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1. introduction

The notion of Hopf algebra and its generalizations appeared as useful tools in relation with many
branch of mathematics such that algebraic geometry, number theory, Lie theory, Galois theory, quantum
group theory and so on. A common principle to obtain generalizations of the original notion of Hopf
algebra is to weak some of axioms of its definition. For example, if one does not force the coalgebra
structure to respect the unit of the algebra structure, one is lead to weak Hopf algebras. In a different
way, the weakening of the associativity leads to Hopf quasigroups and quasi-Hopf algebras.

Weak Hopf algebras (or quantum groupoids in the terminology of Nikshych and Vainerman [12]) were
introduced by Böhm, Nill and Szlachányi [4] as a new generalization of Hopf algebras and groupoid
algebras. A weak Hopf algebra H in a braided monoidal category [2] is an object that has both, monoid
and comonoid structure, with some relations between them. The main difference with other Hopf algebraic
constructions is that weak Hopf algebras are coassociative but the coproduct is not required to preserve
the unit, equivalently, the counit is not a monoid morphism. Some motivations to study weak Hopf
algebras come from the following facts: firstly, as group algebras and their duals are the natural examples
of Hopf algebras, groupoid algebras and their duals provide examples of weak Hopf algebras and, secondly,
these algebraic structures have a remarkable connection with the theory of algebra extensions, important
applications in the study of dynamical twists of Hopf algebras and a deep link with quantum field
theories and operator algebras [12], as well as they are useful tools in the study of fusion categories in
characteristic zero [6]. Moreover, Hayashi’s face algebras (see [7]) are particular instances of weak Hopf
algebras, whose counital subalgebras are commutative, and Yamanouchi’s generalized Kac algebras [17]
are exactly C∗-weak Hopf algebras with involutive antipode.

On the other hand, Hopf quasigroups are a generalization of Hopf algebras in the context of non
associative algebra. Like in the quasi-Hopf setting, Hopf quasigroups are not associative but the lack of
this property is compensated by some axioms involving the antipode. The concept of Hopf quasigroup
is a particular instance of the notion of unital coassociative H-bialgebra introduced in [15]. It includes
the example of an enveloping algebra of a Malcev algebra (see [11] and [14]) when the base ring has
characteristic not equal to 2 nor 3, and in this sense Hopf quasigroups extend the notion of Hopf algebra
in a parallel way that Malcev algebras extend the one of Lie algebra. On the other hand, it also contains
as an example the notion of quasigroup algebra of an I.P. loop. Therefore, Hopf quasigroups unify I.P.
loops and Malcev algebras in the same way that Hopf algebras unify groups and Lie algebras. Actually,
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Hopf quasigroups in a category of vector spaces were introduced by Klim and Majid in [11] in order to
understand the structure and relevant properties of the algebraic 7-sphere.

The main purposes of this paper are to introduce the notion of weak Hopf quasigroup as a new Hopf
algebra generalization that encompass weak Hopf algebras and Hopf quasigroups and to prove that the
more relevant properties of these algebraic structures can be obtained under a unified approach, that is,
we show that the fundamental assertions proved in [4] and [2] about weak Hopf algebras and in [11] for
Hopf quasigroups can be obtained in this new setting. Also, we construct a family of examples working
with bigroupoids, i.e. bicategories where every 1-cell is an equivalence and every 2-cell is an isomorphism.
The organization of the paper is the following. After this introduction, in Section 2 we introduce weak
Hopf quasigroups and we explain in detail how the first non-trivial examples of this algebraic structures
can be obtained considering bigroupoids. In Section 3 we discuss the consequences of the definition of
weak Hopf quasigroups obtaining the first relevant properties of this objects. Finally, Section 4 is devoted
to prove the fundamental theorem of Hopf modules associated to a weak Hopf quasigroups.

2. Definitions and examples

Throughout this paper C denotes a strict monoidal category with tensor product ⊗ and unit object
K. For each object M in C, we denote the identity morphism by idM : M → M and, for simplicity of
notation, given objects M , N , P in C and a morphism f : M → N , we write P ⊗ f for idP ⊗ f and f ⊗P
for f ⊗ idP .

From now on we assume that C admits split idempotents, i.e. for every morphism ∇Y : Y → Y
such that ∇Y = ∇Y ◦ ∇Y there exist an object Z and morphisms iY : Z → Y and pY : Y → Z such
that ∇Y = iY ◦ pY and pY ◦ iY = idZ . There is no loss of generality in assuming that C admits split
idempotents, taking into account that, for a given category C, there exists an universal embedding C → Ĉ
such that Ĉ admits split idempotents, as was proved in [9].

Also we assume that C is braided, that is: for all M and N objects in C, there is a natural isomorphism
cM,N : M ⊗N → N ⊗M , called the braiding, satisfying the Hexagon Axiom (see [8] for generalities). If
the braiding satisfies cN,M ◦ cM,N = idM⊗N , the category C will be called symmetric.

Definition 2.1. By a unital magma in C we understand a triple A = (A, ηA, µA) where A is an object
in C and ηA : K → A (unit), µA : A⊗ A → A (product) are morphisms in C such that µA ◦ (A ⊗ ηA) =
idA = µA ◦ (ηA ⊗ A). If µA is associative, that is, µA ◦ (A ⊗ µA) = µA ◦ (µA ⊗ A), the unital magma
will be called a monoid in C. Given two unital magmas (monoids) A = (A, ηA, µA) and B = (B, ηB , µB),
f : A → B is a morphism of unital magmas (monoids) if µB ◦ (f ⊗ f) = f ◦ µA and f ◦ ηA = ηB .

By duality, a counital comagma in C is a triple D = (D, εD, δD) where D is an object in C and
εD : D → K (counit), δD : D → D⊗D (coproduct) are morphisms in C such that (εD ⊗D)◦ δD = idD =
(D ⊗ εD) ◦ δD. If δD is coassociative, that is, (δD ⊗ D) ◦ δD = (D ⊗ δD) ◦ δD, the counital comagma
will be called a comonoid. If D = (D, εD, δD) and E = (E, εE , δE) are counital comagmas (comonoids),
f : D → E is a morphism of counital comagmas (comonoids) if (f ⊗ f) ◦ δD = δE ◦ f and εE ◦ f = εD.

If A, B are unital magmas (monoids) in C, the object A ⊗ B is a unital magma (monoid) in C
where ηA⊗B = ηA ⊗ ηB and µA⊗B = (µA ⊗ µB) ◦ (A ⊗ cB,A ⊗ B). In a dual way, if D, E are counital
comagmas (comonoids) in C, D⊗E is a counital comagma (comonoid) in C where εD⊗E = εD ⊗ εE and
δD⊗E = (D ⊗ cD,E ⊗ E) ◦ (δD ⊗ δE).

Finally, if D is a comagma and A a magma, for two morphisms f, g : D → A with f ∗ g we will denote
its convolution product in C, that is

f ∗ g = µA ◦ (f ⊗ g) ◦ δD.

Definition 2.2. A weak Hopf quasigroup H in C is a unital magma (H, ηH , µH) and a comonoid
(H, εH , δH) such that the following axioms hold:

(a1) δH ◦ µH = (µH ⊗ µH) ◦ δH⊗H .
(a2) εH ◦ µH ◦ (µH ⊗H) = εH ◦ µH ◦ (H ⊗ µH)

= ((εH ◦ µH)⊗ (εH ◦ µH)) ◦ (H ⊗ δH ⊗H)



3

= ((εH ◦ µH)⊗ (εH ◦ µH)) ◦ (H ⊗ (c−1
H,H ◦ δH)⊗H).

(a3) (δH ⊗H) ◦ δH ◦ ηH = (H ⊗ µH ⊗H) ◦ ((δH ◦ ηH)⊗ (δH ◦ ηH))
= (H ⊗ (µH ◦ c−1

H,H)⊗H) ◦ ((δH ◦ ηH)⊗ (δH ◦ ηH)).

(a4) There exists λH : H → H in C (called the antipode of H) such that, if we denote the morphisms
idH ∗ λH by ΠL

H (target morphism) and λH ∗ idH by ΠR
H (source morphism):

(a4-1) ΠL
H = ((εH ◦ µH)⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗H).

(a4-2) ΠR
H = (H ⊗ (εH ◦ µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ (δH ◦ ηH)).

(a4-3) λH ∗ΠL
H = ΠR

H ∗ λH = λH .
(a4-4) µH ◦ (λH ⊗ µH) ◦ (δH ⊗H) = µH ◦ (ΠR

H ⊗H).
(a4-5) µH ◦ (H ⊗ µH) ◦ (H ⊗ λH ⊗H) ◦ (δH ⊗H) = µH ◦ (ΠL

H ⊗H).
(a4-6) µH ◦ (µH ⊗ λH) ◦ (H ⊗ δH) = µH ◦ (H ⊗ ΠL

H).
(a4-7) µH ◦ (µH ⊗H) ◦ (H ⊗ λH ⊗H) ◦ (H ⊗ δH) = µH ◦ (H ⊗ΠR

H).

Note that, if in the previous definition the triple (H, ηH , µH) is a monoid, we obtain the notion of
weak Hopf algebra in a braided category introduced in [1] (see also [2]). Under this assumption, if C is
symmetric, we have the monoidal version of the original definition of weak Hopf algebra introduced by
Böhm, Nill and Szlachányi in [4]. On the other hand, if εH and δH are morphisms of unital magmas,
ΠL

H = ΠR
H = ηH ⊗ εH and, as a consequence, we have the notion of Hopf quasigroup defined by Klim and

Majid in [11] ( note that in this case there is not difference between the definitions for the symmetric and
the braided settings).

Example 2.3. In this example we will show that it is possible to obtain non-trivial examples of weak
Hopf quasigroups working with bicategories in the sense of Bénabou [3]. A bicategory B consists of :

(b1) A set B0, whose elements x are called 0-cells.
(b2) For each x, y ∈ B0, a category B(x, y) whose objects f : x → y are called 1-cells and whose mor-

phisms α : f ⇒ g are called 2-cells. The composition of 2-cells is called the vertical composition
of 2-cells and if f is a 1-cell in B(x, y), x is called the source of f , represented by s(f), and y is
called the target of f , denoted by t(f).

(b3) For each x ∈ B0, an object 1x ∈ B(x, x), called the identity of x; and for each x, y, z ∈ B0, a
functor

B(y, z)× B(x, y) → B(x, z)

which in objects is called the 1-cell composition (g, f) 7→ g ◦ f , and on arrows is called horizontal
composition of 2-cells:

f, f ′ ∈ B(x, y), g, g′ ∈ B(y, z), α : f ⇒ f ′, β : g ⇒ g′

(β, α) 7→ β • α : g ◦ f ⇒ g′ ◦ f ′

(b4) For each f ∈ B(x, y), g ∈ B(y, z), h ∈ B(z, w), an associative isomorphisms ξh,g,f : (h ◦ g) ◦ f ⇒
h◦ (g ◦ f); and for each 1-cell f , unit isomorphisms lf : 1t(f) ◦ f ⇒ f , rf : f ◦ 1s(f) ⇒ f , satisfying
the following coherence axioms:

(b4-1) The morphism ξh,g,f is natural in h, f and g and lf , rf are natural in f .
(b4-2) Pentagon axiom: ξk,h,g◦f ◦ ξk◦h,g,f = (idk • ξh,g,f ) ◦ ξk,h◦g,f ◦ (ξk,h,g • idf ).
(b4-3) Triangle axiom: rg • idf = (idg • lf ) ◦ ξg,1t(f),f .

