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Abstract. In this paper we define variable exponent Sobolev spaces associated with Jacobi ex-
pansions. We prove that our generalized Sobolev spaces can be characterized as variable exponent
potential spaces and as variable exponent Triebel-Lizorkin type spaces.

1. Introduction

Sobolev spaces associated with orthogonal systems have been studied in the last years. Bon-
gioanni and Torrea ([8] and [9]) defined Sobolev spaces in the Hermite and Laguerre settings.
Sobolev spaces associated with ultraspherical expansions were investigated by Betancor, Fariña,
Rodríguez-Mesa, Testoni and Torrea [5]. The study in [5] was extended recently to Jacobi expan-
sions by Langowski [24].

In this paper we define variable exponent Sobolev spaces in the Jacobi context. We now describe
our main results.

Consider a measurable function p : Ω ⊆ Rn −→ [1,∞). By Lp(·)(Ω) we denote the variable
exponent Lebesgue space that consists of all those measurable functions on Ω such that for some
λ > 0 ∫

Ω

(
|f(x)|
λ

)p(x)

dx <∞.

It is a Banach space with the Luxermburg norm defined by

‖f‖Lp(·)(Ω) = inf

{
λ > 0 :

∫
Ω

(
|f(x)|
λ

)p(x)

dx ≤ 1

}
, f ∈ Lp(·)(Ω).

By p′(·) we represent the conjugate variable exponent. A complete study of Lp(·)-spaces can be
found in [17].

We define P(Ω) as the set of measurable functions p : Ω −→ [1,∞) such that

p− = ess inf{p(x) : x ∈ Ω} > 1 and p+ = ess sup{p(x) : x ∈ Ω} <∞.

The Hardy-Littlewood maximal operatorM is defined as

Mf(x) = sup
B3x

1

|B|

∫
B

f(y)dy, x ∈ Ω.

The set B in the supremum represents a ball and |B| denotes its Lebesgue measure.
We define B(Ω) as the subset of P(Ω) that consists of all those measurable functions p such that

the maximal operator M is bounded from Lp(·)(Ω) into itself. Diening [16, Theorem 3.5] proved
that if Ω is a bounded subset of Rn, p ∈ P(Ω) and there exists C > 0 such that

(1) |p(x)− p(y)| ≤ C

− log |x− y|
, x, y ∈ Ω, |x− y| ≤ 1/2,

then p ∈ B(Ω).
Many classical operators in harmonic analysis (maximal operator, singular integrals, Fourier

multipliers, commutators, fractional integrals, ...) have been studied in variable Lp(·)-spaces (see,
for instance, [15], [17], [18] and [39]).
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Let k ∈ N, where by N we represent the set of positive integer with zero included, and p ∈ P(Ω).
A measurable function f on Ω is in the generalized Sobolev space W k,p(·)(Ω) if its weak partial
derivatives Dαf ∈ Lp(·)(Ω), α ∈ Nn and 0 ≤ |α| ≤ k. The norm in W k,p(·)(Ω) is defined by

‖f‖Wk,p(·)(Ω) =

k∑
|α|=0

‖Dαf‖Lp(·)(Ω), f ∈W k,p(·)(Ω).

It turns out that W k,p(·)(Ω) is a Banach space.
Variable exponent Sobolev spacesW k,p(·)(Ω) have been studied by a lot of authors in this century.

Applications of these generalized Sobolev spaces can be seen in [17, Part III].
Now we turn to the Harmonic Analysis associated with the Jacobi differential operator Lα,β for

α, β > −1, which is defined as

Lα,β = − d2

dθ2
− 1− 4α2

16sin2 θ
2

− 1− 4β2

16cos2 θ
2

, on (0, π).

This type of analysis has emerged as a prolific area of interest (see [1], [12], [13], [24], [25], [26], [34],
[37] and [42], amongst others).

The Jacobi operator admits the following decomposition

Lα,β = D∗α,βDα,β +

(
α+ β + 1

2

)2

,

where

Dα,β =
d

dθ
− 2α+ 1

4
cot

θ

2
+

2β + 1

4
tan

θ

2

=
(

sin
θ

2

)α+1/2(
cos

θ

2

)β+1/2 d

dθ

[(
sin

θ

2

)−α−1/2(
cos

θ

2

)−β−1/2]
,

and D∗α,β is the formal adjoint of Dα,β in L2(0, π). When α = β the Jacobi operator Lα,β reduces
to the ultraspherical operator Lλ, λ = α + 1/2, considered in [5]. According to [43, (4.24.2)] we
have that, for every n ∈ N,

Lα,βφ
α,β
n = λα,βn φα,βn ,

where λα,βn = (n+ α+β+1
2 )2 and

φα,βn (θ) =
(

sin
θ

2

)α+1/2(
cos

θ

2

)β+1/2

Pα,βn (θ), θ ∈ (0, π).

If pα,βn denotes the n-th Jacobi polynomial considered in Szegö’s monograph, then Pα,βn = dα,βn pα,βn ,
where dα,βn is a normalization constant, for every n ∈ N. The system {φα,βn }n∈N is orthonormal and
complete in L2(0, π). We define the Jacobi operator Lα,β by

Lα,βf =

∞∑
n=0

λα,βn cα,βn (f)φα,βn , f ∈ D(Lα,β).

Here, for every f ∈ L2(0, π) and n ∈ N,

cα,βn (f) =

∫ π

0

φα,βn (θ)f(θ)dθ,

and by D(Lα,β) we denote the domain of Lα,β given by

D(Lα,β) = {f ∈ L2(0, π) :

∞∑
n=0

(λα,βn )2|cα,βn (f)|2 <∞}.

Note that C∞c (0, π), the space of smooth function with compact support in (0, π), is contained in
D(Lα,β) and hence,

Lα,βf = Lα,βf, f ∈ C∞c (0, π).

Lα,β is a positive and selfadjoint operator in L2(0, π). Let us note that −Lα,β generates a semigroup
of operators {Wα,β

t }t>0 in L2(0, π) where, for every t > 0,

Wα,β
t f =

∞∑
n=0

e−tλ
α,β
n cα,βn (f)φα,βn , f ∈ L2(0, π).
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Moreover, for every t > 0 and f ∈ L2(0, π),

Wα,β
t f(θ) =

∫ π

0

Wα,β
t (θ, ϕ)f(ϕ)dϕ, θ ∈ (0, π),

where

Wα,β
t (θ, ϕ) =

∞∑
n=0

e−tλ
α,β
n φα,βn (θ)φα,βn (ϕ), θ, ϕ ∈ (0, π) and t > 0.

{Wα,β
t }t>0 is called the heat semigroup associated with the Jacobi operator Lα,β . By {Pα,βt }t>0

we denote the Poisson semigroup defined by Lα,β . According to the subordination formula, we can
write, for every t > 0 and f ∈ L2(0, π),

Pα,βt f(θ) =

∫ π

0

Pα,βt (θ, ϕ)f(ϕ)dϕ, θ ∈ (0, π),

where

(2) Pα,βt (θ, ϕ) =
t√
4π

∫ ∞
0

e−t
2/4u

u3/2
Wα,β
u (θ, ϕ)du, θ, ϕ ∈ (0, π).

Jacobi Sobolev spaces were studied by Langowski [24]. We now introduce variable exponent
Jacobi Sobolev spaces. Assume that p ∈ P(0, π) and k ∈ N. We say that a measurable function
f ∈ Lp(·)(0, π) is in the variable Jacobi Sobolev space W k,p(·)

α,β (0, π) if D`α,βf ∈ Lp(·)(0, π), for every
` ∈ N, 0 ≤ ` ≤ k, with D0

α,βf = f and for ` ≥ 1,

D`α,β = Dα+l−1,β+l−1 ◦ ... ◦Dα+1,β+1 ◦Dα,β ,

is understood in a weak sense. On W k,p(·)
α,β (0, π) we consider the norm defined by

‖f‖
W
k,p(·)
α,β (0,π)

= ‖f‖Lp(·)(0,π) +

k∑
l=1

‖D`α,βf‖Lp(·)(0,π), f ∈W k,p(·)
α,β (0, π).

Thus, W k,p(·)
α,β (0, π) becomes a Banach space. See the discussion in [24] (and also in [5]) for the use

of the derivatives D`α,β , instead of the more natural choice D`
α,β = Dα,β ◦ ... ◦Dα,β .

Let γ > 0 and assume that α+ β 6= −1. The negative power L−γα,β of Lα,β is given by

(3) L−γα,βf =

∞∑
n=0

(λα,βn )−γcα,βn (f)φα,βn , f ∈ L2(0, π).

