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Expanding and expansive time-dependent

dynamics

Christoph Kawan∗

Abstract

In this paper, time-dependent dynamical systems given by sequences

of maps are studied. For systems built from expanding C
2-maps on a

compact Riemannian manifold M with uniform bounds on expansion fac-

tors and derivatives, we provide formulas for the metric and topological

entropy. If we only assume that the maps are C
1, but act in the same way

on the fundamental group of M , we can show the existence of an equi-

conjugacy to an autonomous system, implying a full variational principle

for the entropy. Finally, we introduce the notion of strong uniform expan-

sivity that generalizes the classical notion of positive expansivity, and we

prove time-dependent analogues of some well-known results. In particu-

lar, we generalize Reddy’s result which states that a positively expansive

system locally expands distances in an equivalent metric.

Keywords: Nonautonomous dynamical systems, topological entropy, metric entropy,

pressure, variational principle, expansivity

1 Introduction

Uniformly expanding maps are the simplest non-trivial examples of discrete-
time dynamical systems within the theory of finite-dimensional differentiable
systems. From today’s perspective their analysis can be seen as the starting
point of a long and fruitful thread of research in differentiable dynamics, with
different stages of generalization, from expanding to uniformly hyperbolic, to
non-uniformly or partially hyperbolic. Recently, there have been major efforts
in establishing a general theory of systems with time-dependent dynamical laws,
often called nonautonomous, sequential or non-stationary dynamical systems,
see for instance [2, 6, 7, 8, 9, 12]. Instead by the iteration of one map, a
discrete-time nonautonomous system is defined by a sequence of maps which
are composed in the given order, i.e., at each time instant the dynamical law
can be different. Though the range of phenomena to be observed in such systems
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is certainly much broader than in the autonomous case, the study of smooth
uniformly expanding systems might as well be a good starting point here.

The papers [11] by Lasota and Yorke and [12] by Ott, Stenlund and Young laid
the foundations for the study of statistical properties of systems defined by the
composition of C2-expanding maps fn : M → M on a compact Riemannian
manifold M . Here the main focus is on (exponential) loss of memory, the time-
dependent analogue of decay of correlations. In particular, in [12] the authors
prove that two positive initial densities with respect to the Riemannian volume
measure converge to each other in the L1-sense at an exponential rate under
the evolution of the nonautonomous system, although none of them necessarily
tends to a limit. For this strong result some further restrictions on the sequence
of expanding maps is necessary, namely uniform bounds on the expansion fac-
tors and the first and second derivatives. Without such uniform bounds, the
convergence may not be exponential on the whole positive time axis.

Other classical concepts that have been extended to nonautonomous systems are
those of topological and measure-theoretic entropy, cf. [3, 6, 8, 9]. In particular,
in [6] one part of the variational principle for entropy was established under
quite general conditions. In the first part of this paper, we extend the notions
of topological and measure-theoretic pressure to nonautonomous systems and
prove that the second is always bounded by the first, generalizing the corre-
sponding inequality for the entropies. We use the distortion lemma from [12] to
prove a Bowen-Ruelle-type volume lemma first, which together with the inequal-
ity of pressures then yields a formula for the metric entropy of an expanding
nonautonomous system with respect to smooth initial measures. Subsequently,
we also provide a formula for the topological entropy, using again the volume
lemma.

For a nonautonomous system built from C1-expanding maps fn : M → M
that all act in the same way on the fundamental group of M , we generalize a
classical result of Shub [19]. We prove the existence of an equi-conjugacy to an
autonomous system f : M → M , i.e., of a sequence (πn) of homeomorphisms
such that πn+1 ◦ fn ≡ f ◦ πn, where both {πn} and {π−1

n } are equicontinuous
families. Using that equi-conjugacies preserve the topological as well as the
metric entropy, we can conclude a full variational principle for such systems.

In the last part of the paper, we introduce for a topological nonautonomous
system the notion of strong uniform expansivity, which generalizes the classical
notion of positive expansivity. In particular, the C2-expanding systems consid-
ered in the first part of the paper satisfy this property. Conversely, we show
that strongly uniformly expansive systems admit uniformly equivalent metrics
in which distances are expanded locally, and uniformly with respect to the initial
time. This generalizes a classical result of Reddy [13].

The paper is organized as follows. In Section 2, we give an overview of the main
concepts and introduce notation. Section 3 introduces the notions of topolog-
ical and measure-theoretic pressure and contains the proof of the variational
inequality. In Section 4, we show that the metric entropy of an expanding
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nonautonomous system does not depend on the initial measure as long as it
has a positive Lipschitz density with respect to the Riemannian volume. Sub-
sequently, in Section 5 we provide a formula for the metric entropy as well as
for the topological entropy. Section 6 contains the proof of the time-dependent
conjugacy result for C1-expanding systems. Finally, in Section 7 the notion of
strong uniform expansivity is defined and several properties are shown.

2 Preliminaries

We write N for the set of positive integers, N0 = {0} ∪ N, and R for the set
of real numbers. For a finite set A, #A denotes the number of elements in
A. We write Bε(x) or Bε(x; d) for the open ε-ball around x in a metric space
(X, d). A nonautonomous dynamical system, or an NDS for short, is a pair
(X0,∞, f0,∞), where X0,∞ = (Xn)

∞
n=0 is a sequence of sets and f0,∞ = (fn)

∞
n=0

is a sequence of maps fn : Xn → Xn+1. If all the sets Xn are compact metric
spaces with associated metrics dn, and all the fn are continuous, we speak of a
topological NDS. If the sets Xn are probability spaces with associated σ-algebras
An and probability measures µn, such that the fn are measurable and satisfy
fnµn ≡ µn+1 (where fn here stands for the induced push-forward operator
on measures), we speak of a measure-theoretic or metric NDS. Then we call
µ0,∞ := (µn)

∞
n=0 an invariant measure sequence or an IMS for (X0,∞, f0,∞).

The time evolution of the system is defined by composing the maps fn in the
obvious way. In general, we define

fn
k := fk+n−1 ◦ · · · ◦ fk+1 ◦ fk for k ∈ N0, n ∈ N, f0

k := idXk
.

We also put f−n
k := (fn

k )
−1, which is only applied to sets. We write (Xi,∞, fi,∞)

for the pair of shifted sequences (Xi, Xi+1, . . .) and (fi, fi+1, . . .), respectively.
Moreover, we abbreviate (X0,∞, f0,∞) by (X∞, f∞), and we use analogous no-
tation for other sequences of objects related to an NDS. If such a sequence is
constant, e.g., Xn ≡ X , we simply write X instead of X∞.

We recall the definition of metric entropy for a metric NDS (X∞, f∞). If P∞ =
(Pn)n≥0 is a sequence of finite measurable partitions for the spaces Xn,

h(f∞;P∞;µ∞) := lim sup
n→∞

1

n
Hµ0

(

n−1
∨

i=0

f−i
0 Pi

)

,

where Hµ0(·) = −
∑

P∈(·) µ0(P ) logµ0(P ) denotes the usual entropy of a parti-
tion, is called the entropy of f∞ w.r.t. P∞. If the sequence µ∞ is clear from the
context, we omit this argument. A family E of sequences of partitions is called
an admissible class if (i) for every P∞ ∈ E there is a uniform bound on #Pn,
(ii) if P∞ ∈ E and Q∞ is coarser than P∞ (componentwise), then Q∞ ∈ E , and
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(iii) if P∞ ∈ E and k ∈ N, then P
〈k〉
∞ , defined by

P〈k〉
n :=

k−1
∨

i=0

f−i
n Pi+n,

is also in E . For an admissible class E , the metric entropy of f∞ w.r.t. E is
defined by

hE(f∞) := sup
P∞∈E

h(f∞;P∞).

For a topological NDS (X∞, f∞) we define the topological entropy of f∞ w.r.t. a

sequence U∞ = (Un)n≥0 of open covers for X∞ by

htop(f∞;U∞) := lim sup
n→∞

1

n
logN

(

n−1
∨

i=0

f−i
0 Ui

)

,

where N (·) denotes the minimal cardinality of a subcover. We denote the fam-
ily of all sequences of open covers for the spaces Xn with Lebesgue numbers
bounded away from zero by L(X∞). Then the topological entropy of f∞ is

htop(f∞) := sup
U∞∈L(X∞)

htop(f∞;U∞).

Equivalent definitions in terms of (n, ε)-spanning or (n, ε)-separated subsets of
X0 can be given. The Bowen-metrics on Xi are given by

di,n(x, y) := max
0≤j≤n

di+j(f
j
i (x), f

j
i (y)), i, n ≥ 0.

An open ball of radius ε in the metric di,n is denoted by Bn
i (x, ε) and called

a Bowen-ball of order n. We say that a set F ⊂ X0 is (n, ε; f∞)-spanning (or
(n, ε)-spanning) if for every x ∈ X0 there is y ∈ F with d0,n(x, y) < ε. A
set E ⊂ X0 is (n, ε; f∞)-separated (or (n, ε)-separated) if d0,n(x, y) ≥ ε holds
for all x 6= y in E. Then rspan(n, ε; f∞) denotes the minimal cardinality of an
(n, ε; f∞)-spanning set and rsep(n, ε; f∞) the maximal cardinality of an (n, ε)-
separated set.

Two topological NDSs (X∞, f∞) and (Y∞, g∞) are equi-conjugate if there exists
a sequence π∞ = (πn)n≥0 of homeomorphisms πn : Xn → Yn such that both
(πn) and (π−1

n ) are uniformly equicontinuous and πn+1 ◦ fn ≡ gn ◦ πn. In this
case, htop(f∞) = htop(g∞) and such π∞ is called an equi-conjugacy (cf. [8,
Thm. B]).

For an equicontinuous NDS (X∞, f∞) with an IMS µ∞ of Borel proba-
bility measures, a special admissible class EM is defined as follows: P∞,
Pn = {Pn,1, . . . , Pn,kn

}, is in EM iff for every ε > 0 there are δ > 0
and compact sets Kn,i ⊂ Pn,i such that (i) µn(Pn,i\Kn,i) ≤ ε and (ii)
min1≤i<j≤kn

D(Kn,i,Kn,j) ≥ δ for all n ≥ 0, where D(Kn,i,Kn,j) =
min(x,y)∈Kn,i×Kn,j

dn(x, y). In [6, Thm. 28] we proved the inequality

hEM
(f∞) ≤ htop(f∞).
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For each NDS (X∞, f∞) and k ≥ 1, we define the k-th power system (X
[k]
∞ , f

[k]
∞ ),

X [k]
n := Xkn, f [k]

n := fk
kn.

For the corresponding metric and topological entropies, power rules hold (see
[6, Prop. 5 and Prop. 25]), e.g., if f∞ is equicontinuous, then

htop(f
[k]
∞ ) = k · htop(f∞).