A bicategory is normal if the unit isomorphisms are identities. Every bicategory is biequivalent to a normal
one. A 1-cell f is called an equivalence if there exists a 1-cell g : t(f) → s(f) and two isomorphisms
g ◦ f ⇒ 1s(f), f ◦ g ⇒ 1t(f). In this case we will say that g ∈ Inv(f) and, equivalently, f ∈ Inv(g).

A bigroupoid is a bicategory where every 1-cell is an equivalence and every 2-cell is an isomorphism.
We will say that a bigroupoid B is finite if B0 is finite and B(x, y) is small for all x, y. Note that if B is a
bigroupoid where B(x, y) is small for all x, y and we pick a finite number of 0-cells, considering the full
sub-bicategory generated by these 0-cells, we have an example of finite bigroupoid.
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Let B be a finite normal bigroupoid and denote by B1 the set of 1-cells. Let F be a field and FB the
direct product

FB =
⊕

f∈B1

Ff.

The vector space FB is a unital nonassociative algebra where the product of two 1-cells is equal to their
1-cell composition if the latter is defined and 0 otherwise, i.e. g.f = g ◦ f if s(g) = t(f) and g.f = 0 if
s(g) 6= t(f). The unit element is

1FB =
∑

x∈B0

1x.

Let H = FB/I(B) be the quotient algebra where I(B) is the ideal of FB generated by

h− g ◦ (f ◦ h), p− (p ◦ f) ◦ g,

with f ∈ B1, g ∈ Inv(f), and h, p ∈ B1 such that t(h) = s(f), t(f) = s(p). In what follows, for any 1-cell
f we denote its class in H by [f ].

If there exists a 1-cell f in B(x, y) such that [f ] = 0 and we pick g ∈ Inv(f) we have that [1x] =
[g.f ] = [g].[f ] = 0 and [1y] = [f.g] = [f ].[g] = 0. Conversely, if [1x] = 0 or [1y] = 0 we have that [f ] = 0
because f.1x = 1y.f = f . Therefore, the following assertion holds: There exists a 1-cell f in B(x, y) such
that [f ] = 0 if and only if [h] = 0 for all 1-cell h in B(x, y). Moreover, let x, y, z, w be 0-cells. If there
exists a 1-cell f ∈ B(x, y) satisfying that [f ] = 0 we have that [1y] = 0 and then [h] = 0 for all 1-cell
h in B(y, z). As a consequence, [1z] = 0 and this clearly implies that [p] = 0 for all 1-cell p in B(z, w).
Thus, if there exists a 1-cell f such that [f ] = 0 we obtain that [h] = 0 for all h ∈ B1. According to this
reasoning, there exists a 1-cell f such that [f ] = 0 if and only if I(B) = FB. Equivalently, H is not null,
if and only if [f ] 6= 0 for all f ∈ B1.

Then, in the remainder of this section, we assume that I(B) is a proper ideal. Under this condition if
f ∈ B1 and g, h ∈ Inv(f) we have

[g] = [g.(f.g)] = [g.1y] = [1x.g] = [(h.f).g] = [h].

Moreover, for all f, f ′ ∈ B1 such that [f ] = [f ′], the following holds: if s(f) 6= s(f ′) we have

[f ] = [f.1s(f)] = [f ].[1s(f)] = [f ′].[1s(f)] = [f ′.1s(f)] = 0.

In a similar way, if t(f) 6= t(f ′) we obtain that [f ] = 0. Thus, [f ] = [f ′], clearly forces that f and f ′

are 1-cells in B(s(f), t(f)). Moreover, if f, f ′ are 1-cells in B(x, y) such that [f ] = [f ′] and g ∈ Inv(f),
g′ ∈ Inv(f ′) we have

[g′] = [1x.g
′] = [(g.f).g′] = ([g].[f ]).[g′] = ([g].[f ′]).[g′] = [(g.f ′).g′] = [g].

Then, for a 1-cell f we denote by [f ]−1 the class of any g ∈ Inv(f). Note that, in the previous equalities,
we proved that [f ]−1 is independent of the choices of g ∈ Inv(f) and f ′ such that [f ] = [f ′].

Therefore, the vector space H with the product µH([g]⊗ [f ]) = [g.f ] and the unit

ηH(1F) = [1FB] =
∑

x∈B0

[1x]

is a unital magma. Also, it is easy to show that H is a comonoid with coproduct δH([f ]) = [f ] ⊗ [f ]
and counit εH([f ]) = 1F. Moreover, the morphism λH : H → H , λH([f ]) = [f ]−1 is well-defined and
H = (H, ηH , µH , εH , δH , λH) is a weak Hopf quasigroup. Indeed: First note that, for all 1-cells f, g we
have

(δH ◦ µH)([g]⊗ [f ]) = [g.f ]⊗ [g.f ]

if s(g) = t(f) and 0 otherwise. On the other hand,

((µH ⊗ µH) ◦ δH⊗H)([g]⊗ [f ]) = (µH([g]⊗ [f ])⊗ µH([g]⊗ [f ])) = [g.f ]⊗ [g.f ]

if s(g) = t(f) and 0 otherwise because cH,H([g]⊗ [f ]) = [f ]⊗ [g]. Therefore, (a1) of Definition 2.2 holds.
If f, g, h are 1-cells we have the following equalities:

(εH ◦ µH ◦ (µH ⊗H))([h]⊗ [g]⊗ [f ]) = 1F = (εH ◦ µH ◦ (H ⊗ µH))([h] ⊗ [g]⊗ [f ])
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when s(h) = t(g), s(g) = t(f) and

(εH ◦ µH ◦ (µH ⊗H))([h]⊗ [g]⊗ [f ]) = 0 = (εH ◦ µH ◦ (H ⊗ µH))([h]⊗ [g]⊗ [f ])

otherwise. Also,
(((εH ◦ µH)⊗ (εH ◦ µH)) ◦ (H ⊗ δH ⊗H))([h]⊗ [g]⊗ [f ])

= ((εH ◦ µH)([h]⊗ [g]))⊗ ((εH ◦ µH))([g]⊗ [f ])) = 1F

if s(h) = t(g), s(g) = t(f) and

(((εH ◦ µH)⊗ (εH ◦ µH)) ◦ (H ⊗ δH ⊗H))([h]⊗ [g]⊗ [f ]) = 0

otherwise. Then (a2) of Definition 2.2 holds because in this case cH,H = c−1
H,H and δH ◦ cH,H = δH (i.e.

H is cocommutative).
To prove (a3) first note that

((δH ⊗H) ◦ δH ◦ ηH)(1F) =
∑

x∈B0

[1x]⊗ [1x]⊗ [1x]

Then (a3) holds because:

((H ⊗ µH ⊗H) ◦ ((δH ◦ ηH)⊗ (δH ◦ ηH)))(1F ⊗ 1F)

= (H ⊗ µH ⊗H)(
∑

x∈B0

[1x]⊗ [1x]⊗
∑

y∈B0

[1y]⊗ [1y])

=
∑

x,y∈B0

[1x]⊗ [1x.1y]⊗ [1y] =
∑

x∈B0

[1x]⊗ [1x]⊗ [1x].

To prove the antipode identities first note that

ΠL
H([f ]) = [1t(f)], ΠR

H([f ]) = [1t(s)] (1)

for all 1-cell f .
Then, (a4-1) and (a4-2) hold because, for all 1-cell f ,

(((εH ◦ µH)⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗H))([f ])

= (((εH ◦ µH)⊗H) ◦ (H ⊗ cH,H))(
∑

x∈B0

[1x]⊗ [1x]⊗ [f ])

=
∑

x∈B0

εH([1x.f ])⊗ [1x] = [1t(f)]

and, by a similar calculus,

((H ⊗ (εH ◦ µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ (δH ◦ ηH)))([f ]) = [1s(f)].

Also, if f ∈ B1, by (1),

(λH ∗ΠL
H)([f ]) = [f ]−1.[1t(f)] = [f ]−1 = λH([f ]),

(ΠR
H ∗ λH)([f ]) = [1s(f)].[f ]

−1 = [f ]−1 = λH([f ])

and then (a4-3) holds.
The proof for (a4-4) is the following: It follows easily that for two 1-cells f, h we have that

(µH ◦ (ΠR
H ⊗H))([h]⊗ [f ]) = [f ]

if s(h) = t(f) and 0 otherwise. On the other hand,

(µH ◦ (λH ⊗ µH) ◦ (δH ⊗H))([h]⊗ [f ]) = µH([h]−1 ⊗ [h.f ])

if s(h) = t(f) and 0 otherwise. Therefore, if m ∈ Inv(h) and s(h) = t(f) the equality

µH([h]−1 ⊗ [h.f ]) = [m.(h.f)] = [f ]

holds and thus (a4-4) holds.
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If f , h are 1-cells we have
(µH ◦ (ΠL

H ⊗H))([h]⊗ [f ]) = [f ]

if t(h) = t(f) and 0 otherwise. Moreover, let m ∈ Inv(h), then

(µH ◦ (H ⊗ µH) ◦ (H ⊗ λH ⊗H) ◦ (δH ⊗H))([h]⊗ [f ]) = µH([h]⊗ [m.f ])

= [h.(m.f)] = [f ]

if t(h) = t(f) and 0 otherwise. Therefore, (a4-5) holds.
The proofs for (a4-6) and (a4-7) are similar and the details are left to the reader.
Note that, in this example, if B0 = {x} we obtain that H is a Hopf quasigroup. Moreover, if |B0| > 1

and the product defined in H is associative we have an example of weak Hopf algebra.

3. Basic properties for weak Hopf quasigroups

In this section we will show the main properties of weak Hopf quasigroups. First, note that by the
naturality of the braiding, for the morphisms target and source the following equalities hold:

ΠL
H = ((εH ◦ µH ◦ c−1

H,H)⊗H) ◦ (H ⊗ (δH ◦ ηH)) (2)

= (H ⊗ (εH ◦ µH)) ◦ ((c−1
H,H ◦ δH ◦ ηH)⊗H),

ΠR
H = (H ⊗ (εH ◦ µH ◦ c−1

H,H)) ◦ ((δH ◦ ηH)⊗H) = (3)

((εH ◦ µH)⊗H) ◦ (H ⊗ (c−1
H,H ◦ δH ◦ ηH)).

Proposition 3.1. Let H be a weak Hopf quasigroup. The following equalities hold:

ΠL
H ∗ idH = idH ∗ΠR

H = idH , (4)

ΠL
H ◦ ηH = ηH = ΠR

H ◦ ηH , (5)

εH ◦ΠL
H = εH = εH ◦ΠR

H . (6)

Proof. By the definition of ΠL
H and (a1) of Definition 2.2 we have

ΠL
H ∗ idH = (εH ⊗H) ◦ µH⊗H ◦ ((δH ◦ ηH)⊗ δH) = (εH ⊗H) ◦ δH ◦ µH ◦ (ηH ⊗H) = idH .