L−γα,β defines a one to one and bounded operator from Lp(·)(0, π) into itself (see Propositions 3.3 and

3.4 below). The variable exponent Jacobi potential space Hγ,p(·)
α,β (0, π) consists of all those functions

f ∈ Lp(·)(0, π) such that f = L−γα,βg for some (unique) g ∈ Lp(·)(0, π). We considerer in Hγ,p(·)
α,β (0, π)

the following norm

‖f‖
H
γ,p(·)
α,β (0,π)

= ‖g‖Lp(·)(0,π), f = L−γα,βg ∈ H
γ,p(·)
α,β (0, π).

Endowed with this norm H
γ,p(·)
α,β (0, π) is a Banach space.

The variable exponent version of [24, Theorem A] is given in the following theorem.

Theorem 1.1. Let α, β ≥ −1/2 such that α+ β 6= −1 and k ∈ N, k ≥ 1. Assume that p ∈ B(0, π).
Then, Hk/2,p(·)

α,β (0, π) = W
k,p(·)
α,β (0, π). Moreover, the norms ‖ · ‖

H
k/2,p(·)
α,β (0,π)

and ‖ · ‖
W
k,p(·)
α,β (0,π)

are
equivalent.

The proof of Theorem 1.1 is done in several steps. For a suitable function p we will prove.

(a) The linear subspace Sα,β = span{φα,βn } is dense in both W k,p(·)
α,β (0, π) and Hk/2,p(·)

α,β (0, π).
(b) The higher order Jacobi-Riesz transforms defined by

(4) Rkα,β = Dkα,βL
−k/2
α,β and Rk,∗α,β = Dk,∗α,βL

−k/2
α+k,β+k, k ∈ N.

are bounded operators on Lp(·)(0, π).
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(c) We define a multiplier operator m(Lα,β) in such a way that

m(Lα,β)Rk,∗α,βR
k
α,βf = f −

k−1∑
n=0

cα,βn (f)φα,βn , for all f ∈ Sα,β ,

and prove its boundedness on Lp(·)(0, π).
(d) For every γ > 0, the potential operator L−γα,β is also bounded on Lp(·)(0, π).

According with [15] in order to get the boundedness of operators defined on Lp(·)(0, π) it is
sufficient to prove boundedness of them on the weighted Lr-spaces, Lrω(0, π) for every ω ∈ Ar(0, π),
the class of Muckenhoupt weights , and some 1 < r < ∞. Let us note that, taking into account
[15, Theorem 1.2], we can change the condition "p ∈ P(0, π) and for some p0 ∈ (1, p−), (p(·)/p0)′ ∈
B(0, π)" used in [15, Theorem 1.3] by p ∈ B(0, π), because if p ∈ B(0, π) there exists an extension
p̃ ∈ B(R) of p from (0, π) to R.

Once of all this has been proved, the proof of Theorem 1.1 is as follows:
From assertion (a) it is enough to prove the equivalence of norms for functions in Sα,β . Let us

take then f, g ∈ Sα,β such that f = L−k/2α,β g. From assertions (b) and (c) we get

‖g‖Lp(·)(0,π) ≤C
(
‖m(Lα,β)Rk,∗α,βD

k
α,βf‖Lp(·)(0,π) + ‖f‖Lp(·)(0,π)

)
≤C
(
‖Dkα,βf‖Lp(·)(0,π) + ‖f‖Lp(·)(0,π)

)
.

Thus, we obtain
‖f‖

H
k/2,p(·)
α,β (0,π)

≤ C‖f‖
W
k,p(·)
α,β (0,π)

.

On the other hand, by using assertions (b) and (d), for every m ∈ N such that 0 ≤ m ≤ k,

‖Dmα,βf‖Lp(·)(0,π) =‖Dmα,βL
−k/2
α,β g‖Lp(·)(0,π) = ‖Rmα,βL

−(k−m)/2
α,β g‖Lp(·)(0,π) ≤ C‖g‖Lp(·)(0,π).

Hence,
‖f‖

W
k,p(·)
α,β (0,π)

≤ C‖f‖
H
k/2,p(·)
α,β (0,π)

.

We now define the positive power of the Jacobi operator Lα,β according to the ideas of Lions
and Peetre [27, Chapter VII, Section 2] and Berens, Butzer and Westphal [2]. Let γ > 0 and choose
r ∈ N such that γ < r ≤ γ + 1. For every ε > 0 and f ∈ Lp(·)(0, π), we define

(5) Iγ,rε f = Cγ,r

∫ ∞
ε

(
I −Wα,β

u

)r
f

uγ+1
du ,

where the integral is understood in the Lp(·)-Bochner sense and Cγ,r =

(∫ ∞
0

(1− e−u)r

uγ+1
du

)−1

.

Note that, for every f ∈ Lp(·)(0, π),∫ ∞
ε

‖
(
I −Wα,β

u

)r
f‖Lp(·)(0,π)

uγ+1
du <∞.

Moreover, the operator Iγ,rε is bounded from Lp(·)(0, π) into itself (Proposition 5.1). We consider
the domain of Lγα,β

Dp(·)(Lγα,β) =
{
f ∈ Lp(·)(0, π) : lim

ε→0+
Iγ,rε f exists in Lp(·)(0, π)

}
,

and we define

(6) Lγα,βf = lim
ε→0+

Iγ,rε f, f ∈ Dp(·)(Lγα,β).

As it will be shown in Section 5, in the definition of Lγα,β we can take any r ∈ N, r > γ. Next, we

characterize the Jacobi potential space Hγ,p(·)
α,β (0, π) as the domain of Lγα,β .

Theorem 1.2. Let γ > 0 and α, β ≥ −1/2 such that α+ β 6= −1. Assume that p ∈ B(0, π). Then,
H
γ,p(·)
α,β (0, π) = Dp(·)(Lγα,β). Moreover, for every f ∈ Dp(·)(Lγα,β),

L−γα,βL
γ
α,βf = f,

and, for every f ∈ Lp(·)(0, π),
Lγα,βL

−γ
α,βf = f.
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Segovia and Wheeden [40] characterized potential spaces by using Littlewood-Paley square func-
tions. In order to do this they introduced square functions involving fractional derivatives of the
classical Poisson semigroup. Inspired by [40], Betancor, Fariña, Rodríguez-Mesa, Testoni and Tor-
rea obtained characterizations using vertical and area Littlewood-Paley functions for the potential
spaces associated with the Hermite and Ornstein-Uhlenbeck operators ([6]) and Schrödinger opera-
tors ([4]). We will characterize our variable exponent Jacobi potential spaces by using Littlewood-
Paley function defined via derivatives of the Jacobi-Poisson semigroup.

Let γ > 0 and k ∈ N such that 0 < γ < k. We consider the following Littlewood-Paley function

gγ,kα,β(f)(θ) =

(∫ ∞
0

∣∣∣tk−γ∂kt Pα,βt (f)(θ)
∣∣∣2 dt
t

)1/2

, θ ∈ (0, π).

We say that a measurable function f ∈ Lp(·)(0, π) is in T
γ,k,p(·)
α,β (0, π) when gγ,kα,β(f) ∈ Lp(·)(0, π).

On T γ,k,p(·)α,β (0, π) we define the norm

‖f‖
T
γ,k,p(·)
α,β (0,π)

= ‖f‖Lp(·)(0,π) + ‖gγ,kα,β(f)‖Lp(·)(0,π), f ∈ T γ,k,p(·)α,β (0, π).

Thus, T γ,k,p(·)α,β (0, π) is a Banach space.

The space T γ,k,p(·)α,β (0, π), which can be seen as a variable exponent Triebel-Lizorkin type space,

coincides with the variable exponent potential space Hγ/2,p(·)
α,β (0, π).

Theorem 1.3. Let α, β ≥ −1/2 such that α + β 6= −1 and 0 < γ < k, k ∈ N. Assume that
p ∈ B(0, π). Then, Hγ/2,p(·)

α,β (0, π) = T
γ,k,p(·)
α,β (0, π). Moreover, the norms ‖ · ‖

H
γ/2,p(·)
α,β (0,π)

and

‖ · ‖
T
γ,k,p(·)
α,β (0,π)

are equivalent.

Note that from Theorem 1.3 we deduce that the space T γ,k,p(·)α,β (0, π) does not depend on k ∈ N
provided that 0 < γ < k. The result in Theorem 1.3 is new even when p ∈ P(0, π) is constant and
it gives a new characterization of the Jacobi Sobolev spaces introduced in [24].

In order to prove Theorem 1.3 we need to show that certain square function related to gγ,kα,β ,
which involves fractional derivatives, is bounded on Lp(·)(0, π) . In [40] fractional derivatives were
introduced. Suppose that γ > 0 and F is a nice enough function defined in (0, π) × (0,∞). The
γ-th derivative ∂γt F is defined by

∂γt F (θ, t) =
e−i(m−γ)π

Γ(m− γ)

∫ ∞
0

∂mt F (θ, t+ s)sm−γ−1ds, θ ∈ (0, π), t > 0,

where m ∈ N is such that m− 1 ≤ γ < m.
We consider the Littlewood-Paley function gγα,β given by

gγα,β(f)(θ) =

(∫ ∞
0

∣∣∣tγ∂γt Pα,βt (f)(θ)
∣∣∣2 dt
t

)1/2

, θ ∈ (0, π).

