arXiv:1410.3642v2 [math.CA] 17 Apr 2016

VARIABLE EXPONENT SOBOLEV SPACES ASSOCIATED WITH JACOBI
EXPANSIONS

V. ALMEIDA, J.J. BETANCOR, A.J. CASTRO, A. SANABRIA, AND R. SCOTTO

ABsTRACT. In this paper we define variable exponent Sobolev spaces associated with Jacobi ex-
pansions. We prove that our generalized Sobolev spaces can be characterized as variable exponent
potential spaces and as variable exponent Triebel-Lizorkin type spaces.

1. INTRODUCTION

Sobolev spaces associated with orthogonal systems have been studied in the last years. Bon-
gioanni and Torrea (|8 and [9]) defined Sobolev spaces in the Hermite and Laguerre settings.
Sobolev spaces associated with ultraspherical expansions were investigated by Betancor, Farina,
Rodriguez-Mesa, Testoni and Torrea [5]. The study in [5] was extended recently to Jacobi expan-
sions by Langowski [24].

In this paper we define variable exponent Sobolev spaces in the Jacobi context. We now describe
our main results.

Consider a measurable function p : @ € R® — [1,00). By LP()(Q) we denote the variable
exponent Lebesgue space that consists of all those measurable functions on 2 such that for some

A>0
(z)
/ <f(>\x)|)p dx < oco.
Q

It is a Banach space with the Luxermburg norm defined by
. 2\ @) .
111z g = inf {)\ S0 / ('Jﬁ”) dr <1y, ferrt).
Q

By p/(-) we represent the conjugate variable exponent. A complete study of LP()-spaces can be
found in [I7].
We define P(2) as the set of measurable functions p: © — [1,00) such that

p— =essinf{p(zx) : z€Q} >1 and  p; =esssup{p(z) : z € N} < 0.
The Hardy-Littlewood maximal operator M is defined as

M) =sw [ fwis, zee
B>z |B | B
The set B in the supremum represents a ball and |B| denotes its Lebesgue measure.
We define B(2) as the subset of P(2) that consists of all those measurable functions p such that
the maximal operator M is bounded from LP()(Q) into itself. Diening [I6, Theorem 3.5] proved
that if Q is a bounded subset of R™, p € P(Q2) and there exists C' > 0 such that

1) Ip(z) — ()] < ——2

<——— zyeQ, [z—y| <1/2,
—log|z —y|

then p € B(2).
Many classical operators in harmonic analysis (maximal operator, singular integrals, Fourier
multipliers, commutators, fractional integrals, ...) have been studied in variable LP()-spaces (see,

for instance, [15], [I7], [18] and [39]).
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Let k € N, where by N we represent the set of positive integer with zero included, and p € P(Q).
A measurable function f on € is in the generalized Sobolev space W) (Q) if its weak partial
derivatives D*f € LP()(Q), « € N” and 0 < |a| < k. The norm in W) (Q) is defined by

k
I fllwrser ) = Y ID* flosory,  f € WHPO(Q).
|a|=0

It turns out that W*?()(Q) is a Banach space.

Variable exponent Sobolev spaces W*?()(Q) have been studied by a lot of authors in this century.
Applications of these generalized Sobolev spaces can be seen in [I7, Part III].

Now we turn to the Harmonic Analysis associated with the Jacobi differential operator L, g for
a, B > —1, which is defined as

2 1-4a® 1-482

S de? 1651112% a 16(:052g7

This type of analysis has emerged as a prolific area of interest (see [I], [12], [13], [24], [25], [26], [34],
[37] and [42], amongst others).
The Jacobi operator admits the following decomposition

Lypg= on (0,7).

i a+B+1\°
where
d 2a+1 6 2841 0
D, g—=— — t~ tan —
5= g g COtg Tty

_ (Sin g>a+1/2 (COS g)ﬁﬂmd% [(Sin g)fa71/2<cos 2)7571/2}7

and Dy, 5 is the formal adjoint of Dy g in L?(0,7). When o = 3 the Jacobi operator L, s reduces
to the ultraspherical operator Ly, A = « + 1/2, considered in [5]. According to [43], (4.24.2)] we
have that, for every n € N,

La,,@ébﬁ’ﬁ — )\%’Bdﬁ’ﬁ,
where 27 = (n + %B‘H)Z and
O a+1/2 O\ B+1/2
¢2P(0) = (sin 5) (cos 5) PePB), 0€(0,m).
If p# denotes the n-th Jacobi polynomial considered in Szegd’s monograph, then P2# = d2-8pe:f

where d%? is a normalization constant, for every n € N. The system {¢%#},cy is orthonormal and
complete in L?(0, 7). We define the Jacobi operator £, s by

Lagl =Y NPl (Non?,  fe D(Lap)-

n=0

Here, for every f € L?(0,7) and n € N,

B (f) = / " 6290 £(6)db,

and by D(L,,3) we denote the domain of £, g given by

oo

D(Lap) ={f € L*(0,m) = Y (Av")?len ()P < oo}

n=0

Note that C2°(0,7), the space of smooth function with compact support in (0, 7), is contained in
D(L,p) and hence,

Lopf=Lapgf, feCZ(0,n).

L, is a positive and selfadjoint operator in L?(0, 7). Let us note that —L, g generates a semigroup
of operators {Wta’ﬂ}bo in L2(0, 7) where, for every t > 0,

a G AP o «
Wil P =Y "e"™ e (f)ea?,  feLX0,m).

n=0
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Moreover, for every t > 0 and f € L?(0, ),

WP f(6) /W“ﬁew f(p)de, 0 € (0,m),
where

Wi (0,9 Z e 928 (0)92P (9), 8, € (0,7) and > 0.

{WP},5 is called the heat semigroup associated with the Jacobi operator Lo p. By {PPPY 0
we denote the Poisson semigroup defined by L, g. According to the subordination formula, we can
write, for every t > 0 and f € L?(0, ),

PO = [P0 Gp 0 0,

0

where

(2) P20, ) = WP (0, 0)du, 6,¢ € (0,7).

/47r / u3/2

Jacobi Sobolev spaces were studied by Langowski [24]. We now introduce variable exponent
Jacobi Sobolev spaces. Assume that p € P(0,7) and k € N. We say that a measurable function

f € LPO)(0,7) is in the variable Jacobi Sobolev space W, ’p( )(0,7) if DY 5f € LPO(0,7), for every
leN,0<l<k, Wlth]D)g”Bf fand for £ > 1,

]D)g B = DQ_H_LB_H_l o ... © Da+17ﬂ+1 e} Da,g,

is understood in a weak sense. On W’ ’p ¢ )(0, m) we consider the norm defined by

k

10 0,0y = Il 0.m) + D I s oo 0y | €W, 200, ).
=1

Thus, W, ’p( )(0 7) becomes a Banach space. See the discussion in [24] (and also in [5]) for the use
of the derlvatlves Da’ﬁ, instead of the more natural choice Dg’ﬁ =Dgpo ... 0Dgg.
Let v > 0 and assume that o + 8 # —1. The negative power C;}i of Lo, is given by

(3) Losf= i M) e (Hen?, f € L2(0,m).

n=0
E;}; defines a one to one and bounded operator from LP() (0, 7) into itself (see Propositions [3.3{and
below). The variable exponent Jacobi potential space Hg:g(') (0,7) consists of all those functions
f € LPO(0, ) such that f = £_ g for some (unique) g € LP1)(0, 7). We considerer in Hg;f;(')(o, )
the following norm

10720 0, = N9lliroo0ms  F = L2759 € HIED(0,m).

Endowed with this norm ng;(')(o, 7) is a Banach space.
The variable exponent version of |24, Theorem A] is given in the following theorem.

Theorem 1.1. Let a, f > —1/2 such that a4+ 8 # —1 and k € N, k > 1. Assume that p € B(0, ).
Then, Hi{g’p(')(o,w) = Wolf Z( )(0 7). Moreover, the norms || - ||H§7/§,p<‘)(0m) and || - ||Wj;§(')(0,n) are
equivalent.

The proof of Theorem [1.1]is done in several steps. For a suitable function p we will prove.
(a) The linear subspace Sayg = span{¢2?} is dense in both Wa:g( )(0,7) and Hz)/g’p( (0, ).
(b) The higher order Jacobi-Riesz transforms defined by

(4) RE =Dk ;£ %% and REL =DENL N2, kel

are bounded operators on LP)(0, 7).
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(c) We define a multiplier operator m(ﬁa 5) in such a way that

m(Ley )Rk *RF sf=rf- an B(fe>P,  for all f € S, p,

and prove its boundedness on Lp(')((), ).
(d) For every v > 0, the potential operator L is also bounded on LPO(0, 7).

According with [I5] in order to get the boundedness of operators defined on LPO)(0,7) it is
sufficient to prove boundedness of them on the weighted L"-spaces, L[, (0, 7) for every w € A,.(0, ),
the class of Muckenhoupt weights , and some 1 < r < co. Let us note that, taking into account
[15, Theorem 1.2], we can change the condition "p € P(0, ) and for some pg € (1,p_), (p(-)/po)’ €
B(0,7)" used in [I5, Theorem 1.3] by p € B(0,7), because if p € B(0,7) there exists an extension
p € B(R) of p from (0, 7) to R.

Once of all this has been proved, the proof of Theorem [I.1]is as follows:

From assertion (a) it is enough to prove the equivalence of norms for functions in S, 5. Let us

take then f,g € S, g such that f = E;}kmg. From assertions (b) and (c) we get
k%
lolo0r0.m) <C(Im(La ) RESDE o fll o0 + 11000 01m))

<C(IIDE 5 r>0.m) + Il r00.m))-
Thus, we obtain
11l 27200 0,y < CllSllyrrno o.)-
On the other hand, by using assertions (b) and (d), for every m € N such that 0 < m <k,

105 51l v 0,m) =IDE 6Lt gl 0m) = IR LLS ™™ gl o2 0.m) < Cllgllncs o,m)-
Hence,
||f||W§:§(->(O)Tr) < C||f||H§{§"’(')(o,7r)'
We now define the positive power of the Jacobi operator £, g according to the ideas of Lions

and Peetre [27, Chapter VII, Section 2] and Berens, Butzer and Westphal [2]. Let v > 0 and choose
r € N such that v < r < v+ 1. For every ¢ > 0 and f € LP()(0, 7r), we define

> (I —Wah)"
(5) Igﬂ"f:C’%r/ Mdu,

u'Y+1

—1
oo 1 _ pu)\Tr

where the integral is understood in the LP()-Bochner sense and C. , = ( / (Afil)du> .
0 u

Note that, for every f € LP()(0, ),
/C>C | (1 —=wgf) Fllze 0,m)
€

e du < .
U

Moreover, the operator I2°" is bounded from LP()(0, ) into itself (Proposition [5.1). We consider
the domain of £],

Dp(_)(llzéﬁ) = {f e LPO(0,7) : lim I7"f exists in LPC )(0,71')},

e—0t

and we define

(© £l = lim IV, f € Dyy(LL ).

