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Maxima of the Q-index: forbidden even
cycles
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Abstract

Let G be a graph of order n and let q (G) be the largest eigenvalue of the signless
Laplacian of G. Let Sn,k be the graph obtained by joining each vertex of a complete
graph of order k to each vertex of an independent set of order n − k; and let S+

n,k

be the graph obtained by adding an edge to Sn,k.

It is shown that if k ≥ 2, n ≥ 400k2, and G is a graph of order n, with no cycle

of length 2k + 2, then q (G) < q
(

S+
n,k

)

, unless G = S+
n,k. This result completes the

proof of a conjecture of de Freitas, Nikiforov and Patuzzi.

AMS classification: 15A42, 05C50

Keywords: signless Laplacian; largest eigenvalue; forbidden cycles; spectral

extremal problems.

1 Introduction

Given a graph G, the Q-index of G is the largest eigenvalue q (G) of its signless Laplacian
Q (G). In this paper we study how large can q (G) be if G is a graph of given order and
contains no cycle of given even length.

Thus, let Sn,k be the graph obtained by joining each vertex of a complete graph of order
k to each vertex of an independent set of order n−k, that is to say, Sn,k = Kk∨Kn−k. Also,
let S+

n,k be the graph obtained by adding an edge to Sn,k. In [7] the following conjecture
has been raised:

Conjecture 1 Let k ≥ 2 and let G be a graph of sufficiently large order n. If G has no
cycle of length 2k + 1, then q (G) < q (Sn,k) , unless G = Sn,k. If G has no cycle of length
2k + 2, then q (G) < q

(

S+
n,k

)

, unless G = S+
n,k.

∗Department of Mathematical Sciences, University of Memphis, Memphis TN 38152, USA; email:

vnikiforv@memphis.edu
†Corresponding author. Department of Mathematics, Shanghai University, Shanghai, 200444, China;

email: xiyingyuan2007@hotmail.com
‡Research supported by National Science Foundation of China (No. 11101263), and by a grant of

“The First-class Discipline of Universities in Shanghai”.

1

http://arxiv.org/abs/1410.2142v1


In [11] it was shown that Conjecture 1 is asymptotically true and some proof technique
has been outlined. In [14] and [15] the second author developed this technique further and
succeeded to prove Conjecture 1 for forbidden odd cycles. In this paper we shall prove
the remaining case of the conjecture, which turns out to be by far more difficult than the
odd case. Thus, our main result is the following theorem:

Theorem 2 Let k ≥ 2, n ≥ 400k2, and let G be a graph of order n. If G has no cycle of
length 2k + 2, then q (G) < q

(

S+
n,k

)

, unless G = S+
n,k.

In the next section we prepare the ground for the proof of Theorem 2 and in Section
3 we give the proof itself. At the end we give a sum up of our work.

2 Notation and supporting results

For graph notation and concepts undefined here, we refer the reader to [1]. For introduc-
tory material on the signless Laplacian see the survey of Cvetković [2] and its references.
In particular, let G be a graph, and X and Y be disjoint sets of vertices of G. We write:

- V (G) for the set of vertices of G and E (G) for the set of edges of G;
- |G| for the number of vertices of G and e (G) for the number of edges of G;
- G [X ] for the graph induced by X, and e (X) for e (G [X ]) ;
- Gu for the graph induced by the set V (G) \ {u} , where u ∈ V (G) ;
- e (X, Y ) for the number of edges joining vertices in X to vertices in Y ;
- ΓG (u) (or simply Γ (u)) for the set of neighbors of a vertex u, and dG (u) (or simply

d (u)) for |Γ (u)| .

We write Pk, Ck, and Kk for the path, cycle, and complete graph of order k. We write
F ⊂ G to indicate that F is a subgraph of G, and we say that a graph G is F -free if G
contains no subgraphs isomorphic to F.

2.1 Some auxiliary results

Here we state several known results, all of which are used in Section 3. We start with a
result of Dirac [4].

Theorem 3 If G is a graph with δ (G) ≥ 2, then G contains a cycle longer than δ (G) .

Dirac’s result has been further developed by Erdős and Gallai [5]. We shall need the
following classical theorems from their paper.

Theorem 4 Let k ≥ 1. If G is a graph of order n, with no Pk+2, then e (G) ≤ kn/2, with
equality holding if and only if G is a union of disjoint copies of Kk+1.

Theorem 5 Let k ≥ 2. If G is a graph of order n, with no cycle longer than k, then
e (G) ≤ k (n− 1) /2, with equality holding if and only if G is a union of copies of Kk, all
sharing a single vertex.
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The following structural extension of Theorem 4 has been established in [8].