The key relation between gγ,kα,β and gγα,β , 0 < γ < k, which allows to connect the spacesHγ/2,p(·)
α,β (0, π)

and T γ,k,p(·)α,β (0, π), is the following

gk−γα,β (f) = gγ,kα,β(L−γ/2α,β f), f ∈ Sα,β .

In [23] Kyriazis, Petrushev and Xu defined Besov and Triebel-Lizorkin spaces associated with
Jacobi expansions with respect to

(
(−1, 1), (1−x)α(1+x)βdx

)
. We now adapt the Triebel-Lizorkin

definitions given in [23] to our Jacobi expansions in
(
(0, π), dθ

)
. We take a function a ∈ C∞c (0,∞)

such that supp a ⊆ [1/2, 2] and inft∈[3/5,5/3] |a(t)| > 0. The following construction is independent
of the election of a and, as it is said in [23], we can add the condition that a(t) + a(2t) = 1 for
t ∈ [1/2, 1]. We define the sequence {Φα,βj }j∈N of functions on (0, π)2 as follows,

Φα,β0 (θ, ϕ) = φα,β0 (θ)φα,β0 (ϕ), θ, ϕ ∈ (0, π),

and, for every j ∈ N, j ≥ 1,

Φα,βj (θ, ϕ) =

∞∑
n=0

a
(λα,βn

2j−1

)
φα,βn (θ)φα,βn (ϕ), θ, ϕ ∈ (0, π).
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If γ ∈ R and 0 < p, q <∞, a function f ∈ L1(0, π) is in the Jacobi-Triebel-Lizorkin space F γ,q,pα,β (0, π)
provided that

‖f‖Fγ,q,pα,β (0,π) =
∥∥∥( ∞∑

j=0

(
2jγ
∣∣Φα,βj (f)(·)

∣∣)q)1/q∥∥∥
Lp(0,π)

<∞.

Here, for every j ∈ N,

Φα,βj (f)(θ) =

∫ π

0

Φα,βj (θ, ϕ)f(ϕ)dϕ, θ ∈ (0, π).

It would be interesting to investigate Jacobi-Triebel-Lizorkin spaces with variable exponent in the(
(−1, 1), (1−x)α(1 +x)βdx

)
and

(
(0, π), dθ

)
settings. This question will be considered on its whole

generality in a forthcoming paper. Here we only introduce Jacobi-Triebel-Lizorkin spaces with
γ > 0, q = 2 and variable exponent p(·). Assume that p ∈ P(0, π). A function f ∈ Lp(·)(0, π) is in
F
γ,2,p(·)
α,β (0, π) when

‖f‖
F
γ,2,p(·)
α,β (0,π)

=
∥∥∥( ∞∑

j=0

(
2jγ
∣∣Φα,βj (f)(·)

∣∣)2)1/2∥∥∥
Lp(·)(0,π)

<∞.

In the following theorem we identify the variable exponent Jacobi-Triebel-Lizorkin space F γ,2,p(·)α,β (0, π)

with the potential space Hγ,p(·)
α,β (0, π).

Theorem 1.4. Let α, β ≥ −1/2 and γ > 0. Assume that p ∈ B(0, π). Then, Hγ,p(·)
α,β (0, π) =

F
γ,2,p(·)
α,β (0, π). Moreover, the norms ‖ · ‖

H
γ,p(·)
α,β (0,π)

and ‖ · ‖
F
γ,2,p(·)
α,β (0,π)

are equivalent.

Note that as a special case of Theorem 1.4 we establish that the Jacobi potential space Hγ,p
α,β(0, π)

considered by Langowski ([24]) coincides with the Jacobi-Triebel-Lizorkin space F γ,2,pα,β (0, π), for
every 1 < p <∞.

The paper is organized as follows. In Sections 2, 3 and 4 we prove that assertions (a), (b), (c)
and (d) are true. Theorems 1.2, 1.3 and 1.4 are proved in Sections 5, 6 and 7, respectively.

Throughout this paper by C and c we always denote positive constants that can change in each
occurrence.

2. Dense subspaces

This section deals with the proof of theW k,p(·)
α,β -density of Sα,β claimed in assertion (a) of Section

1.
Assume that p ∈ P(0, π). According to [17, Theorem 3.4.6] the space Lp

′(·)(0, π) is isomorphic
to the dual space (Lp(·)(0, π))∗ of Lp(·)(0, π). On the other hand, for every k ∈ N, φα,βk ∈ L∞(0, π).
Then, φα,βk ∈ Lp′(·)(0, π), k ∈ N ([17, Theorem 3.3.11]). We define, for every f ∈ Lp(·)(0, π) and
k ∈ N,

cα,βk (f) =

∫ π

0

φα,βk (θ)f(θ)dθ.

By [17, Theorem 3.4.12] the space C∞c (0, π) is dense in Lp(·)(0, π).

Proposition 2.1. Let α, β ≥ −1/2 and p ∈ P(0, π). The space Sα,β = span{φα,βk }k∈N is dense in
Lp(·)(0, π).

Proof. Since C∞c (0, π) is a dense subspace of Lp(·)(0, π), it is sufficient to see that C∞c (0, π) is
contained in the closure of Sα,β in Lp(·)(0, π). Let g ∈ C∞c (0, π). By using integration by parts
we deduce that, for every m ∈ N, there exists Cm > 0 such that |cα,βk (g)| < Cm(k + 1)−m, k ∈ N.
Hence,

Sα,βn (g) =

n∑
k=0

cα,βk (g)φα,βk −→ g , as n→∞, in L∞(0, π).

Hence, according to [17, Theorem 3.3.11], Sα,βn (φ)→ φ, as n→∞, in Lp(·)(0, π). �

Corollary 2.1. Let α, β ≥ −1/2 and p ∈ P(0, π). If f ∈ Lp(·)(0, π) and cα,βk (f) = 0, k ∈ N, then
f = 0.
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Proof. Since p ∈ P(0, π), p′ is also in P(0, π). Then, by Proposition 2.1, Sα,β is dense in Lp
′(·)(0, π).

Assume that f ∈ Lp(·)(0, π) is such that cα,βk (f) = 0, k ∈ N. The norm conjugate formula ([17,
Corollary 3.2.14]) leads to ∫ π

0

f(θ)g(θ)dθ = 0,

for every g ∈ Lp′(·)(0, π). By using again the norm conjugate formula (duality) we conclude that
f = 0. �

We can improve the result in Proposition 2.1 when the function p(·) satisfies additional conditions.
According to [30, Theorem 1], if 1 < p <∞ and f ∈ Lp(0, π), then

f = lim
n→∞

n∑
k=0

cα,βk (f)φα,βk ,

where the convergence is understood in Lp(0, π). We now establish this property in Lpw(0, π),
1 < p <∞ and w ∈ Ap(0, π), and in Lp(·)(0, π) when the function p(·) is as in [15, Theorem 1.3].

Proposition 2.2. Let α, β ≥ −1/2.
(i) If 1 < p <∞ and w ∈ Ap(0, π), there exists C > 0 such that, for every n ∈ N,∥∥∥ n∑

k=0

cα,βk (f)φα,βk

∥∥∥
Lpw(0,π)

≤ C‖f‖Lpw(0,π), f ∈ Lpw(0, π),

and

lim
n→∞

n∑
k=0

cα,βk (f)φα,βk = f, f ∈ Lpw(0, π),

in the sense of convergence in Lpw(0, π).
(ii) Assume that p ∈ B(0, π). Then, there exists C > 0 such that, for every n ∈ N,∥∥∥ n∑

k=0

cα,βk (f)φα,βk

∥∥∥
Lp(·)(0,π)

≤ C‖f‖Lp(·)(0,π), f ∈ Lp(·)(0, π),

and

lim
n→∞

n∑
k=0

cα,βk (f)φα,βk = f, f ∈ Lp(·)(0, π),

in the sense of convergence in Lp(·)(0, π).

Proof of Proposition 2.2, (i). In order to prove this property we proceed as in the proof of [22,
Theorem 2]. Let 1 < p <∞ and w ∈ Ap(0, π). Suppose that f ∈ Lpw(0, π) and n ∈ N. We define

Snf(θ) =

n∑
k=0

cα,βk (f)φα,βk (θ), θ ∈ (0, π).