Next, we introduce the class of nonautonomous systems to be studied in the
present paper. Let M be a connected and compact Riemannian manifold. By
d(·, ·) we denote the Riemannian distance and by m the Riemannian volume
measure on M . For simplicity, we will assume m(M) = 1, so m is a probability
measure. For any λ > 1 and Γ > λ consider the set

E(λ,Γ) :=
{

f ∈ C2(M,M) : f is expanding with factor λ, ‖f‖C2 ≤ Γ
}

,

where “expanding with factor λ” means that |Df(v)| ≥ λ|v| holds for all v ∈ TM .
We will consider an NDS f∞ = (fn)

∞
n=0 on M with fn ∈ E(λ,Γ) for fixed λ,Γ.

It is clear that such a system is equicontinuous. We define

D :=

{

ϕ :M → R : ϕ > 0, ϕ is Lipschitz,

∫

ϕdm = 1

}

and for every L > 0,

DL :=

{

ϕ ∈ D :

∣

∣

∣

∣

ϕ(x)

ϕ(y)
− 1

∣

∣

∣

∣

≤ Ld(x, y) if d(x, y) < ε

}

,

where ε > 0 is a fixed number (depending on λ and Γ), cf. [12, Sec. 2.2]. Note
that

D =
⋃

L>0

DL,

since for every ϕ ∈ D we have
∣

∣

∣

∣

ϕ(x)

ϕ(y)
− 1

∣

∣

∣

∣

=
1

ϕ(y)
|ϕ(x) − ϕ(y)| ≤

Lip(ϕ)

minϕ
d(x, y).

For any expanding C2-map f :M →M we write

Pf(ϕ)(x) =
∑

y∈f−1(x)

ϕ(y)

| detDf(y)|
, Pf (ϕ) :M → R,

for the Perron-Frobenius operator associated with f acting on densities ϕ ∈ D.
Note that this makes sense, since expanding maps are covering maps, and hence
the sets f−1(x) are finite, all having the same number of elements. We have the
following key result (cf. [12, Prop. 2.3]).

2.1 Proposition: There exists L∗ > 0 for which the following holds. For any
L > 0 there is τ(L) ≥ 1 such that for all ϕ ∈ DL and fk ∈ E(λ,Γ) (k ∈ N0),
Pfn

0
(ϕ) ∈ DL∗ for all n ≥ τ(L).
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3 Metric and topological pressure

The topological pressure and its measure-theoretic counterpart for autonomous
dynamical systems were introduced by Ruelle [17] and related (in full general-
ity) by Walters [21] via a variational principle. For nonautonomous systems, a
notion of topological pressure was introduced by Huang, Wen and Zeng [4]. We
generalize this notion and also define a measure-theoretic counterpart.

Given a topological NDS (X∞, f∞) together with an IMS µ∞ = (µn)n≥0 of Borel
probability measures and a (uniformly) equicontinuous and uniformly bounded
sequence ϕ∞ of functions ϕn : Xn → R, we define the metric pressure by

Pµ∞
(f∞;ϕ∞) := hEM(f∞;µ∞) + lim inf

n→∞

∫

X0

1

n

n−1
∑

i=0

ϕi ◦ f
i
0dµ0

= hEM(f∞;µ∞) + lim inf
n→∞

1

n

n−1
∑

i=0

∫

Xi

ϕidµi.

In the following, we use the abbreviation Snϕ∞(x) :=
∑n−1

i=0 ϕi(f
i
0(x)). We

define the topological pressure by

S(n, ε;ϕ∞) := sup

{

∑

x∈E

eSnϕ∞(x) : E ⊂ X0 is (n, ε)-separated

}

,

R(n, ε;ϕ∞) := inf

{

∑

x∈F

eSnϕ∞(x) : F ⊂ X0 is (n, ε)-spanning

}

,

Ptop(f∞;ϕ∞) := lim
εց0

lim sup
n→∞

1

n
logS(n, ε;ϕ∞)

= lim
εց0

lim sup
n→∞

1

n
logR(n, ε;ϕ∞).

Using the compactness of X0, it is not hard to show that the supremum in the
definition of S(n, ε;ϕ∞) is in fact a maximum.

3.1 Remark: The difference between our definition of Ptop and the one given
in [4] is that we consider a sequence of functions instead of a single function.

The proof of the following lemma is an adaptation of Walters [21, Thm. 1.1].

3.2 Lemma: The definition of Ptop(f∞;ϕ∞) is correct, i.e., the limits for εց 0
exist and the two expressions using S(n, ε;ϕ∞) and R(n, ε;ϕ∞), resp., coincide.

Proof: The existence of the limits follows, because for ε1 < ε2 ev-
ery (n, ε2)-separated set is also (n, ε1)-separated, and hence S(n, ε1;ϕ∞) ≥
S(n, ε2;ϕ∞). Similarly, every (n, ε1)-spanning set is also (n, ε2)-spanning, and
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hence R(n, ε1;ϕ∞) ≥ R(n, ε2;ϕ∞). Now assume that E ⊂ X0 is an (n, ε)-
separated set such that the sum

∑

x∈E eSnϕ∞(x) is maximal. Assume to the
contrary the existence of y ∈ X0 with d0,n(x, y) > ε for all x ∈ E. Then also
E′ := E∪{y} is (n, ε)-separated and the sum

∑

x∈E′ eSnϕ∞(x) is strictly greater

than
∑

x∈E eSnϕ∞(x), a contradiction. Hence, E is a maximal (n, ε)-separated
set and thus also (n, ε)-spanning, implying

lim
εց0

lim sup
n→∞

1

n
logR(n, ε;ϕ∞) ≤ lim

εց0
lim sup
n→∞

1

n
logS(n, ε;ϕ∞).

To show the converse inequality, let δ > 0 and choose ε > 0 so that for all n ≥ 1,

dn(x, y) <
ε

2
⇒ |ϕn(x)− ϕn(y)| < δ.

Let n ∈ N and λ > 0. Choose an (n, ε)-separated set E ⊂ X0 with

S(n, ε;ϕ∞)− λ <
∑

x∈E

eSnϕ∞(x),

and choose an (n, ε/2)-spanning set F ⊂ X0 with

∑

x∈F

eSnϕ∞(x) − λ < R
(

n,
ε

2
;ϕ∞

)

.

Define a map σ : E → F by choosing for each x ∈ E a point σ(x) ∈ F with
d0,n(x, σ(x)) < ε/2. This map is injective, since E is (n, ε)-separated. Moreover,

∑

y∈F eSnϕ∞(y)

∑

x∈E eSnϕ∞(x)
≥

∑

y∈σ(E) e
Snϕ∞(y)

∑

x∈E eSnϕ∞(x)

≥ min
x∈E

exp

(

n−1
∑

i=0

[

ϕi(f
i
0(σ(x))) − ϕi(f

i
0(x))

]

)

≥ e−nδ.

Therefore,

R
(

n,
ε

2
;ϕ∞

)

>
∑

y∈F

eSnϕ∞(y) − λ

≥ e−nδ
∑

x∈E

eSnϕ∞(x) − λ ≥ e−nδ [S(n, ε;ϕ∞)− λ]− λ.

Hence, R(n, ε/2;ϕ∞) ≥ e−nδS(n, ε;ϕ∞), since λ was chosen arbitrarily, imply-
ing

lim sup
n→∞

1

n
logR

(

n,
ε

2
;ϕ∞

)

≥ −δ + lim sup
n→∞

1

n
logS(n, ε;ϕ∞).

First sending ε and then δ to zero yields the desired inequality. �
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The topological pressure can also be defined in terms of sequences of open
covers. For the sake of completeness, we also introduce this definition. Let
U∞ = (Un)n≥0 be a sequence of open covers for X∞ and put

T (n,U∞;ϕ∞) := inf

{

∑

V ∈V

inf
x∈V

eSnϕ∞(x) : V is a finite subcover of

n−1
∨

i=0

f−i
0 Ui

}

.

We leave it to the reader to verify that

Ptop(f∞;ϕ∞) = sup
U∞∈L(X∞)

lim sup
n→∞

1

n
log T (n,U∞;ϕ∞).

In order to prove a variational inequality, relating the two notions of pressure,
we need the following (partial) power rules.

3.3 Lemma: Assume that f∞ is equicontinuous and let ϕ∞ be equicontinuous

and uniformly bounded. For each k ≥ 1 we define another sequence ϕ
[k]
∞ =

(ψn)n≥0, ψn : Xnk → R, by

ψn :=

k−1
∑

j=0

ϕnk+j ◦ f
j
nk.

Then ϕ
[k]
∞ is equicontinuous and uniformly bounded with

P
µ
[k]
∞

(

f [k]
∞ ;ϕ[k]

∞

)

≥ k · Pµ∞
(f∞;ϕ∞) , (1)

where µ
[k]
∞ is the sequence defined by µ

[k]
n :≡ µkn.

Proof: By definition, the metric pressure of f
[k]
∞ w.r.t. ϕ

[k]
∞ is given by

hEM

(

f [k]
∞ ;µ[k]

∞

)

+ lim inf
n→∞

1

n

n−1
∑

i=0

∫

Xik

k−1
∑

j=0

ϕik+j ◦ f
j
ikdµik.

For the second term we obtain

lim inf
n→∞

1

n

n−1
∑

i=0

k−1
∑

j=0

∫

Xik+j

ϕik+jdµik+j = k · lim inf
n→∞

1

nk

nk−1
∑

l=0

∫

Xl

ϕldµl

≥ k · lim inf
n→∞

1

n

n−1
∑

i=0

∫

Xi

ϕidµi.

Using the fact that the admissible class EM(f∞)[k], given by “restriction” of the

sequences P∞ ∈ EM(f∞) to the spaces Xnk, n ∈ N0, is contained in EM(f
[k]
∞ ),

with the power rule for metric entropy (cf. [6, Prop. 3.9]) we find

h
EM(f

[k]
∞ )

(

f [k]
∞ ;µ[k]

∞

)

≥ k · hEM(f∞) (f∞;µ∞) ,

implying (1). Equicontinuity and boundedness of ϕ
[k]
∞ are easy to see. �
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3.4 Lemma: For every k ≥ 1 it holds that

Ptop

(

f [k]
∞ ;ϕ[k]

∞

)

≤ k · Ptop (f∞;ϕ∞) .

Proof: Let F ⊂ X0 be an (nk, ε; f∞)-spanning set. Then clearly F is (n, ε; f
[k]
∞ )-

spanning, implying

R
(

n, ε;ϕ[k]
∞ ; f [k]

∞

)

≤
∑

x∈F

eSnϕ
[k]
∞ (x) =

∑

x∈F

eSnkϕ∞(x).

Since this holds for arbitrary F , we find R(n, ε;ϕ
[k]
∞ ; f

[k]
∞ ) ≤ R (nk, ε;ϕ∞; f∞),

which yields the desired inequality of pressures. �

Next we prove the variational inequality for pressure. We will use the following
lemma, which can be found, e.g., in [5, Lem. 20.2.2].

