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NON-COMMUTATIVE TERNARY NAMBU-POISSON ALGEBRAS

AND TERNARY HOM-NAMBU-POISSON ALGEBRAS

HANENE AMRI AND ABDENACER MAKHLOUF

Abstract. The main purpose of this paper is to study non-commutative
ternary Nambu-Poisson algebras and their Hom-type version. We provide
construction results dealing with tensor product and direct sums of two (non-
commutative) ternary (Hom-)Nambu-Poisson algebras. Moreover, we explore
twisting principle of (non-commutative) ternary Nambu-Poisson algebras along
with an algebra morphism that lead to construct (non-commutative) ternary
Hom-Nambu-Poisson algebras. Furthermore, we provide examples and a 3-
dimensional classification of non-commutative ternary Nambu-Poisson alge-
bras.

Introduction

In the 70’s, Nambu proposed a generalized Hamiltonian system based on a
ternary product, the Nambu-Poisson bracket, which allows to use more that one
hamiltonian [19]. More recent motivation for ternary brackets appeared in string
theory and M-branes, ternary Lie type structure was closely linked to the super-
symmetry and gauge symmetry transformations of the world-volume theory of mul-
tiple coincident M2-branes and was applied to the study of Bagger-Lambert theory.
Moreover ternary operations appeared in the study of some quarks models. In 1996,
quantization of Nambu-Poisson brackets were investigated in [11], it was presented
in a novel approach of Zariski, this quantization is based on the factorization on R
of polynomials of several variables.

The algebraic formulation of Nambu mechanics was discussed in [23] and Nambu
algebras was studied in [13] as a natural generalization of a Lie algebra for higher-
order algebraic operations. By definition, Nambu algebra of order n over a field
K of characteristic zero consists of a vector space V over K together with a K-
multilinear skew-symmetric operation [., · · · , .] : ΛnV → V , called the Nambu
bracket, that satisfies the following generalization of the Jacobi identity. Namely,
for any x1, ..., xn−1 ∈ V define an adjoint action ad(x1, ..., xn−1) : V → V by
ad(x1, ..., xn−1)xn = [x1, ..., xn−1, xn], xn ∈ V .

Then the fundamental identity is a condition saying that the adjoint action is a
derivation with respect the Nambu bracket, i.e. for all x1, ..., xn−1, y1, ..., yn ∈ V

(0.1) ad(x1, ..., xn−1)[y1, ..., yn] =

n∑

k=1

[y1, ..., ad(x1, ..., xn−1)yk, ..., yn].
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When n = 2, the fundamental identity becomes the Jacobi identity and we get a
definition of a Lie algebra.

Different aspects of Nambu mechanics, including quantization, deformation and
various algebraic constructions for Nambu algebras have recently been studied.
Moreover a twisted generalization, called Hom-Nambu algebras, was introduced in
[5]. This kind of algebras called Hom-algebras appeared as deformation of algebras
of vector fields using σ-derivations. The first examples concerned q-deformations
of Witt and Virasoro algebras. Then Hartwig, Larsson and Silvestrov introduced
a general framework and studied Hom-Lie algebras [16], in which Jacobi identity
is twisted by a homomorphism. The corresponding associative algebras, called
Hom-associative algebras was introduced in [17]. Non-commutative Hom-Poisson
algebras was discussed in [28]. Likewise, n-ary algebras of Hom-type was introduced
in [5], see also [1, 2, 3, 26, 27].

We aim in this paper to explore and study non-commutative ternary Nambu-
Poisson algebras and their Hom-type version. The paper includes five Sections. In
the first one, we summarize basic definitions of (non-commutative) ternary Nambu-
Poisson algebras and discuss examples. In the second Section, we recall some ba-
sics about Hom-algebra structures and introduce the notion of (non-commutative)
ternary Hom-Nambu-Poisson algebra. Section 3 is dedicated to construction of
(non-commutative) ternary Hom-Nambu-Poisson algebras using direct sums and
tensor products. In Section 4, we extend twisting principle to ternary Hom-Nambu-
Poisson algebras. It is used to build new structures with a given ternary (Hom-
)Nambu-Poisson algebra and an algebra morphism. This process is used to con-
struct ternary Hom-Nambu-Poisson algebras corresponding to the ternary algebra
of polynomials where the bracket is defined by the Jacobian. We provide in the
last section a classification of 3-dimensional ternary Nambu-Poisson algebras and
corresponding Hom-Nambu-Poisson algebras using twisting principle.

1. Ternary (Non-commutative) Nambu-Poisson algebra

In the section we review some basic definitions and fix notations. In the sequel,
A denotes a vector space over K, where K is an algebraically closed field of charac-
teristic zero. Let µ : A×A → A be a bilinear map, we denote by µop : A×2 → A the
opposite map, i.e., µop = µ◦τ where τ : A×2 → A×2 interchanges the two variables.
A ternary algebra is given by a pair (A,m), where m is a ternary operation on A,
that is a trilinear map m : A×A×A → A, which is denoted sometimes by brackets.

Definition 1.1. A ternary Nambu algebra is a ternary algebra (A, { , , }) satisfying
the fundamental identity defined as

{x1, x2, {x3, x4, x5}} =

{{x1, x2, x3}, x4, x5}+ {x3, {x1, x2, x4}, x5}+ {x3, x4, {x1, x2, x5}}(1.1)

for all x1, x2, x3, x4, x5 ∈ A.
This identity is sometimes called Filippov identity or Nambu identity, and it is

equivalent to the identity (0.1) with n = 3.
A ternary Nambu-Lie algebra or 3-Lie algebra is a ternary Nambu algebra for

which the bracket is skew-symmetric, that is for all σ ∈ S3, where S3 is the permu-
tation group,

[xσ(1), xσ(2), xσ(3)] = Sgn(σ)[x1, x2, x3].
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Let A and A′ be two ternary Nambu algebras (resp. Nambu-Lie algebras). A
linear map f : A → A′ is a morphism of a ternary Nambu algebras (resp. ternary
Nambu-Lie algebras) if it satisfies

f({x, y, z}A) = {f(x), f(y), f(z)}A′ .

Example 1.2. The polynomials of variables x1, x2, x3 with the ternary operation
defined by the Jacobian function:

{f1, f2, f3} =

∣∣∣∣∣∣∣

∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

∣∣∣∣∣∣∣
,(1.2)

is a ternary Nambu-Lie algebra.