Lemma 6 Let k ≥ 1 and let the vertices of a graph G be partitioned into two sets A and
B. If

2e (A) + e (A,B) > (2k − 1) |A|+ k |B| ,

then there exists a path of order 2k + 1 with both endvertices in A.

To state the next result define the graph Lt,k by Lt,k := K1∨ tKk, i.e., Lt,k consists of t
complete graphs Kk+1, all sharing a single common vertex. In [10], the following stability
result has been proved.

Theorem 7 Let k ≥ 2, n ≥ 2k + 3, and G be a graph of order n with δ (G) ≥ k. If G is
connected, then P2k+3 ⊂ G, unless one of the following holds:

(i) G ⊂ S+
n,k;

(ii) n = tk + 1 and G = Lt,k;
(iii) n = tk + 2 and G ⊂ K1 ∨ ((t− 1)Kk ∪Kk+1);
(iv) n = (s+ t) k + 2 and G is obtained by joining the centers of two disjoint graphs

Ls,k and Lt,k.

We shall need, in fact, a particular corollary of Theorem 7, which is easy to check
directly.

Corollary 8 Let k ≥ 2, n ≥ 2k + 3, and let G be a connected P2k+3-free graph of order
n with δ (G) ≥ k. Then e (G) ≤ (k + 1)n/2, unless G ⊂ S+

n,k and e (G) ≤ kn.

Another statement that we shall need is a variant of Theorem 7 for the case k = 1; we
omit its easy proof.

Lemma 9 If G is a connected graph of order n ≥ 5. If G contains no P5, then one of the
following holds:

(i) G ⊂ S+
n,1;

(ii) G is obtained by joining the centers of two disjoint stars.

We finish this subsection with two known upper bounds on q (G) . The first one can
be traced back to Merris [12], while the case of equality has been established in [6].

Theorem 10 For every graph G,

q (G) ≤ max







d (u) +
1

d (u)

∑

v∈Γ(u)

d (v) : u ∈ V (G)







. (1)

If G is connected, equality holds if and only if G is regular or semiregular bipartite.

Finally, let us mention the following bound, due to Das [3].

Theorem 11 If G is a graph with n vertices and m edges, then

q (G) ≤
2m

n− 1
+ n− 2, (2)

with equality holding if and only if G is either complete, or is a star, or is a complete
graph with one isolated vertex.
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3 Proof of Theorem 2

Before going further, we shall make three remarks. First, recall an estimate of q
(

S+
n,k

)

given in [7], where it was shown that if k ≥ 2 and n > 5k2, then

n+ 2k − 2−
2k (k − 1)

n + 2k + 2
> q

(

S+
n,k

)

> n+ 2k − 2−
2k (k − 1)

n + 2k − 3
. (3)

Second, note that if G is a graph with q(G) ≥ q
(

S+
n,k

)

, then e(G) cannot be much

smaller than e
(

S+
n,k

)

. Indeed, in view of Das’s bound (2) we have

q
(

S+
n,k

)

≤ q(G) ≤
2e(G)

n− 1
+ n− 2,

and so

e(G) ≥ kn− k2 + 1 = e
(

S+
n,k

)

−
k (k − 1)

2
. (4)

Finally, given a vertex u of graph G, note that

∑

{u,v}∈E(G)

d (v) = 2e (Γ (u)) + e (Γ (u) , V (G) \Γ (u)) .

We shall use this equality with no explicit reference.
Our proof of Theorem 2 is rather long and complicated. To improve the presentation

we have extracted a large segment of it into Lemma 12 and Theorem 13 below. Since these
assertions are subordinate to the proof of Theorem 2, their statements look somewhat
technical.

Lemma 12 Let k ≥ 2, n ≥ 400k2, let G be a C2k+2-free graph of order n with

q (G) ≥ q
(

S+
n,k

)

.

Let w be a dominating vertex of G, suppose that G1, . . . , Gp are the components of Gw of
order at most 3k2, and let H := G− ∪p

i=1Gi. Then |H| ≥ 3n/10 and

q (H) > q
(

S+
|H|,k

)

,

unless H = G and q (H) = q (G) = q
(

S+
n,k

)

.