We can now proceed analogously to the proof of idH ∗ΠR
H = idH . Finally (5) and (6) follow easily from

the definitions of ΠL
H and ΠR

H .
�

Proposition 3.2. The antipode of a weak Hopf quasigroup H is unique and leaves the unit and the counit
invariant, i.e. λH ◦ ηH = ηH and εH ◦ λH = εH .

Proof. Let λH , sH : H → H two morphisms satisfying (a4) of Definition 2.2. Then,

sH = (sH ∗H) ∗ sH = (λH ∗H) ∗ sH = µH ◦ (µH ⊗ sH) ◦ (λH ⊗ δH) ◦ δH = λH ∗ΠL
H = λH ,

where the first and the last equalities follow by (a4-3) of Definition 2.2, the second one by (a4-2) of
Definition 2.2, the third one by the coassociativity of δH and the fourth one by (a4-6) of Definition 2.2.

On the other hand, by (a4-3), (a3) of Definition 2.2, the naturality of the braiding and (5), we have

λH ◦ ηH
= (ΠR

H ∗ λH) ◦ ηH
= µH ◦ (H ⊗ (εH ◦ µH ◦ c−1

H,H)⊗ λH) ◦ ((δH ◦ ηH)⊗ (δH ◦ ηH))

= µH ◦ (((H ⊗ εH) ◦ δH)⊗ λH) ◦ δH ◦ ηH
= ΠL

H ◦ ηH
= ηH .

The proof for the equalities involving the counit follows a similar pattern but using (a2) of Definition
2.2 and (6) instead of (a3) and (5) respectively. �
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Definition 3.3. Let H be a weak Hopf quasigroup. We define the morphisms Π
L

H and Π
R

H by

Π
L

H = (H ⊗ (εH ◦ µH)) ◦ ((δH ◦ ηH)⊗H),

and
Π

R

H = ((εH ◦ µH)⊗H) ◦ (H ⊗ (δH ◦ ηH)).

Proposition 3.4. Let H be a weak Hopf quasigroup. The morphisms ΠL
H , ΠR

H , Π
L

H and Π
R

H are idem-
potents.

Proof. First, by (2) and (a3) of Definition 2.2 we have that

ΠL
H ◦ΠL

H

= ((εH ◦ µH ◦ c−1
H,H)⊗ (εH ◦ µH ◦ c−1

H,H)⊗H) ◦ (H ⊗ (δH ◦ ηH)⊗ (δH ◦ ηH))

= ((εH ◦ µH ◦ c−1
H,H)⊗ εH ⊗H) ◦ (H ⊗ ((δH ⊗H) ◦ δH ◦ ηH))

= ΠL
H .

With the same reasoning but using (3) instead of (2) we prove that ΠR
H is an idempotent morphism.

Finally, by (a3) of Definition 2.2, Π
L

H ◦Π
L

H = Π
L

H and Π
R

H ◦Π
R

H = Π
R

H . �

Proposition 3.5. Let H be a weak Hopf quasigroup. The following identities hold:

µH ◦ (H ⊗ΠL
H) = ((εH ◦ µH)⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H), (7)

µH ◦ (ΠR
H ⊗H) = (H ⊗ (εH ◦ µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ δH), (8)

µH ◦ (H ⊗Π
L

H) = (H ⊗ (εH ◦ µH)) ◦ (δH ⊗H), (9)

µH ◦ (Π
R

H ⊗H) = ((εH ◦ µH)⊗H) ◦ (H ⊗ δH). (10)

Proof. We first prove (7).

µH ◦ (H ⊗ΠL
H)

= (εH ⊗H) ◦ δH ◦ µH ◦ (H ⊗ΠL
H)

= (εH ⊗H) ◦ µH⊗H ◦ (δH ⊗ δH) ◦ (H ⊗ (((εH ◦ µH ◦ c−1
H,H)⊗H) ◦ (H ⊗ (δH ◦ ηH))))

= ((((εH ◦µH)⊗(εH ◦µH))◦(H⊗(c−1
H,H ◦δH)⊗H))⊗µH)◦(H⊗H⊗cH,H⊗H)◦(H⊗cH,H⊗H⊗H)

◦(δH ⊗ c−1
H,H ⊗H) ◦ (H ⊗H ⊗ (δH ◦ ηH))

= ((εH ◦µH ◦ (µH ⊗H))⊗µH) ◦ (H ⊗H ⊗ cH,H ⊗H) ◦ (H ⊗ cH,H ⊗ cH,H) ◦ (δH ⊗ (δH ◦ ηH)⊗H)
= ((εH ◦ µH)⊗H) ◦ (H ⊗ cH,H) ◦ ((µH⊗H ◦ (δH ⊗ δH))⊗H) ◦ (H ⊗ ηH ⊗H)
= ((εH ◦ µH)⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H).

In the last identities, the first one follows by the properties of the counit, the second one follows by (2)
and (a1) of Definition 2.2. The third and the fifth ones rely on the naturality of c. The fourth equality
is a consequence of (a2) of Definition 2.2 and finally the last one follows by (a1) of Definition 2.2 and the
properties of the unit.

The proof for (8) is similar but in the second step we must use (3) instead of (2). To finish the proof
we show that (9) holds. The proof for (10) is similar.

µH ◦ (H ⊗Π
L

H)

= (εH ⊗H) ◦ δH ◦ µH ◦ (H ⊗Π
L

H)
= (µH ⊗ (εH ◦ µH)⊗ (εH ◦ µH)) ◦ (δH⊗H ⊗H ⊗H) ◦ (H ⊗ (δH ◦ ηH)⊗H)
= (µH ⊗ (((εH ◦ µH)⊗ (εH ◦ µH)) ◦ (H ⊗ δH ⊗H))) ◦ (δH⊗H ⊗H) ◦ (H ⊗ ηH ⊗H)
= (µH ⊗ (εH ◦ µH ◦ (µH ⊗H))) ◦ (δH⊗H ⊗H) ◦ (H ⊗ ηH ⊗H)
= (H ⊗ (εH ◦ µH)) ◦ (((δH ◦ µH) ◦ (H ⊗ ηH))⊗H)
= (H ⊗ (εH ◦ µH)) ◦ (δH ⊗H).

The first equality follows by the counit properties, the second and the fifth ones by (a1) of Definition
2.2, the third one follows from the coassociativity of δH , the fourth one by (a2) of Definition 2.2, and the
sixth one by the properties of the unit.

�
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Remark 3.6. Note that if we compose with εH in the equalities (7), (8), (9) and (10) we obtain

εH ◦ µH ◦ (H ⊗ΠL
H) = εH ◦ µH , (11)

εH ◦ µH ◦ (ΠR
H ⊗H) = εH ◦ µH , (12)

εH ◦ µH ◦ (H ⊗Π
L

H) = εH ◦ µH , (13)

εH ◦ µH ◦ (Π
R

H ⊗H) = εH ◦ µH . (14)

Proposition 3.7. Let H be a weak Hopf quasigroup. The following identities hold:

(H ⊗ΠL
H) ◦ δH = (µH ⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗H), (15)

(ΠR
H ⊗H) ◦ δH = (H ⊗ µH) ◦ (cH,H ⊗H) ◦ (H ⊗ (δH ◦ ηH)), (16)

(Π
L

H ⊗H) ◦ δH = (H ⊗ µH) ◦ ((δH ◦ ηH)⊗H), (17)

(H ⊗Π
R

H) ◦ δH = (µH ⊗H) ◦ (H ⊗ (δH ◦ ηH)). (18)

Proof. The proof for (15) is the following:

(µH ⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗H)
= (((H ⊗ εH) ◦ δH ◦ µH)⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗H)
= (µH ⊗ (εH ◦ µH)⊗H) ◦ (H ⊗ cH,H ⊗ cH,H) ◦ (δH ⊗ cH,H ⊗H) ◦ ((δH ◦ ηH)⊗ δH)
= (H⊗(((εH◦µH)⊗H)◦(H⊗cH,H)◦(δH⊗H)))◦(((µH⊗H)◦(H⊗cH,H)◦((δH◦ηH)⊗H))⊗H)◦δH
= ((µH ◦ c−1

H,H)⊗ (((εH ◦ µH)⊗H) ◦ (H ⊗ cH,H))) ◦ (H ⊗ ((H ⊗ δH) ◦ δH ◦ ηH)⊗H) ◦ δH

= ((µH ◦c−1
H,H)⊗(εH ◦µH)⊗H)◦(H⊗H⊗(µH ◦c−1

H,H)⊗cH,H)◦(H⊗(δH ◦ηH)⊗(δH ◦ηH)⊗H)◦δH
= (µH ⊗ (((εH ◦µH ◦ (µH ⊗H))⊗H) ◦ (H ⊗H⊗ cH,H) ◦ (H ⊗ cH,H ⊗H) ◦ ((δH ◦ ηH)⊗H ⊗H)))

◦δH⊗H ◦ (ηH ⊗H)
= (µH ⊗ (((εH ◦µH ◦ (H ⊗µH))⊗H) ◦ (H ⊗H⊗ cH,H) ◦ (H ⊗ cH,H ⊗H) ◦ ((δH ◦ ηH)⊗H ⊗H)))

◦δH⊗H ◦ (ηH ⊗H)
= (H ⊗ΠL

H) ◦ (µH ⊗ µH) ◦ δH⊗H ◦ (ηH ⊗H)
= (H ⊗ΠL

H) ◦ δH .

In the last equalities the first one follows by the counit properties, the second one by (a1) of Definition
2.2 and the naturality of c. In the third one we used the naturality of c and the coassociativity of δH .
The fourth and the sixth ones are consequence of the equality

(µH ⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗H) = ((µH ◦ c−1
H,H)⊗H) ◦ (H ⊗ (δH ◦ ηH)) (19)

and the fifth one follows by (a3) of Definition 2.2. The seventh one relies on (a2) of Definition 2.2, the
eight one follows by the naturality of c and the last one by the unit properties.

The proof for (16) is similar but using

(H ⊗ µH) ◦ (cH,H ⊗H) ◦ (H ⊗ (δH ◦ ηH)) = (H ⊗ (µH ◦ c−1
H,H)) ◦ ((δH ◦ ηH)⊗H) (20)

instead of (19).
Moreover, (17) holds because

(Π
L

H ⊗H) ◦ δH

= (Π
L

H ⊗H) ◦ δH ◦ µH ◦ (ηH ⊗H)

= (Π
L

H ⊗H) ◦ (µH ⊗ µH) ◦ δH⊗H ◦ (ηH ⊗H)
= (H ⊗ (εH ◦ µH ◦ (H ⊗ µH))⊗ µH) ◦ ((δH ◦ ηH)⊗ (δH⊗H ◦ (ηH ⊗H)))
= (H ⊗ (((εH ◦ µH)⊗ (εH ◦ µH)) ◦ (H ⊗ δH ⊗H))⊗ µH) ◦ ((δH ◦ ηH)⊗ (δH⊗H ◦ (ηH ⊗H)))
= (H ⊗ (εH ◦ µH)⊗ ((εH ⊗H) ◦ δH ◦ µH)) ◦ ((δH ◦ ηH)⊗ (δH ◦ ηH)⊗H)
= (H ⊗ εH ⊗ µH) ◦ (((δH ⊗H) ◦ δH ◦ ηH)⊗H)
= (H ⊗ µH) ◦ ((δH ◦ ηH)⊗H).
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The first equality follows by the unit properties, the second one by (a1) of Definition 2.2 and the third

one by the definition of Π
L

H . The fourth equality relies on (a2) of Definition 2.2. The fifth one is a
consequence of the coassociativity of δH and the sixth one follows by (a3) of Definition 2.2. Finally the
last one holds by the properties of the counit.