Example 1.3. Let V = R4 be the 4-dimensional oriented Euclidian space over R.
The bracket of 3 vectors −→x ,−→y ,−→z is given by

[x, y, z] = −→x ×−→y ×−→z =

∣∣∣∣∣∣∣∣

x1 y1 z1 e1
x2 y2 z2 e2
x3 y3 z3 e3
x4 y4 z4 e4

∣∣∣∣∣∣∣∣
,

where {e1, e2, e3, e4} is a basis of R4 and −→x =
3∑

i=1

xi
−→ei ,

−→y =
3∑

i=1

yi
−→ei and −→z =

3∑
i=1

zi
−→ei . Then (V, [., ., .]) is a ternary Nambu-Lie algebra.

Now, we introduce the notion of (non-commutative) ternary Nambu-Poisson
algebra.

Definition 1.4. A non-commutative ternary Nambu-Poisson algebra is a triple
(A, µ, {., ., .}) consisting of a K-vector space A, a bilinear map µ : A×A → A and
a trilinear map {., ., .} : A⊗A⊗A → A such that

(1) (A, µ) is a binary associative algebra,
(2) (A, {., ., .}) is a ternary Nambu-Lie algebra,
(3) the following Leibniz rule

{x1, x2, µ(x3, x4)} = µ(x3, {x1, x2, x4}) + µ({x1, x2, x3}, x4)

holds for all x1, x2, x3 ∈ A.

A ternary Nambu-Poisson algebra is a non-commutative ternary Nambu-Poisson
algebra (A, µ, {., ., .}) for which µ is commutative, then µ is commutative unless oth-
erwise stated.
In a (non-commutative) ternary Nambu-Poisson algebra, the ternary bracket {., ., .}
is called Nambu-Poisson bracket.
Similarly, a non-commutative n-ary Nambu-Poisson algebra is a triple (A, µ, {., · · · , .})
where (A, {., · · · , .}) defines an n-Lie algebra satisfying similar Leibniz rule with re-
spect to µ.
A morphism of (non-commutative) ternary Nambu-Poisson algebras is a linear map
that is a morphism of the underlying ternary Nambu-Lie algebras and associative
algebras.
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Example 1.5. Let C∞(R3) be the algebra of C∞ functions on R3 and x1, x2, x3 the
coordinates on R3. We define the ternary brackets as in (1.2), then (C∞(R3), {., ., .})
is a ternary Nambu-Lie algebra. In addition the bracket satisfies the Leibniz rule:
{fg, f2, f3} = f{g, f2, f3} + {f, f2, f3}g where f, g, f2, f3 ∈ C∞(R3) and the mul-
tiplication being the pointwise multiplication that is fg(x) = f(x)g(x). Therefore,
the algebra is a ternary Nambu-Poisson algebra.
This algebra was considered already in 1973 by Nambu [19] as a possibility of ex-
tending the Poisson bracket of standard hamiltonian mechanics to bracket of three
functions defined by the Jacobian. Clearly, the Nambu bracket may be generalized
further to a Nambu-Poisson allowing for an arbitrary number of entries.
In particular, the algebra of polynomials of variables x1, x2, x3 with the ternary
operation defined by the Jacobian function in (1.2), is a ternary Nambu-Poisson
algebra.

Remark 1.6. The n-dimensional ternary Nambu-Lie algebra of Example 1.3 does
not carry a non-commutative Nambu-Poisson algebra structure except that one
given by a trivial multiplication.

2. Hom-type (non commutative) ternary Nambu-Poisson algebras

In this section, we present various Hom-algebra structures. The main feature of
Hom-algebra structures is that usual identities are deformed by an endomorphism
and when the structure map is the identity, we recover the usual algebra structure.

A Hom-algebra (resp. ternary Hom-algebra) is a triple (A, ν, α) consisting of
a K-vector space A, a bilinear map ν : A × A → A (resp. a trilinear map
ν : A×A×A → A) and a linear map α : A → A. A binary Hom-algebra (A, µ, α) is
said to be multiplicative if α ◦ µ = µ ◦α⊗2 and it is called commutative if µ = µop.
A ternary Hom-algebra (A,m,α) is said to be multiplicative if α ◦ m = m ◦ α⊗3.
Classical binary (resp. ternary) algebras are regarded as binary (resp. ternary)
Hom-algebras with identity twisting map. We will often use the abbreviation xy

for µ(x, y) when there is no ambiguity. For a linear map α : A → A, denote by αn

the n-fold composition of n-copies of α, with α0 ≡ Id.

Definition 2.1. A Hom-algebra (A, µ, α) is a Hom-associative algebra if it satisfies
the Hom-associativity condition, that is

µ(α(x), µ(y, z)) = µ(µ(x, y), α(z)) for all x, y, z ∈ A.

Remark 2.2. When α is the identity map, we recover the classical associativity
condition, then usual associative algebras.

Definition 2.3. A ternary Hom-Nambu algebra is a triple (A, {., ., .}, α̃) consisting
of a K-vector space A, a ternary map {., ., .} : A×A×A → A and a pair of linear
maps α̃ = (α1, α2) where α1, α2 : A → A satisfying

{α1(x1), α2(x2), {x3, x4, x5}} = {{x1, x2, x3}, α1(x4), α2(x5)}+

{α1(x3), {x1, x2, x4}, α2(x5)} + {α1(x3), α2(x4), {x1, x2, x5}}.
(2.1)

We call the above condition the ternary Hom-Nambu identity.
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Generally, the n-ary Hom-Nambu algebras are defined by the following Hom-
Nambu identity

{α1(x1), ..., αn−1(xn−1), {xn, ..., x2n−1}}

=

2n−1∑

i=n

{α1(xn), ..., αi−n(xi−1), {x1, ..., xn−1, xi}, αi−n+1(xi+1)..., αn−1(x2n−1)}

for all (x1, ..., x2n−1) ∈ A2n−1.

Remark 2.4. A Hom-Nambu algebra is a Hom-Nambu-Lie algebra if the bracket
is skew-symmetric.

Definition 2.5. A non-commutative ternary Hom-Nambu-Poisson algebra is a tu-
ple (A, µ, β, {., ., .}, α̃) consisting of a vector space A, a ternary operation {., ., .} :
A×A×A→ A, a binary operation µ : A×A → A, a pair of linear maps α̃ = (α1, α2)
where α1, α2 : A → A, and a linear map β : A → A such that:

(1) (A, µ, β) is a binary Hom-associative algebra,
(2) (A, {., ., .}, α̃) is a ternary Hom-Nambu-Lie algebra,
(3) {µ(x1, x2), α1(x3), α2(x4)} = µ(β(x1), {x2, x3, x4})+µ({x1, x3, x4}, β(x2)).