Proof If p = 0, the proof is completed, so let us assume that p ≥ 1. We shall use
induction on p. Let |Gi| := ni, and Hs := G− ∪s

i=1Gi. First we shall prove that q (H1) >
q
(

S+
n−n1,k

)

. For short, set q := q (G) and V := V (G) . Letting (x1, . . . , xn) be a positive
unit eigenvector to q, from the eigenequation for q and the vertex w we see that

(q − n+ 1) xw =
∑

i∈V \{w}

xi ≤
√

(n− 1) (1− x2
w).
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Now, in view of n ≥ 400k2 ≥ 5k2 and (3), we see that

q ≥ q
(

S+
n,k

)

> n+ 2k − 3,

and so,

x2
w ≤

n− 1

(q − n + 1)2 + n− 1
≤

n− 1

n− 1 + 4 (k − 1)2
< 1−

4 (k − 1)2

n+ 4k2
. (5)

Next, letting
x = max {xi | i ∈ V (G1)} , (6)

we have
qx ≤ n1x+ (n1 − 1)x+ xw,

and so
x ≤

xw

q − 2n1 + 1
≤

xw

n + 2k − 2n1 − 2
≤

xw

n− 6k2
.

Note that

q (H1) ≥ q (H1)



1−
∑

i∈V (G1)

x2
i



 ≥
∑

{i,j}∈E(H1)

(xi + xj)
2

= q (G)−
∑

{i,j}∈E(G1)

(xi + xj)
2 −

∑

i∈V (G1)

(xi + xw)
2 .

On the other hand, using (6) and (5), we see that

∑

{i,j}∈E(G1)

(xi + xj)
2 +

∑

i∈V (G1)

(xi + xw)
2 ≤ 2n1 (n1 − 1) x2 + n1 (x+ xw)

2

≤ n1

(

1 +
2

n− 6k2
+

2n1 − 1

(n− 6k2)2

)

x2
w

≤ n1

(

1 +
21

10 (n− 6k2)

)

(

1−
4 (k − 1)2

n + 4k2

)

≤ n1

(

1−
3

2n

)

.

Hence, (3) implies that

q (H1) ≥ q (G)− n1 +
3n1

2n
≥ n− n1 + 2k − 2−

2k (k − 1)

n+ 2k − 3
+

3n1

2n

> n− n1 + 2k − 2−
2k (k − 1)

n− n1 + 2k + 2
> q

(

S+
n−n1,k

)

.
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We can apply this argument repeatedly, as long as the remaining graph Hi is of order at
least 100k2. Assume that there exists some j such that |Hj−1| ≥ 100k2, while |Hj| < 100k2.
Set for short t := n1 + · · ·+ nj, and note that

q (Hj) ≥ q (G)− t+
3t

2n
.

Since Cs * Hj for any s ≥ 2k + 2, Theorem 5 implies that

e (Hj) ≤ (k + 1/2) (n− t− 1)

and Das’s bound (2) implies that

q (Hj) ≤
2e (Hj)

n− t− 1
+ n− t− 2 ≤ n− t+ 2k − 1.

In view of

q (Hj) ≥ q (G)− t+
3t

2n
> n− t + 2k − 2−

2k (k − 1)

n+ 2k − 3
+

3t

2n
,

we have

t <
7

10
n,

which implies that |H| ≥ 3n/10 > 100k2, and this contradiction completes the proof of
Lemma 12. ✷

Lemma 12 is crucial for the next theorem, where it will be used to improve the structure
of a graph at the price of a moderate reduction of its order.

Theorem 13 Let k ≥ 2, n ≥ 400k2, and let G be a graph of order n. If q (G) ≥ q
(

S+
n,k

)

and ∆(G) = n− 1, then C2k+2 ⊂ G, unless G = S+
n,k.

Proof Assume that C2k+2 * G. To prove the theorem we need to show that G = S+
n,k. Let

w be a dominating vertex of G. Applying Lemma 12, we can find an induced subgraph
H ⊂ G with the following properties:

- H is C2k+2-free;
- w is a dominating vertex in H ;
- |H| ≥ 3n/10 > 100k2;
- every component of Hw is of order greater than 3k2;

- q (H) > q
(

S+
|H|,k

)

, unless H = G and q (H) = q (G) = q
(

S+
n,k

)

.

Thus, to complete the proof of Theorem 13 it is enough to prove the following state-
ment:

Theorem A Let k ≥ 2, n ≥ 100k2, let G be a C2k+2-free graph of order n, and let
w be a dominating vertex of G such that each component of Gw is greater than 3k2. If
q (G) ≥ q

(

S+
n,k

)

, then G = S+
n,k.

