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Exact expressions for correlation functions are knowntedargeN (planar) limit of the(1+ 1)-dimensional
SU(N) x SU(N) principal chiral sigma model. These were obtained with threnffactor bootstrap, an entirely
nonperturbative method. The larfesolution of this asymptotically-free model is far less imivthan that of
O(N) sigma model (or other isovector models). Here we study thdiean two-point correlation function
N-1(Tro(0)Td(x)), whered(x) ~ Z-Y2U(x) is the scaling field ant (x) € SU(N) is the bare field. We
express the two-point function in terms of the spectrum efdperator/—d2 /du?, whereu € (—1,1). At short
distances, this expression perfectly matches the result fhe perturbative renormalization group.

PACS numbers: 02.30.1k, 03.70.+k, 11.10.-z

Green'’s functions of quantum chromodynamics (QCD) caneatdiculated at large separations analytically. Curreatily
numerical lattice calculations suffice for this purpose. taother hand, perturbation theory can be used to understeort-
distance behavior in any asymptotically-free theory, sastQCD. In lower dimensions, there are field-theoretic ned&th
asymptotic freedom, which can be studied mathematicallpoAtrivial example is the principal chiral sigma model (RQS
of a matrix fieldU (x) € SU(N), N > 2, wherex’ andx* are the time and space coordinates, respectively. HerdatheN
limit of the PCSM will be considered. The PCSM is a matrix miodet an isovector model (such as théN) or CP(N — 1)
sigma models or the Gross-Neveu model). The PCSM’s &gt has not been solved by saddle-point methods. Its Feynm
diagrams are truly planar, not linear. Finally, the PCSMrmagtrivial field renormalization, even in the larg&limit; this means
that its correlation functions are not those of a free fielbtly, in this limit. In all of these respects, the PCSM resiesCD
substantially better than isovector field theories.

In this letter, an exact expression for a correlation fuorctf the largeN PCSM is studied at short distances, where it is found
to obey a power-law decay law. At large distances, this ¢atioan function has exponential decay. Thus, the solutiearty
illustrates both ultraviolet freedom and an infrared maegs. g-urthermore, the ultraviolet behavior of this nonpeatively-
obtained correlation function has precisely the behavipeeted from the perturbative renormalization group. Tégtio the
short-distance behavior is the spectrum of an interestitegro-differential operator on functions of the openrivaé(—1,1).

The PCSM has the action

S— 2&92 /dzx n*v Trouu (x)TdVU (%), @)
0

wherey,v =0,1,n°=1,n = —-1,n% = n19= 0, wheregy is the coupling (which is held fixed & — ). This action is
invariant under the global transformatiorfx) — Vi .U (X)Vr, for two constant matriced , Vr € SU(N). The renormalized field
operatord®(x) is an average df (x) over a region of sizé, whereA~ < b < m~1, whereA is an ultraviolet cutoff andnis the
mass of the fundamental excitation.

For matrix models in more than one dimension, there is nomgéapproach to summing the planar diagrams. The PCSM,
however, has the virtue of being integrable. Integrabifityot sufficient to determine Green’s functions, althodgh$ matrix
has been known for three deca(?&s [1]. Recently, both inbdigyaand the I/N-expansion were combined to find tNe— oo limit
of Green’s function:ﬂZ]ﬂS]. This was done using Smirnassoms for form factorsﬂ4]. The form-factor bootstrap nmdthas
along historylﬂi]. A detailed comparison of thgN-expansion and form factors of the O(N) sigma model is in @f.

In this letter, we study an exact non-perturbative expeogsgir the two-point function of the scaling fietb(x), found in the
second of Ref.[[2]. The scaling field is normalized bY(0|P(0)pya, |P, 0,81, b1) = N2, 4, Byp,, Where the ket on the right
is a one particler(= 1) state, with rapidityd. This field is a compleXN x N matrix, which is not directly proportional to the
unitary matrixU (x). Nonetheless we writé(x) ~ Z(go,A) ~+/2U (x), which means that (the time-ordering is optional)

% (0] Tr d(x)®(0)T|0) = Z(go,/\)*% (0]Tru (x)U (0)7]0). )

It would be interesting to know the relation of the scalinddfiesed in lattice simulationE|[7] to that defined above, Whinot
yet clear to the author. Particle masses are given by thef@imaila: m = m sin(N~1r)/sin(mN-1), r=1,...,N—1, butin
the largeN limit, only ther = 1, r = N — 1 states (the elementary particle and antiparticle) sarvilhe binding energies of the
other states vanish. The residues of their poles in S-melixents also vanish.

