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Seeing asymptotic freedom in an exact correlator of a large-N matrix field theory
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Exact expressions for correlation functions are known for the large-N (planar) limit of the(1+1)-dimensional
SU(N)×SU(N) principal chiral sigma model. These were obtained with the form-factor bootstrap, an entirely
nonperturbative method. The large-N solution of this asymptotically-free model is far less trivial than that of
O(N) sigma model (or other isovector models). Here we study the Euclidean two-point correlation function
N−1〈TrΦ(0)†Φ(x)〉, whereΦ(x) ∼ Z−1/2U(x) is the scaling field andU(x) ∈ SU(N) is the bare field. We
express the two-point function in terms of the spectrum of the operator

√

−d2/du2, whereu ∈ (−1,1). At short
distances, this expression perfectly matches the result from the perturbative renormalization group.

PACS numbers: 02.30.lk, 03.70.+k, 11.10.-z

Green’s functions of quantum chromodynamics (QCD) cannot be calculated at large separations analytically. Currently, only
numerical lattice calculations suffice for this purpose. Onthe other hand, perturbation theory can be used to understand short-
distance behavior in any asymptotically-free theory, suchas QCD. In lower dimensions, there are field-theoretic models with
asymptotic freedom, which can be studied mathematically. Anontrivial example is the principal chiral sigma model (PCSM)
of a matrix fieldU(x) ∈ SU(N), N ≥ 2, wherex0 andx1 are the time and space coordinates, respectively. Here, thelarge-N
limit of the PCSM will be considered. The PCSM is a matrix model, not an isovector model (such as the O(N) or CP(N −1)
sigma models or the Gross-Neveu model). The PCSM’s large-N limit has not been solved by saddle-point methods. Its Feynman
diagrams are truly planar, not linear. Finally, the PCSM hasnontrivial field renormalization, even in the large-N limit; this means
that its correlation functions are not those of a free field theory, in this limit. In all of these respects, the PCSM resembles QCD
substantially better than isovector field theories.

In this letter, an exact expression for a correlation function of the large-N PCSM is studied at short distances, where it is found
to obey a power-law decay law. At large distances, this correlation function has exponential decay. Thus, the solution clearly
illustrates both ultraviolet freedom and an infrared mass gap. Furthermore, the ultraviolet behavior of this nonperturbatively-
obtained correlation function has precisely the behavior expected from the perturbative renormalization group. The key to the
short-distance behavior is the spectrum of an interesting integro-differential operator on functions of the open interval (−1,1).

The PCSM has the action

S =
N

2g2
0

∫

d2x ηµν Tr∂µU(x)†∂νU(x), (1)

whereµ ,ν = 0,1, η00 = 1, η11 = −1, η01 = η10 = 0, whereg0 is the coupling (which is held fixed asN → ∞). This action is
invariant under the global transformationU(x)→VLU(x)VR, for two constant matricesVL,VR ∈ SU(N). The renormalized field
operatorΦ(x) is an average ofU(x) over a region of sizeb, whereΛ−1 < b ≪ m−1, whereΛ is an ultraviolet cutoff andm is the
mass of the fundamental excitation.

For matrix models in more than one dimension, there is no general approach to summing the planar diagrams. The PCSM,
however, has the virtue of being integrable. Integrabilityis not sufficient to determine Green’s functions, although the S matrix
has been known for three decades [1]. Recently, both integrability and the 1/N-expansion were combined to find theN →∞ limit
of Green’s functions [2], [3]. This was done using Smirnov’saxioms for form factors [4]. The form-factor bootstrap method has
a long history [5]. A detailed comparison of the 1/N-expansion and form factors of the O(N) sigma model is in Ref.[6].

In this letter, we study an exact non-perturbative expression for the two-point function of the scaling fieldΦ(x), found in the
second of Ref. [2]. The scaling fieldΦ is normalized by〈0|Φ(0)b0a0|P,θ ,a1,b1〉= N−1/2δa0a1δb0b1, where the ket on the right
is a one particle (r = 1) state, with rapidityθ . This field is a complexN ×N matrix, which is not directly proportional to the
unitary matrixU(x). Nonetheless we writeΦ(x) ∼ Z(g0,Λ)−1/2U(x), which means that (the time-ordering is optional)

1
N

〈

0|Tr Φ(x)Φ(0)†|0
〉

= Z(g0,Λ)−1 1
N

〈

0|Tr U(x)U(0)†|0
〉

. (2)

It would be interesting to know the relation of the scaling field used in lattice simulations [7] to that defined above, which is not
yet clear to the author. Particle masses are given by the sineformula:mr = m sin(πN−1r)/sin(πN−1), r = 1, . . . ,N −1, but in
the large-N limit, only ther = 1, r = N −1 states (the elementary particle and antiparticle) survive. The binding energies of the
other states vanish. The residues of their poles in S-matrixelements also vanish.