As in [22, p. 13] we have that

(7) |Snf(θ)| ≤ C
3∑
`=1

Jα,β,n` f(θ), θ ∈ (0, π),

where the operators Jα,β,n` , ` = 1, 2, 3 can be estimated as follows. Firstly, for Jα,β,n1 we get

Jα,β,n1 f(θ) ≤C
(

sin θ
2

)α+1/2(
cos θ2

)β+1/2(
sin θ

2 + 1
n+1

)α+1/2(
cos θ2 + 1

n+1

)β+1/2

×
∫ π

0

(
sin ϕ

2

)α+1/2(
cos ϕ2

)β+1/2(
sin ϕ

2 + 1
n+1

)α+1/2(
cos ϕ2 + 1

n+1

)β+1/2
|f(ϕ)|dϕ

≤C
∫ π

0

|f(ϕ)|dϕ, θ ∈ (0, π).

Then, Hölder’s inequality implies that

(8)
∫ π

0

|Jα,β,n1 f(θ)|pw(θ)dθ ≤ C
∫ π

0

|f(θ)|pw(θ)dθ,

because Lpw(0, π) ⊆ L1(0, π).
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For Jα,β,n2 the following estimate holds

Jα,β,n2 f(θ) ≤ C
(

sin θ
2

)α+1/2(
cos θ2

)β+1/2(
sin θ

2 + 1
n+1

)α+1/2(
cos θ2 + 1

n+1

)β+1/2

×
∣∣∣ ∫ π

0

sinϕ

sin θ+ϕ
2 sin θ−ϕ

2

(
sin ϕ

2

)α+3/2(
cos ϕ2

)β+3/2(
sin ϕ

2 + 1
n

)α+3/2(
cos ϕ2 + 1

n

)β+3/2
bn(ϕ)f(ϕ)dϕ

∣∣∣,
where supk∈N |bk(ϕ)| ≤ C, ϕ ∈ (0, π). We can write (see [22, p. 14])

sinϕ

sin θ+ϕ
2 sin θ−ϕ

2

=
1

sin θ−ϕ
2

+R(θ, ϕ), θ, ϕ ∈ (0, π), θ 6= ϕ,

being

|R(θ, ϕ)| ≤ C


1

sin θ
2 + sin ϕ

2

, 0 < θ < π/2

1

cos θ2 + cos ϕ2
, π/2 < θ < π,

ϕ ∈ (0, π).

Thus, by defining

g(ϕ) =

(
sin ϕ

2

)α+3/2(
cos ϕ2

)β+3/2(
sin ϕ

2 + 1
n

)α+3/2(
cos ϕ2 + 1

n

)β+3/2
bn(ϕ)f(ϕ), ϕ ∈ (0, π),

we obtain

(9) Jα,β,n2 f(θ) ≤ C
[
|(Hg)(θ)|+ S1(|g|)(θ) + S2(|g|)(θ)

]
, θ ∈ (0, π),

where

(Hg)(θ) = P.V.
∫ π

0

g(ϕ)

sin θ−ϕ
2

dϕ, a.e. θ ∈ (0, π),

(S1g)(θ) =

∫ π

0

g(ϕ)

sin θ
2 + sin ϕ

2

dϕ, θ ∈ (0, π),

and

(S2g)(θ) =

∫ π

0

g(ϕ)

cos θ2 + cos ϕ2
dϕ, θ ∈ (0, π).

The operator H is a singular integral operator related to the Hilbert transform and Sj , j = 1, 2,
are Stieltjes type operators. It is well-known ([21]) that H is bounded from Lpw(0, π) into itself. In
[22, Lemma 6] it was established that S1 and S2 are bounded from Lpw(0, π) into itself. Then, (9)
implies that

(10)
∫ π

0

|Jα,β,n2 f(θ)|pw(θ)dθ ≤ C
∫ π

0

|g(θ)|pw(θ)dθ ≤ C
∫ π

0

|f(θ)|pw(θ)dθ.

In a similar way we can see

(11)
∫ π

0

|Jα,β,n3 f(θ)|pw(θ)dθ ≤ C
∫ π

0

|f(θ)|pw(θ)dθ.

By putting together (7), (8), (10) and (11) we conclude that

‖Snf‖Lpw(0,π) ≤ C‖f‖Lpw(0,π).

Note that the constant C > 0 does not depend on n ∈ N and f ∈ Lpw(0, π).
Since C∞c (0, π) is a dense subspace of Lpw(0, π) and for every h ∈ C∞c (0, π),

lim
n→∞

Snh = h, uniformly in(0, π),

and hence in Lpw(0, π); standard arguments allow us to show that, for every f ∈ Lpw(0, π),

lim
n→∞

Snf = f, in Lpw(0, π).

�
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Proof of Proposition 2.2, (ii). From the property established in Proposition 2.2, (i), and according
to [15, Theorem 1.3] we deduce that there exists C > 0 such that, for every n ∈ N,

(12) ‖Snf‖Lp(·)(0,π) ≤ C‖f‖Lp(·)(0,π), f ∈ Lp(·)(0, π).

By [17, Theorem 3.3.1], C∞c (0, π) ⊆ Lp+(0, π) ⊆ Lp(·)(0, π) and the inclusions are continuous.
Hence, for every h ∈ C∞c (0, π),

lim
n→∞

Sn(h) = h, in Lp(·)(0, π).

Since C∞c (0, π) is dense in Lp(·)(0, π) we deduce from (12) that, for every f ∈ Lp(·)(0, π),

lim
n→∞

Snf = f, in Lp(·)(0, π).

�

We are going to see that Sα,β is a dense subspace of W k,p(·)
α,β (0, π).

Proposition 2.3. Let α, β ≥ −1/2, k ∈ N and p ∈ B(0, π). Then, Sα,β is a dense subspace of
W

k,p(·)
α,β (0, π).

Proof. We proceed following the ideas in the proof of [5, Proposition 2] (see also [24, Proposi-
tion 3.2]). Note firstly that, since Lp(·)(0, π) ⊆ Lp−(0, π) ([17, Theorem 3.3.1]), W k,p(·)

α,β (0, π) ⊆
W

k,p−
α,β (0, π), where the last Sobolev type space W k,p−

α,β (0, π) (with constant exponent p−) was stud-
ied by Langowski [24].

Let f ∈W k,p(·)
α,β (0, π). The maximal operator Wα,β

∗ associated with {Wα,β
t }t>0 is defined by

Wα,β
∗ (f) = sup

t>0
|Wα,β

t (f)|.

According to [36, Theorem A, and (3)] we have that

(13) |Wα,β
t (θ, ϕ)| ≤ C e

−c(θ−ϕ)2/t

√
t

, θ, ϕ ∈ (0, π) and t > 0.

From (13) we deduce that
Wα,β
t (f) ≤ CMc(f),

whereMc denotes the centered Hardy-Littlewood maximal operator. Then, by [17, Theorem 4.3.8]
Wα,β
∗ is a bounded (sublinear) operator from Lp(·)(0, π) into itself. It is clear that, for every φ ∈ Sα,β ,

lim
t→0+

Wα,β
t (φ) = φ, in Lp(·)(0, π).

Then, since Sα,β is dense in Lp(·)(0, π) (Proposition 2.1), we obtain that,

lim
t→0+

Wα,β
t (f) = f, in Lp(·)(0, π).

By [24, Lemmas 3.1 and 3.3]

(14) cα+`,β+`
m

(
D`α,βf

)
= (−1)`

√
(m+ 1)`(m+ `+ α+ β + 1)` c

α,β
m+`(f), `,m ∈ N, 0 ≤ ` ≤ k.

Here and in the sequel we denote by (z)`, z > 0, the `-Pochhammer symbol, that is,

(15) (z)` = z(z + 1) · · · (z + `− 1), ` ∈ N, ` ≥ 1 and (z)0 = 1.

By taking into account [24, (1)] we can differentiate term by term inside the series and [24,
Lemma 3.1] and (14) lead to

D`α,βW
α,β
t f =

∞∑
m=0

e−tλ
α,β
m cα,βm (f) D`α,βφα,βm

=

∞∑
m=`

e−tλ
α,β
m (−1)m

√
(m− `+ 1)`(m+ α+ β + 1)` c

α,β
m (f) φα+`,β+`

m−`

=

∞∑
m=`

e−tλ
α,β
m cα+`,β+`

m−`
(
D`α,βf

)
φα+`,β+`
m−`

=

∞∑
m=0

e−tλ
α+`,β+`
m cα+`,β+`

m

(
D`α,βf

)
φα+`,β+`
m , ` ∈ N, 0 ≤ ` ≤ k.
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Hence, for every ` ∈ N, 0 ≤ ` ≤ k,

lim
t→0+

D`α,βW
α,β
t f = D`α,βf, in Lp(·)(0, π).

Let ε > 0. There exists t0 > 0 such that, for every 0 < t < t0,

‖D`α,βW
α,β
t f − D`α,βf‖Lp(·)(0,π) < ε, ` ∈ N, 0 ≤ l ≤ k.