The third condition is called Hom-Leibniz identity.

Remark 2.6. Notice that µ is not assumed to be commutative. When µ is a commu-
tative multiplication, then (A, µ, β, {., ., .}, α̃) is said to be a ternary Hom-Nambu-
Poisson algebra.

We recover the classical (non-commutative) ternary Nambu-Poisson algebra when
α1 = α2 = β = Id.

Similarly, a non-commutative n-ary Hom-Nambu-Poisson algebra is a tuple
(A, µ, β, {., · · · , .}, α̃) where (A, {., · · · , .}, α̃) with α̃ = (α1, · · · , αn−1) that de-

fines an n-ary Hom-Nambu-Lie algebra satisfying similar Leibniz rule with respect
to (A, µ, β).

In the sequel we will mainly interested in the class of non-commutative ternary
Nambu-Poisson algebras where α = α1 = α2 = β, for which we refer by a quadruple
(A, µ, {., ., .}, α).

Definition 2.7. Let (A, µ, {., ., .}, α) be a (non-commutative) ternary Hom-Nambu-
Poisson algebra. It is said to be multiplicative if

α({x1, x2, x3}) = {α(x1), α(x2), α(x3)},

α ◦ µ = µ ◦ α⊗2.

If in addition α is bijective then it is called regular.

Let (A′, µA′ , {., ., .}A′, αA′) be another such quadruple. A weak morphism ϕ :
A → A′ is a linear map such that

• ϕ ◦ {., ., .} = {., ., .}A′ ◦ ϕ⊗3,
• ϕ ◦ µ = µβ ◦ ϕ⊗2.

A morphism ϕ : A → A′ is a weak morphism for which we have in addition ϕ ◦α =
αA′ ◦ ϕ.

Definition 2.8. Let (A, µ, {., ., .}, α) and (A′, µ′, {., ., .}′, α′) be two (non-commutative)
ternary Hom-Nambu-Poisson algebras. A linear map f : A → A′ is a morphism of
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(non-commutative) ternary Hom-Nambu-Poisson algebras if it satisfies:

f({x1, x2, x3}) = {f(x1), f(x2), f(x3)}
′,(2.2)

f ◦ µ = µ′ ◦ f⊗2,(2.3)

f ◦ α = α′ ◦ f.(2.4)

It said to be a weak morphism if hold only the two first conditions.

Proposition 2.9. Let (A1, µ1, {., ., .}1, α1) and (A2, µ2, {., ., .}2, α2) be two ternary
(non-commutative) Hom-Nambu-Poisson algebras. A linear map φ : A1 → A2 is a
morphism of ternary (non-commutative) Hom-Nambu-Poisson algebras if and only
if Γφ ⊆ A1 ⊕A2 is a Hom-Nambu-Poisson subalgebra of

(A1 ⊕A2, µA1⊕A2
, {., ., .}A1⊕A2

, αA1⊕A2
)

where Γφ = {(x, φ(x)) : x ∈ A1} ⊂ A1 ⊕A2.

Proof. Let φ : (A1, µ1, {., ., .}1, α1) → (A2, µ2, {., ., .}2, α2) be a morphism of ternary
Hom-Nambu-Poisson algebras.
We have

{x1 + φ(x1), x2 + φ(x2), x3 + φ(x3)}A1⊕A2
= {x1, x2, x3}1 + {φ(x1), φ(x2), φ(x3)}2

= {x1, x2, x3}1 + φ{x1, x2, x3}1.

Then Γφ is closed under the bracket {., ., .}A1⊕A2
.

We have also

(α1 + α2)(x1 + φ(x1)) = α1(x1) + α2 ◦ φ(x1) = α1(x1) + φ ◦ α1(x1),

which implies that (α1 + α2)Γφ ⊆ Γφ.
Conversely, if the graph Γφ ⊆ A1 ⊕A2 is a Hom-subalgebra of

(A1 ⊕A2, µA1⊕A2
, {., ., .}A1⊕A2

, αA1⊕A2
),

then we have

{φ(x1), φ(x2), φ(x3)}2 = φ{x1, x2, x3}1,

and

(α1 + α2)(x + φ(x)) = α1(x) + α2 ◦ φ(x) ∈ Γφ

= α1(x) + φ ◦ α1(x).

Finally

µA1⊕A2
(x1 + φ(x1), x2 + φ(x2)) = µ1(x1, x2) + µ2(φ(x1), φ(x2))

= µ1(x1, x2) + φ ◦ µ2(x1, x2) ⊆ Γφ.

Therefore φ is a morphism of ternary (non-commutative) Hom-Nambu-Poisson al-
gebras.

�
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3. Tensor product and direct sums

In the following, we define a direct sum of two ternary (non-commutative) Hom-
Nambu-Poisson algebras.

Theorem 3.1. Let (A1, µ1, {., ., .}1, α1) and (A2, µ2, {., ., .}2, α2) be two ternary
(non-commutative) Hom-Nambu-Poisson algebras. Let µA1⊕A2

be a bilinear map
on A1 ⊕A2 defined for x1, y1, z1 ∈ A1 and x2, y2, z2 ∈ A1 by

µ(x1 + x2, y1 + y2) = µ1(x1, y1) + µ2(x2, y2),

{., ., .}A1⊕A2
a trilinear map defined by

{x1 + x2, y1 + y2, z1 + z2}A1⊕A2
= {x1, y1, z1}1 + {x2, y2, z2}2

and αA1⊕A2
a linear map defined by

αA1⊕A2
(x1 + y1) = α1(x1) + α2(x2).

Then

(A1 ⊕A2, µA1⊕A2
, {., ., .}A1⊕A2

, αA1⊕A2
)

is a ternary (non-commutative) Hom-Nambu-Poisson algebra.

Proof. The commutativity of µA1⊕A2
is obvious since µ1 and µ2 are commutative.