The renormalization factor Z(g0(Λ),Λ) vanishes asΛ → ∞ and the couplingg0(Λ) runs so that the mass gapm(g0(Λ),Λ) is
independent ofΛ. Form|x|≫ 1, the expression (2) decays exponentially, as expected. Wefind that form|x|≪ 1, the time-ordered
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product of two scaling field operators behaves as

1
N

〈

0| T Tr Φ(x)Φ(0)†|0
〉

=C2(lnm|x|)2+C1 lnm|x|+C0+O(1/ lnm|x|), (3)

for some constantsC2, C1, etc. The leading term is exactly what a perturbative-renormalization-group analysis implies. We
consider this to be a striking validation of the form-factorbootstrap.

Let us recall the argument for (3) (see for example, Ref. [8]). For convenience, we perform the Wick rotationx0 → ix0, to
obtain the regularized Euclidean correlation functionG(|x|,Λ) = N−1

〈

0| T Tr Φ(x)Φ(0)†|0
〉

. This function and the coupling
g0(Λ) satisfy the renormalization group equations

∂ lnG(R,Λ)
∂ lnΛ

= γ(g0) = γ1g2
0+ · · · ,

∂g2
0(Λ)

∂ lnΛ
= β (g2

0) =−β1g4
0+ · · · , (4)

respectively. The coefficients of the anomalous dimensionγ(g0) and the beta functionβ (g0) areγ 1 = (N2 − 1)/(2πN2) and
β1 = 1/(4π). For largeΛ, G(R,Λ) becomes a function of the product of the two variablesG(RΛ). Integrating (4) yields the
leading behavior

G(R,Λ)∼C[ln(RΛ)]γ1/β1 . (5)

As N → ∞, the powerγ1/β1 approaches 2.
The exact Wightman function (in Minkowski spacetime) of theproduct of two fields (that is, with no time-ordering) is

W (x) = N−1〈0|Tr Φ(x)Φ(0)†|0〉. This function is [2]

W (x) =
∫ ∞

−∞

dθ1

4π
ei p1·x +

1
4π

∞

∑
l=1

∫ ∞

−∞
dθ1 · · ·

∫ ∞

−∞
dθ2l+1ei ∑2l+1

j=1 p j ·x
2l

∏
j=1

1
(θ j −θ j+1)2+π2 , (6)

whereθ j are rapidities andp j = m(coshθ j,sinhθ j) are the corresponding momentum vectors, forj = 1, . . .2l +1. The right-
hand side of (6) is difficult to evaluate. For spacelike separationx0 = 0, it decays exponentially with|x1|. Our purpose here to
evaluate (6) for small timelike separationx1 = 0, x0 ≪ m−1. For this case, the Wightman function is equal to the time-ordered
expectation value on the left-hand side of (3). Eq. (6) or an approximation to it has not yet been obtained in any program to
solve the large-N PCSM directly from the action (1). Perhaps, one day, this will be done (a recent proposal is in Ref. [9]).

To study the two-point function at short distances, it is convenient to Wick-rotate the time variable to Euclidean spaceas
above. Settingx1 = 0 and replacingx0 by iR, R > 0, changes the phases in (6) by expip j · x → exp−mRcoshθ j. We define
L = ln 1

mR . As mR becomes small, exp−mRcoshθ j becomes approximately the characteristic function of(−L,L), equal to unity
for −L < θ < L and zero everywhere else. This is mathematically similar tothe formation of walls in the Feynman-Wilson gas
[10]. This trick was used to find the scaling behavior of Ising-model correlation functions [11] from the exact form factors [12].
The short-distance Euclidean two-point function is

G(mR) =
L
2π

+
1

4π

∞

∑
l=1

∫ L

−L
dθ1 · · ·

∫ L

−L
dθ2l+1

2l

∏
j=1

1
(θ j −θ j+1)2+π2 . (7)

Notice that the first term of (6), which is the Wightman function of a free massive field, corresponds to the first term of (7) which
is the Euclidean correlation function of a massless field. The expression (7) is the partition function of a polymer in a box of size
2L. The jth atom in the polymer chain is located atθ j. There is a long-range potential energy ln[(θ j − θ j+1)

2+π2], between
atoms connected on the chain.

It is convenient to rescale the integration variables byθ j = Lu j, so that (7) becomes

G(mR) =
L

2π
+

L
4π

∞

∑
l=1

∫ 1

−1
du1 · · ·

∫ 1

−1
du2l+1

2l

∏
j=1

1
L[(u j − u j+1)2+(π/L)2]

. (8)

There is a close relation between the terms of (8) and the fractional-power-Laplace operator∆1/2 =
√

−d2/du2. The spectrum
of ∆α/2, with real α ∈ (0,2), is a subject of active mathematical investigation [13], [14]. The self-adjoint extension of the
operator∆1/2 on u ∈ (−1,1) has an infinite set of discrete eigenvaluesλn, of the eigenfunctionsϕn(u), n = 1,2, . . . , with
0< λ1 < λ2 < · · · , with ϕn(±1) = 0. Another polymer statistical system in which a fractionalpower of the second derivative
plays a role is described in Ref. [15].