On the other hand, by using [24, (1)], [17, Theorem 3.3.11] and Hölder inequality we get, for every
θ ∈ (0, π) and `,m ∈ N,∣∣cα+`,β+`

m

(
D`α,βf

)∣∣ ∣∣φα+`,β+`
m (θ)

∣∣ ≤ C‖D`α,βf‖Lp− (0,π)(m+ 1)α+β+2`+2.

Hence, there exists m0 ∈ N, m0 ≥ k, such that∥∥∥∥∥
∞∑

m=M+1

e−t0λ
α+`,β+`
m cα+`,β+`

m

(
D`α,βf

)
φα+`,β+`
m

∥∥∥∥∥
Lp(·)(0,π)

≤ C
∞∑

m=m0+1

e−t0(m+α+β+2`
2 )2(m+ 1)α+β+2`+2 < ε, ` ∈ N, 0 ≤ ` ≤ k, M ∈ N, M ≥ m0.

Then, ∥∥∥∥∥
m0∑
m=0

e−t0λ
α,β
m cα,βm (f)φα,βm − f

∥∥∥∥∥
W
k,p(·)
α,β (0,π)

< 2ε.

Thus, we have proved that f is in the closure of Sα,β in W k,p(·)
α,β (0, π) and the proof is finished. �

3. Jacobi multipliers in weighted Lp-spaces

This section deals, among other things, with the proof of the Hk/2,p(·)
α,β -density of Sα,β claimed in

assertions (a) and (d) of Section 1.
Let m = (mk)∞k=0 be a bounded sequence of real numbers. The Jacobi multiplier Tα,βm associated

with m is defined by

Tα,βm f =

∞∑
k=0

mkc
α,β
k (f)φα,βk , f ∈ L2(0, π).

Plancherel’s equality implies that Tα,βm is bounded on L2(0, π). Sufficient conditions which allow to
extend Tα,βm as a bounded operator to Lp(0, π) and to certain weighted Lp(0, π) spaces have been
established by several authors (see [1], [7], [14], [20], [28], [31], [32] and [44], amongst others).

The goal of this section is to establish a multiplier theorem in Lp(·)(0, π). Previously we need
to show a multiplier result for Lpw(0, π) when w ∈ Ap(0, π). In order to achieve this we invoke a
general multiplier theorem due to Meda [29] (see also [44]).

Let −∞ < a <
(
α+β+1

2

)2

. We consider the operator

Lα,β;a = Lα,β − a.

It is clear that, for every k ∈ N, φα,βk is an eigenfunction for Lα,β;a associated with the eigenvalue

λα,β;a
k =

(
k +

α+ β + 1

2

)2

− a = k(k + α+ β + 1) +

(
α+ β + 1

2

)2

− a.

Lα,β;a is a nonnegative and selfadjoint operator on L2(0, π). Moreover, Lα,β;a generates a (heat)
semigroup {Wα,β;a

t }t>0 on L2(0, π), given by

Wα,β;a
t (f) =

∫ π

0

Wα,β;a
t (θ, ϕ)f(ϕ)dϕ, f ∈ L2(0, π), t > 0,

and

Wα,β;a
t (θ, ϕ) =

∞∑
k=0

e−tλ
α,β;a
k φα,βk (θ)φα,βk (ϕ), θ, ϕ ∈ (0, π), and t > 0.

According to [36, Theorem A, (3) and (9)] we have that∣∣∣Wα,β;a
t (θ, ϕ)

∣∣∣ ≤ Ce−((α+β+1
2 )2−a)t e

−c(θ−ϕ)2/t

√
t

, θ, ϕ ∈ (0, π) and t > 0.
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Let γ ∈ R\{0}. The imaginary power Liγα,β;a of Lα,β;a is the spectral multiplier g(Lα,β;a) where
g(x) = xiγ , x > 0, that is,

Liγα,β;a(f) =

∞∑
k=0

(λα,β;a
k )iγcα,βk (f)φα,βk , f ∈ L2(0, π).

The operator Liγα,β;a can be seen as a Laplace transform type multiplier for Lα,β;a. Then, a
general result due to Stein [41, Corollary 3, p. 121] applies to deduce that Liγα,β;a can be extended
from L2(0, π) ∩ Lp(0, π) to Lp(0, π) as a bounded operator on Lp(0, π), for every 1 < p <∞. Also,
by proceeding as in [35] we can see that Liγα,β;a is a Calderón-Zygmund operator in the sense of
a space of homogeneous type ((0, π), dθ, | · |), where | · | stands for the Euclidean metric. Then,
Liγα,β;a defines a bounded operator from Lpw(0, π) into itself, for every 1 < p <∞ and w ∈ Ap(0, π).
Moreover, classical arguments (see for instance, [19, Chapter 7, Section 4]) allow us to obtain that,
for every 1 < p <∞ and w ∈ Ap(0, π),

(16) ‖Liγα,β;a‖Lpw(0,π)→Lpw(0,π) ≤ Cp,weπ|γ|/2,

where Cp,w > 0 does not depend on γ. Estimation (16) shows an exponential increase with respect
to |γ| of the operator norm ‖Liγα,β;a‖Lpw(0,π)→Lpw(0,π) which is not sufficient to obtain our multiplier
result. Actually, the exponential behavior in (16) can be replaced by a polynomial growth. Indeed,
according to [11, Theorem 1.3 and Remarks 1.4 and 1.5] we have that, for every 1 < p < ∞ and
w ∈ Ap(0, π),

‖Liγα,β;a‖Lpw(0,π)→Lpw(0,π) ≤ Cp,w(1 + |γ|),
where Cp,w > 0 does not depend on γ.

We now establish our result concerning the Lpw(0, π)-boundedness of spectral multipliers for the
operator Lα,β;a.

Proposition 3.1. Let 1 < p <∞, α, β ≥ −1/2 and −∞ < a <
(
α+β+1

2

)2

. Assume that:

(i) m is a bounded holomorphic function on {z ∈ C : Re z > 0}; or
(ii) m ∈ C∞(0, π) and for every ` ∈ N

(17) sup
x∈(0,∞)

∣∣∣∣x` d`dx`m(x)

∣∣∣∣ <∞.
Then, the spectral multiplier m(Lα,β;a) related to the operator Lα,β;a given by

(18) m(Lα,β;a)f =

∞∑
k=0

m(λα,β;a
k )cα,βk (f)φα,βk ,

is bounded from Lpw(0, π) into itself, for every w ∈ Ap(0, π).

This result can be proved as in [29, Theorem 3 or Corollary 1]. By using now [15, Theorem
1.3] we deduce from Proposition 3.1 the following Lp(·)-boundedness result for spectral multipliers
associated with Lα,β;a.

Proposition 3.2. Let α, β ≥ −1/2 and −∞ < a <
(
α+β+1

2

)2

. Assume that p ∈ B(0, π). If m
satisfies condition (i) or (ii) of Proposition 3.1, then the spectral multiplier m(Lα,β;a) given by (18)
defines a bounded operator from Lp(·)(0, π) into itself.

The negative powers of Lα,β defined in (3) are spectral multipliers for the Jacobi operator that

will be useful in the sequel. Suppose that γ > 0 and α + β 6= −1. Since λα,βk ≥
(
α+β+1

2

)2

, k ∈ N,
the operator L−γα,β is bounded from L2(0, π) into itself.

We take a = 1
2

(
α+β+1

2

)2

. We can write

L−γα,βf =

∞∑
k=0

(λα,β;a
k + a)−γcα,βk (f)φα,βk = Tα,β;a

mγ (f), f ∈ L2(0, π),

where mγ(z) = (z + a)−γ , z ∈ C, Re z > 0. Since mγ is a bounded holomorphic function on
{z ∈ C : Re z > 0} from Propositions 3.1 and 3.2 we deduce the following.

Proposition 3.3. Let γ > 0 and α, β ≥ −1/2 such that α+ β 6= −1.
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(a) If 1 < p < ∞ and w ∈ Ap(0, π), then L−γα,β can be extended from L2(0, π) ∩ Lpw(0, π) to
Lpw(0, π) as a bounded operator from Lpw(0, π) into itself.

(b) If p ∈ B(0, π), then L−γα,β defines a bounded operator from Lp(·)(0, π) into itself.

We also have the injectivity of L−γα,β on Lpw(0, π) and Lp(·)(0, π).

Proposition 3.4. Let γ > 0 and α, β ≥ −1/2 such that α+ β 6= −1.
(a) If 1 < p <∞ and w ∈ Ap(0, π), then L−γα,β is one to one on Lpw(0, π).
(b) Assume that p ∈ B(0, π). Then, L−γα,β is one to one on Lp(·)(0, π).

Proof. We prove (b). Property (a) can be shown in a similar way. It is clear that if f ∈ Sα,β we
have that

(19) cα,βk (L−γα,βf) = (λα,βk )−γcα,βk (f), k ∈ N.