The proof of (18) is similar to the developed for (17) and we leave it to the reader.
�

Remark 3.8. Note that if we compose with ηH in the equalities (15), (16), (17) and (18) we obtain

(H ⊗ΠL
H) ◦ δH ◦ ηH = δH ◦ ηH , (21)

(ΠR
H ⊗H) ◦ δH ◦ ηH = δH ◦ ηH , (22)

(Π
L

H ⊗H) ◦ δH ◦ ηH = δH ◦ ηH , (23)

(H ⊗Π
R

H) ◦ δH ◦ ηH = δH ◦ ηH . (24)

As a consequence of Propositions 3.5 and 3.7 we can get other useful identities.

Proposition 3.9. Let H be a wek Hopf quasigroup. The following identities hold:

ΠL
H ◦ µH ◦ (H ⊗ΠL

H) = ΠL
H ◦ µH , (25)

ΠR
H ◦ µH ◦ (ΠR

H ⊗H) = ΠR
H ◦ µH , (26)

(H ⊗ΠL
H) ◦ δH ◦ΠL

H = δH ◦ΠL
H , (27)

(ΠR
H ⊗H) ◦ δH ◦ΠR

H = δH ◦ΠR
H . (28)

Proof. The equality (25) holds because:

ΠL
H ◦ µH ◦ (H ⊗ΠL

H)
= ((εH ◦ µH)⊗ΠL

H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)
= ((εH ◦ µH)⊗H) ◦ (H ⊗ cH,H) ◦ (((H ⊗ΠL

H) ◦ δH)⊗H)
= ((εH ◦ µH ◦ (µH ⊗H))⊗H) ◦ (H ⊗H ⊗⊗cH,H) ◦ (H ⊗ cH,H ⊗H) ◦ ((δH ◦ ηH)⊗H ⊗H)
= ((εH ◦ µH ◦ (H ⊗ µH))⊗H) ◦ (H ⊗H ⊗⊗cH,H) ◦ (H ⊗ cH,H ⊗H) ◦ ((δH ◦ ηH)⊗H ⊗H)
= ΠL

H ◦ µH .

In the previous equalities, the first one follows by (7), the second and the fifth ones by the naturality
of c, the third one by (15) and the fourth one by (a2) of Definition 2.2.

The proof for (25) is similar. To finish we will show that (27) holds (using the same reasoning we
obtain (28)). Indeed:

(H ⊗ΠL
H) ◦ δH ◦ΠL

H

= (µH ⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗ΠL
H)

= ((µH ◦ (H ⊗ΠL
H))⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗H)

= ((((εH ◦ µH)⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H))⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗H)
= δH ◦ΠL

H .

The first and the third equalities follow by (15) and the second one by the naturality of c. Finally, the
last one relies on the naturality of c and the coassociativity of δH .

�

Remark 3.10. By the equalities contained in Remark 3.8 and using similar arguments to the ones utilized
in the previous Proposition we have that

Π
L

H ◦ µH ◦ (H ⊗ΠL
H) = Π

L

H ◦ µH , (29)

Π
R

H ◦ µH ◦ (ΠR
H ⊗H) = Π

R

H ◦ µH , (30)

(ΠR
H ⊗H) ◦ δH ◦Π

L

H = δH ◦Π
L

H , (31)

(H ⊗ΠL
H) ◦ δH ◦Π

R

H = δH ◦Π
R

H . (32)
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Proposition 3.11. Let H be a weak Hopf quasigroup. The following identities hold:

ΠL
H ◦Π

L

H = ΠL
H , ΠL

H ◦Π
R

H = Π
R

H , (33)

Π
L

H ◦ΠL
H = Π

L

H , Π
R

H ◦ΠL
H = ΠL

H , (34)

ΠR
H ◦Π

L

H = Π
L

H , ΠR
H ◦Π

R

H = ΠR
H , (35)

Π
L

H ◦ΠR
H = ΠR

H , Π
R

H ◦ΠR
H = Π

R

H . (36)

Proof. We only check (33) and (34). The proof for the other equalities can be verified in a similar way.
Taking into account the equalities (2) and (a2) of Definition 2.2 we have

ΠL
H ◦Π

L

H

= (H ⊗ (εH ◦ µH)⊗ (εH ◦ µH)) ◦ ((c−1
H,H ◦ δH ◦ ηH)⊗ (δH ◦ ηH)⊗H)

= (H ⊗ (εH ◦ µH)) ◦ ((c−1
H,H ◦ δH ◦ ηH)⊗ (µH ◦ (ηH ⊗H)))

= ΠL
H ,

and composing with εH ⊗H in (32) we obtain ΠL
H ◦Π

R

H = Π
R

H . Also, composing with ηH ⊗H in (29)

we have the equality Π
L

H ◦ΠL
H = Π

L

H .
Finally, by the usual arguments

Π
R

H ◦ΠL
H

= ((εH ◦ µH ◦ c−1
H,H)⊗ (εH ◦ µH)⊗H) ◦ (H ⊗ (δH ◦ ηH)⊗ (δH ◦ ηH))

= ((εH ◦ µH ◦ c−1
H,H)⊗ ((εH ⊗H) ◦ δH)) ◦ (H ⊗ (δH ◦ ηH))

= ΠL
H .

�

Proposition 3.12. Let H be a weak Hopf quasigroup. The following identities hold:

ΠL
H ◦ λH = ΠL

H ◦ΠR
H = λH ◦ΠR

H , (37)

ΠR
H ◦ λH = ΠR

H ◦ΠL
H = λH ◦ΠL

H , (38)

ΠL
H = Π

R

H ◦ λH = λH ◦Π
L

H , (39)

ΠR
H = Π

L

H ◦ λH = λH ◦Π
R

H . (40)

Proof. As in the previous Proposition, it is sufficient to check (37) and (39). The proof for the other
equalities can be verified in a similar way.

The equalities of (37) hold because by (a4-3) of Definition 2.2 and (25) we have

ΠL
H ◦ λH = ΠL

H ◦ (λH ∗ΠL
H) = ΠL

H ◦ΠR
H

and by (28)

λH ◦ΠR
H = (ΠR

H ∗ λH) ◦ΠR
H = ΠL

H ◦ΠR
H .

On the other hand, by (a4-3) of Definition 2.2, (30) and (34) we obtain

Π
R

H ◦ λH = Π
R

H ◦ (ΠR
H ∗ λH) = Π

R

H ◦ΠL
H = ΠL

H .

Moreover, by (31) and (33)

λH ◦Π
L

H = (ΠR
H ∗ λH) ◦Π

L

H = ΠL
H ◦Π

L

H = ΠL
H ,

and then (39) holds. �
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Proposition 3.13. Let H be a weak Hopf quasigroup. Put HL = Im(ΠL
H) and let pL : H → HL and

iL : HL → H be the morphisms such that ΠL
H = iL ◦ pL and pL ◦ iL = idHL

. Then,

✲ ✲
✲HL H H ⊗H

iL
δH

(H ⊗ΠL
H) ◦ δH

is an equalizer diagram and

✲
✲ ✲

µH

µH ◦ (H ⊗ΠL
H)

pL
H ⊗H H HL

is a coequalizer diagram. As a consequence, (HL, ηHL
= pL ◦ ηH , µHL

= pL ◦ µH ◦ (iL ⊗ iL)) is a unital
magma in C and (HL, εHL

= εH ◦ iL, δH = (pL ⊗ pL) ◦ δH ◦ iL) is a comonoid in C.

Proof. Composing with iL in the equality (27), we have that iL equalizes δH and (H ⊗ ΠL
H) ◦ δH . Now,

let t : B → H be a morphism such that (H ⊗ΠL
H) ◦ δH ◦ t = δH ◦ t. If v = pL ◦ t, since ΠL

H ◦ t = t we have
iL ◦ v = t. Trivially the morphism v is unique and therefore, the diagram is an equalizer diagram. In a
similar way we can prove that the second diagram is a coaqualizer diagram using (25) instead of (27).
Finally, note that the morphisms ηHL

and µHL
are the factorizations, through the equalizer iL, of the

morphisms ηH and µH ◦ (iL ⊗ iL) and then it is an easy exercise to show that (HL, ηHL
, µHL

) is a unital
magma in C. The proof for the comonoid structure it is similar and we leave it to the reader. �

Example 3.14. If H is the weak Hopf quasigroup defined in Example 2.3 note that HL = 〈[1x], x ∈ B0〉.
Then, in this case we have that HL is a monoid because its induced product µHL

is associative because
[1x].([1y].[1z]) and ([1x].[1y]).[1z] are equal to [1x] if x = y = z and 0 otherwise.

Note that if we denote by HR = Im(ΠR
H) and pR : H → HR and iR : HR → H are the morphisms

such that ΠR
H = iR ◦ pR and pR ◦ iR = idHR

, in this example HL = HR.

Remark 3.15. By the second equality of (34) it is easy to show that

✲ ✲
✲HL H H ⊗H

iL
δH

(H ⊗Π
R

H) ◦ δH

is an equalizer diagram in C. Analogously, by (33),

✲
✲ ✲

µH

µH ◦ (H ⊗Π
L

H)

pL
H ⊗H H HL

is a coequalizer diagram in C.

Also, by a similar proof to the one used in Proposition 3.13, we obtain that HR = Im(ΠR
H) is a unital

magma in C with structure (HR, ηHR
= pR ◦ ηH , µHR

= pR ◦ µH ◦ (iR ⊗ iR)) and it is a comonoid in C
where εHR

= εH ◦ iR and δHR
= (pR ⊗ pR) ◦ δH ◦ iR. Moreover,

✲ ✲
✲HR H H ⊗H

iR
δH

(ΠR
H ⊗H) ◦ δH

✲ ✲
✲HR H H ⊗H

iR
δH

(Π
L

H ⊗H) ◦ δH
are equalizer diagrams and

✲
✲ ✲

µH

µH ◦ (ΠR
H ⊗H)

pR
H ⊗H H HR
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✲
✲ ✲

µH

µH ◦ (Π
R

H ⊗H)

pR
H ⊗H H HR

are coequalizer diagrams.

Proposition 3.16. Let H be a weak Hopf quasigroup. The following identities hold:

µH ◦ (µH ⊗H) ◦ (H ⊗ ((ΠL
H ⊗H) ◦ δH)) = µH = µH ◦ (µH ⊗ΠR

H) ◦ (H ⊗ δH), (41)

µH ◦ (ΠL
H ⊗ µH) ◦ (δH ⊗H) = µH = µH ◦ (H ⊗ (µH ◦ (ΠR

H ⊗H))) ◦ (δH ⊗H), (42)

µH ◦ (λH ⊗ (µH ◦ (ΠL
H ⊗H))) ◦ (δH ⊗H) = µH ◦ (λH ⊗H) (43)

= µH ◦ (ΠR
H ⊗ (µH ◦ (λH ⊗H))) ◦ (δH ⊗H),

µH ◦ (µH ⊗H) ◦ (H ⊗ ((λH ⊗ΠL
H) ◦ δH)) = µH ◦ (H ⊗ λH) (44)

= µH ◦ (µH ⊗H) ◦ (H ⊗ ((ΠR
H ⊗ λH) ◦ δH)).