As it will be shown in Section [5] in the definition of Elﬁ we can take any r € N, r > . Next, we
characterize the Jacobi potential space Hg:g(')(O, 7) as the domain of Eg’ 5

Theorem 1.2. Let v > 0 and o, > —1/2 such that o+ 8 # —1. Assume that p € B(0, 7). Then,
Hg:g(')(O,w) = Dp(.)(ﬁlﬁ). Moreover, for every f € Dp(_)(ﬁgﬁ),

LoBL) sf =1,
and, for every f € LP()(0, ),
a ,8 «@ Bf f
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Segovia and Wheeden [40] characterized potential spaces by using Littlewood-Paley square func-
tions. In order to do this they introduced square functions involving fractional derivatives of the
classical Poisson semigroup. Inspired by [40], Betancor, Farina, Rodriguez-Mesa, Testoni and Tor-
rea obtained characterizations using vertical and area Littlewood-Paley functions for the potential
spaces associated with the Hermite and Ornstein-Uhlenbeck operators ([6]) and Schrédinger opera-
tors ([4]). We will characterize our variable exponent Jacobi potential spaces by using Littlewood-
Paley function defined via derivatives of the Jacobi-Poisson semigroup.

Let v > 0 and k£ € N such that 0 < v < k. We consider the following Littlewood-Paley function

2t

1/2
, > , 0€(0,m).

b = [“|eateene
We say that a measurable function f € LP()(0,7) is in T;”g’p(')(Oﬂr) when ggg(f) € LPO(0, 7).
On Tl’;’p(')((), ) we define the norm

k Jk,p(-
12000 (0.0 = 10000, + 19225l s00 0,0 f € a5 (0,).

Thus, T;”g’p(')(O, 7) is a Banach space.
The space T(Z’g’p (')(O, 7), which can be seen as a variable exponent Triebel-Lizorkin type space,

coincides with the variable exponent potential space Hg/ 52 »0) (0, 7).

Theorem 1.3. Let o, > —1/2 such that a + f # —1 and 0 < v < k, k € N. Assume that

p € B(0,7). Then, Hgfg*p(')(o,w) = Tg;g”’(')(o,w). Moreover, the norms || - and

||H;{§=P<'>(o,7r)
Il - HTl,’Z’p(')(OW) are equivalent.

Note that from Theorem we deduce that the space Tgvg’p(‘)(o, 7) does not depend on k € N
provided that 0 < v < k. The result in Theorem is new even when p € P(0, ) is constant and
it gives a new characterization of the Jacobi Sobolev spaces introduced in [24].

In order to prove Theorem we need to show that certain square function related to ggig,
which involves fractional derivatives, is bounded on LP()(0,7) . In [40] fractional derivatives were
introduced. Suppose that v > 0 and F is a nice enough function defined in (0,7) x (0,00). The
~-th derivative 9] F is defined by

e—i(m—'y)ﬂ
[(m —7)

where m € N is such that m — 1 <~v <m.
We consider the Littlewood-Paley function g 5 given by

OVF(0,1) = / OMF(0,t +s)s™ " ds, 6€(0,7), t >0,
0

00 = ([ rareemof %), ocom

The key relation between g;];, and glﬁ, 0 < v < k, which allows to connect the spaces H;g’p(')(O, )
and Tl’g’p(')((), ), is the following

9T = glELP ), f € Sag.

In [23] Kyriazis, Petrushev and Xu defined Besov and Triebel-Lizorkin spaces associated with
Jacobi expansions with respect to ((—1,1), (1 —2)%(14z)?dz). We now adapt the Triebel-Lizorkin
definitions given in [23] to our Jacobi expansions in ((0,7),df). We take a function a € C2°(0, c0)
such that suppa C [1/2,2] and inf,c3/5,5/3) [a(t)| > 0. The following construction is independent
of the election of a and, as it is said in [23], we can add the condition that a(¢) + a(2t) = 1 for
t € [1/2,1]. We define the sequence {@?’B}jeN of functions on (0,7)? as follows,

5°(0,0) = 03" (0)05" (), 0,9 € (0,7),

and, for every j € N, j > 1,

o] )\a,ﬁ
a,B _ § n
‘bj (9790) - a<2]‘_1

n=0

)65 )67 (0), 0.0 € (0,7).
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Ify € Rand 0 < p,q < oo, a function f € L'(0, 7) is in the Jacobi-Triebel-Lizorkin space FEP(0,7)
provided that

< 00.
Lr(0,m)

9] 1/
17lrzarom = | (2 @125 (n0)) |

Jj=0

Here, for every j € N,

w7110 = [ 3 0. f)dp. 0e 0.7

It would be interesting to investigate Jacobi-Triebel-Lizorkin spaces with variable exponent in the
((=1,1), (1 = x)*(1+x)?dz) and ((0,7),df) settings. This question will be considered on its whole
generality in a forthcoming paper. Here we only introduce Jacobi-Triebel-Lizorkin spaces with
v > 0, ¢ = 2 and variable exponent p(-). Assume that p € P(0,7). A function f € LP()(0,7) is in
F;;;’P("(o, ) when

< 0.
Lr()(0,m)

@237 (n))?) |

s

Il
=]

£l 2500 0,0 = ||
J

In the following theorem we identify the variable exponent Jacobi-Triebel-Lizorkin space F| ;’;’p ©) (0,7)
with the potential space Hg’g(‘)(O, ).

Theorem 1.4. Let o, > —1/2 and v > 0. Assume that p € B(0,7). Then, H;’:g(')(Oﬂr) =

F;”;’p(')((),ﬂ). Moreover, the norms || - ||H7,p<.>(0m) and || - ||F7,2,p<.)(077r) are equivalent.

Note that as a special case of Theorem |1 We establish that the Jacobi potential space H_’ (0 )

considered by Langowski ([24]) coincides with the Jacobi-Triebel-Lizorkin space F| 3,2’9 (0, 7r) for
every 1 < p < oo.
The paper is organized as follows. In Sections and [4| we prove that assertions (a), (b), (c)
and (d) are true. Theorems and are proved in Sections |§| and |7} respectively.
Throughout this paper by C' and ¢ we always denote positive constants that can change in each
occurrence.

2. DENSE SUBSPACES

This section deals with the proof of the Wf:g(')—density of S, g claimed in assertion (a) of Section

m

Assume that p € P(0,7). According to [I7, Theorem 3.4.6] the space L ()(0, ) is isomorphic
to the dual space (LP()(0,7))* of LP()(0, 7). On the other hand, for every k € N, (bz’ﬁ € L>(0, ).
Then, qﬁg’ﬁ e LP'0(0,7), k € N (JI7, Theorem 3.3.11]). We define, for every f € LP()(0,7) and

k e N,
~ [ oo
0
By [17, Theorem 3.4.12] the space C2°(0,7) is dense in LP()(0, ).

Proposition 2.1. Let o, > —1/2 and p € P(0, 7). The space Sy 5 = span{q{)g’ﬁ}keN is dense in
PO (0, ).

Proof. Since C(0,7) is a dense subspace of LP()(0,7), it is sufficient to see that C°(0,7) is
contained in the closure of S, 5 in LPO)(0,7). Let g € C(0,7). By using integration by parts
we deduce that, for every m € N, there exists Cy, > 0 such that |cz"ﬁ(g)\ < Cp(k+1)"™ keN.
Hence,

Blg) = Zcz”g(g)qbz’ﬁ — g, asn— oo, in L>®(0,7).

Hence, according to [I7, Theorem 3.3.11], S&%(¢) — ¢, as n — oo, in LPC)(0, ). O

Corollary 2.1. Let o, 3 > —1/2 and p € P(0,7). If f € L*)(0,7) and cz’ﬁ(f) =0, k €N, then
f=0.
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Proof. Since p € P(0,7), p' is also in P(0, 7). Then, by Proposition Sa,p is dense in Lpl(')(O, ).
Assume that f € LP()(0,7) is such that cg‘ﬂ(f) =0, k € N. The norm conjugate formula ([I7,
Corollary 3.2.14]) leads to

/O " F(0)g(0)d0 = 0,

for every g € L? ()(0,7). By using again the norm conjugate formula (duality) we conclude that
f=0. O

We can improve the result in Proposition 2.1 when the function p(-) satisfies additional conditions.
According to [30, Theorem 1], if 1 < p < oo and f € LP(0, ), then

n
_ 1 o, a,B
f=lim » P (N)e,
k=0
where the convergence is understood in LP(0,7). We now establish this property in L (0, ),

1 <p<ooand w e A,(0,7), and in LP()(0,7) when the function p(-) is as in [I5, Theorem 1.3].

Proposition 2.2. Let o, > —1/2.
(1) If1<p<oo and w € Ap(0,7), there exists C' > 0 such that, for every n € N,

| nee]

k=0

<C p s e LP(0,7),
o) Hf”Lw(O,ﬂ') f P.(0,7)

and N
Jim S (Ner’ = £, f € L (0,m),
k=0
in the sense of convergence in LP (0, 7).
(#i) Assume that p € B(0,7). Then, there exists C > 0 such that, for everyn € N,

| > er e < Clflproromy € L70(0,m),
k=0

Lr()(0,m) -

and .
: o, a,f p(+)
nh_)rréo ,;_Ock (Hon fy feLPY(0,n),

in the sense of convergence in LPC)(0, ).

Proof of Proposition (i). In order to prove this property we proceed as in the proof of [22]
Theorem 2]. Let 1 < p < co and w € A,(0, 7). Suppose that f € L? (0,7) and n € N. We define

Suf(0) =D’ (NeR7(0), 0 € (0,m).
k=0
As in [22) p. 13] we have that

3
(7) Suf(0)] < CY TP f(0), 6€(0,m),
=1

where the operators Jf"ﬁ’", { =1,2,3 can be estimated as follows. Firstly, for J*7™ we get

. +1/2 B+1/2
Jlavﬁ,nf(g) <C (Sln g)o{ (COS%)

)(1+1/2(C0Sg+#)5+1/2

n @ o 1
(bm 2 T ntl

n+1
R R
0 (sin% + %H)QH/Q(COS% + n%rl)

sl (@)ldg

<c / f(@)lde. € (0,).