6



We proceed with the proof of Theorem A, keeping the notation for G and n, although
now n > 100k2. Thus, assume that G and n satisfy the premises of Theorem A and
q (G) ≥ q

(

S+
n,k

)

. We shall prove that G = S+
n,k. For convenience choose G so that it has

maximum Q-index among all graphs satisfying the premises of Theorem A. Next observe
that inequality (4) implies that

e(G) ≥ kn− k2 + 1,

and so
e(Gw) = e(G)− n+ 1 ≥ (k − 1)n− k2 + 2. (7)

We shall dispose of the case k = 2 before anything else, as most of our arguments
work for k ≥ 3 and need changes to work for k = 2.

Claim 1. Theorem A holds for k = 2.

Proof. If k = 2, then Gw consist of components of order greater than 12. Since
δ (Gw) ≥ 1 and P5 * Gw, Lemma 9 implies that the components of Gw are of the two
types given in clauses (i) and (ii). If Gi ⊂ S+

|Gi|,1
, we see that Gi = S+

|Gi|,1
, as q (G)

is maximal. Now assume that Gi is a component of Gw consisting of two stars whose
centers are joined by an edge; let u and v be the centers of these stars; let u1, . . . , us be
the neighbors of u and v1, . . . , vt be the neighbors of v. Let (x1, . . . , xn) be a unit positive
eigenvector to q (G) ; by symmetry suppose that xu ≥ xv. Remove all edges {vi, v} and
join v1, . . . , vt to u. In this way Gi is transformed into a star Ss+t+2,1; now make it an
S+
s+t+2,1 by adding an edge to it. A brief calculation shows that the resulting graph G′

satisfies q (G′) > q (G) , which contradicts the choice of G. Hence each component Gi of
Gw satisfies Gi = S+

|Gi|,1
.

Finally, if Gw has two components G1 = S+
|G1|,1

and G2 = S+
|G2|,1

, replace them by a

component S+
|G1|+|G2|,1

and write G′′ for the resulting graph. Clearly C6 * G′′ and we

shall show that q (G′′) > q (G) , which contradicts our choice of G. Let u and v be the
dominating vertices in G1 and G2. Let x = (x1, . . . , xn) be a positive unit eigenvector to
q (G) . By symmetry we may suppose that xu ≥ xv. Now remove all edges of G2 and join all
vertices of G2 to u. In this way G1 and G2 are replaced by a single component S+

|G1|+|G2|,1
.

For short, let n1 := |G1| , n2 := |G2| , and q := q (G) . Let W := V
(

S+
n2,k−1

)

\ {v} and let
v′, v′′ ∈ W be the two exceptional vertices of G2 such that {v′, v′′} ∈ E (G) . By symmetry,
xv′ = xv′′ and from the eigenequations for q we see that

qxv′ = 3xv′ + xv′′ + xv + xw = 4xv′ + xv + xw,

qxv = n2xv + xv′ + xv′′ + xw +
∑

s∈W\{v′,v′′}

xs

> n2xv + 2xv′ + xw.

Excluding xw from these relations, after some algebra we see that

(q − n2 + 1) xv > (q − 2)xv′

7



and so xv′′ = xv′ < xv. A brief calculation shows that the resulting graph G′ satisfies
q (G′) > q (G) , which contradicts the choice of G. This contradiction shows that Gw has
only one component and so G = S+

n,2, completing the proof of Claim 1.

To the end of the proof we shall assume that k ≥ 3.

Claim 2. There exists an induced subgraph H of Gw such that δ (H) ≥ k − 1 and
|H| ≥ n− k2 + k.

Proof. Define a sequence of graphs, F0 ⊃ F1 ⊃ · · · ⊃ Fr ⊃ · · · using the following
procedure:

F0 := Gw;
i := 0;
while δ(Fi) < k − 1 do begin

select a vertex v ∈ V (Fi) with d(v) = δ(Fi);
Fi+1 := Fi − v;
i := i+ 1;

end.
Note that for each r = 0, 1, . . . , we have |Fr| = n−r−1 and P2k+1 * Fr; thus Theorem

4 implies that

e (Fr) ≤

(

k −
1

2

)

(n− r − 1) .

On the other hand, in view of (7), we find that

e (Fr) = e (Gw)−
r−1
∑

i=0

δ(Fi) ≥ e (Gw)− r (k − 2)

≥ (k − 1)n− k2 + 2− r (k − 2) . (8)

Hence,

(k − 1)n− k2 + 2− r (k − 2) ≤

(

k −
1

2

)

(n− r − 1) ,

and after some algebra we find that

3r ≤ n+ 2k2 − 2k − 3 < 2n.

that is to say, the procedure stops before i ≥ 2n/3. Next, with a more involved argument,
we shall show that the procedure stops before i > k2 − k − 1.