3.5 Lemma: If
∑n

i=1 pi = 1, pi ≥ 0, ai ∈ R, and A =
∑n

i=1 e
ai , then

∑n
i=1 pi(ai − log pi) ≤ logA with equality if and only if pi = eai/A.

3.6 Theorem: If f∞ is equicontinuous and ϕ∞ is equicontinuous and uniformly
bounded, then

Pµ∞
(f∞;ϕ∞) ≤ Ptop(f∞;ϕ∞).

Proof: Take a sequence P∞ ∈ EM. We may assume that each Pn has the same
number k of elements, Pn = {Pn,1, . . . , Pn,k}. Exactly as in the proof of the
variational principle for the entropy (cf. [6, Thm. 28]), we defineQ∞ = (Qn)n≥0,
Qn = {Qn,0, Qn,1, . . . , Qn,k}, with Hµn

(Pn|Qn) ≤ 1 and obtain

h(f∞;P∞) ≤ h(f∞;Q∞) + 1.

By the choice of Q∞ there is δ > 0 such that for all n ≥ 0,

min
1≤i<j≤k

min {dn(x, y) : (x, y) ∈ Qn,i ×Qn,j} ≥ δ.

By equicontinuity of ϕ∞, there is α ∈ (0, δ/2) such that |ϕn(x) − ϕn(y)| ≤ 1

whenever dn(x, y) < α. For every C ∈
∨n−1

i=0 f
−i
0 Qi there is xC ∈ clC with

Snϕ∞(xC) = supx∈C Snϕ∞(x). Now suppose that En ⊂ X0 is (n, α)-spanning.
Then we can take yC ∈ En with d0,n(xC , yC) ≤ α, and hence Snϕ∞(xC) ≤

Snϕ∞(yC) + n. Note also that α < δ/2 implies #{C ∈
∨n−1

i=0 f
−i
0 Qi : yC =

y} ≤ 2n for all y ∈ En. (This is equivalent to the statement that every ball
of radius α in (Xi, di) intersects at most two elements of Qi, which holds by

the definition of Q∞.) Writing Q(n) :=
∨n−1

i=0 f
−i
0 Qi and using Lemma 3.5, it

follows that

Hµ0

(

Q(n)
)

+

∫

Snϕ∞dµ0 ≤
∑

C∈Q(n)

µ0(C) (− logµ0(C) + Snϕ∞(xC))

9



≤ log
∑

C∈Q(n)

eSnϕ∞(yC)+n

= n+ log









∑

x∈En

∑

C∈Q(n)

yC=x

eSnϕ∞(x)









≤ n+ log

(

2n
∑

x∈En

eSnϕ∞(x)

)

,

and thus

1

n
Hµ0(Q

(n)) +
1

n

∫

Snϕ∞dµ0 ≤ 1 + log 2 +
1

n
log

∑

x∈En

eSnϕ∞(x).

Hence, we obtain

h(f∞;P∞) + lim inf
n→∞

1

n

∫

Snϕ∞dµ0

≤ 1 + h(f∞;Q∞) + lim inf
n→∞

1

n

∫

Snϕ∞dµ0

≤ 1 + lim sup
n→∞

[

1

n
Hµ0(Q

(n)) +
1

n

∫

Snϕ∞dµ0

]

≤ 2 + log 2 + lim sup
n→∞

1

n
log

∑

x∈En

eSnϕ∞(x).

Since α can be taken arbitrarily small and P∞ was chosen arbitrarily from EM,

hEM(f∞) + lim inf
n→∞

1

n

∫

Snϕ∞dµ0 ≤ 2 + log 2 + Ptop(f∞;ϕ∞).

The same estimate holds if we replace f∞ by f
[k]
∞ and ϕ∞ by ϕ

[k]
∞ . Using the

partial power rules, Lemma 3.3 and Lemma 3.4, this yields

Pµ∞
(f∞;ϕ∞) ≤

1

k
P
µ
[k]
∞

(

f [k]
∞ ;ϕ[k]

∞

)

≤
2 + log 2 + Ptop(f

[k]
∞ ;ϕ

[k]
∞ )

k
≤

2 + log 2

k
+ Ptop(f∞;ϕ∞).

Sending k to infinity concludes the proof. �

4 Independence from the initial measure

In this section, we prove that the metric entropy of an expanding NDS is in-
dependent of the initial measure as long as it has a positive Lipschitz density
w.r.t. the Riemannian volume. We recall the following property of the metric
entropy from [6, Prop. 9(vii)].
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4.1 Proposition: Let (X∞, f∞) be a metric NDS and P∞ a sequence of finite
measurable partitions. Then h(fk,∞;Pk,∞) = h(fk+1,∞;Pk+1,∞) for all k ≥ 0.

The following result can be found as Example 36 in [6].

4.2 Proposition: Consider an NDS (M, f∞) with fn ∈ E(λ,Γ) and let ϕ ∈
D. Then the IMS defined by µ0 := ϕdm and µn := fn

0 µ0 for all n ≥ 1 has
the property that the elements of the weak∗-closure of {µn}n≥0 are pairwisely
equivalent.

The next corollary is an immediate consequence of the variational inequality [6,
Thm. 28] and [6, Prop. 34].

4.3 Corollary: For any finite Borel partition P of M whose elements have
boundaries of volume zero the inequality h(f∞;P ;µ∞) ≤ htop(f∞) holds if µ∞

is as in Proposition 4.2.

In order to prove our next result, we need to introduce the renormalization of
densities in DL∗ , where L∗ is given by Proposition 2.1. For ϕ ∈ DL∗ we put

ϕ̂ :=
ϕ− 1

2κ

1− 1
2κ ·m(M)

,

where κ > 0 is a fixed lower bound for the functions in DL∗ , whose existence is
guaranteed by the proof of Proposition 4.2 (see [6, Ex. 36]). In [12] we find the
following lemma.

4.4 Lemma: For every ϕ ∈ DL∗ it holds that ϕ̂ ∈ D2L∗ .

4.5 Lemma: Assume fi ∈ E(λ,Γ) for i ≥ 0. Then for every N ∈ N there exists
a constant C > 0 such that

sup
x∈M

∣

∣(Pfr
i
ϕ)(x)

∣

∣ ≤ C sup
x∈M

|ϕ(x)|

for all ϕ ∈ C0(M), i ≥ 0 and r ∈ {0, 1, . . . , N}.

Proof: We may assume r ≥ 1. Since the expansion factor λ is fixed for all fi,

|detDf r
i (x)| =

r−1
∏

l=0

∣

∣detDfi+l(f
l
i (x))

∣

∣ ≥
r−1
∏

l=0

λdimM ≥ λdimM .

Since the C1-norm of all fi is bounded by Γ, #f−r
i (x) is bounded. To see this,

take f ∈ E(λ,Γ) and consider an open cover of M consisting of finitely many
evenly covered connected sets V1, . . . , Vn. By taking appropriate intersections,
we may assume that the Vi form a partition of M (though they will no longer
be open, but still measurable). The preimage f−1(Vi) has the same number of

11



components for each i, say f−1(Vi) = Ui1∪· · ·∪Uik, where the Uij are pairwisely
disjoint. Then the volumes of the sets Vi sum up to m(M) = 1, and the same
is true for the volumes of the sets Uij , 1 ≤ i ≤ n, 1 ≤ j ≤ k. Moreover,

m(Vi) = m(f(Uij)) ≤ ΓdimMm(Uij).

Altogether, we obtain the estimate

1 =
∑

i,j

m(Uij) ≥
∑

i,j

1

ΓdimM
m(Vi) =

k

ΓdimM
.

Hence, we see that k = #f−1(x) ≤ ΓdimM . Since each f r
i is the composition of

at most N elements of E(λ,Γ), we have #f−r
i (x) ≤ ΓN dimM . The assertion of

the lemma now follows from the estimate

∣

∣(Pfr
i
ϕ)(x)

∣

∣ ≤
∑

y∈f−r
i

(x)

|ϕ(y)|

| detDf r
i (y)|

≤
ΓN dimM

λdimM
sup
y∈M

|ϕ(y)|.

�

4.6 Theorem: Consider an NDS (M, f∞) with fn ∈ E(λ,Γ). Then for any two
initial densities ϕ, ψ ∈ D and any sequence P∞ of Borel partitions of M with
uniformly bounded number of elements such that the volumes of the elements
of each Pn are sufficiently small (uniformly in n) it holds that

h(f∞;P∞;µ∞) = h(f∞;P∞; ν∞),

where µn = fn
0 (ϕdm) and νn = fn

0 (ψdm). Consequently,

hEM
(f∞;µ∞) = hEM

(f∞; ν∞).

Proof: We prove the theorem in three steps.

Step 1. Let ϕn = Pfn
0
(ϕ) and ψn = Pfn

0
(ψ) for all n ≥ 0. We prove that for

every Borel set A ⊂M we have an exponential estimate

∫

A

|ϕn − ψn|dm ≤ m(A) ·Kµn for all n ≥ 0 (2)

with constants K > 0 and µ ∈ (0, 1), which are independent of A. Except for
one point, the proof is the same as the one for A = M (cf. [12, Thm. 1]). In
view of Proposition 2.1, we may assume ϕ, ψ ∈ DL∗ for some L∗ > 0. There
exists a uniform lower bound κ > 0 for all functions in DL∗ (cf. the proof of
Proposition 4.2 in [6, Ex. 36]). Let N = τ(2L∗) be given by Proposition 2.1,
and put

ϕ̂ :=
ϕ− 1

2κ

1− 1
2κ ·m(M)

, ψ̂ :=
ψ − 1

2κ

1− 1
2κ ·m(M)

. (3)
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Then ϕ̄N := PfN
0
(ϕ̂) and ψ̄N := PfN

0
(ψ̂) are in DL∗ . We subtract 1

2κ from each

of ϕ̄N and ψ̄N and renormalize as in (3), obtaining ϕ̂N and ψ̂N , respectively.

By Lemma 4.4, they are in D2L∗ . In general, given ϕ̂(k−1)N , ψ̂(k−1)N ∈ D2L∗ ,
we let

ϕ̄kN := PfN
(k−1)N

(ϕ̂(k−1)N ), ψ̄kN := PfN
(k−1)N

(ψ̂(k−1)N ).

By Proposition 2.1, ϕ̄kN , ψ̄kN ∈ DL∗ . We subtract 1
2κ and renormalize to obtain

ϕ̂kN , ψ̂kN in D2L∗ , completing the induction.