Then, Holder’s inequality implies that
® [ e spaters < c [ @)oo,
0 0

because LP (0,7) C L*(0, ).
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For J3" A1 the following estimate holds

a+1/2 B+1/2
J;"B’"f(ﬁ) < C (Sl 5) (COS g)

- 1/2 1/2
(sin g +n-1+1>cwr (cos §+ i) o
| [ s (s )"0 )"
0 Wﬁw$nﬁ£@m§+%ywm(o@+ Vﬁﬂnw S

where supcy [bk(9)| < C, ¢ € (0,7). We can write (see [22, p. 14])

sin ¢ 1
= +R(0,p), 0,0¢c(0,7), 0 ,
sin“‘T“’sine_T‘p sine_T“” (6:) pe(0m), 67
being
1
—, 0<f<7/2
sing +sin £ ™/
|R(0,0)| < C . ¢ € (0,m).

- w/2<0<m,

cosg +cos & ™/ i
Thus, by defining

a+3/2 B+3/2

(Sl ) (cos %)
9(p) = 2 bu()f(9), @€ (0,m),
(sin€ 4+ L)%™ (cos £ 4 1)7+3/2
we obtain
) T30 5(6) < C|[I(Hg) 0)] + S (g)(6) + S*(a) (8)]. 6 € (0.7,
where
(Hg)(6) = P.V. / 9(9) dp, ae. 0 € (0,7),
0 blnT
90 = [ 1D ve ),
0 sing—i—sin%

and

T 9(e)
S? 0:/ —————dp, 0€(0,n).
SO0 = [ e 0O
The operator H is a singular integral operator related to the Hilbert transform and S7, j = 1,2,
are Stieltjes type operators. It is well-known ([21]) that H is bounded from L? (0, 7) into itself. In
|22, Lemma 6] it was established that S and S? are bounded from L? (0,) into itself. Then, (9]
implies that

(10) / T3P £(8)[Pw(0)d6 < c/ 0)|Pw(0)do < 0/ 0)|Pw(0)do.
0

In a similar way we can see

(11) / TSP () [Pu(6)d8 < c/ 0)[Pw(6)do.

By putting together (7)), (8), (10) and (11)) we conclude that
1SnfllLe 0,7 < CllfllLe 0,7)-

Note that the constant C' > 0 does not depend on n € N and f € L2 (0, 7).
Since C¢°(0, ) is a dense subspace of LF (0, 7) and for every h € C2°(0, ),

lim S,h =h, uniformly in(0,7),

n—oo

and hence in L? (0, 7); standard arguments allow us to show that, for every f € L (0, ),

lim S,f=f, in LP(0,7).
n—roo
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Proof of Proposition (#i). From the property established in Proposition (), and according
to [I5, Theorem 1.3] we deduce that there exists C' > 0 such that, for every n € N,
(12) 180 fll 2o 0,0y < ClFlpseromys  f € LPO(0, 7).

By |17, Theorem 3.3.1], C2°(0,7) C LP+(0,7) C LP()(0,7) and the inclusions are continuous.
Hence, for every h € C°(0, ),

lim S,(h) =h, in LPO(0,7).
n—oo
Since C°(0, ) is dense in LP() (0, ) we deduce from that, for every f € LP0)(0,7),
lim S,f=f, in LPV(0,7).
n— oo

We are going to see that S, g is a dense subspace of WS’Z(')(O, ).

Proposition 2.3. Let o, > —1/2, k € N and p € B(0,7). Then, Sap is a dense subspace of
W£7’g(')(07w).
Proof. We proceed following the ideas in the proof of [5, Proposition 2] (see also [24, Proposi-
tion 3.2]). Note firstly that, since LP()(0,7) C LP~(0,7) (|7, Theorem 3.3.1]), W25 (0,7) C
Wo’i’g’ (0,7), where the last Sobolev type space Woli’g’ (0,7) (with constant exponent p_) was stud-
ied by Langowski [24].

Let f € Wj:g(')((), 7). The maximal operator W associated with {W**},¢ is defined by

WeB(f) = sup [WP(£)].

>0
According to [36, Theorem A, and (3)] we have that
e—c(0—¢)%/t

(13) (W (0, ¢)] < CT’

0, € (0,m) and ¢ > 0.

From we deduce that

WP (f) < OM.(f),
where M, denotes the centered Hardy-Littlewood maximal operator. Then, by [I7, Theorem 4.3.8]
W is a bounded (sublinear) operator from Lt (0, ) into itself. It is clear that, for every ¢ € S, 3,

lim WP (¢) =, in LPO(0, 7).
t—0+t
Then, since S, 3 is dense in L) (0, ) (Proposition , we obtain that,
lim WoP(f) = f, in LPO(0, 7).
t—0+t
By [24, Lemmas 3.1 and 3.3]
(14) &P DY 5f) = (1) (m+ Delm+ L+ a+ B+ 1), 55,(f), €meN, 0<l<k
Here and in the sequel we denote by (2)g, z > 0, the £-Pochhammer symbol, that is,
(15) (2)e=2(z+1)---(2+£€—1), £eN, £>1 and (z)=1.

By taking into account [24, (1)] we can differentiate term by term inside the series and [24]
Lemma 3.1] and lead to

o
¢ , —tAYP ¢ ,
Da,ﬁWta ﬁf = Z € P C%B(f) Da,ﬁd);lnﬁ

m=0
oo

= > e = Dlm - a+ B+ D () 630
m={

o0
_ — AP atl,B+L (e a+0,84+L
- Z € " Co—y (Da,,@f) quf@
m=4~
o0

_ Z e_tATan+l,B+€c%+€,,3+Z (D(l;ﬁf) (b%-l-&ﬁ-’-f’ (e N, 0 S Y S k.

m=0
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Hence, for every £ € N, 0 < /¢ < k,
lim D ;W7 f =D, 4f, in LPO(0,7).

t—0+
Let € > 0. There exists ¢y > 0 such that, for every 0 < ¢ < ¢,
D, s Wi f =D s fllsorom <& (€N, 0<I<E.

On the other hand, by using [24], (1)], [T, Theorem 3.3.11] and Hélder inequality we get, for every
0 € (0,7) and £,m € N,

e+ (DL )| |65 74(6) | < CUD ol o o,z (0 + 1) F+242,

Hence, there exists mg € N, mg > k, such that

oo
—toAHEBTE (40 BLp (e a+L,84-¢
E e 0%m Cm (Daﬁf) ¢m
m=M+1

LP(')(O,TI')

<c Y e to(mtSEFEOT () | 1)akBR2H2 o o P e N 0< (<K, MeN, M>m.

m=mo+1

Then,

toA5” o (f) el — fH < 2e.

Wag ©m)

Thus, we have proved that f is in the closure of S, g in Wj:g(')(O, 7) and the proof is finished. O

3. JACOBI MULTIPLIERS IN WEIGHTED LP-SPACES

€

This section deals, among other things, with the proof of the H k/ 2.p() -density of S, g claimed in

assertions (a) and (d) of Section [T}
Let m = (my)32,, be a bounded sequence of real numbers. The Jacobi multiplier 7%# associated
with m is defined by

TP =Y " micy(fep”,  f e L*(0,7).
k=0

Plancherel’s equality implies that 7%'? is bounded on L?(0, 7). Sufficient conditions which allow to
extend 727 as a bounded operator to LP(0,7) and to certain weighted L?(0,7) spaces have been
established by several authors (see [II, [7], [14], [20], [28], [31], [32] and [44], amongst others).

The goal of this section is to establish a multiplier theorem in Lp(')(O,w). Previously we need
to show a multiplier result for LE (0,7) when w € A,(0,7). In order to achieve this we invoke a
general multiplier theorem due to Meda [29] (see also [44]).

2
Let —0o<a< (%) . We consider the operator
Lopa=Lap—a
It is clear that, for every k& € N, qbz’ﬁ is an eigenfunction for £, g., associated with the eigenvalue
. a+B+1)° a+pB+1\?
Ayt = <k+§ ) —a=k(k+a+pB+1)+ (g ) -

Lo g.a is a nonnegative and selfadjoint operator on L?(0, 7). Moreover, L, 5., generates a (heat)
semigroup {W;"%*},50 on L2(0, ), given by

s

W (f) :/ W20, 0) f(p)dp,  f e L*(0,m), >0,

0

and

P, 0) = 3 e N 922 (0)02 % (), 6,0 € (0,7), and ¢ > 0.
k=0
According to [36, Theorem A, (3) and (9)] we have that

. —c(0—¢)? /t
(=t € T g 5e (0,7) and > 0.

W0, 0)| < Ce =
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Let v € R\{0}. The imaginary power Egﬁ_a of L4 p;q is the spectral multiplier g(Lq g,q) Where
g(z) = 2", z > 0, that is,
o0

L a5 =Y 05 e ? (Fen?,  f e L20,m).

k=0
The operator EZB_G can be seen as a Laplace transform type multiplier for £, g.,. Then, a

general result due to Stein [41] Corollary 3, p. 121] applies to deduce that 52&11 can be extended
from L?(0,7) N LP(0,) to LP(0,m) as a bounded operator on LP(0, ), for every 1 < p < co. Also,
by proceeding as in [35] we can see that Lg’ﬁ;a is a Calderon-Zygmund operator in the sense of
a space of homogeneous type ((0,7),dd,| - |), where | - | stands for the Euclidean metric. Then,
Lgﬁ;a defines a bounded operator from LF (0, 7) into itself, for every 1 < p < oo and w € A, (0, 7).
Moreover, classical arguments (see for instance, [I9, Chapter 7, Section 4]) allow us to obtain that,
for every 1 < p < oo and w € A,(0,7),

(16) ||‘C7;’Tﬁ;a||L$(O,W)*}Lﬁ,(0,7\') < Cp,weﬂhl/Qv

where C}, ,, > 0 does not depend on 7. Estimation shows an exponential increase with respect
to |y| of the operator norm ||£lozﬁ;a||L11L(077T)_>ng(o,ﬂ) which is not sufficient to obtain our multiplier
result. Actually, the exponential behavior in can be replaced by a polynomial growth. Indeed,

according to [I1, Theorem 1.3 and Remarks 1.4 and 1.5] we have that, for every 1 < p < oo and
w € A,y(0,m),

HEZ}:,B;A LY, (0,m)— L%, (0,m) < CPJU(]' + |7|)7
where C) ., > 0 does not depend on 7.
We now establish our result concerning the L2 (0, 7)-boundedness of spectral multipliers for the
operator Lq g:q-

2
Proposition 3.1. Let 1 <p < o0, a, > —1/2 and —o0 < a < (%ﬁ“) . Assume that:

(¢) m is a bounded holomorphic function on {z € C : Re z > 0}; or
(11) m € C*(0,7) and for every £ € N

¢
xéd—m(x)

(17) sup T

z€(0,00)

< 00.