Proof. Let us first prove (41). By (a1) of Definition 2.2 and (7) we have

µH = (εH ⊗H) ◦ δH ◦ µH = ((εH ◦ µH)⊗ µH) ◦ δH⊗H = µH ◦ (µH ⊗H) ◦ (H ⊗ ((ΠL
H ⊗H) ◦ δH)).

On the other hand, by the coassociativity of δH , (a4-6) and (a4-7) of Definition 2.2,

µH ◦ (µH ⊗ΠR
H) ◦ (H ⊗ δH)

= µH ◦ (µH ⊗H) ◦ (µH ⊗ λH ⊗H) ◦ (H ⊗⊗H ⊗ δH) ◦ (H ⊗ δH)
= µH ◦ (µH ⊗H) ◦ (µH ⊗ λH ⊗H) ◦ (H ⊗ δH ⊗H) ◦ (H ⊗ δH)
= µH ◦ (µH ⊗H) ◦ (H ⊗ ((ΠL

H ⊗H) ◦ δH))

The proof for (42) is similar but we must use (8), (a4-5) and (a4-4) of Definition 2.2 instead of (7),
(a4-6) and (a4-7) respectively.

To prove (43) first note that by (a4-5), (a4-4) of Definition 2.2 and the coassociativity of δH we have:

µH ◦ (λH ⊗ (µH ◦ (ΠL
H ⊗H))) ◦ (δH ⊗H)

= µH ◦ (λH ⊗ (µH ◦ (H ⊗ µH) ◦ (H ⊗ λH ⊗H) ◦ (δH ⊗H))) ◦ (δH ⊗H)
= µH ◦ (λH ⊗ µH) ◦ (δH ⊗H) ◦ (H ⊗ (µH ◦ (λH ⊗H))) ◦ (δH ⊗H)
= µH ◦ (ΠR

H ⊗ (µH ◦ (λH ⊗H))) ◦ (δH ⊗H).

On the other hand, by (15), the naturality of c, the coassociativity of δH and (a1) of Definition 2.2 we
also have the following identity:

(µH ⊗ (µH ◦ (H ⊗ΠL
H))) ◦ δH⊗H = (µH ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H). (45)

Therefore,

µH ◦ (ΠR
H ⊗ (µH ◦ (λH ⊗H))) ◦ (δH ⊗H)

= (H ⊗ (εH ◦ µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ ((δH ◦ µH) ◦ (λH ⊗H))) ◦ (δH ⊗H)
= (H ⊗ (εH ◦ µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ (((µH ⊗ µH) ◦ δH⊗H) ◦ (λH ⊗H))) ◦ (δH ⊗H)
= (H ⊗ (εH ◦ µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ (((µH ⊗ (ΠL

H ◦ µH)) ◦ δH⊗H) ◦ (λH ⊗H))) ◦ (δH ⊗H)
= (H⊗(εH ◦µH))◦(cH,H⊗H)◦(H⊗(((µH⊗(ΠL

H ◦µH ◦(H⊗ΠL
H)))◦δH⊗H)◦(λH⊗H)))◦(δH⊗H)

= (H⊗ (εH ◦µH))◦ (cH,H ⊗H)◦ (H⊗ (((µH ⊗ (µH ◦ (H⊗ΠL
H)))◦ δH⊗H)◦ (λH ⊗H)))◦ (δH ⊗H)

= (H⊗ (εH ◦µH))◦ (cH,H ⊗H)◦ (H⊗ (((µH ⊗H)◦ (H⊗cH,H)◦ (δH ⊗H))◦ (λH ⊗H)))◦ (δH ⊗H)
= µH ◦ (((H ⊗ (εH ◦ µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ δH))⊗H) ◦ (H ⊗ λH ⊗H) ◦ (δH ⊗H)
= µH ◦ ((ΠR

H ∗ λH)⊗H)
= µH ◦ (λH ⊗H).

In the last calculus the first and the eight equalities are consequence of (8). In the second one we used
(a1) of Definition 2.2. The third and the fifth ones follow by (11), the fourth one by (25) and the sixth
one by (45). The seventh one relies on the naturality of c and the last one follows by (a4-3) of Definition
2.2.

By a similar reasoning but using that

((µH ◦ (ΠR
H ⊗H))⊗ µH) ◦ δH⊗H = (H ⊗ µH) ◦ (cH,H ⊗H) ◦ (H ⊗ δH) (46)



13

instead of (45) we obtain that (44) holds.
�

Remark 3.17. Note that as a consequence of (41) or (42) we have

ΠL
H ∗ idH = idH = idH ∗ΠR

H . (47)

Proposition 3.18. Let H be a weak Hopf quasigroup. The following identities hold:

µH ◦ (ΠL
H ⊗ΠR

H) = µH ◦ c−1
H,H ◦ (ΠL

H ⊗ΠR
H), (48)

(ΠL
H ⊗ΠR

H) ◦ δH = (ΠL
H ⊗ΠR

H) ◦ c−1
H,H ◦ δH , (49)

µH ◦ (ΠR
H ⊗ΠL

H) = µH ◦ cH,H ◦ (ΠR
H ⊗ΠL

H), (50)

(ΠR
H ⊗ΠL

H) ◦ δH = (ΠR
H ⊗ΠL

H) ◦ cH,H ◦ δH , (51)

Proof. The equalities (50) and (51) can be obtained from (48) and (49) composing with cH,H . Then we
only need to prove (48) and (49). Note that, by (2), (3) and (a3) of Definition 2.2 we have:

µH ◦ (ΠL
H ⊗ΠR

H)

= ((εH ◦µH ◦ c−1
H,H)⊗H⊗ (εH ◦µH ◦ c−1

H,H))◦ (H⊗ ((H⊗µH ⊗H)◦ ((δH ◦ ηH)⊗ (δH ◦ ηH)))⊗H)

= ((εH◦µH◦c−1
H,H)⊗H⊗(εH◦µH◦c−1

H,H))◦(H⊗((H⊗(µH◦c−1
H,H)⊗H)◦((δH◦ηH)⊗(δH◦ηH)))⊗H)

= µH ◦ c−1
H,H ◦ (ΠL

H ⊗ΠR
H).

Therefore, (48) holds. The proof for (49) is similar using (a2) of Definition 2.2 instead of (a3).
�

Theorem 3.19. Let H be a weak Hopf quasigroup. The antipode of H is antimultiplicative and antico-
multiplicative, i.e. the following equalities hold:

λH ◦ µH = µH ◦ cH,H ◦ (λH ⊗ λH), (52)

δH ◦ λH = (λH ⊗ λH) ◦ cH,H ◦ δH , (53)

Proof. We will prove (52). The proof for (53) is similar and we leave the details to the reader.

λH ◦ µH

= (λH ∗ΠL
H) ◦ µH

= µH ◦ ((λH ◦ µH)⊗ (ΠL
H ◦ µH)) ◦ δH⊗H

= µH ◦ ((λH ◦ µH)⊗ (ΠL
H ◦ µH ◦ (H ⊗ΠL

H)) ◦ δH⊗H

= µH ◦ (λH ⊗ΠL
H) ◦ (µH ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)

= µH ◦ (µH ⊗ λH) ◦ (λH ⊗ δH) ◦ (µH ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)
= µH ◦ ((µH ◦ (λH ⊗H))⊗λH)◦ (((µH ⊗H)◦ (H⊗cH,H)◦ (δH ⊗H))⊗H)◦ (H⊗cH,H)◦ (δH ⊗H)
= µH ◦ ((µH ◦ (λH ⊗H))⊗λH) ◦ (((µH ⊗ (µH ◦ (H⊗ΠL

H))) ◦ δH⊗H)⊗H) ◦ (H⊗ cH,H) ◦ (δH ⊗H)
= µH ◦ ((µH ◦ (λH ⊗H))⊗ λH) ◦ (((µH ⊗ (µH ◦ (µH ⊗ λH) ◦ (H ⊗ δH))) ◦ δH⊗H)⊗H)

◦(H ⊗ cH,H) ◦ (δH ⊗H)
= µH ◦((µH ◦(λH ⊗µH)◦(δH ⊗H))⊗H)◦(µH ⊗λH ⊗H)◦(H⊗δH ⊗λH)◦(H⊗cH,H)◦(δH ⊗H)
= µH ◦ ((µH ◦ (ΠR

H ⊗H))⊗H) ◦ (µH ⊗ λH ⊗H) ◦ (H ⊗ δH ⊗ λH) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)
= µH ◦((µH ◦(ΠR

H⊗H))⊗H)◦((µH ◦(ΠR
H⊗H))⊗λH⊗H)◦(H⊗δH⊗λH)◦(H⊗cH,H)◦(δH⊗H)

= µH ◦((µH ◦(ΠR
H⊗H))⊗H)◦(((H⊗(εH ◦µH))◦(cH,H⊗H)◦(H⊗δH))⊗λH⊗H)◦(H⊗δH⊗λH)

◦(H ⊗ cH,H) ◦ (δH ⊗H)
= µH ◦ (((µH ◦ (λH ⊗µH)◦ (δH ⊗H))⊗H)◦ (((H ⊗ (εH ◦µH))◦ (cH,H ⊗H)◦ (H⊗δH))⊗λH ⊗H)

◦(H ⊗ δH ⊗ λH) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)
= µH ◦ (µH ⊗H) ◦ (H ⊗µH ⊗H) ◦ (λH ⊗ ((H ⊗ (εH ◦µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ δH))⊗ λH ⊗λH)

◦(cH,H ⊗ δH ⊗H) ◦ (H ⊗ δH ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)
= µH ◦ (µH ⊗H) ◦ (H ⊗ µH ⊗H) ◦ (λH ⊗ ((µH ◦ (ΠR

H ⊗H)))⊗ λH ⊗ λH) ◦ (cH,H ⊗ δH ⊗H)
◦(H ⊗ δH ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)

= µH ◦ (µH ⊗H)◦ (λH ⊗ ((µH ◦ (ΠR
H ⊗ΠL

H)))⊗λH)◦ (cH,H ⊗H⊗H)◦ (H⊗ δH ⊗H)◦ (H⊗ cH,H)
◦(δH ⊗H)
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= µH ◦ (µH ⊗H) ◦ (λH ⊗ ((µH ◦ cH,H ◦ (ΠR
H ⊗ΠL

H)))⊗ λH) ◦ (cH,H ⊗H ⊗H) ◦ (H ⊗ δH ⊗H)
◦(H ⊗ cH,H) ◦ (δH ⊗H)

= µH ◦ (µH ⊗H) ◦ (H ⊗ µH ⊗H) ◦ (((λH ⊗ΠL
H) ◦ δH)⊗ ((ΠR

H ⊗ λH) ◦ δH)) ◦ cH,H

= µH ◦ (µH ⊗H) ◦ (λH ⊗ ((ΠR
H ⊗ λH) ◦ δH)) ◦ cH,H

= µH ◦ cH,H ◦ (λH ⊗ λH).