Let H = Fr, where r is the last value of the variable i. Let Hi be a component of H
and set ni := |Hi| . We claim that e (Hi) ≤ (k − 1)ni.

Indeed if ni ≤ 2k − 1, then

e (Hi) ≤
ni (ni − 1)

2
≤ (k − 1)ni.
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If ni = 2k and Hi is Hamiltonian, then Hi is a component of Gw as otherwise P2k+1 ⊂
Gw. But all components of Gw are of order at least 3k2 > 2k, so Hi is not Hamiltonian.
In this case, Ore’s theorem [13] implies that

e (Hi) ≤
(ni − 1) (ni − 2)

2
+ 1 ≤ (k − 1)ni.

If n ≥ 2k+1, in view of P2k+1 * Hi and δ (Hi) ≥ k−1, it follows that Hi satisfies one
of the clauses of Theorem 7, and so Corollary 8 implies that e (Hi) ≤ (k − 1)ni. Summing
over all components of H, we find that

e (H) ≤ (k − 1) (n− r − 1) .

On the other hand, in view of (8) we find that

(k − 1)n− k2 + 2− r (k − 2) ≤ (k − 1) (n− r − 1) ,

and so, r ≤ k2 − k − 1. Therefore, H satisfies the requirements of Claim 2, which is thus
proved.

Let H ′ be the subgraph of Gw induced by the vertex set V (Gw) \V (H) , which may
be empty. Let H1, . . . , Hp be the components of H and let n1, . . . , np be their orders.

Claim 3. Each component Hi of H satisfies Hi ⊂ S+
|Hi|,k−1.

Proof. First note that each component of Gw contains at most one component of H.
Indeed, since for each component Hi of H , we have δ (Hi) ≥ k − 1 ≥ 2, Dirac’s Theorem
3 implies that Cl ⊂ Hi, for some l ≥ k; hence each component of Gw contains at most
one component of H, as otherwise P2k+1 ⊂ Gw.

Further, if Hi is a component of H and Gi is a component of Gw containing Hi, there
are at most k2−k−1 vertices in V (Gi) \V (Hi) ; since |Gi| > 3k2, the order of Hi satisfies

|Hi| > 3k2 − k2 + k + 1 > 2k2.

Assume for a contradiction that Hi is a component of H such that Hi * S+
ni,k−1. Note

that ni > 2k2 > 2k + 1, P2k+1 * Hi, and δ (Hi) ≥ k − 1. Using Theorem 7, we see that
Hi is one of the graphs from clauses (ii), (iii) or (iv). Now Corollary 8 implies that

e (Hi) ≤
kni

2
.

Since H is P2k+1-free, we have

e (H) = e (Hi) + e (V (H) \V (Hi)) ≤
kni

2
+ (k − 1) (n− 1− |H ′| − ni) .

and from (8) we know that

e (H) ≥ (k − 1)n− k2 + 2− (k − 2) |H ′| .

9



After some algebra we see that

k2 − k − 1 ≥

(

1

2
k − 1

)

ni + |H ′| ≥ k2,

a contradiction, showing that Hi ⊂ S+
ni,k−1, and completing the proof of Claim 3.

Our next goal is to prove that each component J of Gw is isomorphic to S+
|J |,k−1.

Since G has maximal q (G) , it is enough to prove that each component J of Gw satisfies
J ⊂ S+

|J |,k−1.
Let J be a component of Gw. Note that J contains exactly one component F of H, as

otherwise it would consist solely of vertices from H ′, which are at most k2 − k − 1, while
J has more than 3k2 vertices. Set m := |F | ; Claim 3 implies that F ⊂ S+

m,k−1. Write A

for the set of k − 1 dominating vertices of S+
m,k−1; let B := V (F ) \A and

C := V (J) \V (F ) .

Since δ (F ) ≥ k − 1, the bipartite subgraph of F induced by the vertex classes A and
B contains at least |A| |B| − 2 edges. If G [B] contains an edge, then each vertex in B is
endvertex of a path P2k ⊂ F ; since P2k+1 * J , each vertex of C may be joined only to
vertices from A. Therefore, J ⊂ S+

|J |,k−1 as long as G [B] contains an edge.

Assume therefore that the set B is independent. Together with δ (F ) ≥ k − 1, this
assumption implies that A and B induce a complete bipartite graph in G.

Claim 4. The set C is independent.

Proof. Let

CA := {u : u ∈ C and Γ (u) ∩ A 6= ∅} ,

CB := {u : u ∈ C and Γ (u) ∩ B 6= ∅} ,

C ′ := C\CB.