Then, the spectral multiplier m(Lq, o) Telated to the operator Lo p.q given by

(18) mM(Lapa)f =Y mALT) P (£on?,
k=0

is bounded from LE (0,) into itself, for every w € A,(0, 7).

This result can be proved as in [29, Theorem 3 or Corollary 1]. By using now [I5] Theorem
1.3] we deduce from Proposition the following LP()-boundedness result for spectral multipliers
associated with L, g.q-

2
Proposition 3.2. Let o, > —1/2 and —c0 < a < (%fm . Assume that p € B(0,7). If m

satisfies condition (i) or (ii) of Proposz'tion then the spectral multiplier m(Lq g.q) given by @)
defines a bounded operator from LPC)(0,7) into itself.

The negative powers of £, 3 defined in are spectral multipliers for the Jacobi operator that
2
will be useful in the sequel. Suppose that v > 0 and a4+ 8 # —1. Since )\g’ﬁ > (%’BH) , keN,
the operator £, is bounded from L2(0,7) into itself.

2
We take a = £ (%M) . We can write

2
’C;Z?f = Z ()\zxﬂ;a + a)—vcgﬁ(f)(bz,b’ _ Tﬁ;’f;a(f), f c L2(0,7T),
k=0

where my(z) = (z +a)”7, z € C, Re z > 0. Since m, is a bounded holomorphic function on
{z € C : Re z > 0} from Propositions [3.1| and [3.2| we deduce the following.

Proposition 3.3. Let v >0 and a, 8 > —1/2 such that a + 8 # —1.
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(a) If 1 <p<ooandw € Ay(0,m), then L7 can be extended from L2(0,7) N L2 (0,7) to
L2 (0,7) as a bounded operator from LE (0,7) into itself.
(b) If p € B(0,7), then Caj defines a bounded operator from LPC)(0,7) into itself.
We also have the injectivity of £ 7 on L% (0,7) and LPO)(0, 7).
Proposition 3.4. Let v >0 and a, 8 > —1/2 such that a + 8 # —1.
(a) If 1 <p < oo and w € Ap(0,7), then L is one to one on L%, (0, 7).
(b) Assume that p € B(0,7). Then, L] is one to one on LrO)(0, 7).

Proof. We prove (b). Property (a) can be shown in a similar way. It is clear that if f € S, 3 we
have that

(19) W Lah ) = )T, ke
Since E;’é is bounded from LP()(0,7) into itself (see Proposition ; for every k € N, qﬁg’ﬁ
LY 00, 7) = (LPO) (0, 77))* (JI7, Theorem 3.4.6]) and S, s is dense in LP()(0,7) (Proposition ,

we conclude that holds for every f € Lp(')((),ﬂ). Then, from Corollary we deduce that
f =0 provided that £ 7 f = 0. O

By using Proposition [2.2[we obtain the following characterization of the potential space H g’g(') (0, 7).

Proposition 3.5. Let v > 0 and o, 8 > —1/2 such that o + 8 # —1. Assume that p € B(0, ).
A function f € LPO)(0,7) is in H%p(~)(0 ™) if, and only if, the series > oo o (AXP)VcLP(f)pLP
converges in LPC)(0, 7). Moreover, for every f € H%p( )(0,77),

||fHHw PO (0,m) = H Z )\0«5 "/Caﬁ ¢a,5’

Lr()(0 7r)

Proof. Let f € LP()(0,7). Suppose that f € H;’:g(')(O,ﬂ'). Then, there exists g € LP()(0,7) such

that f = £ ;9. Thus, by (19) we have that B (f) = (A\2P)=7c2P(g), n € N. Hence, according to
Proposmon 2} the series

YN (Nent =3 P lg)en”

n=0 n=0

converges in LP()(0, 7).
Assume now that the series F' = >°°° (AX#)7e2P(f)p2# converges in LP()(0,7). Then, by
Proposition L, pF=fand f € Hg:g(')(O,ﬂ). O

As an immediate consequence of Proposition we establish the density of S, g in H;’g(') (0, 7).

Corollary 3.1. Lety > 0 and o, 8 > —1/2 such that a+ 3 # —1. Assume that p € B(0, 7). Then,
for every f € H%p( )(0, ),

_ ﬁ a B
f= nhrr;Och ,

in the sense of convergence in Hg’g(')(o,w).

Proof. Let f € Hg:g(')(o,w). We have that f = 5;},g, where
- o 5 0% a)ﬁ a,3
=2 0% Dei’,
k=0

in the sense of convergence in LP()(0, 7). Then,

— 0, asn — oo.
Lr()(0,m)

lr=> o] o =llo-Soetrarmer”
k=0 arp (0m) k=0
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4. BOUNDEDNESS OF THE HIGHER ORDER RIESZ TRANSFORMS

This section has to do with the proof of assertions (b) and (c¢) of Section
Firstly, we establish that R ; and R’;Z are composition of Jacobi Riesz transforms of order one.

Lemma 4.1. Let k € N and o, 8 > —1/2 such that o + 8 # —1. Then,

(20) R];,Bf = Rclx+k71,6+k71 ° Ri+k72,6+k72 0.....0 Ré,gf, f € Sap,
and

1,% 1,% 1,%
(21) f R ORa+1 5+1 ..... ORa+k 1,8+k— 1f, f€ SaJrk,BJrk'

Proof. We are going to prove , can be shown in a similar way. It is sufficient to see that

is true when f = d)la’ﬁ, for every l eN.
Let I € N. According to |24, Lemma 3.1] we have that

(22) DZ;}QS?’B — (—1)k\/(l—k—|—l) ( +O‘+5+1)k ¢a+k Btk

Recall the definition of the Pochhammer symbol in and by convention ¢&# =0, n € Z, n < 0.
Hence,

kjaB g [U=k+1)p(l+a+ B+ 1) otk Gtk
R 50,7 = (-1) \/ ()\?ﬁ)k Ik

Since /\;X’B = )\?frzl”g'm, 0 < n <, we can write

ko _ ) (=n)(l+a+B+1+n) arkprk
Ravﬁd)l H )\a-&-n,B-&-n I—k
(—n)l+a+B+1+n) _ _
_ k 1 a+k—1,6+k—1
- H )\aJrn,,BJrn ROH‘]C 1,5+k—1¢l7k+1
l—n
1 )
— RaJrkflﬁJrkil ORa+k72’B+k72O ..... oRa’ﬂ(b? 5,
and is established. O

We are going to prove that R(’; 5 and RZZ’ define bounded operators from L2 (0, ) into itself for
every 1 < p < oo and w € A,(0, 7). As consecuence of the next lemma, we only need to study the
corresponding local operators (see [I0] and [I3]).

We consider the domain D = U?Zle represented in the figure bellow

¥
7r' 77777777777 Tif*f*fi*f:,ﬂ
Da )
3r :,”’ ////, : D1:{(9,(p) : 0<90<77 0<9<z}7
4 D2 e e ,/ ! 0 2 2
S l 3
S | Dgz{(ﬁ,ap):0<?<<,0<7r,0<9<g}7
2 S | 30 —
R | D3={(9,<p):0<ap< 277772r 9<7T}
s ,l/ /// :’/ : 0
£ /,—‘( D3 | D4={(9,<p): —;W<g0<7r,g<9<7r}.
PO |
x T 0
2

FiGURE 1. Global regions

Lemma 4.2. Suppose that K : (0,7) x (0,7)\{(0,0) : 0 € (0,7)} — R is a measurable function
such that

IK@wNSW_@V 0,9 € (0,m), 0# .
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Then, for every 1 < p < oo and w € A,(0, ) the operator H defined by
s
— [ KO0 (e 0 (0.7
0

is bounded from LP (0,) into LP (0, 7).
Proof. We define

/K o)xo, (6.0)f(9)dp, 6 (0,7), j=1,2,3,4.

4
Thus, H = Y Hj.

j=1
By M we denote the Hardy—Littlewood maximal function on (0, 7). We have that
0/2 |f 0/2
meol< [ ap < $ [T it < cmmne) oe o)

and

o< [ g S5 [ @le<empne), o o)

By using the classical maximal theorem we deduce that H; and Hy are bounded from L2 (0, 7) into
itself, for every 1 < p < oo and w € A,(0, ).
The adjoint operator Hj of Hs is defined by

2¢/3 /2
H3ge) = X0 [ KOO0+ oo [ KO.0000, o€ 0.m)

If1<p<ooandwe Ay(0,7), we deduce that

37/4 2¢/3 p 1/p p 7/2 P 1/p
1H3 gl 11,0, < C (/O w(e) (/0 IHQ(—020||d9> d(p) +</3ﬂ/4w(<p) (/0 ||99(_920||d6> d<p>
0 1/p T 1/p T
<c (/ w(sﬁ)lM(wl)(@)Ipd@) +< / /4w(<P)d<P> | ateas

< Cllglle 0,7y 9 € LA, (0, 7).

Hence, H» is bounded from L2 (0, 7) into itself for every 1 < p < oo and w € A,(0, 7). On the other
hand, the adjoint operator H3 of Hs is given by

™

Hig(0) = x(0.5 (9 / K(0,2)9(0)d0 + Xz ) (9) / K(6,0)9(0)db.

(2¢+m)/3
Ifl1<p<ooandwe Ay(0,7), we get

/4 1/p s T - |g(9)| p 1/p
|3 g1z, 0.0 < C / w(p)dp / 19(6)|d6 + / w(e) / WO ao) ap
0 0 n/4 (20+7)/3 160 — o
x 1 - P 1/p
<CAllglle 0. + </ w(p) < / |g(9)|d9> d@)
/4 T =@ Jr—a(n—¢)/3

<C (HQHLQ, o,m + IMUgDllzz o ‘n')) < Cligllee, 0,7, 9 € Ly(0,m).