The first equality follows by (a4-3) of Definition 2.2, the second one by (a1) of Definition 2.2 and
the third one by (25). The fourth and seventh ones relies on (45). The fifth, eighth and sixteenth ones
are consequence of (a4-6) of Definition 2.2. In the sixth, ninth and eighteenth equalities we used the
naturality of c and the equalities tenth and thirteenth follow by (a4-4) of Definition 2.2. By (26) we
obtain the eleventh equality and the twelfth and fifteenth ones are consequence of (8). The naturality
of c and the coassociativity of δH imply the fourteenth equality and the seventeenth one follows by (48).
Finally, the nineteenth equality relies on (43) and the last one on (44). �

A general notion of dyslexia was introduced by Pareigis in [13]. The following definition is the weak
Hopf quasigroup version of dyslexia introduced by us in the weak Hopf algebra setting [2]. As application
of (52) and (53) we obtain a generalization of the main result about (co)dyslexia contained in [2].

Definition 3.20. Let H be a weak Hopf quasigroup. We will say that H is n-dyslectic if µH ◦cnH,H = µH

where cnH,H = cH,H◦
n)
· · · ◦cH,H . When cnH,H ◦ δH = δH we will say that H is n-codyslectic.

Proposition 3.21. Let H be a weak Hopf quasigroup. If λn
H = idH , then H is n-dyslectic and n-

codyslectic.

Proof. By (52), we have that

µH = λn
H ◦ µH = λn−1

H ◦ λH ◦ µH = λn−1
H ◦ µH ◦ (λH ⊗ λH) ◦ cH,H

= λn−2
H ◦ λH ◦ µH ◦ (λH ⊗ λH) ◦ cH,H = λn−2

H ◦ µH ◦ (λ2
H ⊗ λ2

H) ◦ c2H,H = · · ·

· · · = µH ◦ (λn
H ⊗ λn

H) ◦ cnH,H = µH ◦ cnH,H .

Analogously, if we use (53), with a similar calculation, we obtain that H is n-codyslectic. �

Theorem 3.22. If H is a weak Hopf quasigroup (co)commutative then the antipode λH satisfies λ2
H =

idH .

Proof. If we assume that H is commutative (µH ◦ cH,H = µH , equivalently, µH ◦ c−1
H,H = µH), by (2)

ΠL
H = Π

R

H . Analogously, by (3), ΠR
H = Π

L

H . Then

λH ◦ λH = λH ◦ (λH ∗ΠL
H) = (λH ◦ λH) ∗ (λH ◦ΠL

H) = (λH ◦ λH) ∗ (λH ◦Π
R

H)

= (λH ◦ λH) ∗ΠR
H = µH ◦ (µH ⊗H) ◦ ((λH ◦ λH)⊗ λH ⊗H) ◦ (H ⊗ δH) ◦ δH

= ((λH ◦ λH) ∗ λH) ∗ idH = (λH ◦ΠR
H) ∗ idH = (λH ◦Π

L

H) ∗ idH = ΠL
H ∗ idH = idH .

The first equality follows by (a4-3) of Definition 2.2, the second and seventh ones by (52) and the
commutativity of µH , the third and eight ones by the commutativity of µH and the fourth one by (40).
The fifth equality relies on (a4-7) of Definition 2.2 and the sixth one follows by the coassociativity of δH .
In the ninth one we used (39) and finally the last one follows by (47).

The proof for a cocommutative weak Hopf quasigroup is similar using that ΠL
H = Π

L

H and ΠR
H =

Π
R

H . �

4. The fundamental theorem of Hopf modules

In the following definition we introduce the notion of right-right H-Hopf module for a weak Hopf
quasigroup H . Note that if H is a Hopf quasigroup and C is the symmetric monoidal category F− V ect,
we get the notion defined by Brzeziński in [5].

Definition 4.1. Let H be a weak Hopf quasigroup and M an object in C. We say that (M,φM , ρM ) is
a right-right H-Hopf module if the following axioms hold:
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(c1) The pair (M,ρM ) is a right H-comodule, i.e. ρM : M → M ⊗ H is a morphism such that
(M ⊗ εH) ◦ ρM = idM and (ρM ⊗H) ◦ ρM = (M ⊗ δH) ◦ ρM .

(c2) The morphism φM : M ⊗H → M satisfies:
(c2-1) φM ◦ (M ⊗ ηH) = idM .
(c2-2) ρM ◦ φM = (φM ⊗ µH) ◦ (M ⊗ cH,H ⊗ H) ◦ (ρM ⊗ δH), i.e. φM is a morphism of right

H-comodules with the codiagonal coaction on M ⊗H .
(c3) φM ◦ (φM ⊗ λH) ◦ (M ⊗ δH) = φM ◦ (M ⊗ΠL

H).
(c4) φM ◦ (φM ⊗H) ◦ (M ⊗ λH ⊗H) ◦ (M ⊗ δH) = φM ◦ (M ⊗ΠR

H).
(c5) φM ◦ (φM ⊗H) ◦ (M ⊗ΠL

H ⊗H) ◦ (M ⊗ δH) = φM .

Remark 4.2. Obviously, if H is a weak Hopf quasigroup, the triple (H,φH = µH , ρH = δH) is a right-right
H-Hopf module. Moreover, if (M,φM , ρM ) is a right-right H-Hopf module, the axiom (c5) is equivalent
to

φM ◦ (φM ⊗ΠR
H) ◦ (M ⊗ δH) = φM . (54)

because by (c3) and (c4) of Definition 4.1 we have that

φM ◦ (φM ⊗ΠR
H) ◦ (M ⊗ δH) = φM ◦ (φM ⊗H) ◦ (M ⊗ΠL

H ⊗H) ◦ (M ⊗ δH). (55)

Also, composing in (c2-2) with M ⊗ ηH and M ⊗ εH we have that

φM ◦ (M ⊗ΠR
H) ◦ ρM = idM . (56)

Finally, by (c5) and (54) we obtain

φM ◦ (φM ⊗H) ◦ (M ⊗ΠL
H ⊗H) ◦ (M ⊗ (δH ◦ ηH)) = idM , (57)

φM ◦ (φM ⊗ΠR
H) ◦ (M ⊗ (δH ◦ ηH)) = idM . (58)

Proposition 4.3. Let H be a weak Hopf quasigroup and (M,φM , ρM ) a right-right H-Hopf module. The
endomorphism qM := φM ◦ (M ⊗ λH) ◦ ρM : M → M satisfies

ρM ◦ qM = (M ⊗ΠL
H) ◦ ρM ◦ qM (59)

and, as a consequence, is an idempotent. Moreover, if M coH (object of coinvariants) is the image of qM
and pM : M → M coH , iM : M coH → M the morphisms such that qM = iM ◦ pM and idMcoH = pM ◦ iM ,

✲ ✲
✲M coH M M ⊗H

iM
ρM

(M ⊗Π
R

H) ◦ ρM
is an equalizer diagram.

Proof. The equality (59) holds because

ρM ◦ qM
= (φM ⊗ µH) ◦ (M ⊗ cH,H ⊗H) ◦ (ρM ⊗ (δH ◦ λH)) ◦ ρM
= (φM ⊗ µH) ◦ (M ⊗ cH,H ⊗H) ◦ (ρM ⊗ ((λH ⊗ λH) ◦ cH,H ◦ δH)) ◦ ρM
= ((φM ◦ (M ⊗ λH))⊗ΠL

H) ◦ (M ⊗ (cH,H ◦ δH)) ◦ ρM
= ((φM ◦ (M ⊗ λH))⊗ (ΠL

H ◦ΠL
H)) ◦ (M ⊗ (cH,H ◦ δH)) ◦ ρM

= (M ⊗ΠL
H) ◦ ρM ◦ qM

where the first equality follows by (c2-2) of Definition 4.1, the second one by (53), the third one relies
on (c1) of Definition 4.1 as well as the naturality of the braiding, the fourth one is a consequence of the
properties of ΠL

H and the last one uses the arguments of the three first identities but in the inverse order.
On the other hand, qM is an idempotent. Indeed,

qM ◦ qM
= φM ◦ (M ⊗ λH) ◦ ρM ◦ qM
= φM ◦ (M ⊗ (λH ◦ΠL

H)) ◦ ρM ◦ qM

= φM ◦ (M ⊗ (λH ◦Π
R

H ◦ΠL
H)) ◦ ρM ◦ qM
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= φM ◦ (M ⊗ΠR
H) ◦ ρM ◦ qM

= qM .

In the last equalities, the first one follows by definition, the second one by (59), the third one by (34),
the fourth one by (40) and (59) and the last one by (56).

Finally, by (40) and (56) φM ◦ (M ⊗ (λH ◦Π
R

H)) ◦ ρM = φM ◦ (M ⊗ΠR
H)) ◦ ρM = idM . Then,

✲ ✲
✲M coH M M ⊗H

iM
ρM

(M ⊗Π
R

H) ◦ ρM
is a split cofork [10] and thus an equalizer diagram.

�

Remark 4.4. Note that, in the conditions of Proposition (4.3), by (33) and (34), we obtain that

✲ ✲
✲M coH M M ⊗H

iM
ρM

(M ⊗ΠL
H) ◦ ρM

is also an equalizer diagram.
Moreover, by the comodule condition and (c4) of Definition 4.1 we have

φM ◦ (qM ⊗H) ◦ ρM = idM . (60)

Finally, the following identities hold:

ρM ◦ φM ◦ (iM ⊗H) = (φM ⊗H) ◦ (iM ⊗ δH), (61)

pM ◦ φM ◦ (iM ⊗H) = pM ◦ φM ◦ (iM ⊗ΠL
H), (62)

pM ◦ φM ◦ (iM ⊗H) = pM ◦ φM ◦ (iM ⊗Π
L

H). (63)

Indeed:

ρM ◦ φM ◦ (iM ⊗H)
= (φM ⊗ µH) ◦ (M ⊗ cH,H ⊗H) ◦ ((ρM ◦ iM )⊗ δH)

= (φM ⊗ µH) ◦ (M ⊗ cH,H ⊗H) ◦ (((M ⊗Π
R

H) ◦ ρM ◦ iM )⊗ δH)

= (φM ⊗ (µH ◦ (Π
R

H ⊗H))) ◦ (M ⊗ cH,H ⊗H) ◦ ((ρM ◦ iM )⊗ δH)
= (φM ⊗ (εH ◦ µH)⊗H) ◦ (M ⊗ cH,H ⊗ δH) ◦ ((ρM ◦ iM )⊗ δH)
= (((M ⊗ εH) ◦ ρM ◦ φM )⊗H) ◦ (iM ⊗ δH)
= (φM ⊗H) ◦ (iM ⊗ δH).

The first equality follows from (c2-2) of Definition 4.1, the second one by Proposition 4.3 and the third
one by the naturality of the braiding. The fourth equality is a consequence of (10). In the fifth one we
used the coassociativity of δH and (c2-2) of Definition 4.1. The last one follows by (c1) of Definition 4.1.