The renormalization factor (@o(A),/\) vanishes ag\ — o and the couplingo(A) runs so that the mass gaggo(A),A) is
independent of\. Form|x| > 1, the expressiof]2) decays exponentially, as expectedindihat form|x| < 1, the time-ordered
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product of two scaling field operators behaves as
1
N (0| 7 Tr CD(X)CD(O)T|O> = Cy(Inm[x|)? +CyInm|x| +Co + O(1/ Inm|x|), (3)

for some constantS,, C;, etc. The leading term is exactly what a perturbative-reradization-group analysis implies. We
consider this to be a striking validation of the form-fadbootstrap.

Let us recall the argument fdrl(3) (see for example, Ref.. [BPr convenience, we perform the Wick rotatidth— ix0, to
obtain the regularized Euclidean correlation funct@®(ix|,A) = N~* (0| .7 Tr ®(x)®(0)"|0). This function and the coupling
go(/\) satisfy the renormalization group equations

dING(RA) L, BN . o 4
W_V(QO)_V190+"'7 anA =B(dg) = —Brgo+--, 4)

respectively. The coefficients of the anomalous dimengigg) and the beta functiof(go) arey; = (N?> —1)/(2nN?) and
B1 =1/(4m). For large/, G(R A) becomes a function of the product of the two varialigRA). Integrating[(#) yields the
leading behavior

G(R,A) ~ C[In(RA)]YV/Ar . (5)

As N — oo, the powery; /31 approaches 2.
The exact Wightman function (in Minkowski spacetime) of {@duct of two fields (that is, with no time-ordering) is
# (x) = N~1(0|Tr ®(x)®(0)|0). This function is|[2]

del glPLx St ey 1
7= [ ;/ a6y [ doy.d>F Ul(ej_ejmzﬂz, (6)

where8; are rapidities angd; = m(cosh8;,sinh6;) are the corresponding momentum vectors,jfer 1,...2l + 1. The right-
hand side off{B) is difficult to evaluate. For spacelike safianx® = 0, it decays exponentially witx'|. Our purpose here to
evaluate[(B) for small timelike separatigh= 0, x> < m~*. For this case, the Wightman function is equal to the tingeced
expectation value on the left-hand side [df (3). HJ. (6) or ppr@ximation to it has not yet been obtained in any program to
solve the largeN PCSM directly from the actioii[1). Perhaps, one day, thishvéldone (a recent proposal is in Ref. [9]).

To study the two-point function at short distances, it isve@rient to Wick-rotate the time variable to Euclidean spase
above. Setting® = 0 and replacing® by iR, R > 0, changes the phases id (6) by eppix — exp—mRcoshd;. We define

=In m—lR. As mR becomes small, expmRcoshg; becomes approximately the characteristic functiof-df, L), equal to unity
for —L < 8 < L and zero everywhere else. This is mathematically similéhédormation of walls in the Feynman-Wilson gas
[|E]. This trick was used to find the scaling behavior of Isingdel correlation functionﬁlll] from the exact form farst@].
The short-distance Euclidean two-point function is

1
G(mR) = 5=+ 4n / a6 - / d92'+1 m- ™

Notice that the first term of{6), which is the Wightman functof a free massive field, corresponds to the first terralof (Ml
is the Euclidean correlation function of a massless fielde &pressiori{7) is the partition function of a polymer in & bbsize
2L. The j! atom in the polymer chain is located @t There is a long-range potential energy( & — 9j+1)2 + 11%], between
atoms connected on the chain.

It is convenient to rescale the integration variable®py- Luj, so that[(¥) becomes

G(mR) oy + A / dup - / dugi 1 I_ll L T qu (H/L)Z] ’ (8)

There is a close relation between the term¢ bf (8) and thédred-power- Laplace operataf/2 = \/—d?/du2. The spectrum
of A9/2, with reala € (0,2), is a subject of active mathematical mvestlgatl [1][1The self-adjoint extension of the
operatorAY? on u € (—1,1) has an infinite set of discrete eigenvalugs of the eigenfunctiongn(u), n= 1,2 ..., with
0< A1 < Az < ---, with ¢n(41) = 0. Another polymer statistical system in which a fractiopalver of the second derivative
plays a role is described in Re[[lS].