The skew-symmetry of the bracket follows from the skew-symmetry of {., ., .}1 and
{., ., .}2. So it remains to check the Hom-associativity, the Hom-Nambu and the
Hom-Leibniz identities. For Hom-associativity identity, we have

µA1⊕A2
(µA1⊕A2

(x1 + x′
1, x2 + x′

2), αA1⊕A2
(x3 + x′

3))

= µA1⊕A2
(µ1(x1, x2) + µ2(x

′
1, x

′
2), α1(x3) + α2(x

′
3))

= µ1(µ1(x1, x2), α1(x3)) + µ2(µ2(x
′
1, x

′
2), α2(x

′
3))

= µ1(α1(x1), µ1(x2, x3)) + µ2(α2(x
′
1), µ2(x

′
2, x

′
3))

= µA1⊕A2
(α1(x1) + α2(x

′
1), µ1(x2, x3) + µ2(x

′
2, x

′
3))

= µA1⊕A2
(αA1⊕A2

(x1, x
′
1), µA1⊕A2

(x2 + x′
2, x3 + x′

3)).

Now we prove the Hom-Nambu identity

{αA1⊕A2
(x1 + x′

1), αA1⊕A2
(x2 + x′

2), {x3 + x′
3, x4 + x′

4, x5 + x′
5}A1⊕A2

}A1⊕A2

= {α1(x1) + α2(x
′
1), α1(x2) + α2(x

′
2), {x3, x4, x5}1 + {x′

3, x
′
4, x

′
5}2}A1⊕A2

= {α1(x1), α1(x2), {x3, x4, x5}1}1 + {α2(x
′
1), α2(x

′
2), {x

′
3, x

′
4, x

′
5}2}2

= {{x1, x2, x3}1, α1(x4), α1(x5)}1 + {α1(x3), {x1, x2, x4}1, α1(x5)}1

+ {α1(x3), α1(x4), {x1, x2, x5}1}1 + {{x′
1, x

′
2, x

′
3}2, α2(x

′
4), α2(x

′
5)}2

+ {α2(x
′
3), {x

′
1, x

′
2, x

′
4}2, α2(x

′
5)}2 + {α2(x

′
3), α2(x

′
4), {x

′
1, x

′
2, x

′
5}2}2

= {{x1, x2, x3}1 + {x′
1, x

′
2, x

′
3}2, α1(x4) + α2(x

′
4), α1(x5) + α2(x

′
5)}A1⊕A2

+ {α1(x3) + α2(x
′
3), {x1, x2, x4}1 + {x′

1, x
′
2, x

′
4}2, α1(x5) + α2(x

′
5)}A1⊕A2

+ {α1(x3) + α2(x
′
3), α1(x3) + α2(x

′
3), {x1, x2, x5}1 + {x′

1, x
′
2, x

′
5}2}A1⊕A2

= {{x1 + x′
1, x2 + x′

2, x3 + x′
3}A1⊕A2

, αA1⊕A2
(x4 + x′

4), αA1⊕A2
(x5 + x′

5)}A1⊕A2

+ {αA1⊕A2
(x3 + x′

3), {x1 + x′
1, x2 + x′

2, x4 + x′
4}A1⊕A2

, αA1⊕A2
(x5 + x′

5)}A1⊕A2

+ {αA1⊕A2
(x3 + x′

3), αA1⊕A2
(x4 + x′

4), {x1 + x′
1, x2 + x′

2, x5 + x′
5}A1⊕A2

}A1⊕A2
.
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Finally, for Hom-Leibniz identity we have

{µA1⊕A2
(x1 + x′

1), αA1⊕A2
(x3, x

′
3), αA1+A2

(x4, x
′
4)}A1⊕A2

= {µ1(x1, x2) + µ2(x
′
1, x

′
2), α1(x3) + α2(x

′
3), α1(x4) + α2(x

′
4)}A1⊕A2

= {µ1(x1, x2), α1(x3), α1(x4)}1 + {µ2(x
′
1, x

′
2), α2(x

′
3), α2(x

′
4)}2

= µ1(α1(x1), {x2, x3, x4}1) + µ1({x1, x3, x4}1, α1(x2))

+ µ2(α2(x
′
1), {x

′
2, x

′
3, x

′
4}2) + µ2({x

′
1, x

′
3, x

′
4}2, α2(x

′
2))

= µA1⊕A2
(αA1⊕A2

(x1, x
′
1), {x2 + x′

2, x3 + x′
3, x4 + x′

4}A1⊕A2
)

+ µA1⊕A2
({x1 + x′

1, x3 + x′
3, x4 + x′

4}A1⊕A2
, αA1⊕A2

(x2, x
′
2)).

That ends the proof. �

Now, we define the tensor product of two ternary Hom-algebras. Moreover, we
consider a tensor product of a ternary Hom-Nambu-Poisson algebra and a totally
Hom-associative symmetric ternary algebra.
Let A1 = (A,m,α), where α = (αi)i=1,2 and A2 = (A′,m′, α′) where α′ = (α′

i)i=1,2

be two ternary (non-commutative) Hom-algebras of a given type, the tensor product
A1 ⊗ A2 is a ternary algebra defined by the triple (A ⊗ A′,m ⊗m′, α ⊗ α′) where
α⊗ α′ = (αi ⊗ α′

i)i=1,2 with

m⊗m′(x1 ⊗ x′
1, x2 ⊗ x′

2, x3 ⊗ x′
3) = m(x1, x2, x3)⊗m′(x′

1, x
′
2, x

′
3),(3.1)

αi ⊗ α′
i = αi(x1)⊗ α′

i(x
′
1),(3.2)

where x1, x2, x3 ∈ A1 and x′
1, x

′
2, x

′
3 ∈ A2.

Recall that (A,m,α) is a totally Hom-associative ternary algebra if

m(α1(x1), α2(x2),m(x3, x4, x5)) = m(α1(x1),m(x2, x3, x4), α2(x5))

= m(m(x1, x2, x3), α1(x4), α2(x5)).

for all x1 · · · , x5 ∈ A, and the ternary multiplication m is symmetric if

m(xσ(1), xσ(2), xσ(3)) = m(x1, x2, x3).(3.3)

for all σ ∈ S3, x1, x2, x3 ∈ A.

Lemma 3.2. Let A1 = (A,m,α) and A2 = (A′,m′, α′) be two ternary Hom-
algebras of given type (Hom-Nambu, totally Hom-associative). If m is symmetric
and m′ is skew-symmetric then m⊗m′ is skew-symmetric.