By this process, for kN ≤ n < (k + 1)N and Lemma 4.5 we obtain
∫

A

|ϕn − ψn| dm =

∫

A

∣

∣Pfn
0
(ϕ)− Pfn

0
(ψ)
∣

∣ dm

≤

(

1−
1

2
κ ·m(M)

)k ∫

A

∣

∣

∣Pfn−kN
kN

(ϕ̄kN )− Pfn−kN
kN

(ψ̄kN )
∣

∣

∣dm

≤

(

1−
1

2
κ ·m(M)

)k

m(A) sup
x∈M

∣

∣

∣Pfn−kN
kN

(

ϕ̄kN − ψ̄kN

)

(x)
∣

∣

∣

≤

(

1−
1

2
κ ·m(M)

)k

m(A)C · sup
x∈M

∣

∣

(

ϕ̄kN − ψ̄kN

)

(x)
∣

∣

≤

(

1−
1

2
κ ·m(M)

)k

m(A)C ·

(

sup
x∈M

|ϕ̄kN (x)| + sup
x∈M

∣

∣ψ̄kN (x)
∣

∣

)

≤

(

1−
1

2
κ ·m(M)

)k

m(A)C · 2 sup
α∈DL∗

‖α‖C0 .

Since the functions in DL∗ are uniformly bounded, supα∈DL∗
‖α‖C0 <∞. This

easily implies the desired estimate (2).

Step 2. Let A be a finite measurable partition ofM and η(x) = x log(x), defined
on [0, 1] with η(0) = 0. Then, using the mean value theorem, we get

∣

∣

∣

∣

∣

∑

A∈A

µn(A) logµn(A) −
∑

A∈A

νn(A) log νn(A)

∣

∣

∣

∣

∣

≤
∑

A∈A

|η(µn(A))− η(νn(A))|

=
∑

A∈A

|1 + log(ξA)||µn(A)− νn(A)|
(2)

≤ Kµn
∑

A∈A

|1 + log(ξA)|m(A)

for some ξA between µn(A) and νn(A). In the case µn(A) = νn(A) = 0, the
corresponding summand is zero by convention. If the volumes of the sets in
A are sufficiently small, we have |1 + log(ξA)| = −1 − log(ξA). We also have
κ∗ ≤ ϕn, ψn for a constant κ∗ > 0 and all sufficiently large n (cf. the proof
of Proposition 4.2 in [6, Ex. 36]). Then µn(A), νn(A) ≥ m(A)κ∗, and hence
ξA ≥ m(A)κ∗, implying − log(ξA) ≤ − log(κ∗m(A)). We thus obtain

∣

∣

∣

∣

∣

∑

A∈A

µn(A) log µn(A)−
∑

A∈A

νn(A) log νn(A)

∣

∣

∣

∣

∣

13



≤ −Kµn
∑

A∈A

(1 + log(κ∗) + logm(A))m(A)

= −Kµn

[

1 + log(κ∗) +
∑

A∈A

m(A) logm(A)

]

= cn +KµnHm(A)

with cn = −Kµn(1 + log(κ∗)).

Step 3. Now let P∞ be a sequence of partitions of M such that the volumes
of the sets in each Pn are smaller than e−1 so that the conclusions of Step 2
hold. Using Proposition 4.1 and the general estimate | lim supt at−lim supt bt| ≤
lim supt |at − bt|, we obtain

|h(f0,∞;P0,∞;µ0,∞)− h(f0,∞;P0,∞; ν0,∞)|

= |h(fn,∞;Pn,∞;µn,∞)− h(fn,∞;Pn,∞; νn,∞)|

≤ lim sup
k→∞

1

k

∣

∣

∣

∣

∣

Hµn

(

k−1
∨

i=0

f−i
n Pn+i

)

−Hνn

(

k−1
∨

i=0

f−i
n Pn+i

)∣

∣

∣

∣

∣

Step 2

≤ lim sup
k→∞

1

k

(

cn +KµnHm

(

k−1
∨

i=0

f−i
n Pn+i

))

= Kµnh (fn,∞;Pn,∞;m∞)

≤ Kµn log sup
i≥0

#Pi,

where m∞ denotes the sequence m, f1
0m, f

2
0m, . . .. Sending n to infinity yields

the result. �

5 Entropy formulas

In this section, we derive formulas for the metric entropy of an expanding NDS
w.r.t. the invariant sequence m∞ = (m, f1

0m, f
2
0m, . . .) and for the topological

entropy. The key for the proof is the following distortion lemma ([12, Lem. 2.6]).

5.1 Lemma: For every sufficiently small ε there exists C0 > 0 such that

| detDfn
0 (x)|

| detDfn
0 (y)|

≤ eC0d(f
n
0 (x),fn

0 (y)),

if x, y ∈M and n ≥ 0 such that d(fk
0 (x), f

k
0 (y)) < ε for k = 0, 1, . . . , n− 1.

5.2 Lemma: There exists ρ > 0 such that every ρ-ball in M is evenly covered
by each f ∈ E(λ,Γ) and every branch of the inverse map is a contraction.

Proof: We claim that there exists δ > 0 such that each f is a diffeomorphism on
every ball of radius δ. It is clear that each f is locally injective (by the expansion
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property and the inverse function theorem). The existence of a uniform radius
of injectivity easily follows from the proof of the inverse function theorem, the
uniform expansion constant and the uniform bound Γ on the second derivative
of f (cf., for instance, [10, Thm. 1.2]). Now consider any f ∈ E(λ,Γ), y ∈M and
x ∈ f−1(y). If z ∈ Bδ(y), then there exists a shortest geodesic γ : [0, 1] → M
from y to z with γ([0, 1]) ⊂ Bδ(y). Since f is a covering map, there exists a lift
γ̃ : [0, 1] →M with γ̃(0) = x, i.e., f ◦ γ̃ = γ. We find

δ > d(y, z) = L(γ) =

∫ 1

0

|Df(γ̃(s)) ˙̃γ(s)|ds ≥ λ

∫ 1

0

| ˙̃γ(s)|ds = λL(γ̃),

implying d(x, γ̃(1)) ≤ L(γ̃) < δ/λ < δ. In particular, z = γ(1) = f(γ̃(1)) ∈
f(Bδ(x)). This implies

Bδ(f(x)) ⊂ f(Bδ(x)) for all f ∈ E(λ,Γ), x ∈M.

Of course, the same inclusion holds for any radius smaller than δ. Let ρ := δ/2,
y ∈ M , f ∈ E(λ,Γ) and write f−1(y) = {x1, . . . , xk}. For i 6= j, xi and xj
have at least distance δ to each other, and hence Bρ(xi) ∩ Bρ(xj) = ∅. Put

W :=
⋂k

i=1 f(Bρ(xi)). Then W is an open neighborhood of y that contains
Bρ(y). This easily implies that Bρ(y) is evenly covered. It is clear that the
branches of the inverse are contractions. �

To compute the entropy, we need a simple version of the Bowen-Ruelle volume
lemma.

5.3 Proposition: Let (M, f∞) be an NDS with fn ∈ E(λ,Γ). Then there exist
ε > 0 and C = C(ε) > 0, D = D(ε) > 0 such that for all n ≥ 0 and x ∈M ,

D |detDfn
0 (x)|

−1 ≤ m(Bn
0 (x, ε)) ≤ C |detDfn

0 (x)|
−1
.

Proof: For the proof of the first inequality we use that for small ε it holds that

(fn
0 )

−1
x Bε(f

n
0 (x)) ⊂ Bn

0 (x, ε), (4)

where (fn
0 )x denotes the restriction of fn

0 to a small neighborhood of x on which
fn
0 is injective. In fact, it follows from Lemma 5.2 that there is ε small enough
so that every ε-ball is evenly covered by all fn

0 , n ≥ 1. For such ε, (fn
0 )

−1
x is

defined on Bε(f
n
0 (x)). The map (fn

0 )
−1
x can be decomposed as

(fn
0 )

−1
x = (f0)

−1
x ◦ · · · ◦ (fn−1)

−1

fn−1
0 (x)

.

Assume y ∈ (fn
0 )

−1
x Bε(f

n
0 (x)), y = (fn

0 )
−1
x (z), and let i ∈ {0, 1, . . . , n}. Then

d
(

f i
0(y), f

i
0(x)

)

= d
(

f i
0((f0)

−1
x ◦ · · · ◦ (fn−1)

−1

fn−1
0 (x)

(z)), f i
0(x)

)

= d
(

(fi)
−1
fi
0(x)

◦ · · · ◦ (fn−1)
−1

fn−1
0 (x)

(z), f i
0(x)

)

.

15



We can write

f i
0(x) = (fi)

−1
fi
0(x)

◦ · · · ◦ (fn−1)
−1

fn−1
0 (x)

(fn
0 (x)).

Since each (fj)
−1

fj
0 (x)

is a contraction, this yields

d
(

f i
0(y), f

i
0(x)

)

≤ d(z, fn
0 (x)) < ε for i = 0, 1, . . . , n.

Hence, we have y ∈ Bn
0 (x, ε), implying (4). We thus obtain

m(Bn
0 (x, ε)) ≥ m

(

(fn
0 )

−1
x Bε(f

n
0 (x))

)

=

∫

Bε(fn
0 (x))

∣

∣detD(fn
0 )

−1
x (u)

∣

∣dm(u)

=

∫

Bε(fn
0 (x))

∣

∣detDfn
0 ((f

n
0 )

−1
x (u))

∣

∣

−1
dm(u).

By Lemma 5.1, we have
∣

∣detDfn
0 ((f

n
0 )

−1
x (y))

∣

∣ ≤ eC0d(y,f
n
0 (x)) |detDfn

0 (x)| ,

implying

m(Bn
0 (x, ε)) ≥

∫

Bε(fn
0 (x))

e−C0d(y,f
n
0 (x))dm(y) · |detDfn

0 (x)|
−1

≥ m (Bε(f
n
0 (x))) · e

−C0ε |detDfn
0 (x)|

−1

≥ min
z∈M

m(Bε(z)) · e
−C0ε |detDfn

0 (x)|
−1 .

This concludes the proof of the first inequality.

To prove the converse inequality, note that there is δ > 0 such that two different
preimages of a point x ∈ M are at least δ apart under each of the maps fn,
because the maps have a common radius of injectivity as shown in the proof
of Lemma 5.2. Now choose ε ∈ (0, δ/4) such that every ε-ball in M is evenly
covered by each of the maps fn. Then any Bowen-ball Bn

0 (x, ε) is contained in
precisely one leaf over Bε(f

n
0 (x)) under the covering map fn

0 . Indeed, if y1, y2 ∈
Bn

0 (x, ε), then d(y1, y2) ≤ d(y1, x) + d(x, y2) < δ/2. The leaves over Bε(f0(x))
are contained in the δ/4-balls around the preimages of f0(x). If f0(x̃) = f0(x)
and y1 ∈ Bδ/4(x), y2 ∈ Bδ/4(x̃), then d(x, x̃) ≤ d(x, y1) + d(y1, y2) + d(y2, x̃) <
δ/4+δ/2+δ/4 = δ, implying x = x̃. Inductively, we find that f i

0(y1) and f
i
0(y2)

are in the same leaf over Bε(f
i+1
0 (x)) for 0 ≤ i ≤ n− 1, and hence

Bn
0 (x, ε) ⊂ (f0)

−1
x ◦ · · · ◦ (fn−1)

−1

fn−1
0 (x)

(Bε(f
n
0 (x))).