Our main goal is to prove that the set C ′ is independent, which easily implies that C is
independent as well. Assume for a contradiction that G [C ′] contains edges. This fact
implies that CB = ∅, as P2k+1 * J . For the same reason we see that G [C ′] contains no
P4 or cycles.

Further, G [C ′] contains no isolated vertices. Indeed, if u ∈ C ′ and u is an isolated
vertex in G [C ′] , then it has to be joined to all vertices of A as q (G) is maximal; we see
that u has k − 1 neighbors in H and so u cannot be removed by the procedure of Claim
2, a contradiction.

Hence G [C ′] is a disjoint union of edges and stars. Note that if S is a star in G [C ′]
of order at least 3, then its center belongs to CA, but no other vertex of S belongs to CA,
as P2k+1 * J.

Next, assume that G [C ′] contains a star S of order t ≥ 3, such that its center i is
joined to exactly one vertex u ∈ A; let u1, . . . , ut−1 be the peripheral vertices of S. Remove
the edges {u1, i} , . . . , {ut−1, i} and add the edges {u1, u} , . . . , {ut−1, u} ; write G′ for the

10



resulting graph, which obviously satisfies the hypothesis of Theorem A. We shall show
that q (G′) > q (G) . First, by symmetry,

xu1
= · · · = xut−1

= p.

Next we have

qp = 2p+ xi + xw,

qxu ≥ (m+ 1) xu + xi + xw,

and after some algebra we find that xu > p. Also,

qxi = (t + 1)xi + (t− 1) p+ xu + xw < (t+ 1) xi + txu + xw,

and after some algebra we find that

(q −m− 1 + t) xu > (q − t) xi,

implying that xu > xi. Now a brief calculation shows that q (G′) > q (G) , contradicting
the choice of G.

Hence, if S ⊂ G [C ′] is a star of order at least 3, then is center is joined to more than
one vertex in A.

Next assume that G [C ′] is connected. If G [C ′] is just one edge, then J ⊂ S+
m,k−1,

and so J = S+
m,k−1 as q (G) is maximal. If G [C ′] is a star S of order at least 3, then its

center i is joined to more than one vertices A. Since q (G) is maximal, i must be joined
to all vertices in A; thus i has k − 1 neighbors in H and so i cannot be removed by the
procedure of Claim 2, a contradiction. So G [C ′] has more than one component.

Finally, assume that u is a vertex of A having a neighbor in C ′. If G [C ′] contains a star
S, then the center of S may be joined only to u, as otherwise we can find a P2k+1 ⊂ J using
an additional component of G [C ′] . Hence G [C ′] contains only disjoint edges. Clearly each
edge of G [C ′] contains a vertex of CA and all such vertices must be joined exactly to u
as P2k+1 * J. Since q (G) is maximal, we see that A induces a complete graph, and both
ends of each disjoint edge in G [C ′] are joined to u. We shall show that in this case q (G)
is not maximal.

Indeed, let v ∈ A\ {u} and let x = (x1, . . . , xn) be a positive unit eigenvector to q (G) .
Suppose that {i, j} is an isolated edge in G [C ′] . Remove {i, j} , add the edges {i, v}
and {j, v} ; write G′ for the resulting graph, which obviously satisfies the hypothesis of
Theorem A. By symmetry, xi = xj ; note that

qxv = mxv +
∑

s∈A∪B\{v}

xs + xw > mxv + xu + xw,

qxi = 3xi + xu + xj + xw = 4xi + xu + xw.

After some algebra we find that

xv >
q − 4

q −m
xi >

q − 4

q − 2k2
xi > xi,

11



and a brief calculation shows that q (G′) > q (G) , contradicting the choice of G. This
completes the proof that C ′ is independent. Therefore C is also independent, as no edge
in C can be incident to a vertex in B as P2k+1 * J. This completes the proof of Claim 4.

Further, we can assume that C ′ = ∅, as if u is vertex in C ′, then, in Gw, u can be
joined only to vertices of A; since q (G) is maximal, u is joined to each vertex in A; thus
i has k − 1 neighbors in H and so i cannot be removed by the procedure of Claim 2, a
contradiction.

Claim 5. Either J ⊂ S+
m+1,k−1 or the set C is empty.

Proof. Observe that if a vertex u ∈ CB is joined to two or more vertices from B,
then P2k+1 ⊂ J, so each vertex in CB is joined to exactly one vertex in B. Now if CB has
two distinct vertices that are joined to two distinct vertices in B, then clearly P2k+1 ⊂ J.
Therefore, all vertices in CB are joined to the same vertex of B, say u ∈ B.