Proof. Straightforward. �

Theorem 3.3. Let (A, µ, β, {., ., .}, (α1, α2)) be a ternary (non-commutative) Hom-
Nambu-Poisson algebra, (B, τ, (α′

1, α
′
2)) be a totally Hom-associative symmetric

ternary algebra, and (B, µ′, β′) be a Hom-associative algebra, then

(A⊗B, µ⊗ µ′, β ⊗ β′, {., ., .}A⊗B, (α1 ⊗ α′
1, α2 ⊗ α′

2))

is a (non-commutative) ternary Hom-Nambu-Poisson algebra if and only if

τ(µ′(b1, b2), b3, b4) = µ′(b1, τ(b2, b3, b4)) = µ′(τ(b1, b3, b4), b2).(3.4)
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Proof. Since µ and µ′ are both Hom-associative multiplication whence a tensor
product µ ⊗ µ′ is Hom-associative. Also the commutativity of µ ⊗ µ′, the skew-
symmetry of {., ., .} and the symmetry of τ imply the skew-symmetry of {., ., .}A⊗B.
Therefore, it remains to check Nambu identity and Leibniz identity.

We have

LHS ={α1 ⊗ α′
1(a1 ⊗ b1), α2 ⊗ α′

2(a2 ⊗ b2), {a3 ⊗ b3, a4 ⊗ b4, a5 ⊗ b5}A⊗B}A⊗B

= {α1(a1)⊗ α′
1(b1), α2(a2)⊗ α′

2(b2), {a3, a4, a5}A ⊗ τ(b3, b4, b5)}A⊗B

= {α1(a1), α2(a2), {a3, a4, a5}}︸ ︷︷ ︸
a

⊗ τ(α′
1(b1), α

′
2(b2), τ(b3, b4, b5))︸ ︷︷ ︸

b

,

and

RHS ={{a1 ⊗ b1, a2 ⊗ b2, a3 ⊗ b3}A⊗B, α1 ⊗ α′
1(a4 ⊗ b4), α2 ⊗ α′

2(a5 ⊗ b5)}A⊗B

+ {α1 ⊗ α′
1(a3 ⊗ b3), {a1 ⊗ b1, a2 ⊗ b2, a4 ⊗ b4}A⊗B, α2 ⊗ α′

2(a5 ⊗ b5)}A⊗B

+ {α1 ⊗ α′
1(a3 ⊗ b3), α2 ⊗ α′

2(a4 ⊗ b4), {a1 ⊗ b1, a2 ⊗ b2, a5 ⊗ b5}A⊗B}A⊗B

= {{a1, a2, a3}A ⊗ τ(b1, b2, b3), α1(a4)⊗ α′
1(b4), α2(a5)⊗ α′

2(b5)}A⊗B

+ {α1(a3)⊗ α′
1(b3), {a1, a2, a4}A ⊗ τ(b1, b2, b4), α2(a5)⊗ α′

2(b5)}A⊗B

+ {α1(a3)⊗ α′
1(b3), α2(a4)⊗ α′

2(b4), {a1, a2, a5}A ⊗ τ(b1, b2, b5)}A⊗B

= {{a1, a2, a3}, α1(a4), α2(a5)}︸ ︷︷ ︸
c

⊗ τ(τ(b1, b2, b3), α
′
1(b4), α

′
2(b5))︸ ︷︷ ︸

d

+ {α1(a3), {a1, a2, a4}, α2(a5)}︸ ︷︷ ︸
e

⊗ τ(α′
1(b3), τ(b1, b2, b4), α

′
2(b5))︸ ︷︷ ︸

f

+ {α1(a3), α2(a4), {a1, a2, a5}}︸ ︷︷ ︸
g

⊗ τ(α′
1(b3), α

′
2(b4), τ(b1, b2, b5))︸ ︷︷ ︸

h

Using ternary Nambu identity of {., ., .} we have a = c+ e+ g, and b = d = f = h

using the symmetry of τ and Hom-associativity of µ′, then the left hand side is
equal to the right hand side from where the ternary Hom-Nambu identity of bracket
{., ., .}A⊗B is verified.

For the Hom-Leibniz identity, we have

LHS ={µ⊗ µ′(a1 ⊗ b1, a2 ⊗ b2), α1 ⊗ α′
1(a3 ⊗ b3), α2 ⊗ α′

2(a4 ⊗ b4)}A⊗B

= {µ(a1, b1)⊗ µ′(a2, b2), α1(a3)⊗ α′
1(b3), α2(a4)⊗ α′

2(b4)}A⊗B

= {µ(a1, b1), α1(a3), α2(a4)}A︸ ︷︷ ︸
a′

⊗ τ(µ′(a2, b2), α
′
1(b3), α

′
2(b4))︸ ︷︷ ︸

b′
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and

RHS =µ⊗ µ′(β ⊗ β′(a1 ⊗ b1), {a2 ⊗ b2, a3 ⊗ b3, a4 ⊗ b4}A⊗B)

+ µ⊗ µ′({a1 ⊗ b1, a3 ⊗ b3, a4 ⊗ b4}A⊗B, β ⊗ β′(a2 ⊗ b2))

= µ⊗ µ′(β(a1)⊗ β′(b1), {a2, a3, a4} ⊗ τ(b2, b3, b4))

+ µ⊗ µ′({a1, a3, a4} ⊗ τ(b1, b3, b4), β(a2)⊗ β′(b2))

= µ(β(a1), {a2, a3, a4})︸ ︷︷ ︸
c′

⊗µ′(β′(b1), τ(b2, b3, b4))︸ ︷︷ ︸
d′

+ µ({a1, a3, a4}, β(a2))︸ ︷︷ ︸
e′

⊗µ′(τ(b1, b3, b4), β
′(b2)︸ ︷︷ ︸

f ′

With Hom-Leibniz identity we have a′ = c′ + e′, and using condition (3.4) we
have b′ = d′ = f ′, for that the left hand side is equal to the right hand side and the
Hom-Leibniz identity is proved. Then

(A⊗B, µ⊗ µ′, β ⊗ β′, {., ., .}A⊗B, (α1 ⊗ α′
1, α2 ⊗ α′

2))

is a (non-commutative) ternary Hom-Nambu-Poisson algebra.
�

4. Construction of ternary Hom-Nambu-Poisson algebras

In this section, we provide constructions of ternary Hom-Nambu-Poisson algebras
using twisting principle.

Theorem 4.1. Let (A, µ, {., ., .}, α) be a (non-commutative) ternary Hom-Nambu-
Poisson algebra and β : A → A be a weak morphism, then Aβ = (A, {., ., .}β =
β◦{., ., .}, µβ = β◦µ, βα) is also a ternary (non-commutative) Hom-Nambu-Poisson
algebra. Morever, if A is multiplicative and β is a algebra morphism, then Aβ is a
multiplicative (non-commutative) Hom-Nambu-Poisson algebra.