Here is a quick introduction to the operafo¥2, via the Poisson semigroup. Let us forget the restriction to frenanterval
and extend the rapidity variables to the real lireo, ). Consider the transfer operatd?ga), whose matrix elements are
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defined by(u'|P(a)|u) = a(u — u)?+a?| "t 1, whereu’ andu are arbitrary real numbers. These operators form the Roisso
semigroupl[13], with the composition lak(a)P(b) = P(a+ b). Specifically,P(a) = exp—aA/?, whereA'? = | /—d2/du2.
Explicitly, the square root of the Laplacian on a functiu), vanishing foru ¢ (—1,1), is [13]

AY2f(u / du' PV % , )

where PV denotes the principal value. This operator hasfanteset of discrete eigenvalugs, of the eigenfunctiongn(u),
AY2¢n = Andn,n=1,2,..., with 0 < Ay < Az < ---, with ¢n(21) = 0. Now foru,u’ € (—1,1), we define the operatét(L) by

1
L{(u—u)?+ (/L))

Then [9), [(ID) and a straightforward calculation show tét) is an approximation ta'/2, i.e., H(L) = A2+ O(1/L), with
spectrum

= (U]e D). (10)

1
H(L)$n(u,L) = An(L)Pn(u,L), '/7ldu|qh(u, L)[2=1, An(L) = An+O(1/L), ¢n(u,L) = ¢n(u) +O(1/L) . (11)
Summing ovet in Eq. (8) yields, from[(Tl1),

1

G(MR) = / du’ / du( ot W / du n(u L) T (12)
Parenthetically, we note thﬁldu @h(u,L) = 0 for evenn. We split [I2) into two sums:
G(MR) = / du ¢n(u L) ! o / du ¢n(u L) ! (13)
n n .
m, <L/2n 1 _ e 2mn/L+O(1/L2) m, >L/2n 1 _ e 2mn/L+O(1/L?)
The second term i {(13) cannot divergeLas: o, hence gives no contribution to eith@y or C,. For
1 L 1
du¢nuL) < - / du¢nuL) =
T, >L/2rr / 1— e 2mhn/L+O(L/L2) )\n>L/2rr l1-et
and the sum ovar on the right-hand side is roughly
/ du ¢n( uL) ~ =
)\n>L/2n
The first term in[(2B) may be expanded in powers df 1o yield
L / 1 L 1 2
— du ¢n(u L) S / du én(u) o(L).
4arm, <L/2n 1—e 2M/LHOULs)  Am, £, )1
Extending the sum ovearfrom zero to infinity gives the leading coefficient [d (3):
(14)

An uPper bound on the Ieadlng coefficie@p is obtained by replacing\, in (I4) by A;, and using completeness:
Snl[Zidugn(u)[©=2. ThusC; < —n2—1 = 0.0219, from the best known value #f = 1.1577, found in the second and third of

Refs. .]. Itis mteresting that without much detailed Whedge of the properties ¢f(L) or of the square root of the Laplacian,
we have established the ultraviolet behavidr (3) of the pmat correlation function. An evaluation 6f would require a better
understanding of the spectrumigfL).

To conclude, we believe the correlators of &) x SU(e0) PCSM are now understood almost as well as those of the Ising
model -] The exacN — o correlation function argued for in Refl | [2] displays massbehavior at large distances. We
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have found precisely the short-distance behavior predlieith the perturbative beta function and anomalous dintensr his
strengthens our confidence in the form factbrs ﬁ], [3], wHed to this result.

It is a pleasure to thank Dr. Axel Cortés Cubero, whose sstimes led to the expressioll (8), and Dr. Timothy Budd for
discussions about the Poisson semigroup and the fractpmvegr Laplacian. This work was supported in part by a greorhf
the PSC-CUNY.