Now the desired inequality follows similarly as the first one, using Lemma 5.1
again. �

5.4 Theorem: For an NDS (M, f∞) with fn ∈ E(λ,Γ) it holds that

hEM(f∞;m∞) = lim sup
n→∞

1

n

∫

M

log |detDfn
0 (x)| dm(x). (5)
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Proof: We prove the theorem in two steps.

Step 1. We prove the inequality “≤” in (5). By Proposition 5.3, for all suffi-
ciently small ε there are constants Cε, Dε > 0 with

Dε ≤ m (Bn
0 (x, ε)) |detDf

n
0 (x)| ≤ Cε (6)

for all n ≥ 0 and x ∈ M . Putting ϕn(x) := − log | detDfn(x)|, we can
show that (i) ϕ∞ = (ϕn)n≥0 is equicontinuous and uniformly bounded and
(ii) Ptop(f∞;ϕ∞) = 0. By the variational inequality (Theorem 3.6) this implies

hEM(f∞;m∞) + lim inf
n→∞

1

n

∫

M

Snϕ∞dm ≤ 0,

which yields

hEM(f∞;m∞) ≤ lim sup
n→∞

1

n

∫

M

n−1
∑

i=0

(

−ϕi ◦ f
i
0

)

dm

= lim sup
n→∞

1

n

∫

M

log |detDfn
0 (x)| dm(x).

Equicontinuity and boundedness of ϕ∞ are clear, since each ϕn is a C1-function
and these functions together with their derivatives are uniformly bounded. The
proof for Ptop(f∞;ϕ∞) = 0 follows from (6): Let E ⊂M be an (n, ε)-separated
set for a small ε. Then the balls Bn

0 (x, ε/2), x ∈ E, are disjoint, and hence
∑

x∈E

eSnϕ∞(x) =
∑

x∈E

| detDfn
0 (x)|

−1

≤
1

Dε/2

∑

x∈E

m (Bn
0 (x, ε/2)) ≤

1

Dε/2
m(M),

implying Ptop(f∞;ϕ∞) ≤ 0. Using the other half of the volume lemma, analo-
gously we find that

∑

x∈F eSnϕ∞(x) ≥ C−1
ε m(M) for any (n, ε)-spanning set F ,

and hence Ptop(f∞;ϕ∞) ≥ 0.

Step 2. We prove the converse inequality. To this end, we use the notation
P(n) :=

∨n
i=0 f

−i
0 Pi and write

IP(n) :M → R, IP(n)(x) = − logm(Px),

for the associated information function. Here Px is the unique element of P(n)

such that x ∈ Px. Using this notation, we obtain

Hm(P(n)) =

∫

M

IP(n)(x)dm(x). (7)

Now let us assume that the diameter of each element of each partition Pn is
smaller than a given ε > 0. Then every element of the partition P(n) is contained
in the Bowen-ball Bn

0 (x, ε) around any of its elements x. Using (7), this implies

Hm(P(n)) ≥

∫

M

− logm(Bn
0 (x, ε))dm(x). (8)

17



From (6) and (8) we obtain for sufficiently small ε > 0 that

lim sup
n→∞

1

n
Hm(P(n)) ≥ lim sup

n→∞

1

n

∫

M

− log
(

Cε · |detDf
n
0 (x)|

−1
)

dm(x)

= lim sup
n→∞

1

n

∫

M

log |detDfn
0 (x)| dm(x).

From Proposition 4.2 and [6, Prop. 4.4] it follows that EM contains all constant
sequences of partitions whose members have boundaries of volume zero. Since
there exist such partitions with arbitrarily small diameters (cf. [5, Lem. 4.5.1]),
we are done. �

Using again the volume lemma, we can also provide a formula for the topological
entropy of an expanding NDS.

5.5 Theorem: For an NDS (M, f∞) with fn ∈ E(λ,Γ) it holds that

htop(f∞) = lim sup
n→∞

1

n
log

∫

M

| detDfn
0 (x)|dm(x).

Proof: The proof is divided into two steps.

Step 1. First we prove the inequality “≤”. If E ⊂ M is a maximal (n − 1, ε)-
separated set, then the balls Bn−1

0 (x, ε/2), x ∈ E, are disjoint. Hence, we find

∫

M

| detDfn
0 (x)|dm(x) ≥

∑

x∈E

∫

Bn−1
0 (x,ε/2)

| detDfn
0 (y)|dm(y). (9)

By Lemma 5.1, there exists a constant C0 such that

|detDfn
0 (x)| ≤ eC0d(f

n
0 (x),fn

0 (y)) |detDfn
0 (y)|

for all y ∈ Bn−1
0 (x, ε), x ∈ M . Since the fn are Lipschitz continuous with a

common Lipschitz constant C, we have d(fn
0 (x), f

n
0 (y)) ≤ Cε, and hence

|detDfn
0 (y)| ≥ e−Cε |detDfn

0 (x)| ,

which, together with the volume lemma, implies

∫

Bn−1
0 (x,ε/2)

| detDfn
0 (x)|dm(x) ≥ e−Cε |detDfn

0 (x)|m
(

Bn−1
0

(

x,
ε

2

))

≥ e−CεDε/2| detDfn−1(x)| ≥ e−CεDε/2λ
dimM =: bε.

Together with (9) this gives

∫

M

| detDfn
0 (x)|dm(x) ≥ bε · rsep(n− 1, ε; f∞).

This yields the desired estimate.
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Step 2. The proof for the converse inequality is similar. Here we let F ⊂M be
a minimal (n− 1, ε)-spanning set and obtain

∫

M

| detDfn
0 (x)|dm(x) ≤

∑

x∈F

∫

Bn−1
0 (x,ε)

| detDfn
0 (y)|dm(y).

Using the distortion lemma and the volume lemma again, we find
∫

Bn−1
0 (x,ε)

| detDfn
0 (y)|dm(y) ≤ cε

for a constant cε > 0, and hence
∫

M

| detDfn
0 (x)|dm(x) ≤ cεrspan(n− 1, ε; f∞),

implying the lower estimate. �

5.6 Remark: Note that Jensen’s inequality gives
∫

M

log | detDfn
0 (x)|dm(x) ≤ log

∫

M

| detDfn
0 (x)|dm(x)

for all n, showing the inequality between metric and topological entropy which
we already know from the variational inequality.

It is clear that the expressions for the metric and the topological entropy in
general do not coincide. (They do coincide, e.g., if the fn are algebraic torus
endomorphisms.) In fact, this is already so in the autonomous case, where it is
well-known that the absolutely continuous invariant measure of a C2-expanding
map f is not necessarily a measure of maximal entropy (cf. Walters [22]). How-
ever, this measure is an equilibrium state for the pressure w.r.t. the potential
ϕ(x) = − log | detDf(x)|. From our results we find that the analogous statement
is true in the nonautonomous case.

5.7 Corollary: For n ≥ 0 let fn ∈ E(λ,Γ) and ϕn(x) :≡ − log | detDfn(x)|.
Then

Pm∞
(f∞;ϕ∞) = Ptop(f∞;ϕ∞) = 0.

Proof: The fact that Ptop(f∞;ϕ∞) = 0 is shown in the proof of Theorem 5.4.
The first equality immediately follows from the formula for the metric entropy
and the definition of the measure-theoretic pressure. �

6 Equi-conjugacy of expanding systems

A classical result about expanding maps, proved by Shub [19], asserts that any
two expanding C1-maps, defined on the same compact manifold M , are topo-
logically conjugate iff their induced maps on the fundamental group π1(M) are
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algebraically conjugate. Also this result can be extended to the time-dependent
situation. In particular, this will show that the full variational principle holds
for a topological NDS built from expanding C1-maps fn : M → M which have
a common expansion factor λ > 1 and induce the same map on π1(M).

6.1 Theorem: Let (M, f∞) be an NDS on a compact Riemannian manifoldM
with C1-expanding maps fn having expansion factors uniformly bounded away
from one. Additionally assume that the map induced by fn on the fundamental
group π1(M) is the same for all n, say (fn)∗ ≡ ϕ ∈ End(π1(M)). Then, for any
C1-expanding map f with f∗ = ϕ there exists an equi-conjugacy π∞ = (πn)

∞
n=0

between the NDS f∞ and f .

Proof: We will obtain the equi-conjugacy as a fixed point of a contraction on
an appropriately defined space of sequences. The proof proceeds in three steps.

Step 1. Fix an expanding C1-map f : M → M with f∗ = ϕ (for instance,
f = f1). Let π : M̃ → M be the universal covering of M . On M̃ we consider
the lifted Riemannian metric with distance function denoted by d̃(·, ·), which
makes the covering projection π a local isometry and M̃ a complete Riemannian
manifold. The deck transformation group of π is the subgroup of the isometry
group Iso(M̃) given by

D(π) =
{

γ ∈ Iso(M̃) : π ◦ γ = π
}

.

If g : M → M is any self-covering of M and g̃ : M̃ → M̃ a lift of g, i.e.,
π ◦ g̃ = g ◦ π, then g̃ is invertible and induces an endomorphism of D(π) by

g̃∗ : D(π) → D(π), γ 7→ g̃ ◦ γ ◦ g̃−1.

We can lift each fn to an expanding diffeomorphism f̃n : M̃ → M̃ , and we
also lift f to f̃ : M̃ → M̃ . We choose these lifts in the following way. First
we pick the lift f̃ arbitrarily. Since f̃−1 is a contraction, it has a unique fixed
point y0. We put x0 := π(y0) and choose for each n a continuous path βn from
fn(x0) to f(x0) = x0. Then there exists a unique lift f̃n of fn such that f̃n(y0)
is the endpoint of the lift of β−1

n (i.e., the path βn traversed in the opposite
direction)which starts at y0. In particular, this guarantees that f̃∗ = f̃∗

n for all
n (cf. [19, Proof of Thm. 3]).

Step 2. Let

A :=
{

h ∈ Homeo(M̃) : h ◦ γ = γ ◦ h, ∀γ ∈ D(π)
}

,

endowed with the metric

d±∞(h, i) := sup
y∈M̃

d̃(h(y), i(y)) + sup
y∈M̃

d̃(h−1(y), i−1(y)).

Finiteness of d±∞ follows from the fact that there exists a compact fundamental
domain K ⊂ M̃ for the natural action of D(π) on M̃ , and hence the supremum
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over all y ∈ M̃ reduces to the supremum over y ∈ K. The space on which our
operator acts is defined by

B :=
{

(hk)
∞
k=0 : hk ∈ A and hk(y0) = f̃k

0 (h0(y0)), ∀k ≥ 0
}

.