Suppose that CA 6= ∅ and let v ∈ CA. Clearly CB\CA = ∅, as P2k+1 * J ; therefore
CA = CB = {v} , implying that J ⊂ S+

m+1,k−1.
Hence we may assume that CA = ∅, that is to say, all vertices in C are joined only to

vertices in B. Now the graph J looks as follows: the set C is independent and all vertices
of C are joined exactly to the vertex u ∈ B. We shall show that in this case q (G) is not
maximal.

Indeed, choose a vertex v ∈ A and let C = {u1, . . . , ut} ; remove the edges {u1, u} , . . . , {ut, u}
and add the edges {u1, v} , . . . , {ut, v} ; write G′ for the resulting graph, which satisfies
the hypothesis of Theorem A. We shall show that xv > xu, which obviously implies that
q (G′) > q (G) , contradicting the choice of G. Note that by symmetry,

xu1
= · · · = xut

and xs = xv for every s ∈ A.

Therefore, letting xu1
= p, wee see that

qxv > mxv + xu + xw,

qxu = (k + t)xu + (k − 1)xv + tp+ xw,

qp = 2p+ xu + xw.

After some algebra we first find that xv > p, and then xv > xu, as claimed. This completes
the proof of Claim 5.

At this stage we see that each component J of Gw satisfies J = S+
|J |,k−1; to finish the

proof we must show that Gw has only one component. Assume for a contradiction that
Gw contains two components, say G1 = S+

n1,k−1 and G2 = S+
n2,k−1. We shall show that in

this case q (G) is not maximal, which contradicts the choice of G.
Let u1, . . . , uk−1 and v1, . . . , vk−1 be the dominating vertices in G1 and G2. Let x =

(x1, . . . , xn) be a positive unit eigenvector to q (G) . By symmetry,

xu1
= · · · = xuk−1

, xv1 = · · · = xvk−1
, and xu1

≥ xv1 .

Now merge the components G1 and G2 into one component F by removing all edges
of G2 and joining the vertices of G2 to each of the vertices u1, . . . , uk−1. Note that F is

12



isomorphic to S+
n1+n2, k−1 and u1, . . . , uk−1 are its dominating vertices. Writing G′ for the

new graph, we shall show that q (G′) > q (G). Indeed, let

W := V
(

S+
n2,k−1

)

\ {v1, . . . , vk−1}

and let v′, v′′ ∈ W be the two exceptional vertices of G2 such that {v′, v′′} ∈ E (G) . By
symmetry, xv′ = xv′′ and from the eigenequations for q we see that

qxv′ = (k + 1)xv′ + xv′′ + (k − 1) xv1 + xw = (k + 2)xv′ + (k − 1)xv1 + xw,

qxv1 = n2xv1 + (k − 2)xv1 + xv′ + xv′′ + xw +
∑

s∈W\{v′,v′′}

xs

> (n2 + k − 2) xv1 + 2xv′ + xw.

Excluding xw from these relations, after some algebra we see that

(q − n2 + 1)xv1 > (q − k) xv′

and so xv′′ = xv′ < xv1 . Further,

q (G′)− q (G) ≥ 〈Q (G′)x,x〉 − 〈Q (G)x,x〉

=
∑

i∈W

(k − 1)
(

(xu1
+ xi)

2 − (xv1 + xi)
2)

+ (k − 1)2 (xu1
+ xv1)

2 − 2 (k − 1) (k − 2)x2
v1
− 4x2

v′

> 4 (k − 1)2 x2
v1
− 2 (k − 1) (k − 2)x2

v1
− 4x2

v1
≥ 0.

This contradiction shows that indeed, Gw = S+
n−1,k−1 and so G = S+

n,k. Theorem A is
proved and so is Theorem 13. ✷

3.1 Proof of Theorem 2

Proof Assume for a contradiction that G is a C2k+2-free graph of order n > 400k2, with
q (G) ≥ q

(

S+
n,k

)

. To prove the theorem we shall show that G = S+
n,k. For short, set

q := q (G) and V := V (G) .
Our proof of Theorem 2 will be based on a careful analysis of the Merris bound (1).

Thus, let w ∈ V be a vertex for which the expression

d (w) +
1

d (w)

∑

{w,i}∈E(G)

d (i)

is maximal. First note that d (w) ≥ 2k − 1, as otherwise, using (1), we obtain a contra-
diction

q (G) ≤ d (w) +
1

d (w)

∑

{w,i}∈E(G)

d (i) ≤ d (w) + ∆ (G) ≤ n + 2k − 3 < q
(

S+
n,k

)

.