* Electronic address: orland@nbildk

[1] A.M. Polyakov and P.B. Wiegmann, Phys. LeiB1 B(1983) 121; P.B. Wiegmann, Phys. Leittt1 B(1984) 217; E. Abdalla, M.C.B. Ab-
dalla and M. Lima-Santos, Phys. Letd0 B(1984) 71; P.B. Wiegmann, Phys. Let?d2 B(1984) 173; L.D. Faddeev, N.Yu. Reshetikhin,
Ann. Phys.167 (1986) 227. Bethe'é\nsatz for an alternative larg® limit, with vanishing mass gap, is in: V.A. Fateev, V.A. K&oa
and P.B. Wiegmann, Nucl. PhyB.424(1994) 505.

[2] P. Orland, Phys. Red 84 (2011) 105005, (2011); Phys. Ré&¥.86 (2012) 045023.

[3] A. Cortés Cubero, Phys. Rel. 86 (2012) 025025; A. Cortés Cubero and P. Orland, Phys. R&8 (2013) 025044. There is an error in
some of the higher-point form factors in these papers, whashbeen corrected in : A. Cortés Cubero, Phys. R&0 (2014) 065002.

[4] F.A. Smirnov, Form Factors in Completely Integrable Models of Quantum Fidd Theory, Adv. Series in Math. Physl4, World
Scientific (1992).

[5] S.N. Vergeles and V.M. Gryanik, Sov. J. Nucl. Ph28.(1976) 704; P.H. Wiesz, Phys. LeB.67 (1977) 179; M. Karowski and P. Wiesz,
Nucl. PhysB 139(1978) 455.

[6] H.M. Babujian, A. Foerster and M. Karowski, JHEB11(2013) 089.

[7] R. Narayanan, H. Neuberger and E. Vicari, JHE4(2008) 094.

[8] A.M. Polyakov, Gauge Fields and Strings Sections 2.1 and 8.1, Harwood Academic Pulishers, Chi@87)1There is an error in Eq.
(8.36) of Polyakov’s book. The correct result may be foundirRossi and E. Vicari, Phys. RéY.49 (1994) 6072, Eq. (168) and in: P.
Rossi, M. Campostrini and E. Vicari, Phys. R802(1998) 143, Egs. (7.5) and (7.6).

[9] A. Cherman, D. Dorigoni, G.V. Dunne and Ninsal, Phys. Rev. Let.12(2014) 021601.

[10] R.P. Feynman, Phys. Rev. Le28(1969) 1415; K.G. Wilson, Cornell preprint CLNS-131 (197)Proc. Fourteenth Scottish Univer-
sities Summer School in Physic§1973), eds. R.L. Crawford and R. Jennings, Academic Pik&mss,York, 1974.

[11] J.L. Cardy and G. Mussardo, Nucl. Phis340(1990) 387; V.P. Yurov and Al.B. Zamolodchikov, Int. J. Md?hys.A 6 (1991) 3419.

[12] B. Berg, M. Karowski and P. Weisz, Phys. R&v19 (1979) 2477; T.T. Wu, B.M. McCoy, C.A. Tracy and E. Barouchy®. RevB 13
(1976) 316; M. Sato, T. Miwa and M. Jimbo, Proc. Japan A&8dA (1977) 6; Publ. RIMS, Kyoto Univ16 (1980), 531; B. Schroer and
T.T. Truong, Nucl. PhysB 144(1978) 80.

[13] J. Elliott, Trans. Amer. Math. So@6 (1954) 300; J. Elliott and W. Feller, Trans. Amer. Math. S82(1956) 392; R. Bahuelosa and T.
Kulczycki, J. Funct. Anal211 (2004) 355; J. Funct. AnaR34 (2006) 199; A. Zoia, A. Rossi and M. Kardar, Phys. REV/6 (2007)
021116; E. Katzav and M. Adda-Bedia, J. Ph4st1 (2008) 02202.

[14] T. Kulczycki, M. Kwasnicki, J.Matecki, A. Stos, Protondon Math. Soc101(2) (2010) 589; M. Kwasnicki, J. Funct. An&62(2012)
2379; E. Katzav and M. Adda-Bedia, Eur. Phys. L8&(2008) 30006.

[15] R.D. Pisarski, Phys. Rei2 34 (1986) 670 (R).


mailto:orland@nbi.dk

	 References