Proof. If µ is commutative, then clearly so is µβ . The rest of the proof applies
whether µ is commutative or not. The skew-symmetry follows from the skew-
symmetry of the bracket {., ., .}. It remains to prove Hom-associativity condition,
Hom-Nambu-identity and Hom-Leibniz identity. Indeed

µβ(µβ(x, y), βα(z)) = µβ(β(µ(x, y), βα(z))) = β2(µ(µ(x, y), α(z)))

= β2(µ(α(x), µ(y, z))) = µβ(βα(x), µβ(y, z)).

We check the Hom-Nambu identity

{βα(x1), βα(x2), {x3, x4, x5}β}β = β2{α(x1), α(x2), {x3, x4, x5}}

= β2({{x1, x2, x3}, α(x4), α(x5)} + {α(x3), {x1, x2, x4}, α(x5)}

+ {α(x3), α(x4), {x1, x2, x5}})

= {{x1, x2, x3}β, βα(x4), βα(x5)}β + {βα(x3), {x1, x2, x4}β, βα(x5)}β

+ {βα(x3), βα(x4), {x1, x2, x5}β}β.
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Then, it remains to show Hom-Leibniz identity

{µβ(x1, x2), βα(x3), βα(x4)}β = β2({µ(x1, x2), α(x3), α(x4)})

= β2(µ(α(x1), {x2, x3, x4}) + µ({x1, x3, x4}, α(x2)))

= µβ(βα(x1), {x2, x3, x4}β) + µβ({x1, x3, x4}β, βα(x2)).

ThereforeAβ = (A, {., ., .}β, µβ , βα) is a ternary (non-commutative) Hom-Nambu-
Poisson algebra. For the multiplicativity assertion, suppose that A is multiplicative
and β is an algebra morphism. We have

(βα) ◦ (µβ) = βα ◦ β ◦ µ = µβ ◦ α⊗2β⊗2 = µβ ◦ (βα)⊗2,

and

βα ◦ {., ., .}β = βα ◦ β ◦ {., ., .} = {., ., .}β ◦ (βα)⊗3.

Then Aβ is multiplicative.
�

Corollary 4.2. Let (A, µ, {., ., .}, α) be a multiplicative ternary (non-commutative)
Hom-Nambu-Poisson algebra. Then

An = (A, µ(n) = αn ◦ µ, {., ., .}(n) = α(n) ◦ {., ., .}, αn+1)

is a multiplicative (non-commutative) ternary Hom-Nambu-Poisson algebra for each
integer n ≥ 0.

Proof. The multiplicativity of A implies that αn : A → A is a Nambu-Poisson
algebra morphism. By Theorem 4.2 Aαn = An is a multiplicative ternary (non-
commutative) Hom-Nambu-Poisson algebra. �

Corollary 4.3. Let (A, µ, {., ., .}) be a ternary (non-commutative) Nambu-Poisson
algebra and β : A → A be a Nambu-Poisson algebra morphism. Then

Aβ = (A, µβ = β ◦ µ, {., ., .}β = β ◦ {., ., .}, β)

is a multiplicative (non-commutative) ternary Hom-Nambu-Poisson algebra.

Remark 4.4. Let (A, µ, {., ., .}, α) and (A′, µ′, {., ., .}′, α′) be two (non-commutative)
ternary Nambu-Poisson algebras and β : A → A, β′ : A′ → A′ be ternary Nambu-
Poisson algebra endomorphisms. If ϕ : A → A′ is a ternary Nambu-Poisson algebra
morphism that satisfies ϕ ◦ β = β′ ◦ ϕ, then

ϕ : (A, µβ , {., ., .}β, βα) → (A′, µ′
β′ , {., ., .}′β′, β′α′)

is a (non-commutative) ternary Hom-Nambu-Poisson algebra morphism.
Indeed, we have

ϕ ◦ {., ., .}β = ϕ ◦ β ◦ {., ., .} = β′ ◦ ϕ ◦ {., ., .} = β′ ◦ {., ., .}′ ◦ ϕ×3 = {., ., .}′β′ ◦ ϕ×3

and

ϕ ◦ µβ = ϕ ◦ β ◦ µ = β′ ◦ ϕ ◦ µ = β′ ◦ µ′ ◦ ϕ×2 = µ′
β′ ◦ ϕ×2.

In the sequel, we aim to construct Hom-type version of the ternary Nambu-
Poisson algebra of polynomials of three variables (R[x, y, z], ·, {., ., .}), defined in
Example 1.5. The Poisson bracket of three polynomials is defined in (1.2).
The twisted version is given by a structure of ternary Hom-Nambu-Poisson algebra
(R[x, y, z], ·α = α ◦ ·, {., ., .}α = α ◦ {., ., .}, α) where α : R[x, y, z] → R[x, y, z] is an
algebra morphism satisfying for all f, g ∈ R[x, y, z]
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α(f · g) = α(f) · α(g)
α{f, g, h} = {α(f), α(g), α(h)}.

Theorem 4.5. A morphism α : R[x, y, z] → R[x, y, z] which gives a structure of
ternary Hom-Nambu-Poisson algebra (R[x, y, z], ·α = α ◦ ·, {., ., .}α = α ◦ {., ., .}, α)
satisfies the following equation:

1−

∣∣∣∣∣∣∣

∂α(x)
∂x

∂α(x)
∂y

∂α(x)
∂z

∂α(y)
∂x

∂α(y)
∂y

∂α(y)
∂z

∂α(z)
∂x

∂α(z)
∂y

∂α(z)
∂z

∣∣∣∣∣∣∣
= 0,(4.1)

Proof. let α be a Nambu-Poisson algebra morphism, then it satisfies for all f, g ∈
R[x, y, z]

α(f · g) = α(f) · α(g),
α{f, g, h} = {α(f), α(g), α(h)}.

The first equality shows that it is sufficient to just set α on x, y and z. For the
second equality, we suppose by linearity that

f(x, y, z) = xiyjzk,

g(x, y, z) = xlymzp,

f(x, y, z) = xqyrzs.