From [19, Thm. 5] it follows that such sequences exist, hence B 6= ∅. We define

D∞ ((hk)
∞
k=0, (ik)

∞
k=0) := sup

k≥0
d±∞(hk, ik).

Let K ⊂ M̃ be a compact fundamental domain for the action of D(π) with
y0 ∈ K. Since hk and ik commute with deck transformations, also hk(K)
and ik(K) are compact fundamental domains, which both contain the point
f̃k
0 (h0(y0)). Let C be the union of all compact fundamental domains that contain
f̃k
0 (h0(y0)). Then C is bounded and

d∞(hk, ik) = sup
y∈K

d(hk(y), ik(y)) ≤ diamC, ∀k ≥ 0.

Together with the analogous statement for the inverse maps, it follows that
D∞ is finite. The proof that it is a metric is trivial. The definition of D∞

implies that convergence in D∞ is equivalent to uniform convergence in every
component and for the inverses. Since the equality hk(y0) = f̃k

0 (h0(y0)) carries
over to continuous limits, it follows that (B, D∞) is a complete metric space.

Step 3. We define the operator

σ : B → B, (hk)k≥0 7→ (f̃−1
k ◦ hk+1 ◦ f̃)k≥0.

This definition makes sense, because

f̃−1
k (hk+1(f̃(y0))) = f̃−1

k (hk+1(y0)) = f̃−1
k (f̃k+1

0 (h0(y0))) = f̃k
0 (h0(y0))

and f̃−1 ◦hk+1 ◦ f̃ ∈ A, following from a similarly simple computation. To show
that σ is a contraction, note that

d∞

(

f̃−1
k ◦ hk+1 ◦ f̃ , f̃

−1
k ◦ ik+1 ◦ f̃

)

= d∞

(

f̃−1
k ◦ hk+1, f̃

−1
k ◦ ik+1

)

≤ λ−1d∞ (hk+1, ik+1) ,

where λ is a common expansion factor of the maps fn. From this observation
one easily derives that σ is a contraction, and hence there is a unique sequence
(hk)

∞
k=0 in B such that hk+1 ◦ f̃ ≡ f̃k ◦ hk. Since the maps hk commute with

deck transformations, we can project them to homeomorphisms πk : M → M
such that πk+1 ◦ f ≡ fk ◦ πk. It remains to show equicontinuity. First note that
there exists a constant c > 0 with

d̃
(

f̃n(y), f̃n
k (hk(y))

)

= d̃
(

f̃n(y), hk+n(f̃
n(y))

)

≤ c

for all y ∈ M̃ and n ≥ 0. To show this, for a fixed y ∈ M̃ let γy ∈ D(π)
be such that z := γy(y) is contained in a fixed fundamental domain K of
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D(π) with y0 ∈ K. Then hk(y) = hk(γ
−1
y (z)) = γ−1

y (hk(z)), implying

d̃(hk(y), y) = d̃(γ−1
y (hk(z)), γ

−1
y (z)) = d̃(hk(z), z). On K the functions hk are

uniformly bounded (using the same argument that was used to proveD∞ <∞).
This shows the existence of c. Furthermore, for all y, z ∈ M̃ ,

d̃(hk(y), hk(z)) ≤ λ−nd̃
(

f̃n
k (hk(y)), f̃

n
k (hk(z))

)

≤ λ−n
[

d̃
(

f̃n
k (hk(y)), f̃

n(y)
)

+ d̃
(

f̃n(y), f̃n(z)
)

+d̃
(

f̃n(z), f̃n
k (hk(z))

)]

≤ 2cλ−n + λ−nd̃
(

f̃n(y), f̃n(z)
)

.

Hence, for given ε > 0 we can first choose n large enough so that 2cλ−n < ε/2.
Then we choose δ > 0 so that d̃(f̃n(y), f̃n(z)) < ε/2 if d̃(y, z) < δ. This implies
d̃(hk(y), hk(z)) < ε for all k, whenever d̃(y, z) < δ, showing equicontinuity of
(hk)

∞
k=0, and hence of (πk)

∞
k=0. For (π

−1
k )∞k=0 the proof works analogously. �

6.2 Remark: In Ruelle [18, Sec. 4] one finds a similar result. Here the nonau-
tonomous system is given as a small time-dependent perturbation of a fixed
Axiom A diffeomorphism f around one of its basic sets Λ. In this case, one
can show the existence of a time-dependent uniformly hyperbolic set such that
the restriction of the nonautonomous system to this set is equi-conjugate to the
restriction of f to Λ.

6.3 Corollary: For any NDS (M, f∞) as given in the above theorem a full
variational principle holds, i.e.,

sup
µ∞

hEM(f∞;µ∞) = htop(f∞),

where the supremum is taken over all IMSs µ∞.

Proof: The inequality “≤” was proved in [6, Thm. 28] or follows as a special
case from Theorem 3.6. The equi-conjugacy πn+1 ◦ f ≡ fn ◦ πn given by the
above theorem preserves the topological entropy, i.e., htop(f∞) = htop(f). The
map f satisfies the classical variational principle htop(f) = supµ hµ(f), the
supremum taken over all f -invariant probability measures µ. For any such
measure, µn := (πn)∗µ defines an IMS, i.e., (fn)∗µn ≡ µn+1. If P is a finite
measurable partition of M , then Pn := πnP , n ∈ N0, defines a sequence of
partitions, which is contained in the admissible class EM(µ∞) (cf. [6, Prop. 27]).
This implies

htop(f) = htop(f∞) ≥ sup
µ
hEM(f∞;µ∞) ≥ sup

µ
hµ(f) = htop(f),

completing the proof. �
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7 Expansivity

In this section, we introduce an analogue of the notion of positive expansivity

for autonomous systems that is the topological counterpart to the expansivity
property of the differentiable systems studied in the preceding sections.

7.1 Preliminary notions

We start by introducing some intuitive but preliminary notions of expansivity of
increasing strength. Recall that a continuous map f : X → X on a metric space
X is called positively expansive if there exists δ > 0 such that d(f i(x), f i(y)) < δ
for all i ≥ 0 implies x = y.

7.1 Definition: A topological NDS (X∞, f∞) is called

(i) time-i-expansive with expansivity constant δ > 0 if there exists δ > 0 such
that for all x, y ∈ Xi the following implication holds:

sup
n∈N0

dn+i(f
n
i (x), f

n
i (y)) < δ ⇒ x = y;

(ii) all-time expansive if it is time-i-expansive for every i ≥ 0;

(iii) uniformly expansive if it is all-time expansive with a uniform expansivity
constant δ for all of the systems (Xi,∞, fi,∞), i ≥ 0.

7.2 Remark:

• In the case of an autonomous system, the notions of time-i-expansivity, all-
time expansivity and uniform expansivity all coincide and are equivalent
to positive expansivity.

• The concept of expansivity for nonautonomous systems introduced in [20,
Def. 2.2] is equivalent to our notion of time-1-expansivity. However, while
we allow a time-varying but at every time instant compact state space,
the state space in [20] is stationary and not necessarily compact.

The following examples show that the converse statements to the obvious im-
plications

uniformly expansive ⇒ all-time expansive ⇒ time-i-expansive

fail to hold, and that an NDS built from positively expansive maps in general
does not have any of these properties.
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7.3 Example: In general, the properties of time-i-expansivity and time-j-
expansivity for i < j are not related. Consider a system (X∞, f∞) withXn ≡ S1,
f0(z) ≡ 1 and fn(z) ≡ z2 (the angle-doubling map) for all n ≥ 1. This system is
time-i-expansive for all i ≥ 1, but not time-0-expansive. Now consider a system
(X∞, f∞), where X0 is finite and Xn = [0, 1] for all n ≥ 1. Let f0 : X0 → X1 be
any map and fn ≡ f , n ≥ 1, for an arbitrary continuous map f : [0, 1] → [0, 1].
The resulting system (X∞, f∞) is obviously time-0-expansive, since there is a
minimal positive distance for any two points in X0, but not time-i-expansive
for any i ≥ 1, following from the well-known fact that [0, 1] does not admit a
positively expansive map.

7.4 Example: A trivial example of an all-time but not uniformly expansive
system is given as follows. Let each Xn be a space consisting of precisely two

points x
(n)
1 , x

(n)
2 such that diam(Xn) = dn(x

(n)
1 , x

(n)
2 ) → 0 monotonically. Let

fn be given by fn(x
(n)
i ) = x

(n+1)
i for all n and i = 1, 2. Then clearly (X∞, f∞) is

time-i-expansive with a maximal expansivity constant equal to diam(Xi). Since
diam(Xi) is decreasing to 0, the system is not uniformly expansive.

7.5 Example: Consider the NDS (X∞, f∞) with Xn ≡ S1 (endowed with the
standard round metric dn ≡ d such that diam(S1) = 1) and let fn(z) ≡ zn+2 for
each n ≥ 0. Although each fn is positively expansive, this system is not time-
i-expansive for any i. One easily shows that fn

0 (z) = z(n+1)!. Take z, w ∈ S1

with d(z, w) = 1/(n+ 1)!. Then

d(f i
0(z), f

i
0(w)) =

(i+ 1)!

(n+ 1)!
≤

1

n+ 1
for i = 1, 2, . . . , n− 1,

and fn
0 (z) = fn

0 (w). Hence, (X∞, f∞) is not time-0-expansive, since for every
n we find z(n) 6= w(n) with d(fk

0 (z
(n)), fk

0 (w
(n))) ≤ 1/n for all k ≥ 0. The same

argument shows that (X∞, f∞) is not time-i-expansive for any i.

7.6 Remark: In Roy [16], an example of two positively expansive maps f, g :
X → X on a compact space X is given such that the compositions f ◦ g and
g ◦ f are not positively expansive. This also implies that the topological NDS
f∞ = (f, g, f, g, . . .) is not time-i-expansive for any i.

7.7 Proposition: Let (X∞, f∞) be a topological NDS.

(i) The properties of time-i-expansivity, all-time expansivity and uniform ex-
pansivity are preserved by equi-conjugacies.