Since L−γα,β is bounded from Lp(·)(0, π) into itself (see Proposition 3.3); for every k ∈ N, φα,βk ∈
Lp
′(·)(0, π) =

(
Lp(·)(0, π)

)∗
([17, Theorem 3.4.6]) and Sα,β is dense in Lp(·)(0, π) (Proposition 2.1),

we conclude that (19) holds for every f ∈ Lp(·)(0, π). Then, from Corollary 2.1 we deduce that
f = 0 provided that L−γα,βf = 0. �

By using Proposition 2.2 we obtain the following characterization of the potential spaceHγ,p(·)
α,β (0, π).

Proposition 3.5. Let γ > 0 and α, β ≥ −1/2 such that α + β 6= −1. Assume that p ∈ B(0, π).
A function f ∈ Lp(·)(0, π) is in H

γ,p(·)
α,β (0, π) if, and only if, the series

∑∞
n=0(λα,βn )γcα,βn (f)φα,βn

converges in Lp(·)(0, π). Moreover, for every f ∈ Hγ,p(·)
α,β (0, π),

‖f‖
H
γ,p(·)
α,β (0,π)

=
∥∥∥ ∞∑
n=0

(λα,βn )γcα,βn (f)φα,βn

∥∥∥
Lp(·)(0,π)

.

Proof. Let f ∈ Lp(·)(0, π). Suppose that f ∈ Hγ,p(·)
α,β (0, π). Then, there exists g ∈ Lp(·)(0, π) such

that f = L−γα,βg. Thus, by (19) we have that cα,βn (f) = (λα,βn )−γcα,βn (g), n ∈ N. Hence, according to
Proposition 2.2, the series

∞∑
n=0

(λα,βn )γcα,βn (f)φα,βn =

∞∑
n=0

cα,βn (g)φα,βn

converges in Lp(·)(0, π).
Assume now that the series F =

∑∞
n=0(λα,βn )γcα,βn (f)φα,βn converges in Lp(·)(0, π). Then, by

Proposition 3.4, L−γα,βF = f and f ∈ Hγ,p(·)
α,β (0, π). �

As an immediate consequence of Proposition 3.5 we establish the density of Sα,β in Hγ,p(·)
α,β (0, π).

Corollary 3.1. Let γ > 0 and α, β ≥ −1/2 such that α+β 6= −1. Assume that p ∈ B(0, π). Then,
for every f ∈ Hγ,p(·)

α,β (0, π),

f = lim
n→∞

n∑
k=0

cα,βk (f)φα,βk ,

in the sense of convergence in Hγ,p(·)
α,β (0, π).

Proof. Let f ∈ Hγ,p(·)
α,β (0, π). We have that f = L−γα,βg, where

g =

∞∑
k=0

(λα,βk )γcα,βk (f)φα,βk ,

in the sense of convergence in Lp(·)(0, π). Then,∥∥∥f − n∑
k=0

cα,βk (f)φα,βk

∥∥∥
H
γ,p(·)
α,β (0,π)

=
∥∥∥g − n∑

k=0

(λα,βk )γcα,βk (f)φα,βk

∥∥∥
Lp(·)(0,π)

−→ 0, as n→∞.

�
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4. Boundedness of the higher order Riesz transforms

This section has to do with the proof of assertions (b) and (c) of Section 1.
Firstly, we establish that Rkα,β and Rk,∗α,β are composition of Jacobi Riesz transforms of order one.

Lemma 4.1. Let k ∈ N and α, β ≥ −1/2 such that α+ β 6= −1. Then,

(20) Rkα,βf = R1
α+k−1,β+k−1 ◦R1

α+k−2,β+k−2 ◦ ..... ◦R1
α,βf, f ∈ Sα,β ,

and

(21) Rk,∗α,βf = R1,∗
α,β ◦R

1,∗
α+1,β+1 ◦ ..... ◦R

1,∗
α+k−1,β+k−1f, f ∈ Sα+k,β+k.

Proof. We are going to prove (20), (21) can be shown in a similar way. It is sufficient to see that
(20) is true when f = φα,βl , for every l ∈ N.

Let l ∈ N. According to [24, Lemma 3.1] we have that

(22) Dkα,βφ
α,β
l = (−1)k

√
(l − k + 1)k(l + α+ β + 1)k φ

α+k,β+k
l−k .

Recall the definition of the Pochhammer symbol in (15) and by convention φα,βn = 0, n ∈ Z, n < 0.
Hence,

Rkα,βφ
α,β
l = (−1)k

√
(l − k + 1)k(l + α+ β + 1)k

(λα,βl )k
φα+k,β+k
l−k .

Since λα,βl = λα+n,β+n
l−n , 0 ≤ n ≤ l, we can write

Rkα,βφ
α,β
l = (−1)k

k−1∏
n=0

√
(l − n)(l + α+ β + 1 + n)

λα+n,β+n
l−n

φα+k,β+k
l−k

= (−1)k−1
k−2∏
n=0

√
(l − n)(l + α+ β + 1 + n)

λα+n,β+n
l−n

R1
α+k−1,β+k−1φ

α+k−1,β+k−1
l−k+1

= R1
α+k−1,β+k−1 ◦R1

α+k−2,β+k−2 ◦ ..... ◦R1
α,βφ

α,β
l ,

and (20) is established. �

We are going to prove that Rkα,β and Rk,∗α,β define bounded operators from Lpw(0, π) into itself for
every 1 < p <∞ and w ∈ Ap(0, π). As consecuence of the next lemma, we only need to study the
corresponding local operators (see [10] and [13]).

We consider the domain D = ∪4
j=1Dj represented in the figure bellow

θ

ϕ

ππ
2

π

π
4

π
2

3π
4

D1

D2

D3

D4

D1 =
{

(θ, ϕ) : 0 < ϕ <
θ

2
, 0 < θ <

π

2

}
,

D2 =
{

(θ, ϕ) : 0 <
3θ

2
< ϕ < π, 0 < θ <

π

2

}
,

D3 =
{

(θ, ϕ) : 0 < ϕ <
3θ − π

2
,
π

2
< θ < π

}
,

D4 =
{

(θ, ϕ) :
θ + π

2
< ϕ < π,

π

2
< θ < π

}
.

Figure 1. Global regions

Lemma 4.2. Suppose that K : (0, π)× (0, π)\{(θ, θ) : θ ∈ (0, π)} −→ R is a measurable function
such that

|K(θ, ϕ)| ≤ C

|θ − ϕ|
, θ, ϕ ∈ (0, π), θ 6= ϕ.
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Then, for every 1 < p <∞ and w ∈ Ap(0, π) the operator H defined by

Hf(θ) =

∫ π

0

K(θ, ϕ)χD(θ, ϕ)f(ϕ)dϕ, θ ∈ (0, π),

is bounded from Lpw(0, π) into Lpw(0, π).

Proof. We define

Hjf(θ) =

∫ π

0

K(θ, ϕ)χDj (θ, ϕ)f(ϕ)dϕ, θ ∈ (0, π), j = 1, 2, 3, 4.

Thus, H =

4∑
j=1

Hj .

ByM we denote the Hardy-Littlewood maximal function on (0, π). We have that

|H1f(θ)| ≤
∫ θ/2

0

|f(ϕ)|
|θ − ϕ|

dϕ ≤ C

θ

∫ θ/2

0

|f(ϕ)|dϕ ≤ CM(f)(θ), θ ∈ (0, π),

and

|H4f(θ)| ≤
∫ π

(θ+π)/2

|f(ϕ)|
|θ − ϕ|

dϕ ≤ C

π − θ

∫ π

π−3(π−θ)/2
|f(ϕ)|dϕ ≤ CM(f)(θ), θ ∈ (0, π).

By using the classical maximal theorem we deduce that H1 and H4 are bounded from Lpw(0, π) into
itself, for every 1 < p <∞ and w ∈ Ap(0, π).

The adjoint operator H∗2 of H2 is defined by

H∗2g(ϕ) = χ(0, 3π4 )(ϕ)

∫ 2ϕ/3

0

K(θ, ϕ)g(θ)dθ + χ( 3π
4 ,π)(ϕ)

∫ π/2

0

K(θ, ϕ)g(θ)dθ, ϕ ∈ (0, π).

If 1 < p <∞ and w ∈ Ap(0, π), we deduce that

‖H∗2g‖Lpw(0,π) ≤ C


(∫ 3π/4

0

w(ϕ)

(∫ 2ϕ/3

0

|g(θ)|
|θ − ϕ|

dθ

)p
dϕ

)1/p

+

(∫ π

3π/4

w(ϕ)

(∫ π/2

0

|g(θ)|
|θ − ϕ|

dθ

)p
dϕ

)1/p


≤ C


(∫ π

0

w(ϕ)|M(|g|)(ϕ)|pdϕ
)1/p

+

(∫ π

3π/4

w(ϕ)dϕ

)1/p ∫ π

0

|g(θ)|dθ


≤ C‖g‖Lpw(0,π), g ∈ Lpw(0, π).