On the other hand, by (61) and (a4-6) of Definition 2.2 we have

pM ◦ φM ◦ (iM ⊗H)
= pM ◦ qM ◦ φM ◦ (iM ⊗H)
= pM ◦ φM ◦ (M ⊗ λH) ◦ ρM ◦ φM ◦ (iM ⊗H)
= pM ◦ φM ◦ (φM ⊗ λH) ◦ (iM ⊗ δH)
= pM ◦ φM ◦ (iM ⊗ΠL

H).

Finally, composing with M coH ⊗Π
L

H in (62) and using (33) we obtain (63).

Proposition 4.5. Let H be a weak Hopf quasigroup, (M,φM , ρM ) a right-right H-Hopf module. The
endomorphism

∇M := (pM ⊗H) ◦ ρM ◦ φM ◦ (iM ⊗H) : M coH ⊗H → M coH ⊗H
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is an idempotent and the equalities

∇M = ((pM ◦ φM )⊗H) ◦ (iM ⊗ δH), (64)

(M coH ⊗ δH) ◦ ∇M = (∇M ⊗H) ◦ (M coH ⊗ δH). (65)

∇M = (M coH ⊗ µH) ◦ ((∇M ◦ (M coH ⊗ ηH))⊗H). (66)

hold.

Proof. Trivially, by (60) we have that

∇M ◦ ∇M = (pM ⊗H) ◦ ρM ◦ φM ◦ (qM ⊗H) ◦ ρM ◦ φM ◦ (iM ⊗H) = ∇M .

The equality (64) follows from (61) and (65) is a consequence of (64) and the coassociativity of δH .
Finally, (66) holds because, by (64), (17) and (63) we have

(M coH ⊗ µH) ◦ ((∇M ◦ (M coH ⊗ ηH))⊗H) = ((pM ◦ φM ◦ (M ⊗Π
L

H))⊗H) ◦ (iM ⊗ δH) = ∇M .

�

Remark 4.6. In the conditions of Proposition 4.5 we define the morphisms

ωM : M coH ⊗H → M, ω′
M : M → M coH ⊗H

by ωM = φM ◦ (iM ⊗H) and ω′
M = (pM ⊗H) ◦ ρM . Then, ωM ◦ ω′

M = idM and ∇M = ω′
M ◦ ωM . Also,

we have a commutative diagram

✲
❩
❩
❩
❩❩⑦ �

�
��✒

✑
✑
✑
✑✑✸ ❩

❩
❩❩⑦

M coH ⊗H M coH ⊗H

M

M coH ×H

ωM
ω′
M

pMcoH⊗H iMcoH⊗H

∇M

where M coH×H denotes the image of ∇M and pMcoH⊗H , iMcoH⊗H are the morphisms such that pMcoH⊗H◦
iMcoH⊗H = idMcoH×H and iMcoH⊗H ◦pMcoH⊗H = ∇M . Therefore, the morphism αM = pMcoH⊗H ◦ω′

M is
an isomorphism of right H-modules (i.e. ρMcoH×H ◦α = (α⊗H)◦ρM ) with inverse α−1

M = ωM ◦ iMcoH⊗H .
The comodule structure of M coH ×H is the one induced by the isomorphism α and it is equal to

ρMcoH×H = (pMcoH⊗H ⊗H) ◦ (M coH ⊗ δH) ◦ iMcoH⊗H .

Proposition 4.7. Let H be a weak Hopf quasigroup and (M,φM , ρM ), (N,φN , ρN ) right-right H-Hopf
modules. If there exists a right H-comodule isomorphism α : M → N , the triple (M,φα

M = α−1 ◦ φN ◦
(α⊗H), ρM ) is a right-right H-Hopf module.

Proof. The proof follows easily because, if α is a right H-comodule isomorphism, ρM = (α−1⊗H)◦ρN ◦α
holds. �

Proposition 4.8. Let H be a weak Hopf quasigroup, (M,φM , ρM ) a right-right H-Hopf module. The
triple (M coH ×H,φMcoH×H , ρMcoH⊗H) where

φMcoH×H = pMcoH⊗H ◦ (M coH ⊗ µH) ◦ (iMcoH⊗H ⊗H),

and ρMcoH⊗H is the coaction defined in Remark 4.6, is a right-right H-Hopf module.

Proof. By Remark 4.6 we have that (M coH × H, ρMcoH×H) is a right H-comodule and it is clear that
(c2-1) of Definition 4.1 holds. On the other hand, by (65),

ρMcoH×H ◦ φMcoH×H = (pMcoH⊗H ⊗H) ◦ (M coH ⊗ (δH ◦ µH)) ◦ (iMcoH⊗H ⊗H).

Moreover, by (65), the properties of ∇M and (a1) of Definition 2.2 we obtain
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(φMcoH×H ⊗ µH) ◦ (M coH ×H ⊗ cH,H ⊗H) ◦ (ρMcoH×H ⊗ δH)
= ((pMcoH⊗H ◦ (M coH ⊗ µH))⊗H) ◦ (∇M ⊗H ⊗ µH) ◦ (M coH ⊗H ⊗ cH,H ⊗H)

◦(M coH ⊗ δH ⊗ δH) ◦ (iMcoH⊗H ⊗H)
= (pMcoH⊗H ⊗H) ◦ (M coH ⊗ ((µH ⊗ µH) ◦ δH⊗H)) ◦ ((∇M ◦ iMcoH⊗H)⊗H)
= (pMcoH⊗H ⊗H) ◦ (M coH ⊗ (δH ◦ µH)) ◦ (iMcoH⊗H ⊗H)

and then (c2-2) of Definition 4.1 holds.
The proof for (c3) of Definition 4.1 is the following:

φMcoH×H ◦ (φMcoH×H ⊗ λH) ◦ (M coH ×H ⊗ δH)
= pMcoH×H ◦ ((pM ◦ φM )⊗ µH) ◦ (iM ⊗ (δH ◦ µH)⊗ λH) ◦ (iMcoH×H ⊗ δH)
= pMcoH×H ◦ ((pM ◦ φM )⊗ µH) ◦ (iM ⊗ ((µH ⊗ µH) ◦ δH⊗H)⊗ λH) ◦ (iMcoH×H ⊗ δH)
= pMcoH×H ◦ ((pM ◦ φM ◦ (iM ⊗ µH)) ⊗ (µH ◦ (H ⊗ΠL

H))) ◦ (M coH ⊗ δH⊗H) ◦ (iMcoH×H ⊗H)
= pMcoH×H ◦((pM ◦φM ◦(iM⊗µH))⊗H)◦(M coH⊗H⊗cH,H)◦(M coH⊗δH⊗H)◦(iMcoH×H⊗H)
= pMcoH×H ◦ ((pM ◦ φM ◦ (iM ⊗ (ΠL

H ◦ µH))) ⊗H) ◦ (M coH ⊗H ⊗ cH,H) ◦ (M coH ⊗ δH ⊗H)
◦(iMcoH×H ⊗H)

= pMcoH×H ◦((pM ◦φM ◦(iM⊗µH))⊗H)◦(M coH⊗H⊗cH,H)◦(M coH⊗δH⊗H)◦(iMcoH×H⊗ΠL
H)

= pMcoH×H ◦((pM ◦φM )⊗H)◦(iM⊗(((εH ◦µH)⊗H⊗H)◦(H⊗cH,H⊗H)◦(δH⊗cH,H)◦(δH⊗H)))
◦(iMcoH×H ⊗H)

= pMcoH×H ◦ ((pM ◦φM )⊗H)◦ (iM ⊗ (((εH ◦µH)⊗δH)◦ (H⊗cH,H)◦ (δH ⊗H)))◦ (iMcoH×H ⊗H)
= pMcoH×H ◦ ((pM ◦ φM )⊗H) ◦ (iM ⊗ (δH ◦ µH ◦ (H ⊗ΠL

H))) ◦ (iMcoH×H ⊗H)
= pMcoH×H ◦ ∇M ◦ (M coH ⊗ (µH ◦ (H ⊗ΠL

H))) ◦ (iMcoH×H ⊗H)
= φMcoH×H ◦ (M coH ×H ⊗ΠL

H)

The first and tenth equalities follow by (64), the second one by (a1) of Definition 2.2 and the third
one by the coassociativity of δH and (a4-6) of Definition 2.2. In the fourth one we used (45). The fifth
equality relies on (62) and the sixth one follows by (25) and (62). The seventh one is a consequence of the
naturality of the braiding and (7). The eighth equality follows by the naturality of the braiding and the
coassociativity of δH . Finally, the ninth equality follows by (7) and the last one relies on the properties
of ∇M .

We continue in this fashion proving (c4) of Definition 4.1. Indeed:

φMcoH×H ◦ (φMcoH×H ⊗H) ◦ (M coH ×H ⊗ λH ⊗H) ◦ (M coH ×H ⊗ δH)
= pMcoH×H ◦ ((pM ◦ φM )⊗ µH) ◦ (iM ⊗ (δH ◦ µH ◦ (H ⊗ λH))⊗H) ◦ (iMcoH×H ⊗ δH)
= pMcoH×H ◦ ((pM ◦ φM )⊗ µH) ◦ (iM ⊗ ((µH ⊗ µH) ◦ δH⊗H ◦ (H ⊗ λH))⊗H) ◦ (iMcoH×H ⊗ δH)
= pMcoH×H◦((pM◦φM◦(M⊗ΠL

H))⊗µH)◦(iM⊗((µH⊗µH)◦δH⊗H◦(H⊗λH))⊗H)◦(iMcoH×H⊗δH)
= pMcoH×H ◦((pM ◦φM )⊗µH)◦(iM ⊗ [((εH ◦µH)⊗(εH ◦µH)⊗H⊗µH)◦(H⊗δH⊗cH,H⊗H⊗H)

◦(H ⊗ cH,H ⊗ cH,H ⊗H) ◦ ((δH ◦ ηH)⊗ δH ⊗ (δH ◦ λH))]⊗H) ◦ (iMcoH×H ⊗ δH)
= pMcoH×H ◦ ((pM ◦φM )⊗µH)◦ (iM ⊗ (ΠL

H ⊗ ((εH ⊗H)◦ δH ◦µH))⊗H)◦ (M coH ⊗ δH ⊗λH ⊗H)
◦(iMcoH×H ⊗ δH)

= pMcoH×H ◦ ((pM ◦φM )⊗µH) ◦ (iM ⊗H ⊗µH ⊗H) ◦ (M coH ⊗ δH ⊗λH ⊗H) ◦ (iMcoH×H ⊗ δH)
= pMcoH×H ◦ ((pM ◦ φM )⊗ µH) ◦ (iM ⊗ δH ⊗ΠR

H) ◦ (iMcoH×H ⊗H)
= pMcoH×H ◦ (M coH ⊗ µH) ◦ ((∇M ◦ iMcoH×H)⊗ΠR

H)
= φMcoH×H ◦ (M coH ×H ⊗ΠR

H)

The first and eighth equalities follow by (64), the second one by (a1) of Definition 2.2 and the third
one by (62). In the fourth one we used the naturality of the braiding and (a2) of Definition 2.2. The fifth
one is a consequence of the naturality of the braiding, the coassociativity of δH and (a1) of Definition 2.2.
The sixth equality follows from the counit properties and (62) and the seventh one by (a4-7) of Definition
2.2. Finally, the last equality is a consequence of the properties of ∇M .