We conclude that Hs is bounded from L? (0, 7) into itself, for every 1 < p < oo and w € A,(0, 7).
Thus, the proof of this lemma is finished. O

By using Lemmas H an 4 we will deduce the Lf (0, 7)-boundedness of R}, and R from
the corresponding property of R p and Ra T respectively.

Proposition 4.1. Let 1 < p < oo, w € A,(0,7) and o, 3 > —1/2 such that o + 3 # —1. The
Jacobi Riesz transforms R}, 5 and R 5 define bounded operators from L% P (0,7) into itself.

We are going to use local Calderon—Zygmund theory for singular integrals (see [I3]). We are
inspired in the arguments developed by Nowak and Sjogren in [35].
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Proof of Proposition the case of Réﬁ. By we have that

= Jk(k+a+5+1) o
Rogf == ( )\a,ﬁﬁ ) P () ot feL?(0,m).
k

According to Plancherel’s theorem, R/, 5 is bounded from L*(0,7) into itself. By using [I2, Theorem
2.4] we can write

Réc,,@f(o) = lim R(l)c,ﬁ(ga (P)f(@)d@, a.e. € (0771-)7
for every f € Cg°(0,m). Here the kernel R}, 4(6, ) is defined by
0.9)= [ DagPl(0.0)dt b€ (0ur), 04 0.
0

According to [I3, Theorem 2.4] and Lemma to prove that R}X’ 5 is bounded from L%, (0, 7) into
itself, it is enough to show that

C
(23) [R50, 0)] < Ty fecm 6#e
and
C
(24) |89Ra 5(9 o) + |8 Rl,ﬁ( o) < ma (0,¢) € (077T)2\D7 0 # o,

where D is the domain in Figure
According to [35, Proposition 4.1] and [36], (3)] we have that for every 8, ¢ € (0,7) and t > 0,
(25)
0 a+1/2 0 B+1/2 ¢ 1 1 dHa dIl
PP (0, 0) = C, g | sin - sin b cos = cos £ sinh 7/ / (w)dIly (v)
’ 2 2 2 2 2 )_1J)_

1 (cosh § —1+q(0, ¢, u,v)) A2’

g—a—p-1
(sin 0)2"‘+1(Cos 9)25+1d97

dll, (u) = et (] _ 2)e=1/2gy, and

where C g = 5 NGYCHSYE)

0 0
q(0,p,u,v) =1 fusinising fvcos§cos§.

By proceeding as in [35], Proof of Theorem 2.4; the case of Rf‘ﬂ] and using [35, Lemma 4.4 and
trigonometric identities in p. 738] we get that

|Ra 50, 9)]

atl/2 (cos & cos %)'BHM 10q(0, 0, u, v)|

<c / sinh — / / sin 5 sin 5 i dlL, (w)dILs (v)dt
COSh 5 — 1+ q(aa ©, U, U))a+ﬁ+3

a¥1/2 g o\ BH1/2
sin £ sin £ (cos & cos £)
< C/ / a+ﬁ+3/2(9 o) dI1, (uw)dIlg(v)

<C/ smgsmz) atl/2 (cosfcos“")’g—Ir /2

(1 — usin & sin £)#+1/2(1 — usin § sin £ — cos g cos “")O‘Jrl

(cos g cos & %)a+1/2

(1 —sin &sin £)6+1/2 (1 — sin £ sin £ — cos § cos £)1/2 (1 - cos & cos %)““/2

<C )ﬁH/Q 1 (sin g sin

IN

B+1/2
cos g cos & 1
¢ 1—sinZsin € — cos 2 cos € + cos & cos £ 1/2
2 2 2 2 2 2 (1 — oS 9—750)

(26)

17COSLP +cos ¥

B+1/2
.0 P
cos 3 cos £ 1 C
<C = < . 0,0€(0,m).
- < gcosw> 10— = [0 — o e € m

Then is proved.
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Also, we have that

20+ 1 cos 2 2ﬂ+lsin9
O R: 2 2 )R ,(0
0Ll ,8( ) < 4 Sll’lg 4 cos g a,,B( 7‘)0)
0 o a+1/2 o B+1/2
(27) + (sin B sin 2) (cos 5 cos 2) Top(0,¢), 6,0€(0,m),

where

( )de’( )
T.p5(0,0) = Cy 50} h - dt, 6,p¢€(0,7).
5(6:%) 070 / sin / / cosh L —1+4q(8,p,u,v))xt6+2 v € (0,m)

We can write by [35, Lemma 4.7] and proceeding as in [35, Proof of Theorem 2.4; the case of R%”],

0 a+1/2 9 B+1/2
(sin 3 sin g) (cos 5 c08 90) To,3(6,0)

2
(28)
a+1/2 ] ©\B+1/2
sin sm (cos cos ) C
<C 2 2 dll, (v)dg(v) < ———, 0,0 € (0, ).
/ / QWUWH LIl (0) € G .0 € (0m)
On the other hand
cosg _ cosgcosg _ cos%cos% _ cosgcosg
sing sin%cos% singcosg—sin%cos%—&-sin%cosg sm——&—sm“"cosg
1
SIHT
If p € (0,7), 0 € (0,7/2) and 0 < ¢ < 30/2, then sin¢/3 < sinf/2 and
cosg cosg COS%COS% 1
(30) 9 S e = 0 0 0 < [
sing ~ sing  sinfcosg —singcos§ +singcosE T sin 52
Also, we get
)
cos 3 1 C
(31) - §§ — < ——5—> 0<ep<m 7w/2<0<T
sin§ ~ sing T sin| %52

By combining , 7 and we obtain

0
cos C
32 2Rl (0,0)| < ———, (0,9) € (0,7)%\D.
( ) Sin% a,B( 90) —= |07¢|2 ( (P) ( ) \
We can write

0 T—0
(33) e Pz he (),

oS 5 smT

and by symmetries reasons and proceeding as above we get

sin ¢ C
34 2R (0 <———. (0,9) € (0,m)%\D.
(34 ot Fs09)| < e (00 € O
From , 7 and we conclude that
C
Do R} 0 0,7)%\D
109 Ry, (0, 0 )\_|9 el (0,) € (0,m)°\
In a similar way, we can see that
C
0,R, 5(0,¢)| < = (6,9) € (0,m)*\D

Thus, is established. O
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Proof of Proposition the case of R(ll";3 We have that

mis == 3\ RS gy g s

From Plancherel’s theorem we deduce that Ra: 5 is a bounded operator from L?(0,7) into itself.
If f € C2°(0,7), then for every m € N there exists C,, such that

T < Cu(k+1)"™, keN.
Suppose that f,g € C°(0, 7). Partial integration leads to

/ R\ f(0)g d@—/ PO Lo 501 (Dapg) (9)dip.

By taking into account the rapid decay of the sequence (cz’ﬁ(g))’C and [24], Lemma 3.1] we write
€N

Dapg(®) = = > Vh(k+a+ 5+ 1) (g)en 1 7H0), 0e(0,m),

and

—1/2 k +a+ /8 + 1) o, a+1,
£a+/17ﬂ+1 (Da,p9) ( Z NP Ck ﬁ(g) ki_ll ﬁﬂ(a) = R}I,Bg(g), 0 € (0,m).
k

Hence, R}l’ﬂ is the adjoint of Ra,B (fact justifying the notation). Thus, R;’; defines a bounded
operator from LP (0, 7) into itself, for every 1 < p < oo and w € A4,(0, 7). a

Combining [I5, Theorem 1.3] with Lemma [4.1] and Proposition [4.1] we obtain the following.

Proposition 4.2. Let k€N and o,8 > —1/2 such that o+ 8 # —1. Suppose that p € B(0, 7).
Then, R 5 and R deﬁne bounded operators from LP()(0, ) into itself.

According to [24, Lemma 3.1] we get, for every f € S,.3,
N n—k+1rn+a+p+1 o o
RERE L f =3 il S o (p) gt

ot (A7)
Notice that, for every n € N, n > k,

=k = (V7 = ) (Vo = W) - (V7 = D),
(n+a+p+1) (\//\”“ﬁ + \/X"vﬁ) <\/A2’5 + \/A;"B) _ (\/AZ7+ \/A,‘Tﬁ)

We consider the function M given by

zk

M(fﬂ):k_l—7 x#)\?’ﬁ,jzo,...,k—l,
a,p
11 (x A )
§=0
and we choose a smooth function ¢ on (0, 00) such that

0, 0<az<APY  2t0tL

and

o(z) =

1, z> /\z,ﬁ — 7‘”5“.

)

Take m = ¢ M. Then,
(35) m(La.p)Re s Re /3f fo € Sap.

It is not hard to see that m satisfies condition of proposition Hence, by Proposition
(with @ = 0) we infer the following.

Proposition 4.3. Let «, > —1/2 such that o + 8 # —1. Suppose that p € B(0,7). Then, the
Jacobi spectral multiplier m(Lqy p), where m = ¢M is as above, defines a bounded operator from
LrO)(0,7) into itself.
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5. PROOF OF THEOREM

First of all we establish the following lemma where we define some Jacobi spectral multipliers
that will be useful in the sequel.

Lemma 5.1. Let e,y >0, r € N withr >~ and o, f > —1/2 such that a + 8 # —1. Assume that
p € B(0, 7). We define, for each t > 0, the functions

_ —et\r _ (1 — e—st)?“ _ > (1 B e—u)r
66 V)= (- M= St and A = /Et e V.

By m. we represent Y., M. or H.. Then, m. defines a Jacobi spectral multiplier on LT’(')(O,W).
Moreover,

sup [|me(La,s)l Lro 0,7 < 00-

e>0

Proof. Straightforward manipulations allow us to show that, for every ¢ € N, there exists C' > 0
such that p
sup It‘ eme(t)| < C,

where C' does not depend on e. Then, by Proposition (taken with a = 0) we concluded the
desired results. ]

Proposition 5.1. Let e,y >0, r € N with r > v and o, 8 > —1/2 such that a + 8 # —1. Assume
that p € B(0, 7). Then, the operator I2°" defined in is bounded from LP()(0, ) into itself.