Hence, H2 is bounded from Lpw(0, π) into itself for every 1 < p <∞ and w ∈ Ap(0, π). On the other
hand, the adjoint operator H∗3 of H3 is given by

H∗3g(ϕ) = χ(0,π4 )(ϕ)

∫ π

π/2

K(θ, ϕ)g(θ)dθ + χ(π4 ,π)(ϕ)

∫ π

(2ϕ+π)/3

K(θ, ϕ)g(θ)dθ.

If 1 < p <∞ and w ∈ Ap(0, π), we get

‖H∗3g‖Lpw(0,π) ≤ C


(∫ π/4

0

w(ϕ)dϕ

)1/p ∫ π

0

|g(θ)|dθ +

(∫ π

π/4

w(ϕ)

(∫ π

(2ϕ+π)/3

|g(θ)|
|θ − ϕ|

dθ

)p
dϕ

)1/p


≤ C

‖g‖Lpw(0,π) +

(∫ π

π/4

w(ϕ)

(
1

π − ϕ

∫ π

π−4(π−ϕ)/3

|g(θ)|dθ

)p
dϕ

)1/p


≤ C
(
‖g‖Lpw(0,π) + ‖M(|g|)‖Lpw(0,π)

)
≤ C‖g‖Lpw(0,π), g ∈ Lpw(0, π).

We conclude that H3 is bounded from Lpw(0, π) into itself, for every 1 < p <∞ and w ∈ Ap(0, π).
Thus, the proof of this lemma is finished. �

By using Lemmas 4.1 an 4.2 we will deduce the Lpw(0, π)-boundedness of Rmα,β and Rm,∗α,β from
the corresponding property of R1

α,β and R1,∗
α,β , respectively.

Proposition 4.1. Let 1 < p < ∞, w ∈ Ap(0, π) and α, β ≥ −1/2 such that α + β 6= −1. The
Jacobi Riesz transforms R1

α,β and R1,∗
α,β define bounded operators from Lpw(0, π) into itself.

We are going to use local Calderón-Zygmund theory for singular integrals (see [13]). We are
inspired in the arguments developed by Nowak and Sjögren in [35].
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Proof of Proposition 4.1; the case of R1
α,β. By (22) we have that

R1
α,βf = −

∞∑
k=0

√
k(k + α+ β + 1)

λα,βk
cα,βk (f) φα+1,β+1

k−1 , f ∈ L2(0, π).

According to Plancherel’s theorem, R1
α,β is bounded from L2(0, π) into itself. By using [12, Theorem

2.4] we can write

R1
α,βf(θ) = lim

ε→0+

∫ π

0, |θ−ϕ|>ε
R1
α,β(θ, ϕ)f(ϕ)dϕ, a.e. θ ∈ (0, π),

for every f ∈ C∞c (0, π). Here the kernel R1
α,β(θ, ϕ) is defined by

R1
α,β(θ, ϕ) =

∫ ∞
0

Dα,βP
α,β
t (θ, ϕ)dt, θ, ϕ ∈ (0, π), θ 6= ϕ.

According to [13, Theorem 2.4] and Lemma 4.2, to prove that R1
α,β is bounded from Lpw(0, π) into

itself, it is enough to show that

(23) |R1
α,β(θ, ϕ)| ≤ C

|θ − ϕ|
, θ, ϕ ∈ (0, π), θ 6= ϕ,

and

(24) |∂θR1
α,β(θ, ϕ)|+ |∂ϕR1

α,β(θ, ϕ)| ≤ C

|θ − ϕ|2
, (θ, ϕ) ∈ (0, π)2\D, θ 6= ϕ,

where D is the domain in Figure 1.
According to [35, Proposition 4.1] and [36, (3)] we have that for every θ, ϕ ∈ (0, π) and t > 0,

(25)

Pα,βt (θ, ϕ) = Cα,β

(
sin

θ

2
sin

ϕ

2

)α+1/2(
cos

θ

2
cos

ϕ

2

)β+1/2

sinh
t

2

∫ 1

−1

∫ 1

−1

dΠα(u)dΠβ(v)

(cosh t
2 − 1 + q(θ, ϕ, u, v))α+β+2

,

where Cα,β = 2−α−β−1∫ π
0

(sin θ
2 )2α+1(cos θ2 )2β+1dθ

, dΠα(u) = Γ(α+1)√
πΓ(α+1/2)

(1− u2)α−1/2du, and

q(θ, ϕ, u, v) = 1− u sin
θ

2
sin

ϕ

2
− v cos

θ

2
cos

ϕ

2
.

By proceeding as in [35, Proof of Theorem 2.4; the case of Rα,β1 ] and using [35, Lemma 4.4 and
trigonometric identities in p. 738] we get that

|R1
α,β(θ, ϕ)|

≤ C
∫ ∞

0

sinh
t

2

∫ 1

−1

∫ 1

−1

(
sin θ

2 sin ϕ
2

)α+1/2 (
cos θ2 cos ϕ2

)β+1/2 |∂θq(θ, ϕ, u, v)|
(cosh t

2 − 1 + q(θ, ϕ, u, v))α+β+3
dΠα(u)dΠβ(v)dt

≤ C
∫ 1

−1

∫ 1

−1

(
sin θ

2 sin ϕ
2

)α+1/2 (
cos θ2 cos ϕ2

)β+1/2

qα+β+3/2(θ, ϕ, u, v)
dΠα(u)dΠβ(v)

≤ C
∫ 1

−1

(
sin θ

2 sin ϕ
2

)α+1/2 (
cos θ2 cos ϕ2

)β+1/2
dΠα(u)

(1− u sin θ
2 sin ϕ

2 )β+1/2(1− u sin θ
2 sin ϕ

2 − cos θ2 cos ϕ2 )α+1

≤ C
(
cos θ2 cos ϕ2

)β+1/2

(1− sin θ
2 sin ϕ

2 )β+1/2

1

(1− sin θ
2 sin ϕ

2 − cos θ2 cos ϕ2 )1/2

(
sin θ

2 sin ϕ
2

)α+1/2(
1− cos θ2 cos ϕ2

)α+1/2

≤ C

(
cos θ2 cos ϕ2

1− sin θ
2 sin ϕ

2 − cos θ2 cos ϕ2 + cos θ2 cos ϕ2

)β+1/2
1(

1− cos θ−ϕ2

)1/2

≤ C

(
cos θ2 cos ϕ2

1− cos ϕ−θ2 + cos θ2 cos ϕ2

)β+1/2
1

|θ − ϕ|
≤ C

|θ − ϕ|
, θ, ϕ ∈ (0, π).

(26)

Then (23) is proved.
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Also, we have that

∂θR
1
α,β(θ, ϕ) =

(
2α+ 1

4

cos θ2
sin θ

2

− 2β + 1

4

sin θ
2

cos θ2

)
R1
α,β(θ, ϕ)

+

(
sin

θ

2
sin

ϕ

2

)α+1/2(
cos

θ

2
cos

ϕ

2

)β+1/2

Tα,β(θ, ϕ), θ, ϕ ∈ (0, π),(27)

where

Tα,β(θ, ϕ) = Cα,β∂
2
θ

∫ ∞
0

sinh
t

2

∫ 1

−1

∫ 1

−1

dΠα(u)dΠβ(v)

(cosh t
2 − 1 + q(θ, ϕ, u, v))α+β+2

dt, θ, ϕ ∈ (0, π).

We can write by [35, Lemma 4.7] and proceeding as in [35, Proof of Theorem 2.4; the case of Rα,βN ],∣∣∣∣∣
(

sin
θ

2
sin

ϕ

2

)α+1/2(
cos

θ

2
cos

ϕ

2

)β+1/2

Tα,β(θ, ϕ)

∣∣∣∣∣
≤ C

∫ 1

−1

∫ 1

−1

(
sin θ

2 sin ϕ
2

)α+1/2 (
cos θ2 cos ϕ2

)β+1/2

q(θ, ϕ, u, v)α+β+2
dΠα(u)dΠβ(v) ≤ C

|θ − ϕ|2
, θ, ϕ ∈ (0, π).

(28)

On the other hand

cos θ2
sin θ

2

=
cos θ2 cos ϕ2
sin θ

2 cos ϕ2
=

cos θ2 cos ϕ2
sin θ

2 cos ϕ2 − sin ϕ
2 cos θ2 + sin ϕ

2 cos θ2
=

cos θ2 cos ϕ2
sin θ−ϕ

2 + sin ϕ
2 cos θ2

≤ 1

sin θ−ϕ
2

, 0 < ϕ < θ < π.(29)

If ϕ ∈ (0, π), θ ∈ (0, π/2) and θ < ϕ < 3θ/2, then sinϕ/3 < sin θ/2 and

cos θ2
sin θ

2

≤
cos θ2
sin ϕ

3

=
cos θ2 cos θ3

sin ϕ
3 cos θ3 − sin θ

3 cos ϕ3 + sin θ
3 cos ϕ3

≤ 1

sin θ−ϕ
3

.(30)

Also, we get

cos θ2
sin θ

2

≤ 1

sin π
4

≤ C

sin | θ−ϕ2 |
, 0 < ϕ < π, π/2 < θ < π.(31)

By combining (26), (29), (30) and (31) we obtain

(32)

∣∣∣∣∣cos θ2
sin θ

2

R1
α,β(θ, ϕ)

∣∣∣∣∣ ≤ C

|θ − ϕ|2
, (θ, ϕ) ∈ (0, π)2\D.