(ii) Assume that (X∞, f∞) is time-0-expansive and the map f0 is a surjec-
tive local homeomorphism. Then (X∞, f∞) is time-1-expansive. Conse-
quently, if all fn are surjective local homeomorphisms, time-0-expansivity
is equivalent to all-time expansivity.
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Proof: We leave the easy proof of (i) to the reader. To prove (ii), let δ be an
expansivity constant for (X∞, f∞). Since f0 is a local homeomorphism, every
x ∈ X0 has an open neighborhood Vx that is mapped homeomorphically onto
an open set Wx ⊂ X1. We choose Vx such that clVx is contained in a bigger
open neighborhood Ṽx on which f0 is still a homeomorphism. This implies
that the local inverse maps are uniformly continuous. By surjectivity, the sets
{Wx}x∈X0 form an open cover ofX1. Choose a finite subcover {W1, . . . ,Wl} and
let ρ be the Lebesgue number of this subcover. Let f0,i : Vi → Wi, i = 1, . . . , l,
denote the corresponding local homeomorphisms. There exists a positive ε <
min{ρ, δ} such that d1(x, y) < ε for x, y ∈ X1 implies x, y ∈ Wi for some i and
d0(f

−1
0,i (x), f

−1
0,i (y)) < δ. Now consider x, y ∈ X1 with dn+1(f

n
1 (x), f

n
1 (y)) < ε

for all n ≥ 0 and assume x, y ∈ Wi. Put x̃ := f−1
0,i (x), ỹ := f−1

0,i (y). This
implies dn(f

n
0 (x̃), f

n
0 (ỹ)) < δ for all n ≥ 0, and hence x̃ = ỹ implying x = y.

Consequently, time-1-expansivity holds with the expansivity constant ε. �

7.2 Strong uniform expansivity

As it turns out, the notions of the preceding subsection are not sufficiently
strong to imply analogues of the classical properties of positively expansive maps
such as the existence of generators for topological entropy or the existence of
equivalent metrics in which the maps fn locally uniformly expand distances.
Hence, we introduce the following stronger notion.

7.8 Definition: A topological NDS (X∞, f∞) is called strongly uniformly ex-
pansive (s.u.e.) if there exists a constant δ > 0 such that for every ε > 0 there
is an integer N ≥ 1 satisfying

di,N (x, y) < δ ⇒ di(x, y) < ε (10)

for all i ≥ 0 and x, y ∈ Xi. The constant δ is called an expansivity constant.

7.9 Remark: The definition says that Bowen-balls shrink to points uniformly
w.r.t. the initial time, when the order N tends to infinity. The implication (10)
can also be written as

BN
i (x, δ) ⊂ Bε(x; di).

7.10 Remark: A similar characterization of expansivity for time-dependent
systems can be found in Roy [15, Lem. 7], where dynamical systems on fiber
bundles are considered.

If the spaces Xn become larger in diameter very rapidly, s.u.e. systems not
necessarily exhibit the essential features of positively expansive maps on com-
pact spaces, since the expansivity can just result in “blowing up” the space,
rather than in producing complicated dynamical behavior. Hence, we need to
introduce a property for the sequence X∞ which excludes such a behavior.
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7.11 Definition: A sequenceX∞ = (Xn)
∞
n=0 of compact metric spaces is called

uniformly totally bounded if for every ε > 0 there exists an integer m such that
m ε-balls are sufficient to cover Xn for each n ≥ 0.

The following proposition summarizes elementary properties of s.u.e. systems.

7.12 Proposition: Assume that (X∞, f∞) is s.u.e. with expansivity constant
δ. Then the following assertions hold:

(i) (X∞, f∞) is uniformly expansive with expansivity constant δ.

(ii) If (Y∞, g∞) is another topological NDS that is equi-conjugate to the given
one, then also (Y∞, g∞) is s.u.e.

(iii) If (X∞, f∞) is autonomous, then it is positively expansive. Conversely,
any positively expansive autonomous system (X, f) is s.u.e.

(iv) There exists A∞ ∈ L(X∞), A∞ = (An)
∞
n=0, that generates the topological

entropy, i.e.,

htop(f∞) = lim sup
n→∞

1

n
logN

(

n−1
∨

i=0

f−i
0 Ai

)

.

If X∞ is uniformly totally bounded, then htop(f∞) is finite.

(v) If, for some n, fn is surjective and open, then fn is a covering map. If,
additionally, f∞ is equicontinuous, then the number of leaves for such fn
is uniformly bounded.

Proof: (i) Assume that two points x, y ∈ Xi satisfy

di+n(f
n
i (x), f

n
i (y)) < δ for all n ≥ 0.

This is equivalent to di,N (x, y) < δ for all N . Hence, for every ε > 0 we have
di(x, y) < ε, so x = y.

(ii) Assume that (X∞, f∞) is s.u.e. and denote by π∞ = (πn)
∞
n=0 the equi-

conjugacy (πn+1 ◦ fn = gn ◦ πn). Let δ > 0 be the expansivity constant for
(X∞, f∞) and choose δ̃ = δ̃(δ) according to the uniform equicontinuity of the
family {π−1

n }∞n=0. Let ε̃ > 0 be given and choose ε = ε(ε̃) according to the
uniform equicontinuity of the family {πn}∞n=0. Then chooseN = N(ε) according
to the s.u.e. property of (X∞, f∞). Assuming dYi,N (y1, y2) < δ̃, we obtain

dXi,N
(

π−1
i (y1), π

−1
i (y2)

)

= max
0≤j≤N

dXi+j

(

f j
i (π

−1
i (y1)), f

j
i (π

−1
i (y2))

)

= max
0≤j≤N

dXi+j

(

π−1
i+j(g

j
i (y1)), π

−1
i+j(g

j
i (y2))

)

< δ,

and hence dXi (π−1
i (y1), π

−1
i (y2)) < ε, implying dYi (y1, y2) < ε̃. This shows that

(Y∞, g∞) is s.u.e.
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(iii) It is clear that the s.u.e. property implies positive expansivity. Conversely,
assume that (X, f) is positively expansive with expansivity constant δ and
suppose to the contrary that there is ε > 0 such that for every N there are
xN , yN ∈ X with

max
0≤j≤N

d(f j(xN ), f j(yN )) <
δ

2
and d(xN , yN) ≥ ε.

We may assume xN → x and yN → y in the compact space X . Then

sup
j∈N0

d(f i(x), f j(y)) ≤
δ

2
< δ and d(x, y) ≥ ε,

contradicting positive expansivity with expansivity constant δ.

(iv) Let δ be the expansivity constant and An be the family of all open δ/2-balls
in Xn. Pick an arbitrary U∞ ∈ L(X∞) and let ρ > 0 be a common lower bound
for its associated Lebesgue numbers. We choose n with

di,n(x, y) < δ ⇒ di(x, y) < ρ.

If x, y ∈
⋂n

j=0 f
−j
i Ai+j , then di+j(f

j
i (x), f

j
i (y)) < δ for i = 0, . . . , n, implying

that A
〈n〉
i =

∨n
j=0 f

−j
i Ai+j is a refinement of the family Bn

i of all Bowen-balls
of order n and radius δ in Xi. Moreover, by the choice of n, Bn

i is finer than Ui

for every i ≥ 0, implying

htop(f∞;U∞) ≤ htop(f∞;Bn
∞) ≤ htop(f∞;A〈n〉

∞ ) = htop(f∞;A∞),

where the last equality is easy to see. This proves the first assertion. Now
assume that X∞ is uniformly totally bounded. Then we can choose a generator
A∞ such that An consists of m δ/2-balls for each n (m = m(δ)). This easily
implies htop(f∞) ≤ logm.

(v) From expansivity it follows that the maps fn are locally injective. Then,
if fn is additionally open and onto, it is a local homeomorphism. This easily
implies that fn is a covering map. We omit the details of the proof. �

The following example shows that a uniformly expansive system is not neces-
sarily s.u.e., even if the sequence X∞ is stationary.

7.13 Example: For any map f and n ∈ N, we write (f)n for the finite sequence
(f, f, . . . , f) of length n. We let f(z) ≡ z2, f : S1 → S1, be the angle-doubling
map on the unit circle and consider the NDS (X∞, f∞) defined by

Xn :≡ S1, f∞ := ((idS1)1, (f)1, (idS1)2, (f)2, (idS1)3, (f)3, . . .).

If we consider on S1 the standard round metric with diam(S1) = 1, this system
is uniformly expansive with expansivity constant 1/2, since for any two points
z, w ∈ S1 with distance smaller than 1/2, the application of f0, f1, f2, . . . will
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finally double the angle sufficiently many times so that d(fn
0 (z), f

n
0 (w)) > 1/2.

However, the system is not s.u.e., because for every δ > 0,

Bn
2(1+2+···+k)(x, δ) = Bδ(x) for all x ∈ X2(1+2+···+k), 1 ≤ n ≤ k + 1.

Hence, for a given ε ∈ (0, δ) no uniform N exists so that all Bowen-balls of order
N are contained in an ε-ball.

The next proposition shows that expanding systems are s.u.e.

7.14 Proposition: Every NDS (M, f∞) with fn ∈ E(λ,Γ) is s.u.e.

Proof: By Lemma 5.2, there exists δ > 0 so that every δ-ball in M is evenly
covered by each fn and every branch of the inverse map is a contraction with
uniform contraction constant µ ∈ (0, 1). Moreover, the proof of the volume
lemma shows that each Bowen-ball Bn

i (x, δ) is contained in a set of the form

(fi)
−1
x ◦ · · · ◦ (fi+n−1)

−1

fn−1
i

(x)
(Bδ(f

n
i (x))).

Hence, if di,n(x, y) < δ, then d(x, y) < µ−nδ. Choosing n = n(ε) with µ−n ≤ ε/δ
yields the assertion. �

It is well-known that a homeomorphism of a compact space X is positively
expansive iff X is finite (see [14] for an elementary proof). For an s.u.e. system,
in general, an analogous result does not hold. An example is constructed as
follows. Let A : Rn → R

n be a linear map all of whose eigenvalues have moduli
greater than 1. Let X0 be the compact unit ball in R

d and put Xn := AnX0

for all n ≥ 1 (endowed with the restriction of the standard Euclidean metric).
Then fn := A|Xn

: Xn → Xn+1 defines an NDS, which is s.u.e., and every
fn is a homeomorphism. However, if we assume that X∞ is uniformly totally
bounded, we can prove an analogous result.

We define the diameter of a cover U of a compact metric space as

diam(U) := sup
U∈U

diam(U).

The following lemma is a generalization of [1, Thm., p. 316].

7.15 Lemma: Let (X∞, f∞) be a topological NDS such that X∞ is uni-
formly totally bounded and #X0 = ∞. Then for every U∞ ∈ L(X∞),
diam

(
∨n

i=1 f
−i
k Uk+i

)

is not converging to zero uniformly in k.

Proof: Let δ be a common lower bound for the Lebesgue numbers of U∞.
Suppose to the contrary that diam(

∨n
i=1 f

−i
k Uk+i) → 0 for n→ ∞ uniformly in

k. There existsN ∈ N such that for all n ≥ N and k ≥ 0, diam(
∨n

i=1 f
−i
k Uk+i) <
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δ. Then Uk is coarser than
∨n

i=1 f
−i
k Uk+i, n ≥ N , k ≥ 0, implying

N

(

n
∨

i=0

f−i
0 Ui

)

= N

(

n
∨

i=1

f−i
0 Ui

)

= N

(

n−1
∨

i=0

f
−(i+1)
0 Ui+1

)

= N

(

f−1
0

n−1
∨

i=0

f−i
1 Ui+1

)

≤ N

(

n−1
∨

i=0

f−i
1 Ui+1

)

.