Then we can write the second equation as follows

α

∣∣∣∣∣∣∣

∂f
∂x

∂f
∂y

∂f
∂z

∂g
∂x

∂g
∂y

∂g
∂z

∂h
∂x

∂h
∂y

∂h
∂z

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∂α(f)
∂x

∂α(f)
∂y

∂α(f)
∂z

∂α(g)
∂x

∂α(g)
∂y

∂α(g)
∂z

∂α(h)
∂x

∂α(h)
∂y

∂α(h)
∂z

∣∣∣∣∣∣∣
,

which can be simplified to

1 =

∣∣∣∣∣∣∣

∂α(x)
∂x

∂α(x)
∂y

∂α(x)
∂z

∂α(y)
∂x

∂α(y)
∂y

∂α(y)
∂z

∂α(z)
∂x

∂α(z)
∂y

∂α(z)
∂z

∣∣∣∣∣∣∣
.(4.2)

�

Example 4.6. We set polynomials:

α(x) = P1(x, y, z) =
∑

0≤i,j,k≤d

aijkx
iyjzk,

α(y) = P2(x, y, z) =
∑

0≤i,j,k≤d

bijkx
iyjzk,

α(z) = P3(x, y, z) =
∑

0≤i,j,k≤d

cijkx
iyjzk,

where P1, P2, P3 ∈ R[x, y, z], and d the largest degree for each variable.We assume
that a0 = b0 = c0 = 0.
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Case of polynomials of degree one. We take

P1(x, y, z) = a1x+ a2y + a3z,
P2(x, y, z) = b1x+ b2y + b3z,
P3(x, y, z) = c1x+ c2y + c3z.

Equation (2.5) becomes

1−

∣∣∣∣∣∣∣

∂P1(x,y,z)
∂x

∂P1(x,y,z))
∂y

∂P1(x,y,z)
∂z

∂P2(x,y,z)
∂x

∂P2(x,y,z)
∂y

∂P2(x,y,z)
∂z

∂P3(x,y,z)
∂x

∂P3(x,y,z)
∂y

∂P3(x,y,z)
∂z

∣∣∣∣∣∣∣
= 0,(4.3)

whence

1−

∣∣∣∣∣∣

a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
= 0.(4.4)

The polynomials P1, P2 and P3 are of one of this form

(1) P1(x, y, z) = xa1 + ya2 + za3, P2(x, y, z) = b2y −
z

a1c2
, P3(x, y, z) = c2y.

(2) P1(x, y, z) = a1x+ a2y + a3z, P2(x, y, z) =
1+a1b3c2

a1c3
y + b3z,

P3(x, y, z) = c2y + c3z.

(3) P1(x, y, z) = a1x+ a2y + a3z, P2(x, y, z) = b1x+ 1
a2c1

z, P3(x, y, z) = c1x.

(4) P1(x, y, z) = a1x+ a2y + a3z, P2(x, y, z) =
−1+a2b3c1

a2c3
x+ b3z,

P3(x, y, z) = c1x+ c3z.

(5) P1(x, y, z) =
a2b1c3+b2

c3x
+ a2y + a3z, P2(x, y, z) = b1x+ b2y + b3z,

P3(x, y, z) = c3z.

(6) P1(x, y, z) =
1

b2c3
x+ a2y + a3z, P2(x, y, z) = b2y + b3z, P3(x, y, z) = c3z.

(7) P1(x, y, z) = a1x+ 1
b1c3

y + a3z, P2(x, y, z) = b1x+ b3z, P3(x, y, z) = c3z.

(8) P1(x, y, z) = a1x+ a2y +
1

b1c2
z, P2(x, y, z) = b1x, P3(x, y, z) = c1x+ c2y.

(9) P1(x, y, z) = a1x+ −1
b1c3+a3c2c3

y + a3z, P2(x, y, z) = b1x,

P3(x, y, z) = c1x+ c2y + c3z.

(10) P1(x, y, z) =
a2b1
b2

+ 1
b2c3−b3c2

x + a2y + a3z, P2(x, y, z) = b1x + b2y + b3z,

P3(x, y, z) =
b1c2
b2

x+ c2y + c3z.

(11) P1(x, y, z) =
−c3+a2c1c2

b3c
2

2

x+ a2y + a3z, P2(x, y, z) = b3z,

P3(x, y, z) = c1x+ c2y + c3z.

(12) P1(x, y, z) = a1x+ a2y +
1

b1c2−b2c1
z, P2(x, y, z) = b1x+ b2y,

P3(x, y, z) = c1x+ c2y.
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(13) P1(x, y, z) =
1+a2b1c3−a3b1c2−a2b3c1+a3b2c1

b2c3−b3c2
x+ a2y + a3z,

P2(x, y, z) = b1x+ b2y + b3z, P3(x, y, z) = c1x+ c2y + c3z.

(14) P1(x, y, z) = a1x+ b2
b3
(a3 −

1
b1c2−b2c1

)y+ a3z, P2(x, y, z) = b1x+ b2y+ b3z,

P3(x, y, z) = c1x+ c2y +
b3c2
b2

z.

Particular case of polynomials of degree two. We take one of the polynomials
of degree two

P1(x, y, z) = a1x+ a2y + a3z

P2(x, y, z) = b1x+ b2y + b3z

P3(x, y, z) = c1x+ c2y + c3z + c4x
2

The polynomials P1, P2 and P3 are of one of this form

(1) P1(x, y, z) =
a2b1
b2

+ 1
b2c3−b3c2

x+ a2y +
a2b3
b2

z, P2(x, y, z) = b1x+ b2y + b3z,

P3(x, y, z) = c4x
2 + c1x+ c2y + c3z.

(2) P1(x, y, z) = a2x+ a3b2
b3

y + a3z, P2(x, y, z) = b2y + b3z,

P3(x, y, z) = c4x
2 + c1x+ c2y +

1

a1
+b3c2

b2
z.

(3) P1(x, y, z) = a2x+ a2y + a3z, P2(x, y, z) = b2y,
P3(x, y, z) = c4x

2 + c1x+ c2y +
1

a1b2
z.

(4) P1(x, y, z) = (a2b1
b3

− 1
c2b3

)x+ a3z, P2(x, y, z) = b1x+ b3z,

P3(x, y, z) = c4x
2 + c1x+ c2y + c3z.

(5) P1(x, y, z) = − 1
b3c2

x+ a3z, P2(x, y, z) = b3z,

P3(x, y, z) = c4x
2 + c1x+ c2y + c3z.

(6) P1(x, y, z) = a1x− 1
b1c3

y + a3z, P2(x, y, z) = b1x,

P3(x, y, z) = c4x
2 + c1x+ c3z.

(7) P1(x, y, z) = a1x+ −1
b1c3

+ a3c2
c3

y + a3z, P2(x, y, z) = b1x,

P3(x, y, z) = c4x
2 + c1x+ c2y + c3z.

(8) P1(x, y, z) = a1x+ a2y +
1

b1c2
z, P2(x, y, z) = b1x,

P3(x, y, z) = c4x
2 + c1x+ c2y.