Proof. Let f € Sq 3. We can write

(I=WPY f=>"Yu (AP) P (1o’ = YulLap)f, u>0,

n=0
where the series is actually a finite sum. According to Lemma [5.1] we deduce that,

- > du
112 fHLP<->(0,7r) < CSliI()) ||Yu(£a,/3)f||m<~>(o,w)/ = CHf”LP() 0,m)"
u €

Taking into account that S, s is a dense subspace of LP()(0,7) (Proposition the conclusion
follows. O
Proof of Theorem[1.3 Suppose that f € D, y(L], 3) and call g = 61_i>151+ 12" f. Since L is a
bounded operator from LP()(0, ) into itself (Proposition , we have that

® (L Wty

-, — : -
Lopg=Cyr lim L, /5 e
oo (I_Wa,,B)T' .
r e ) iy L,PC)
=Cy, 15(1)1+ e L5 f du, in LPY(0, 7).

We can write

(I _ Wa r _ (1 — e_")‘ar B) /2
Wl g = 5 () 657 = Mu(La )£ F, w0,
n=0

uv/2 ( aﬁ>7/2 ()\%ﬁ>

where M, was defined in . According to Lemma and Propositions and there exists
C > 0 such that

| MuLas) e (ZZ:C%’ﬁ(f) )|
0

4
< B a,B’
L) (0,m) CH ;C" (Fen

< C|Iflzrr0m)s ¢ ENandu>0.

Lr()(0,m)

Also, since =177 € L(g, ), € > 0, we obtain
g—weryy, & e (-
_ (I —-WeP)r A\t " du
o' / u du = / — P B
> . ulty Y 7;) e (u/\gﬁ)w w (£) o

u’l‘

_Z/Wﬁ%duc A(f) ¢’ = He(La B8, €>0,
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where H, was defined in .
Suppose that F' € S, g. We can write, for every [ € N,

anﬁ ¢aﬁ_ r

) (1—e)" o
lim H.(L,p)F = lim E /)\aﬂ e ————du ¢, ( )P = C c.
v,

—0t —0t
¢ € YT p=0

in the sense of convergence in LP()(0, 7). Since S, s is dense in LP()(0, ) (Proposition, Lemma
.1l leads to

Thus, we conclude that £ %9 = f.

On the other hand, take f € Hg:g(')((),w) such that f = L',;jﬁg, with g € LP()(0, 7). Then, as it
has just been proved,

, (I — WPy
lim I7"f = C,” hm / L, g du=g,

e—0+ ulty
in the sense of convergence in LP()(0, 7). O

Remark 5.1. A careful reading of the above proof reveals that we can consider any r € N, r >~
(not necessarily r < v < r+1). This fact implies that the operator L] a,p Can be defined by @ for
anyr € N, r > .

6. PROOF OF THEOREM [L.3]

Assume that v > 0. It is not hard to see that 9] e=% = €™ aYe~% t a > 0. Thus, we have that,
for every f € So3UC(0,7),

R PEAT(0) = 3 IO 2 VR B ()28 (0), 0 € (0,7)
n=0
Hence, for every f € So.5UC(0,7),

Qza(f)(e) < o0, 0 € (07 77)'
Our first objective is to establish LP-boundedness properties of gl) g-functions.
Proposition 6.1. Lety > 0 and o, 8 > —1/2. Then, g;ﬁ defines a bounded (quasi-linear) operator
from LP (0, 7) into itself, for every 1 < p < oo and w € A, (0, ).
Proof. For every N € N, we define
> gt 1/2
G215 (£)(6) = ( [ Jeareee o) ) 0.
1/N

t

We will show that, for every 1 < p < oo and w € A,(0, 7), there exists C' > 0 independent of N € N,
such that

(37) 1625 (Dllzzo.m < Clflenoms  f € L5(0,7).

From 7 by using monotone convergence theorem, we deduce that for every 1 < p < oo and
w € Ap(0,7), there exists C' > 0 satisfying that

||92,5(f)||L2';(0,7r) < C”fHLfU(O,‘n-), f e Ly (0,m).
In order to show we apply the local Calder6n-Zygmund theory [13] in a Banach valued setting

39
By proceeding as in [6, Proposition 2.1] we obtain

22V
(38) / / DOy PP F(0)1707 PO (5 d&— / FO)30)d0, .9 € Sup.
Thus, for every N € N, we get

r(2y)
(39) 1928 (D20 = M Baomys S € S

Hence, g 8 and ga R N €N, can be extended from S, g to L?(0,7) as a bounded operators from
L?(0,7) into itself.
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Let m € N. According to [3, Lemma 4] we have that
(40) ‘8{”[756_{2/4“} < Ce P Auy(mm)/2 -y e (0, 00).

By and by taking into account that and the differentiation under the integral sign is
justified, so we can write

8{”Pta”8(9, ) }WO‘”B(H, p)du, t>0and @, € (0,7).

/ 'VYL
\/47r 3/2
From and ( it follows that
" aﬂ e—ct®+(0-9)%)/u
C

<

— (t2 + (9 _ S0)2)(m+1)/27
Let f € L?(0,7). By we obtain

(41) t>0and6,p e (0,m).

omp> P 1(6) /8’"P‘“B ©)f(e)de, t>0and@e(0,r).

Thus, 1fm—1<7<m .leadsto

i4s (o) dps™ 7" ds

£ _—
< C/ / (+ 52+ (0—g)? ](m+1)/2dsos ds

gm= -1 C
S C\/O W ||fHL2(0 7-() t’)’"rl Hf||L2(O,7T)7 t > 0 and 9 € (O,ﬂ')

Hence, we obtain, for every N € N,

N
(42) @ﬁwxmsc([/dﬁ Ifl20m. 0 € (0,).

’87Pa 5(0)

This estimate shows that, for every N € N, g” s is a bounded operator from L?(0,7) into itself.
By . we conclude that, for every N € N,

I'(2
(13) 92N a0y = o | ooy S € L3(0.7).

Note that , in contrast with , shows that the family {Qz:g}NeN is bounded in £(L?(0, 7)),
the space of bounded operators from L?(0, ) into itself.
Let N € N. We consider the operator

T&Q(fxe>=hé K2 (0,0)f(9)de,
where, for every 0, € (0,7), 0 # ¢,
(K150, 0)(t) =70 PP (0,0), te(1/N,N),

and the integral is understood in the L?((1/N, N), dt/t)-Bochner sense.
From we deduce that

m—y—1 2 dtN 1/2
K"ﬁ < C t’Y S —_
H ’ L2((1/N,N),dt/t) </1/N ) / ((t+5)2 + (0 — ¢)2)(m+1)/2 S‘ t )
N 2vy—1
2 1/2 C
44 <C / dt < , 0,0€(0,m), 0#p.
@) (e irm=—am=®) <5y (07

Here C' > 0 does not depend on NV € N.
Let f € L?(0,7) and 6 ¢ supp(f). If h € L2((1/N, N), dt/t), allows us to write

N T N
Mﬂﬂ%ﬁﬁmﬁ=éfw) BN (0, 9)](0) Ly

1/N 13 1/N 3

™ N N T
— Y AY Oz,ﬂ dt v Y pa.f @
= [ rer [ wewareteaGao= [ we [ eorrte. e

1/N /N t
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Thus, we obtain
T8 (HO)]() = ] PEP(f)(0), ae. t € (1/N,N).
We are going to show, for every N € N and (0, ) € (0,7)2\ D, 0 # ¢,

oo (o pe20.0))] <

L2((1/N,N)dt/t) ~ |9 @2’

+ Haso (tﬁ/agpta”@(e, S"))‘

L2((1/N,N),dt/t)

for a certain C' > 0 which does not depend on N and the domain D is as in Figure
To simplify we call
sinh %
(I)a t, - 2 )
#(t2) (coshi — 1+ z)ath+2
to one of the terms appearing in . According to [35, Lemma 4.8] we have that, for every m € N,

t,z >0,

(cosht — 14 2)"aB=(m+3)/2 <1 2>0
m < 2 ) k)
(46) t a,ﬁ(tyz)‘ > C{ (COSh% — 14+ Z)—a—[i’—l, t>1, z>0,
and
0007 (8, (0, 0, , )| + 0,07 @t (0, 0,,0)
(cosh% — 1+ q(0,p,u,v))" @ B=m+D/2 0 ¢ <1 0,0 € (0,7), =1 <u,v<1
(47) <C N —a—B-3/2 _
(cosh 5 — 14 q(0, ¢, u,v)) , t>1,0,p€(0,7), —1<u,v<l.

Let m € N. By using and [35, Lemma 4.4] we get

NS

st 0(6, 9, 0, )| dlLa ()T (0)

/1 /1 T, (u)dIl(v) P
_1J-1 (cosh L — 14 q(8, p,u,v))etAtim+3)/27 ==

1o (u )dHﬁ( )
/ / COSh -1+ q(0 ))a+5+17 t>1

t>0and6,¢ € (0,m).

~ (cosh £ — 1)“+5+1’
Thus, from we can write for each 0, € (0,7) and ¢ > 0,
8tmpta7ﬂ(97 @)

0 at1/2 0 p+1/2 Ll
= aﬁ(sinisin %) (cosicosg) /1/18{"®a75(t,q(ﬂ,ga,u,v))dﬂa(u)dﬂg(v).