The only point remaining is (c5) of Definition 4.1. This equality holds because:

φMcoH×H ◦ (φMcoH×H ⊗H) ◦ (M coH ×H ⊗ΠL
H ⊗H) ◦ (M coH ×H ⊗ δH)

= pMcoH×H ◦ ((pM ◦ φM )⊗ µH) ◦ (iM ⊗ (δH ◦ µH ◦ (H ⊗ΠL
H))⊗H) ◦ (iMcoH×H ⊗ δH)

= pMcoH×H ◦ ((pM ◦ φM )⊗ µH) ◦ (iM ⊗ ((µH ⊗ µH) ◦ δH⊗H ◦ (H ⊗ΠL
H))⊗H) ◦ (iMcoH×H ⊗ δH)
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= pMcoH×H ◦ ((pM ◦ φM )⊗ µH) ◦ (iM ⊗ ((µH ⊗ (µH ◦ (H ⊗ΠL
H))) ◦ δH⊗H ◦ (H ⊗ΠL

H))⊗H)
◦(iMcoH×H ⊗ δH)

= pMcoH×H ◦((pM ◦φM )⊗H)◦(iM ⊗((ΠL
H⊗H)◦µH⊗H ◦(δH⊗((ΠL

H⊗H)◦δH))))◦(iMcoH×H⊗H)
= pMcoH×H ◦ ((pM ◦ φM )⊗H) ◦ (iM ⊗ ((ΠL

H ◦ µH ◦ (H ⊗ΠL
H))⊗ µH) ◦ δH⊗H) ◦ (iMcoH×H ⊗H)

= pMcoH×H ◦ ((pM ◦ φM )⊗H) ◦ (iM ⊗ ((ΠL
H ⊗H) ◦ δH ◦ µH)) ◦ (iMcoH×H ⊗H)

= pMcoH×H ◦ ((pM ◦ φM )⊗H) ◦ (iM ⊗ (δH ◦ µH)) ◦ (iMcoH×H ⊗H)
= pMcoH×H ◦ ∇M ◦ (M coH ⊗ µH) ◦ ◦(iMcoH×H ⊗H)
= φMcoH×H

The first equalitiy follows by (64), the second one by (a1) of Definition 2.2 and the third one by (27).
In the fourth one we used (45) as well as (62). The fifth one relies on the naturality of the braiding and
the sixth one is a consequence of (25) and (a1) of Definition 2.2. The seventh one follows by (62) and the
eighth one by 64. Finally, the last one follows by the properties of ∇M .

�

Proposition 4.9. Let H be a weak Hopf quasigroup, (M,φM , ρM ) be a right-right H-Hopf module and
αM : M → M coH ×H be the isomorphism of right H-comodules defined in Remark 4.6. Then, for the
action φαM

M introduced in Proposition 4.7, the triple (M,φαM

M , ρM ) is a right-right H-Hopf module with
the same object of coinvariants of (M,φM , ρM ). Moreover, the identity

φαM

M = φM ◦ (qM ⊗ µH) ◦ (ρM ⊗H) (67)

holds and qαM

M = qM where qαM

M = φαM

M ◦ (M ⊗ λH) ◦ ρM is the idempotent morphism associated to the
Hopf module (M,φαM

M , ρM ). Finally, if for (M,φαM

M , ρM ), ∇αM

M denotes the idempotent morphism defined
in Proposition 4.5, we have that

∇αM

M = ∇M (68)

and then, for (M,φαM

M , ρM ), the associated isomorphism between M and M coH ×H defined in Remark
4.6 is αM . Finally,

(φαM

M )αM = φαM

M (69)

holds.

Proof. By Proposition 4.7 we obtain that (M,φαM

M , ρM ) is a right-right H-Hopf module and by the
equalizer diagram of Proposition 4.3 the object of coinvariants of (M,φαM

M , ρM ) is equal to the one of
(M,φM , ρM ). Also, by (60) we have

φM ◦ (iM ⊗H) ◦ ∇M = φM ◦ (iM ⊗H) (70)

and
∇M ◦ (pM ⊗H) ◦ ρM = (pM ⊗H) ◦ ρM . (71)

Then, (67) holds because
φαM

M = α−1
M ◦ φMcoH×H ◦ (αM ⊗H)

= φM ◦ (iM ⊗H) ◦ ∇M ◦ (M coH ⊗ µH) ◦ ((∇M ◦ (pM ⊗H) ◦ ρM )⊗H)

= φM ◦ (qM ⊗ µH) ◦ (ρM ⊗H).

On the other hand, by (67), the coassociativity of δH , (c1), (c4) of Definition 4.1 and (54) we obtain:

qαM

M

= φM ◦ (qM ⊗ µH) ◦ (ρM ⊗ λH) ◦ ρM
= φM ◦ (φM ⊗H) ◦ ((((φM ◦ (M ⊗ λH))⊗H) ◦ (M ⊗ δH))⊗ λH) ◦ (M ⊗ δH) ◦ ρM
= φM ◦ ((φM ◦ (M ⊗ΠR

H))⊗ λH) ◦ (M ⊗ δH) ◦ ρM
= φM ◦ ((φM ◦ (M ⊗ΠR

H) ◦ ρM )⊗ λH) ◦ ρM
= qM .

Then, iM = iαM

M and pM = pαM

M and, as a consequence, ωαM ′

M = (pM ⊗H) ◦ ρM = ω′
M . Moreover, by

(c2-1) of Definition 4.1, (66) and (70)

ωαM

M
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= φαM

M ◦ (iM ⊗H)
= φM ◦ (qM ⊗ µH) ◦ ((ρM ◦ iM )⊗H)
= φM ◦ (iM ⊗ µH) ◦ (∇M ⊗H) ◦ (M coH ⊗ ηH ⊗H)
= φM ◦ (iM ⊗H) ◦ ∇M

= ωM .

Therefore, ∇αM

M = ∇M and then, for (M,φαM

M , ρM ), the associated isomorphism between M and M coH ×
H is αM .

Finally, by (66)

(φαM

M )αM = φM ◦ (qM ⊗ µH) ◦ ((ρM ◦ qM )⊗ µH) ◦ (ρM ⊗H)

= φM ◦ (iM ⊗ µH) ◦ ((∇M ◦ (pM ⊗ ηH))⊗ µH) ◦ (ρM ⊗H)

= φM ◦ (iM ⊗H) ◦ ∇M ◦ (pM ⊗ µH) ◦ (ρM ⊗H) = φαM

M

and (69) holds. �

Remark 4.10. Let H be a weak Hopf quasigroup. The triple (H,φH = µH , ρH = δH) is a right-right
H-Hopf module and φαH

H = φH because by (42),

φαH

H = µH ◦ (ΠL
H ⊗ µH) ◦ (δH ⊗H) = µH = φH .

Definition 4.11. Let H be a weak Hopf quasigroup and let (M,φM , ρM ) and (N,φN , ρN ) be right-right
H-Hopf modules. A morphism in C f : M → N is said to be H-quasilineal if the following identity holds

φαN

N ◦ (f ⊗H) = f ◦ φαM

M . (72)

A morphism of right-right H-Hopf modules between M and N is a morphism f : M → N in C such that
is both a morphism of right H-comodules and H-quasilineal. The collection of all right H-Hopf modules
with their morphisms forms a category which will be denoted by MH

H .

Proposition 4.12. Let H be a weak Hopf quasigroup and let (M,φM , ρM ) be an object in MH
H . Then,

for (M coH ×H,φMcoH×H , ρMcoH×H) the identity

φ
α

McoH×H

McoH×H
= φMcoH×H (73)

holds.

Proof. First note that, by (65) we have

qMcoH×H = pMcoH⊗H ◦ (M coH ⊗ΠL
H) ◦ iMcoH⊗H (74)

and, as a consequence, by (67), the equality

φ
α

McoH×H

McoH×H
= pMcoH⊗H◦(M coH⊗µH)◦((∇M◦(M coH⊗ΠL

H))⊗µH)◦(M coH⊗δH⊗H)◦(iMcoH⊗H⊗H). (75)

holds.
Then,

φ
α

McoH×H

McoH×H

= pMcoH⊗H ◦ (pM ⊗ µH) ◦ ((ρM ◦ φM ◦ (iM ⊗ΠL
H))⊗ µH) ◦ (M coH ⊗ δH ⊗H) ◦ (iMcoH⊗H ⊗H)

= pMcoH⊗H◦(pM⊗µH)◦((ρM ◦φM ◦(φM⊗λH)◦(iM⊗δH))⊗µH)◦(M coH⊗δH⊗H)◦(iMcoH⊗H⊗H)
= pMcoH⊗H ◦(pM⊗µH)◦((ρM ◦φM ◦(φM⊗λH))⊗µH)◦(iM⊗((H⊗δH)◦δH)⊗H)◦(iMcoH⊗H⊗H)
= pMcoH⊗H◦(pM⊗µH)◦((ρM◦φM◦(M⊗λH))⊗µH)◦(((M⊗δH)◦ρM◦φM◦(iM⊗H)◦iMcoH⊗H)⊗H)
= pMcoH⊗H ◦ (pM ⊗ µH) ◦ ((ρM ◦ qM )⊗ µH) ◦ ((ρM ◦ φM ◦ (iM ⊗H) ◦ iMcoH⊗H)⊗H)
= pMcoH⊗H ◦ (pM ⊗ µH) ◦ ((ρM ◦ iM )⊗ µH) ◦ ((∇M ◦ iMcoH⊗H)⊗H)
= pMcoH⊗H ◦ (pM ⊗ µH) ◦ ((ρM ◦ iM )⊗ µH) ◦ (iMcoH⊗H ⊗H)
= pMcoH⊗H ◦ (M coH ⊗ µH) ◦ ((∇M ◦ (M coH ⊗ ηH))⊗ µH) ◦ (iMcoH⊗H ⊗H)
= pMcoH⊗H ◦ ∇M ◦ (M coH ⊗ µH) ◦ (iMcoH⊗H ⊗H)
= φMcoH×H
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where the first equality follows by (75) and the definition of ∇M , the second one by (c3) of Definition
4.1, the third one by the coassociativity of δH and the fourth one by (61). In the fifth equality we used
(c1) of Definition 4.1 and the sixth and eighth ones are consequence of the definition of ∇M . Finally, the
seventh and the tenth one rely on the properties of ∇M and the ninth one follows by (66).

�

Theorem 4.13. (Fundamental Theorem of Hopf modules) Let H be a weak Hopf quasigroup and let
(M,φM , ρM ) be an object in MH

H . Then, the right-right H-Hopf modules (M,φM , ρM ) and (M coH ×
H,φMcoH×H , ρMcoH×H) are isomorphic in MH

H .

Proof. By Remark 4.6 αM = pMcoH⊗H ◦ ω′
M is an isomorphism of right H-comodules with inverse

α−1
M = ωM ◦ iMcoH⊗H . To finish the proof we only need to show that (72) holds. Indeed, by (73), (70)

and (71) we have

α−1
M ◦φ

α
McoH×H

McoH×H
◦ (αM ⊗H) = φM ◦ (iM ⊗H) ◦∇M ◦ (M coH ⊗µH) ◦ ((∇M ◦ (pM ⊗H) ◦ ρM)⊗H) = φαM

M .

�
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