(9) P1(x, y, z) = a1x+ a2y + a3z, P2(x, y, z) =
(1+a2b3c1)

a2c3
x+ b3z,

P3(x, y, z) = c1x+ c3z.

5. classification

In this section, we provide the classification of 3-dimensional ternary non-commutative
Nambu-Poisson algebras. By straightforward calculations and using a computer al-
gebra system we obtain the following result.
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Theorem 5.1. Every 3-dimensional ternary Nambu-Lie algebra is isomorphic to
the ternary algebra defined with respect to basis {e1, e2, e3}, by the skew symmetric
bracket defined as

{e1, e2, e3} = e1

Moreover it define a 3-dimensional ternary non-commutative Nambu-Poisson
algebra (A, {., ., .}, µ) if and only if µ is one of the following non-commutative as-
sociative algebra defined as

(1)

µ1(e2, e1) = ae1 µ1(e2, e2) = e2 µ1(e2, e3) = e3

µ1(e3, e1) = be1 µ1(e3, e2) = be2 µ1(e3, e3) = be3,

where a, b are parameters.
(2)

µ2(e1, e2) = ae1 µ2(e1, e3) = be1 µ2(e2, e2) = ae2

µ2(e2, e3) = be2 µ2(e3, e2) = ae3 µ2(e3, e3) = be3,

where a, b are parameters with a 6= 0
(3)

µ3(e1, e3) = ae1 µ3(e2, e3) = ae2 µ3(e3, e3) = ae3

where a is a parameter with a 6= 0

The multiplication not mentioned are equal to zero.

Remark 5.2. The 3-dimensional ternary Nambu-Lie algebra is endowed with a com-
mutative Nambu-Poisson algebra structure only when the multiplication is trivial.

Using the twisting principle described in Theorem 4.1, we obtain the following
3-dimensional non-commutative ternary Hom-Nambu-Poisson algebras.

Proposition 5.3. Any 3-dimensional ternary non-commutative Hom-Nambu-Poisson
algebra (A, {., ., .}α, µα, α) obtained by a twisting defined with respect to the basis
{e1, e2, e3} by the ternary bracket {e1, e2, e3}α = ce1, where c is a parameter, and
one of the following binary Hom-associative algebra defined by µαi

and a corre-
sponding structure map

(1)

µα1
(e2, e1) = ace1, µα1

(e3, e1) = bce1,

µα1
(e2, e2) = a(de1 + e2), µα1

(e3, e2) = b(de1 + e2),

µα1
(e2, e3) = a(he1 + ge2 + e3), µα1

(e3, e3) = b(he1 + ge2 + e3),

with

α1(e1) = ce1, α1(e2) = de1 + e2, α1(e3) = he1 + ge2 + e3.

(2)

µα2
(e1, e2) = ace1, µα2

(e3, e1) = bce1,

µα2
(e2, e2) = a(de1 + e2 + le3), µα2

(e3, e2) = b(de1 + e2 + le3),

µα2
(e2, e3) = a(he1 + e3), µα2

(e3, e3) = b(he1 + e3),
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with

α2(e1) = ce1, α2(e2) = de1 + e2 + le3, α2(e3) = he1 + e3e3.

(3)

µα3
(e2, e1) = ace1, µα3

(e3, e1 = bce1,

µα3
(e2, e2) = a(de1 + fe2 +

a

b
(1− f)e3), µα3

(e3, e2) = b(de1 + fe2 +
a

b
(1 − f)e3),

µα3
(e2, e3) = a(he1 +

b

a
(f − 1)e2 +

(b− ga)

b
e3), µα3

(e3, e3) = b(he1 +
b

a
(f − 1)e2 +

(b − ga)

b
e3),

with

α3(e1) = ce1, α3(e2) = de1 + fe2 +
a

b
(1− f)e3), α3(e3) = he1 +

b

a
(f − 1)e2 +

(b− ga)

b
e3.

(4)

µα4
(e1, e2) = ace1, µα4

(e2, e3) = b(de1 + e2),

µα4
(e1, e3) = bce1, µα4

(e3, e2) = a(he1 + ge2 + e3),

µα4
(e2, e2) = a(de1 + e2), µα4

(e3, e3) = b(he1 + ge2 + e3),

with

α4(e1) = ce1, α4(e2) = de1 + e2, α4(e3) = he1 + ge2 + e3.

(5)

µα5
(e1, e2) = ace1, µα5

(e2, e3) = b(de1 + e2 + le3),

µα5
(e1, e3) = bce1, µα5

(e3, e2) = a(he1 + e3),

µα5
(e2, e2) = a(de1 + e2 + le3), µα5

(e3, e3) = b(he1 + e3).

with

α5(e1) = ce1, α5(e2) = de1 + e2 + le3, α5(e3) = he1 + e3.

(6)

µα6
(e1, e2) = ace1, µα6

(e2, e3) = b(de1 + fe2 +
a

b
(1− f)e3),

µα6
(e1, e3) = bce1, µα6

(e3, e2) = a(he1 +
−b

a
(f − 1)e2 +

b− ag

b
e3),

µα6
(e2, e2) = a(de1 + fe2 +

a

b
(1− f)e3), µα6

(e3, e3) = b(he1 +
−b

a
(f − 1)e2 +

b− ag

b
e3),

with

α6(e1) = ce1, α6(e2) = de1 + fe2 +
a

b
(1− f)e3, α6(e3) = he1 +

−b

a
(f − 1)e2 +

b− ag

b
e3.

(7)

µα7
(e1, e3) = ace1,

µα7
(e2, e3) = a(de1 + fe2 + le3),

µα7
(e3, e3) = a(he1 + ge2 +

1 + g + l

f
e3),
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with

α7(e1) = ce1, α7(e2) = de1 + fe2 + le3, α7(e3) = he1 + ge2 +
1 + g + l

f
e3.

(8)

µα8
(e1, e3) = ace1,

µα8
(e2, e3) = a(de1 + e2),

µα8
(e3, e3) = a(he1 + ge2 + e3),

with

α8(e1) = ce1, α8(e2) = de1 + e2, α8(e3) = he1 + ge2 + e3.

(9)

µα9
(e1, e3) = ace1,

µα9
(e2, e3) = a(de1 −

1

g
e3),

µα9
(e3, e3) = a(he1 + ge2 + re3),

with

α9(e1) = ce1, α9(e2) = de1 −
1

g
e3, α9(e3) = he1 + ge2 + re3.
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