Assume that m € N is such that m — 1 <y < m. From and 35 trigonometric identities in p.
738] we deduce, for every 0, € (0,7) and ¢ > 0,

o] 1 1
/ Sm*"/*l / / ‘Bgﬁzn@a,ﬁ(t + 57Q(aaSDvuav))‘dHa(u)dHB(U)dS
0 —-1J-1

max{0,1—t} gm—v—1
<c{ / d
LY (cosh B2 — 1 4 2sin? P52 )athr(med)/2

1 sgm= 1
+/ t+s . 20—p 3 2d8
max{0,1—-t} (cosh 2 —1 4 2sin® *52)a+H+3/

+ /00 Sm_7_1e_c(o‘+ﬁ+3/2)(t+s)ds} < 00.
1
Hence, we can write for 6, ¢ € (0,7) and ¢ > 0,

0 S0)/3+1/2 e~ Hm—y)m -

£18,0] PP (0, 0) = C. (s' Qs’ f)aﬂm(cosfcos— —_—
L S R 2 T(m — )

2
[e'e] 1 1
X [/ 87”_7_1/ / 0907 @ p(t + 5,q(0, @, u,v))dl, (u)dIlg(v)ds
0 1/

(204—}—1005% Qﬁ—&-lsing

9 9
4 sing 4 cosg

(%) 1 1
) / gm=-1 / / O @5+ 5, (0, 2,11, 0) )l ()T (0)ds ]
0 —-1J—-1
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By proceeding as in [35, pp. 747-748] (see also the proof of Proposition , and Minkowski’s
inequality leads to

9 at+1/2 9 B+1/2
H(sinfsin f) (COS*COS f) t7
2 2 2 2

< / s’"*fl/ / 000} @t + 5,4(0, 0, 14,0) )T (u)AlT 5 (0) s
0 “1J-1

0 at+1/2 0 B+1/2
< (sinfsin£> (cosfcosf) / s 1/ /
2 2 2 2

X Ht’yaga{“cba,ﬁ(t + 5,q(0, ¢, u, v))‘ 11, (u)dIIg(v)ds

L2((0,00),dt/t)

d
L2((0,00),dt/t)

at+1/2 B+1/2
SC(smgsm ) (cosfcos— / / u)dllg(v)ds

807 u, U a+ﬁ+2

C
Siu 67906 077(-79#%0'
7P 0
In a similar way, by using (46)) we obtain

H( 0 (p)a+1/2( 0 (p)ﬂﬂ/zﬂ

(48)

sin — sin — COS ~ COS —
2 2 2 2

[e’e) 1 1
X / smf'yfl/ / 0" Dy 5(t+s,q(6, 0, u, v))dHa(u)dﬂg(v)ds’
0 —1J

at+l1/2 g+1/2 1 1
< C(Singsinf) (Cosecos f) dIl,, (u)dlg(v)ds
2 2 2 2 1 q(0, @, u, v)otB+3/2

L2((0,00),dt/1)

C C
49 < , 0,0€(0,m), 0 # .
(9 - <P| T 07
Combining (48) and (49) with (29)), (30)), (31) and (33]), we deduce that

c

S o 0 0.7)2\ D.
L2((0,00),dt/t) — |0 — ]2 (0,¢) € (0,m)2\

HaOKgﬁ(aa 90)’

The same procedure allows us to prove that
o]

Thus, is established.

By using now the local Calderén-Zygmund theory for singular integrals (see [13]) in the L2((1/N, N), dt/t)-
setting and by taking into account Lemma [ we conclude that, for every 1 < p < oo and
w € A,(0, ), the operator T”’ﬁ can be extended from L2(0,7)NLE (0, ) to L2 (0,7) as a bounded
operator T(Zév from L?,(0, ) into L%, ((0,7); L*((1/N, N),dt/t)), and there exists C' > 0, which does
not depend on N, such that

o)
ap /) L2, ((0,m);L2((1/N,N),dt/t) )

Let f € L2 (0,7) where 1 < p < oo and w € A,(0,7). We take a sequence (fp)nen € LE (0,7) N
L?(0,7) such that

C

= 19 — o2’ 9’ € 07 2 D.
L2((0,00),dt/t) — |60 — o2 (0,0) € (0,7)=\

(50) |

< C|f]

L%, (0,7)» f S L:Z,(O,T(')

fn—f, asmn— oo, in L (0,7).
Asin we obtain that

TE(f = £2)0) < CIf = fallLnoms nE€Nand6 e (0,7).
Hence,
G5 (f2)(0) — G135 (f)(0), as n — oo for every 6 € (0, 7).
On the other hand,
T8 (f) = lim T28 (fa), in L2,((0,7); L*((1/N, N), dt/t)).

B n—00

Then, there exists a monotone function ¢ : N — N such that

Tl’év(fmn))(@) — f(z,’év(f)(e)a as n — 00, in L2(<1/N’ N)adt/t)a
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for almost every 6 € (0,7). This implies that

¥, N 9 ‘ .
25 o)) — [[TZ DO Ly 7 %
for almost every 0 € (0 7r) We conclude that
T% ‘ , a.e. 0€(0,m),
L2((1/N,N),dt/t)
and from we deduce (37).
Thus the proof of this proposition is completed. O

By using [15, Theorem 1.3] from Proposition we infer the following.

Corollary 6.1. Let o, > —1/2 and v > 0. Suppose that p € B(0,7). Then, the fractional square
function gzﬁ defines a bounded (quasi-linear) operator from LPC)(0, ) into itself.

Also Proposition and the polarization formula allow us to obtain the converse inequality
for g7 E
Corollary 6.2. Let o, > —1/2 and v > 0.
(@) If 1 < p < oo and w € A,(0,m) then, for a certain C > 0,
£z, 0.0 < Cllga gDl m, [ € LL(0,m).
(b) If p € B(0,), then there exits C > 0 such that

||f||LP<~>(o,7r) < CHgg,ﬁ(f)HLP(')(o,w)a f € Lp(')(o,ﬂ')

Proof. We are going to prove (b), (a) can be deduced in a similar way.
For every f € LP()(0,7) and g € Lpl(')(O, ), we consider the bilinear operators

_ / " F(0)g(0)do
227

L(f.q) = / / 1o P 107 PR ) (0) o

By using Hélder’s inequality in the variable exponent setting (see [I7, Lemma 3.2.20]) we can see
that T and L are bounded from LP()(0,7) x LP'()(0,7) into C. Since S, s is a dense subspace
of LP)(0,7) and LP'()(0,7) (Proposition , equality holds for every f € LP()(0,7) and
g e LP'O(0, 7).

Let f € LPO)(0,7). According to the norm conjugate formula ([I7, Corollary 3.2.14]), by Propo-
sition [6.1] we can write

oo <2 sw | [ se)monm)
geL? () (0,7)
H!J”Lp (- )(07”)_

and

T oo dt
<o ap | [ [T oae oo r 6o
gELPl<')(0,7r) 0 t
HQHL;}’(-)(Om)Sl
<c swo [ a0 0600
gELp/(')(O,ﬂ') 0
HQHLp’(.)(wa)Sl
<C sup ||gl,ﬁ<f)||Lp(-)(O7ﬂ-) ||9175(§)||Lp’(«>(07ﬂ) < C”QZ,B(f)HLP(-)(O,ﬂ')'
geL? () (0,r)

gl pr . )o,my =1

O

Remark 6.1. Note that Proposition [6.1] together with Corollaries[6.1] and[6. tell us that the new
norms ||| - [t 0,7y and ||| - |[[rc)(0,x) defined by

A2z 0,0 = 92 s(DllLn0,m), € LE(0,7),
WAoo 0,0y = 92 s (Ol e 0,my,  f € LPO(0,7),
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are equivalent to || - ||z 0,x) on L5, (0,7) and to || - [ 1oy 0,x) O LPO)(0,7), respectively, provided
that the specified conditions are satisfied.

Proof of Theorem[I.3 We first establish that H;g’p(')(O,w) - T;’g’p(')(o,w). Assume that f,g €
S, are such that f = £, 9. We can write

© —t\/ AP
) —/2 € " (o} a ity ok— a,
65Pt 7 (La:}/i/ 9) = (-1 Z W%’B(g)%’ﬁ =™, Py ﬁg, t>0,
n=0 n

because 9le~ % = €™ ale~ § a,t > 0. Hence, we get

y 2
(51) 5L 9) = 9h 3 (9).
From and Corollaries and we deduce that, for every f € Sa g,
1 k
(52) 2o 0.m < 905 ()l e 0,y < Cllf N 27200 0,y
for a certain C' > 0. Since S, g is a dense subspace of H;’(;’p(')(o,w), 7”5 can be extended to
H;’/g’p(‘)((), ) as a bounded operator EZZ from H;’/;’p(‘)(o, ) into LP0)(0, 7). Moreover, (52) holds
for every f € Hgfg’p(')(OJT) when 9o ]E is replaced by ga’g
We are going to see that g’ ﬂ =g ﬂ For every N € N, we define
2dt

1/2
- ) . 0e(0,7).

g’v,k,N(f)(Q) = (/N |tk778tthaﬁf(9)|
o 1/N

Let N € N. From it follows that gggN can be extended to Hgfg’p(')(o,w) as a bounded
operator QN(ZZN from H§{§’“‘>(o, 7) into LP)(0,7) and

~v,k,N 2,p(-
1Gas ™ Dl 0.0 < ClFll iz oy f € HYZPO(0,m).

Note that C' does not depend on N. Let f € Hg(;’p(')(o,ﬁ). We choose a sequence (fp)nen C Sa,8
such that
fo— f, asmn — oo, in H;’)/;’p(')((),w).
Then,
%k N(fn) ZZZ’N(f), as n — oo, in LPO)(0, 7).

Since, LP()(0,7) C LP- (O ), there exists a monotone function ¢ : N — N such that
gl N(fw )(0) — GUEN(£)(0), asn— oo, ae. 0€(0,m).
By proceeding as in we deduce that
gl N(f¢(n))( ) — GUEN(£)(0), asn— o0, 0€(0,m).

Then, g” kN _ gg’k’N and

k,N
1955 (Dl ro©.m) < CllF 2000 (g -

Since

Jim G5 (£)(6) = g15(f)(6), 6 € (0,m),

Fatou’s Lemma in variable exponent LP()-spaces (see [I7, p. 77]) leads to

(53) g2 5 2o 0,y < 0|\f||Hg/;p<->(0,,r)-
From we also deduce now that
k 2,p(-
(54) 1127200 0.0y < Cllgas (Dl oy f € HY3(0,).

By it follows that H;’/2’p(')(0, ) is contained in T;’]“p(')(O, 7) and by Proposition
2,p(-
1 00 0.y < O llgrrzncro,my € HAGTO(0,).

Suppose now that f € T'Y’k’p( )(O 7). In order to show that f € H’Y/Q’p( )(0 m) we can follow the
procedure developed in the proof of [6, Proposition 4.1]. Indeed, that method works because the
following properties hold:
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(i) There exists C' > 0 such that, for every n € N,
||¢%)ﬁ”Lp(-)(0’ﬂ.) < O(n + 1)04+ﬁ+5/2.