By induction, one shows that for all n ≥ N ,

N

(

n
∨

i=0

f−i
0 Ui

)

≤ N

(

N
∨

i=0

f−i
n−NUn−N+i

)

.

We can estimate the right-hand side by

N

(

N
∨

i=0

f−i
n−NUn−N+i

)

≤
N
∏

i=0

N
(

f−i
n−NUn−N+i

)

≤
N
∏

i=0

N (Un−N+i) ≤
N
∏

i=0

m(δ) =:M,

wherem(δ) denotes the number of δ-balls needed to cover the spacesXk. Hence,

N

(

n
∨

i=0

f−i
0 Ui

)

≤M for all n ≥ N.

Choose M + 1 distinct points x1, . . . , xM+1 in X0 and let n be so large that
diam(

∨n
i=0 f

−i
0 Ui) < min1≤i<j≤M+1 d0(xi, xj). This is a contradiction, be-

cause to cover {x1, . . . , xM+1} with sets whose diameters are smaller than
min1≤i<j≤M+1 d0(xi, xj) requires at least M + 1 sets. �

7.16 Theorem: Assume that (X∞, f∞) is s.u.e., X∞ is uniformly totally
bounded and every fn is a homeomorphism so that the family {f−1

n }n≥0 is
uniformly equicontinuous. Then X0 and hence every Xn is finite.

Proof: Let An be the cover of Xn consisting of all δ-balls, where δ is an
expansivity constant. Then

diam





n−1
∨

j=0

f−j
i Ai+j



→ 0 as n→ ∞

uniformly in i. Since each fn is a homeomorphism, we obtain a sequence of
open covers for X1,∞ by putting Bn := fnAn, n ≥ 0. From the equicontinuity
of {f−1

n } it follows that B∞ ∈ L(X∞). Then

n−1
∨

j=0

f−j
i Ai+j =

n−1
∨

j=0

f−j
i f−1

i+jBi+j =

n−1
∨

j=0

f
−(j+1)
i Bi+j =

n
∨

j=1

f−j
i Bi+j−1.
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By Lemma 7.15, diam(
∨n

j=1 f
−j
i Bi+j−1) does not converge uniformly to zero if

X0 is infinite. Hence, X0 must be finite. �

Another classical result asserts that a positively expansive map becomes ex-
panding in a suitably chosen metric. This was proved by Reddy [13], using
Frink’s metrization lemma. We will reproduce the proof for s.u.e. systems.

If X is a set and A ⊂ X ×X , we write

A ◦A := {(x, y) ∈ X ×X : ∃z ∈ X with (x, z) ∈ A and (z, y) ∈ A} .

7.17 Lemma (Frink’s Metrization Lemma): Let X be a topological space.
If there is a nested sequence (Un)n≥0 of open symmetric neighborhoods of the
diagonal∆ ⊂ X×X such that U0 = X×X ,

⋂

n Un = ∆ and Un◦Un◦Un ⊂ Un−1

for n ≥ 1, then there is a metric ρ for X such that

Un ⊂ {(x, y) : ρ(x, y) < 1/2n} ⊂ Un−1 for all n ≥ 1.

If A is a closed subset of a compact metric space, we denote by Nε(A) the open
ε-neighborhood of A.

7.18 Theorem: Let (X∞, f∞) be an equicontinuous s.u.e. NDS such that each
fn is onto. Then for each n ≥ 0 there exists a metric ρn onXn with the following
properties:

(i) The maps fn : (Xn, ρn) → (Xn+1, ρn+1) expand small distances uniformly
in n, i.e., there exist α > 0 and β > 1 so that for any n and x, y ∈ Xn,
ρn(x, y) < α implies ρn+1(fn(x), fn(y)) ≥ βρn(x, y).

(ii) The metrics ρn and dn are uniformly equivalent, i.e., the sequence of
maps πn : (Xn, dn) → (Xn, ρn), x 7→ x, is uniformly equicontinuous and
the same holds for the sequence (π−1

n )n≥1 of inverses.

Proof: Let δ be an expansivity constant. Put V
(n)
0 := Xn ×Xn and for each

k ≥ 0 let
V

(n)
k := {(x, y) ∈ Xn ×Xn : dn,k(x, y) < δ} .

Let gn := fn × fn : Xn × Xn → Xn+1 × Xn+1. Then, for each n, the se-

quence (V
(n)
k )k≥0 is a nested sequence of open symmetric neighborhoods of

∆n = {(x, x) : x ∈ Xn} such that
⋂

k V
(n)
k = ∆n and it is easy to see that

gn

(

V
(n)
k

)

= V
(n+1)
k−1 ∩ gn

(

V
(n)
0

)

, (11)

where we use that fn is onto. Taking the product metric Dn((x, y), (z, w)) =

max{dn(x, z), dn(y, w)} on Xn ×Xn, we find that Nα(∆n) ⊂ V
(n)
0 for α = δ/2.

From the s.u.e. property it follows that there exists an integer N ≥ 1 with

V
(n)
N ⊂ N(1/3)α(∆n) for all n ≥ 0.
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Then
V

(n)
N ◦ V

(n)
N ◦ V

(n)
N ⊂ V

(n)
0 .

Let U
(n)
0 := Xn×Xn and for k ≥ 1, U

(n)
k := V

(n)
(k−1)N . We want to apply Frink’s

metrization lemma to each sequence (U
(n)
k )k≥0. To this end, it suffices to prove

U
(n)
k+1 ◦ U

(n)
k+1 ◦ U

(n)
k+1 ⊂ U

(n)
k for all k ≥ 0, n ≥ 0. (12)

For k = 0, 1 this relation holds by construction. Let p = (x, y) ∈ U
(n)
k+1 ◦

U
(n)
k+1 ◦ U

(n)
k+1 for k ≥ 2. Then there exist points a, b ∈ Xn such that

{(x, a), (a, b), (b, y)} ⊂ U
(n)
k+1. Iterating (11), for 0 ≤ j ≤ (k − 1)N we obtain

gjn(p) = (f j
n(x), f

j
n(y)) = (f j

n(x), f
j
n(a)) ◦ (f

j
n(a), f

j
n(b)) ◦ (f

j
n(b), f

j
n(y))

∈ gjn(U
(n)
k+1) ◦ g

j
n(U

(n)
k+1) ◦ g

j
n(U

(n)
k+1)

⊂ V
(n+j)
kN−j ◦ V

(n+j)
kN−j ◦ V

(n+j)
kN−j

⊂ V
(n+j)
1 ◦ V

(n+j)
1 ◦ V

(n+j)
1 ⊂ V

(n+j)
0 .

Therefore, dn+j(f
j
n(x), f

j
n(y)) < δ for j = 0, . . . , (k − 1)N , and hence

p = (x, y) ∈ V
(n)
(k−1)N = U

(n)
k ,

concluding the proof of (12). Let ρn denote the metric on Xn whose existence
is guaranteed by Frink’s metrization lemma. Fix n ≥ 0 and let x, y ∈ Xn with

0 < ρn(x, y) < 1/32. Since the sets U
(n)
k \U

(n)
k+1, k ≥ 0, form a partition of

Xn ×Xn, there exists k ≥ −1 such that (x, y) ∈ U
(n)
k+1\U

(n)
k+2. Then

1/2k+3 ≤ ρn(x, y) < min
{

1/32, 1/2k+1
}

,

which implies k ≥ 3. Since (x, y) ∈ U
(n)
k+1\U

(n)
k+2 = V

(n)
kN \V

(n)
(k+1)N , there exists j

with
kN < j ≤ (k + 1)N and dn+j(f

j
n(x), f

j
n(y)) > δ.

Let (z, w) = (f3N
n (x), f3N

n (y)). Then

0 ≤ (k − 3)N < j − 3N ≤ (k − 2)N

and
dn+j

(

f j−3N
n+3N (z), f j−3N

n+3N (w)
)

= dn+j(f
j
n(x), f

j
n(y)) > δ.

Hence, (f3N
n (x), f3N

n (y)) /∈ V
(n+3N)
(k−2)N = U

(n+3N)
k−1 , implying

ρn+3N

(

f3N
n (x), f3N

n (y)
)

≥ 1/2k > 2ρn(x, y).

Thus, f3N
n expands small distances for each n. We will construct different

metrics ρ′n such that the maps fn are uniformly expanding small distances
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w.r.t. these metrics. But first we prove that ρn and dn are uniformly equiv-
alent in n. By construction, it holds that

B(k−1)N
n (x, δ) ⊂ B1/2k(x; ρn) ⊂ B(k−2)N

n (x, δ)

for each x ∈ Xn and k ≥ 0, where the Bowen-balls are defined in terms of the
given metric dn. By the s.u.e. property, we can choose, for each ε > 0, k = k(ε)
large enough so that BkN

n (x, δ) ⊂ Bε(x; dn) (for all n), and hence

B1/2k(x; ρn) ⊂ Bε(x; dn).

This shows uniform equicontinuity of the sequence π−1
n : (Xn, ρn) → (Xn, dn).

On the other hand, for any integer k, we can choose ε > 0 small enough so that

Bε(x; dn) ⊂ B
(k−1)N
n (x, δ) for all n and x ∈ Xn, which follows from uniform

equicontinuity of f∞. This proves uniform equicontinuity of the sequence πn :
(Xn, dn) → (Xn, ρn).

Now we define new metrics by

ρ′n(x, y) :=

3N−1
∑

i=0

1

µi
ρn+i(f

i
n(x), f

i
n(y)),

where µ := 21/(3N). This clearly defines a metric on Xn compatible with the
topology, and ρ′n(x, y) < 1/32 implies ρn(x, y) < 1/32, and hence

ρ′n+1(fn(x), fn(y)) =

3N−1
∑

i=0

1

µi
ρn+1+i(f

i+1
n (x), f i+1

n (y))

> µ

3N−1
∑

i=1

1

µi
ρn+i(f

i
n(x), f

i
n(y)) +

2

µ3N−1
ρn(x, y)

= µ
3N−1
∑

i=0

1

µi
ρn+i(f

i
n(x), f

i
n(y)) = µρ′n(x, y).

This gives the desired metrics in which each fn expands small distances. To
complete the proof, it remains to show that ρn and ρ′n are uniformly equivalent.
This follows from the inequalities

ρn(x, y) ≤ ρ′n(x, y) ≤ 3Nρn,3N−1(x, y),

and the uniform equicontinuity of f∞. �

It can easily be shown that the above theorem does not hold for the uniformly
expansive system in Example 7.13. We consider this fact as a justification that
the notion of strong uniform expansivity is the appropriate analogue of positive
expansivity and postpone further investigations to a future work.
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