13



We shall show that d (w) ≥ n−2. Indeed, set A := Γ (w) andB := V (G) \ (Γ (w) ∪ {w}) .
Obviously, |A| = d (w) and |B| = n− d (w)− 1. The assumption C2k+2 * G implies that
the graph Gw contains no path P2k+1 with both endvertices in A. Therefore, using Lemma
6, we see that

d (w) +
1

d (w)

∑

{w,i}∈E(G)

d (i) = d (w) + 1 +
2e (A) + e (A,B)

d (w)

≤ d (w) + 1 +
(2k − 1) d (w) + k (n− d (w)− 1)

d (w)

= d (w) + k +
k (n− 1)

d (w)
.

Note that the function x+ [k (n− 1)− 1] /x is convex for x > 0; hence, the maximum of
the expression

d (w) +
k (n− 1)

d (w)

is attained for the minimum or the maximum admissible values for d (w) . Thus, if

2k − 1 ≤ d (w) ≤ n− 3,

then

q (G) ≤ d (w) +
k (n− 1)

d (w)
≤ max

{

2k − 1 +
k (n− 1)

2k − 1
, n− 3 +

k (n− 1)

n− 3

}

< n+ 2k − 2−
2 (k2 − k)

n + 2k − 3
< q

(

S+
n,k

)

,

a contradiction, showing that d (w) ≥ n− 2.
At that stage we are left with two cases: d (w) = n − 1, covered by Theorem 13 and

d (w) = n− 2, which will be disposed of in the rest of the proof.
Let v be the single vertex of G such that v /∈ Γ (w) . Let G′ be the graph obtained

by adding the edge {w, v} to G. Since ∆ (G′) = n − 1, and q (G′) ≥ q (G) ≥ q
(

S+
n,k

)

,
Theorem 13 implies that G′ contains a cycle C2k+2, which obviously contains the edge
{w, v} . Hence, G contains a path P2k+2 with endvertices w and v, and moreover, w is
adjacent to all vertices of this path except v. This is a definite situation, and it is easy to
see that if d (v) ≥ 2, then C2k+2 ⊂ G; hence, d (v) = 1.

Write u for the neighbor of v, and let x = (x1, ..., xn) be the unit positive eigenvector
to q. The eigenequation for the vertex v gives

qxv = xv + xu

and so

xv =
1

q − 1
xu.
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Since d (u) ≤ n− 2, there is a vertex t ∈ Γ (w) \ (Γ (u) ∪ {u}) . Then, from the eigenequa-
tion for t we see that

qxt ≥ xt + xw,

and so

xt ≥
1

q − 1
xw

The eigenequation for the vertex w is

qxw = (n− 2)xw +
∑

i∈V \{w,v}

xi, (9)

while the eigenequation for the vertex u implies that

qxu = d (u)xu +
∑

i∈Γ(u)

xi ≤ (n− 2)xu +
∑

i∈V \{u,t}

xi. (10)

Subtracting (10) from (9), we find that

(q − n+ 3) (xw − xu) ≥ xt − xv ≥
1

q − 1
xw −

1

q − 1
xu

and so, xw ≥ xu.
Let G′ be the graph obtained from G by removing the edge {u, v} and adding the

edge {w, v} . Comparing the quadratic forms of Q (G) and Q (G′) , we find that q (G′) ≥
q (G) ≥ q

(

S+
n,k

)

. However, G′ 6= S+
n,k and ∆ (G′) = n− 1; hence Theorem 13 implies that

C2k+2 ⊂ G′, and consequently C2k+2 ⊂ G, as no cycle of G′contains v. This contradiction
completes the proof of Theorem 2. ✷

4 Concluding remarks

Theorem 2 and the main result of [14],[15] prove completely Conjecture 1. An important
ingredient of our proof, Theorem 7, which is a nonspectral extremal result, has been
obtained in [10]. We would like to reiterate a similar, but yet unproven conjecture for the
spectral radius µ (G) , raised in [9].

Conjecture 14 Let k ≥ 2 and let G be a graph of sufficiently large order n. If G has no
cycle of length 2k + 2, then µ (G) < µ

(

S+
n,k

)

, unless G = S+
n,k.

It is somewhat surprising that Conjecture 14 turned out to be more difficult than
Conjecture 1, given that in general it is easier to work with the spectra radius than with
the Q-index of a graph. Finally, let us note that the corresponding problem about the
maximum number of edges in a C2k-free graph of order n is notoriously difficult and is
solved only for very few values of k.
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