Indeed, according to [I7, Theorem 3.3.11], LP+ (0, ) is continuously contained in LP() (0, 7).
Then, from [35] (3)] it follows that

6522 | o 0.0y < CllSR P llLr+ 0. < C(n+1)*FFH2 e N.
Assume that h € LP()(0, 7). Holder’s inequality (JI7, Lemma 3.2.20]) implies that
jen?(B)] < Cln+ 1) 2Rl 1oy gy, 1 €N,
(#7) For every § > 0, we define f5 = ﬂ(f) and
Fy = Y00 2V e ()
n=0

Property (i) implies that Fs € LP()(0,7) and f5 = E;:gﬂFg € Hl/g’p(')(Oﬂr), 0 > 0. We
choose £ € N such that 2(¢ — ) > 1 and ¢ > k. allows us to write

N
15l e 0,m) = ||f6||H;([3»p<'>(0,7r) < Cllgys(fs)llrr o,y 0> 0.
(#4i) As in [6l Proposition 2.6] we can prove that
£ ke
19005 (P Lrer 0,m) < Cligars(HllLeer 0,m)-
Moreover, straightforward manipulations lead to
9L5(f5)(0) < gL5(N)(0), 6€(0,m), §>0,
because 2(¢ — ) > 1. Then, we obtain
I1Es]l 2o (0.0) < Clal (Al pocr0,mys 8> 0.
(iv) By using Banach-Alaoglu’s Theorem, Propositionand [I'7, Theorem 3.2.13] we conclude
that f =L A’/QF, for a certain F' € LP()(0,7) such that
Ry
1F[ o> 0,7y < Cllga s (DIl Leer o,m)-
Thus, we prove that f € HZ’/;’p(')(O, ) and

11l 27200 0,y < CSllgvnes gy

7. PROOF OF THEOREM [L.4]

In order to establish this theorem we use the ideas developed in the proof of |33, Proposition 4.3].
First of all, we introduce some spectral multipliers of Hérmander type, associated with the Jacobi
operator.

Lemma 7.1. Let v > 0, 1 < p < 00, w € A,(0,7) and o, 3 > —1/2 such that o+ § # —1. We
consider, for each t > 0, the functions
4

;297 t ¢ o+1
Z 51 ) teNande=(g5)j_0 € {-1,1}".

(t+ 1)

7=0

o M(t) = <t+tl> o(t), where ¢ € C*°(0,00) is such that ¢(t) =0, 0 <t < )\8"5/2; and

o(t) =1, t> A7,

Then, the spectral multipliers m%(Lqy.5) and M (L, 5) define bounded operators in LP (0,7). More-
over,

seup ”mﬁ(ﬁaﬂ)”Lﬁ,(O,w)%Lﬁ,(O,ﬂ) < 0.
\E
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Proof. By Proposition [3.1}] it is enough to notice that, for every k € N, there exists C' > 0 such that

dk
sup ‘tk—mﬁ(t)‘ <C, (eNandee{-1,1}""
>0 | dtk

and

e M ‘ C.
supli4 S M ()

O

Proof of Theorem ' the case of Hl’g(')(Oﬂr) C Fl’é”’(')(o,w). Let € = (sj)§:0 € {—1,1}**! with
¢ € N. We can write,

oo oo a76
Ciya,p o, a,3 a,f _ o, a,3 E]2 & )‘n
303057+ e 1 = Zou e e (3
_ Zemz (2] ) nen
(55) = Zeﬂ”@?’ﬁ(f), feLr(o,m).
oo
Note that the serie Z is actually a finite sum. From Lcmma it follows that
n=0
‘
AT S ’ — H (ASBY MNP Y (A2B) T B (f aﬁ’
H]ZOEJ ROl Zm POy e,
< CH AGBYY o8 a,ﬁ’ , e L2 (0, ),
< Z( RO oy L ELRO)
provided that Z()\g’ﬁ)%,"{’ﬂ(f)d)ﬁ’ﬁ € L (0,m). Also, we get
n=0
¢
93V PP B B B8
6o | Xe2rert |, <ol X oatratnen, o 1ehom).
j=0 neN
AxP <ot
Observe that, the constant C' > 0 does not depend on ¢ or ¢.
By using Khintchine’s inequality (|45, Vol. I, p. 213]) from we deduce that,
f2ﬂq)5 1/2 C ABYY (B B LP (0
3 < (e (6% ,
H(; 25O o <€ X 08Dy, e IR0,

n
ApP <ot

where C' > 0 does not depend on ¢. According to [15, Theorem 1.3|, there exists C' > 0 such that

H(i(zﬂ@?ﬂf)b?)”z]Lp(_)(o_ﬂ)scH 3 0 et
j=0 ’ neN

)\zﬁggf

fe P00, ).

LP(‘)(O,W)’

We have taken into account that:
(a) For every n € N, the mapping f — ¢®?(f) is bounded from LP()(0, ) into C.
(b) For every j € N, the mapping f — @?"B(f) is bounded from LP()(0, ) into itself (Propo-
sition . Also, we used that Va2 + b2 <a+b, a,b> 0.
(¢) Sa.p is dense in LP()(0,7) (Proposition .
Taking ¢ — oo, Proposition allow us to deduce that

o0

|( e inn?) |

Jj=0

7:p(+)
LrO)(0,m) — CHf”H::Z()(O,TF)’ f S H 8 (0 71')
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Next, we prove the converse inclusion of Theorem [[.4] As before, we need to study previously
some Jacobi spectral multipliers. It is convenient to introduce the following notation. We define,

Ny ={4l+s : £ N}\{0}, s=0,1,2,3.
Also we consider the function
b(t) = a(t/2) +a(t) +a(2t), t>0.

Note that suppb C [1/4,4] and b(¢t) = 1, t € [1/2,2], because a(t) + a(2t) = 1, t € [1/2,1], and
suppa C [1/2,2].

Lemma 7.2. Let 1 <p < oo, w € Ap(0,7) and o, 8 > —1/2 such that a + 3 # —1. We consider,
for each t > 0, the functions

¢
t
o mt (t) = Z g;b (2j_1> $s=0,1,2,3, (eNande=(g)j_,e{-1,1}";

o Ry(t)=¢/M(t), where ¢ is as in Lemma[7.1};

o« R(t) = <t+t1>7

Then, the spectral multipliers mﬁ,s(ﬁa,g), Mi(Lap), Ri(Lapg) and R(Ly,g) define bounded operators
in LP (0, 7). Moreover,

sup [ (La,p)l| 2, 0.7 L1, (0.7) < 005
s,l,e

and

sup (”Ml(‘ca,ﬁ)||Lﬁj(0,7r)ﬁLﬁ,(0,7r) + HRE(‘CO@,@)”LZ(O,W)HL%(O,W)) < 0.

Proof. Again, by Proposition it suffices to take into account that, for every k € N there exists
C > 0 for which

pd®
sup ‘t—mst‘gC,
te(0,00) dtk = ( )

where C' > 0 does not depend on s, £ or e. Also, M, = m! in Lemma for e = (1)§:0. Finally,
for every k € N, there exists C' > 0 such that

‘kdk 1

£ <
t dtk Mg(t) ’ =G

sup
t>AF /2

where C' > 0 does not depend on . O

Proof of Theorem ' the case of F;’;’p(')(O,w) C Hg:g(')(o,w). Suppose that s € {0,1,2,3} and
n € N\{0}. We define

L
gll ()= > 27027(f), teNand fe L0,
j=0, jEN;

There exists at most an unique j, € Ny such that A%# € [2/»=2 27n). Hence,

A Xyf Ay? N i
b(2jn_1) =1 and b(2]—1) a<2j—1) :07 JGN& .77&.777»

Observe that mf ((A%) = ¢;,, provided that j, < ¢, and m{ ,(A3#) = 0, otherwise. We can write

g n

5 L @ )\047/3
0= Y 2y a(3h
n=0

J=0, jeN,

)t (et = Y an a’nor’ 1 e 10w,
n=0
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where a, = 2/"7a (/\g’ﬁ/Qj"*l), if j, < ¢, and a,, = 0, otherwise. Note that the above serie is
actually a finite sum. Also, we have that

o
me (Lap)gel (F) =Y mb (A37) an P aﬁ——}jehan 2P (f)p”
n=0 ) | _ " ) |
3 WQXN(JQ%WUWW: > e,
j=0, jEN; n=0 j=0, jEN;
Then,
mﬁ,s(ﬁaﬁ) s(Las gs é Z an C n How = 9 (f)

Assume that 1 < p < oo and w € A,(0,00). From Lemma [7.2] we get

Z

1957 (Nl 0.m < Clme (Lap)gsd (Dliom C|| D0 27e,95%(0))
J=0, jeN;

, e LP(0,7),
o’ 4 w(0,7)

where C' > 0 does not depend on ¢ or £. By using Khintchine’s inequality argument we obtain

¢
los? Dllegom <C| D @ l@p (™|, . e Lhom,
j=0, jeN, w(0m)
where C' > 0 does not depend on ¢. According to [I5, Theorem 1.3],
Z .
957 (Dlroom <C| 3 @e@f AN e S

J=0, jeN,

where C' > 0 does not depend on £. As in the proof of the first inclusion we obtain

)4
(57 oSLDloom <C| D0 @100 (1)) . FeLr(o,m).

=0, jEN, LrO(0.m)
According to we have that, for every f € L1(0,7),
o0
ZMe AP+ 1) e (Nen’ = Y e (hen’ = 22”@“5

n=0,A"" <2t

By using (57)), Lemma and [15, Theorem 1.3] we can write

| oetrasmne

n=0,A%"<2¢

Lr()(0,7)

= | 32 RS 00 + 1) RGO (e o
=0 &

Lr()(0,m)

< 2222%?”’ ()
j=0

+ 125 100 0,m

oy ¥ 2y

s=0  j=0, jEN

(Ew( > erertin?) |

= 7=0, jeNg

o =dereen)
j=0

IN

Lr()(0,m)

| /\

a,p
oo 1 Nr00.m)

fe PO, ).

LrO)(0,m)’
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¢
Suppose now that f = Z @B (f)o%P where m,¢ € N, m < £. Since suppa C [1/2,2], we have
n=m

that

0 £ a,B
07 =3 (G ) et = 3 a (G ) o <o

n=m

provided that j > 2 +log, £ or j < log, m. Then, from we deduce that

2-+log, £ 1/2
o [ Sowrane],,,, <l S e,
(59) WP ()en Lo = Z @@ (D) O (0m)
j=log, m
¢
Let f € Fl’;’p(')(o,ﬂ). By (59), the series Z (ALY B (£p2P converges in LPO) (0, 7). Hence,

feH ,p( (0,7) and by and Proposition we conclude that
Hf”HZ:Z(')(O’ﬂ,) < C”f”p;’:;’p(')(o,fr)'
O

Acknowledgement: the authors would like to thank Professor L. Diening for explaining us the
extension of the variable exponent p € B(0,7) as a function in B(R).
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