Here is a quick introduction to the operator∆1/2, via the Poisson semigroup. Let us forget the restriction to the open interval
and extend the rapidity variables to the real line(−∞,∞). Consider the transfer operatorsP(a), whose matrix elements are
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defined by〈u′|P(a)|u〉 = a[(u′− u)2+ a2]−1π−1, whereu′ andu are arbitrary real numbers. These operators form the Poisson
semigroup [13], with the composition lawP(a)P(b) = P(a+ b). Specifically,P(a) = exp−a∆1/2, where∆1/2 =

√

−d2/du2.
Explicitly, the square root of the Laplacian on a functionf (u), vanishing foru /∈ (−1,1), is [13]

∆1/2 f (u) =
1
π

∫ 1

−1
du′ PV

f (u′)− f (u)
(u′− u)2 , (9)

where PV denotes the principal value. This operator has an infinite set of discrete eigenvaluesλn, of the eigenfunctionsϕn(u),
∆1/2ϕn = λnϕn, n = 1,2, . . . , with 0< λ1 < λ2 < · · · , with ϕn(±1) = 0. Now foru,u′ ∈ (−1,1), we define the operatorH(L) by

1
L[(u− u′)2+(π/L)2]

= 〈u′|e−
π
L H(L)|u〉. (10)

Then (9), (10) and a straightforward calculation show thatH(L) is an approximation to∆1/2, i.e., H(L) = ∆1/2+O(1/L), with
spectrum

H(L)ϕn(u,L) = λn(L)ϕn(u,L),
∫ 1

−1
du |φn(u,L)|

2 = 1, λn(L) = λn +O(1/L), ϕn(u,L) = ϕn(u)+O(1/L) . (11)

Summing overl in Eq. (8) yields, from (11),

G(mR) =
L
4π

∫ 1

−1
du′

∫ 1

−1
du 〈u′ |

1

1− e−2πH(L)/L
| u〉=

L
4π

∞

∑
n=1

∣

∣

∣

∣

∫ 1

−1
du ϕn(u,L)

∣

∣

∣

∣

2 1

1− e−2πλn/L+O(1/L2)
. (12)

Parenthetically, we note that
∫ 1
−1 duφn(u,L) = 0 for evenn. We split (12) into two sums:

G(mR) =
L

4π ∑
λn≤L/2π

∣

∣

∣

∣

∫ 1

−1
du ϕn(u,L)

∣

∣

∣

∣

2 1

1− e−2πλn/L+O(1/L2)
+

L
4π ∑

λn>L/2π

∣

∣

∣

∣

∫ 1

−1
du ϕn(u,L)

∣

∣

∣

∣

2 1

1− e−2πλn/L+O(1/L2)
. (13)

The second term in (13) cannot diverge asL → ∞, hence gives no contribution to eitherC1 or C2. For

L
4π ∑

λn>L/2π

∣

∣

∣

∣

∫ 1

−1
du ϕn(u,L)

∣

∣

∣

∣

2 1

1− e−2πλn/L+O(1/L2)
.

L
4π ∑

λn>L/2π

∣

∣

∣

∣

∫ 1

−1
du ϕn(u,L)

∣

∣

∣

∣

2 1
1− e−1 ,

and the sum overn on the right-hand side is roughly

∑
λn>L/2π

∣

∣

∣

∣

∫ 1

−1
du ϕn(u,L)

∣

∣

∣

∣

2

∼
1
L
.

The first term in (13) may be expanded in powers of 1/L to yield

L
4π ∑

λn≤L/2π

∣

∣

∣

∣

∫ 1

−1
du ϕn(u,L)

∣

∣

∣

∣

2 1

1− e−2πλn/L+O(1/L2)
=

L
4π ∑

λn≤L/2π

∣

∣

∣

∣

∫ 1

−1
du ϕn(u)

∣

∣

∣

∣

2 L
2πλn

+O(L).

Extending the sum overn from zero to infinity gives the leading coefficient in (3):

C2 =
1

8π2

∞

∑
n=1

∣

∣

∣

∣

∫ 1

−1
du ϕn(u)

∣

∣

∣

∣

2

λ−1
n . (14)

An upper bound on the leading coefficientC2 is obtained by replacingλn in (14) by λ1, and using completeness:
∑n |

∫ 1
−1 duφn(u)|2 = 2. ThusC2 <

1
4π2λ1

= 0.0219, from the best known value ofλ1 = 1.1577, found in the second and third of

Refs. [14]. It is interesting that without much detailed knowledge of the properties ofH(L) or of the square root of the Laplacian,
we have established the ultraviolet behavior (3) of the two-point correlation function. An evaluation ofC1 would require a better
understanding of the spectrum ofH(L).

To conclude, we believe the correlators of SU(∞)×SU(∞) PCSM are now understood almost as well as those of the Ising
model [12]. The exactN → ∞ correlation function argued for in Ref. [2] displays massive behavior at large distances. We
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have found precisely the short-distance behavior predicted with the perturbative beta function and anomalous dimension. This
strengthens our confidence in the form factors [2], [3], which led to this result.

It is a pleasure to thank Dr. Axel Cortés Cubero, whose suggestions led to the expression (8), and Dr. Timothy Budd for
discussions about the Poisson semigroup and the fractional-power Laplacian. This work was supported in part by a grant from
the PSC-CUNY.
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