∶X∗ → Y has acomponentwise defined kernelif
there exists a family{En ∶ n ⩾ 1} of equivalence relations onX such that for anyn ⩾ 1
and anyx,y ∈ Xn, we haveF (x) = F (y) if and only if (xi, yi) ∈ Ei for i = 1, . . . , n. In
this case, we say that the family{En ∶ n ⩾ 1} defines the kernel ofF componentwise.

This concept can be interpreted, e.g., in decision making, as follows. A function
F ∶X∗ → Y has a componentwise defined kernel if the equivalence between twon-profiles
x,y ∈Xn can be defined attributewise.

The following proposition and corollary give characterizations of those B-preassociative
functions which have a componentwise defined kernel.

Proposition 23. Assume AC and letF ∶X∗ → Y have a kernel defined componentwise by
the family{En ∶ n ⩾ 1} of equivalence relations onX . ThenF is B-preassociative if and
only if En ⊆ En+1 for everyn ⩾ 1.

Proof. LetF ∶X∗ → Y be defined as indicated in the statement. For the necessity, suppose
thatF is B-preassociative and let(x, y) ∈ En for somen ⩾ 1. Then we haveF (xn) =
F (xn−1y) and henceF (xn+1) = F (xny) by B-preassociativity. It follows that(x, y) ∈
En+1. For the sufficiency, for anyn ⩾ 1 and anyx,y ∈ Xn such thatF (x) = F (y), we
haveF (xz) = F (yz) for everyz ∈X∗ by definition ofF . SinceEn ⊆ En+1 for everyn ⩾
1, we also haveF (zx) = F (zy) for everyz ∈X∗. ThereforeF is B-preassociative. �

Corollary 24. Assume AC and letF ∶X∗ → Y be a function. The following assertions are
equivalent.

(i) F is B-preassociative and has a componentwise defined kernel.
(ii) There exists a sequence(hn)n⩾1 of unary operations onX and a sequence(fn)n⩾1

of one-to-one mapsfn∶{h1(x1)⋯hn(xn) ∶ x1⋯xn ∈ Xn} → Y such thathn ○

hn = hn, hn+1 ○ hn = hn+1, andFn(x) = fn(h1(x1)⋯hn(xn)) for everyn ⩾ 1
and everyx ∈ Xn.

Proof. (i) ⇒ (ii). By Proposition 23, the kernel ofF is defined by some family of equiv-
alence relations{En ∶ n ⩾ 1} on X satisfyingEn ⊆ En+1 for everyn ⩾ 1. For every
c ∈X/En, letsn(c) ∈ c be a representative ofc and define the maphn∶X →X byhn(x) =
sn(x/En). The mapgn∶ ran(Fn) → Xn defined bygn(F (x)) = h1(x1)⋯hn(xn) is
a quasi-inverse ofFn. Indeed, since(xi, hi(xi)) ∈ Ei for everyx ∈ Xn and every
i ∈ {1, . . . , n}, we have

(Fn ○ gn ○ Fn)(x1⋯xn) = Fn(h1(x1)⋯hn(xn)) = Fn(x1⋯xn).

By Theorem 8, settingHn = gn ○ Fn for everyn ⩾ 1, there is a one-to-one function
fn∶ ran(Hn) → Y such thatFn = fn ○Hn and such that the mapH ∶X∗ → X∗ obtained
by settingH0(ε) = ε is associative and length-preserving. The conclusion follows from
Example 3.

(ii) ⇒ (i) By Example 3 and Proposition 4 we obtain thatF is B-preassociative. More-
over, the kernel ofF is defined by the family{ker(hi) ∶ i ⩾ 1} of equivalence relations on
X . �



A CHARACTERIZATION OF BARYCENTRICALLY PREASSOCIATIVE FUNCTIONS 9

ACKNOWLEDGMENTS

This research is supported by the internal research projectF1R-MTH-PUL-15MRO3 of
the University of Luxembourg.

REFERENCES

[1] B. de Finetti. Sul concetto di media.Giornale dell’ Instituto Italiano degli Attari2(3):369–396, 1931.
[2] J. Fodor and M. Roubens.Fuzzy preference modelling and multicriteria decision support. Kluwer, Dor-

drecht, 1994.
[3] M. Grabisch, J.-L. Marichal, R. Mesiar, and E. Pap.Aggregation functions. Encyclopedia of Mathematics

and its Applications, vol. 127. Cambridge University Press, Cambridge, 2009.
[4] A. N. Kolmogoroff. Sur la notion de la moyenne. (French).Atti Accad. Naz. Lincei, 12(6):388–391, 1930.
[5] E. Lehtonen, J.-L. Marichal, B. Teheux. Associative string functions.Asian-European Journal of Mathe-

matics7(4):1450059 (18 pages), 2014.
[6] J.-L. Marichal and B. Teheux. Associative and preassociative functions.Semigroup Forum89(2):431–442,

2014. (Improved version available at arxiv.org/abs/1309.7303v3).
[7] J.-L. Marichal and B. Teheux. Preassociative aggregation functions.Fuzzy Sets and Systems268:15–26,

2015.
[8] J.-L. Marichal and B. Teheux. Barycentrically associative and preassociative functions.Acta Mathematica

Hungarica145(2):468–488, 2015.
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