We can write

(33)
sin θ

2

cos θ2
= −

cos π−θ2

sin π−θ
2

, θ ∈ (0, π),

and by symmetries reasons and proceeding as above we get

(34)

∣∣∣∣∣ sin θ
2

cos θ2
R1
α,β(θ, ϕ)

∣∣∣∣∣ ≤ C

|θ − ϕ|2
, (θ, ϕ) ∈ (0, π)2\D.

From (27), (28), (32) and (34) we conclude that

|∂θR1
α,β(θ, ϕ)| ≤ C

|θ − ϕ|2
, (θ, ϕ) ∈ (0, π)2\D.

In a similar way, we can see that

|∂ϕR1
α,β(θ, ϕ)| ≤ C

|θ − ϕ|2
, (θ, ϕ) ∈ (0, π)2\D.

Thus, (24) is established. �
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Proof of Proposition 4.1; the case of R1,∗
α,β. We have that

R1,∗
α,βf = −

∞∑
k=0

√
(k + 1)(k + α+ β + 2)

λα+1,β+1
k

cα+1,β+1
k (f) φα,βk+1, f ∈ L2(0, π).

From Plancherel’s theorem we deduce that R1,∗
α,β is a bounded operator from L2(0, π) into itself.

If f ∈ C∞c (0, π), then for every m ∈ N there exists Cm such that

|cα+1,β+1
k (f)| ≤ Cm(k + 1)−m, k ∈ N.

Suppose that f, g ∈ C∞c (0, π). Partial integration leads to∫ π

0

R1,∗
α,βf(θ)g(θ)dθ =

∫ π

0

f(ϕ)L−1/2
α+1,β+1 (Dα,βg) (ϕ)dϕ.

By taking into account the rapid decay of the sequence
(
cα,βk (g)

)
k∈N

and [24, Lemma 3.1] we write

Dα,βg(θ) = −
∞∑
k=0

√
k(k + α+ β + 1)cα,βk (g)φα+1,β+1

k−1 (θ), θ ∈ (0, π),

and

L−1/2
α+1,β+1 (Dα,βg) (θ) = −

∞∑
k=0

√
k(k + α+ β + 1)

λα,βk
cα,βk (g) φα+1,β+1

k−1 (θ) = R1
α,βg(θ), θ ∈ (0, π).

Hence, R1,∗
α,β is the adjoint of R1

α,β (fact justifying the notation). Thus, R1,∗
α,β defines a bounded

operator from Lpw(0, π) into itself, for every 1 < p <∞ and w ∈ Ap(0, π). �

Combining [15, Theorem 1.3] with Lemma 4.1 and Proposition 4.1 we obtain the following.

Proposition 4.2. Let k ∈ N and α, β ≥ −1/2 such that α + β 6= −1. Suppose that p ∈ B(0, π).
Then, Rkα,β and Rk,∗α,β define bounded operators from Lp(·)(0, π) into itself.

According to [24, Lemma 3.1] we get, for every f ∈ Sα,β ,

Rk,∗α,βR
k
α,βf =

∞∑
n=k

(n− k + 1)k(n+ α+ β + 1)k

(λα,βn )k
cα,βk (f) φα,βn .

Notice that, for every n ∈ N, n ≥ k,

(n− k + 1)k =
(√

λα,βn −
√
λα,βk−1

)(√
λα,βn −

√
λα,βk−2

)
· ... ·

(√
λα,βn −

√
λα,β0

)
,

and

(n+ α+ β + 1)k =
(√

λα,βn +

√
λα,β0

)(√
λα,βn +

√
λα,β1

)
· ... ·

(√
λα,βn +

√
λα,βk−1

)
.

We consider the function M given by

M(x) =
xk

k−1∏
j=0

(
x− λα,βj

) , x 6= λα,βj , j = 0, ..., k − 1,

and we choose a smooth function φ on (0,∞) such that

φ(x) =


0, 0 < x < λα,βk−1 + α+β+1

8 ,

1, x ≥ λα,βk − α+β+1
8 .

Take m = φM . Then,

(35) m(Lα,β)Rk,∗α,βR
k
α,βf = f, f ∈ Sα,β .

It is not hard to see that m satisfies condition (17) of proposition 3.1. Hence, by Proposition 3.2
(with a = 0) we infer the following.

Proposition 4.3. Let α, β ≥ −1/2 such that α + β 6= −1. Suppose that p ∈ B(0, π). Then, the
Jacobi spectral multiplier m(Lα,β), where m = φM is as above, defines a bounded operator from
Lp(·)(0, π) into itself.
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5. Proof of Theorem 1.2

First of all we establish the following lemma where we define some Jacobi spectral multipliers
that will be useful in the sequel.

Lemma 5.1. Let ε, γ > 0, r ∈ N with r > γ and α, β ≥ −1/2 such that α+ β 6= −1. Assume that
p ∈ B(0, π). We define, for each t > 0, the functions

(36) Yε(t) = (1− e−εt)r, Mε(t) =
(1− e−εt)r

(εt)γ/2
and Hε(t) =

∫ ∞
εt

(1− e−u)r

u1+γ
du.

By mε we represent Yε, Mε or Hε. Then, mε defines a Jacobi spectral multiplier on Lp(·)(0, π).
Moreover,

sup
ε>0
‖mε(Lα,β)‖Lp(·)(0,π) <∞.

Proof. Straightforward manipulations allow us to show that, for every ` ∈ N, there exists C > 0
such that

sup
ε>0

∣∣t` d`
dt`

mε(t)
∣∣ ≤ C,

where C does not depend on ε. Then, by Proposition 3.2 (taken with a = 0) we concluded the
desired results. �

Proposition 5.1. Let ε, γ > 0, r ∈ N with r > γ and α, β ≥ −1/2 such that α+ β 6= −1. Assume
that p ∈ B(0, π). Then, the operator Iγ,rε defined in (5) is bounded from Lp(·)(0, π) into itself.

Proof. Let f ∈ Sα,β . We can write

(I −Wα,β
u )rf =

∞∑
n=0

Yu
(
λα,βn

)
cα,βn (f)φα,βn = Yu(Lα,β)f, u > 0,

where the series is actually a finite sum. According to Lemma 5.1, we deduce that,

‖Iγ,rε f‖Lp(·)(0,π) ≤ C sup
u>0
‖Yu(Lα,β)f‖Lp(·)(0,π)

∫ ∞
ε

du

uγ+1
≤ C‖f‖Lp(·)(0,π).

Taking into account that Sα,β is a dense subspace of Lp(·)(0, π) (Proposition 2.1) the conclusion
follows. �

Proof of Theorem 1.2. Suppose that f ∈ Dp(·)(Lγα,β) and call g = lim
ε→0+

Iγ,rε f . Since L−γα,β is a

bounded operator from Lp(·)(0, π) into itself (Proposition 3.3), we have that

L−γα,βg = Cγ,r lim
ε→0+

L−γα,β
∫ ∞
ε

(I −Wα,β
u )rf

u1+γ
du

= Cγ,r lim
ε→0+

∫ ∞
ε

(I −Wα,β
u )r

u1+γ
L−γα,βf du, in Lp(·)(0, π).

We can write

(I −Wα,β
u )rf

uγ/2
L−γα,βf =

∞∑
n=0

(
1− e−uλα,βn

)r
(
uλα,βn

)γ/2 (
λα,βn

)γ/2 cα,βn (f) φα,βn = Mu(Lα,β)L−γ/2α,β f, u > 0,

where Mu was defined in (36). According to Lemma 5.1 and Propositions 2.2 and 3.3, there exists
C > 0 such that∥∥∥Mu(Lα,β)L−γ/2α,β

(∑̀
n=0

cα,βn (f)φα,βn

)∥∥∥
Lp(·)(0,π)

≤ C
∥∥∥ ∑̀
n=0

cα,βn (f)φα,βn

∥∥∥
Lp(·)(0,π)

≤ C‖f‖Lp(·)(0,π), ` ∈ N and u > 0.

Also, since u−1−γ ∈ L1(ε,∞), ε > 0, we obtain

L−γα,β
∫ ∞
ε

(I −Wα,β
u )rf

u1+γ
du =

∞∑
n=0

∫ ∞
ε

(
1− e−uλα,βn

)r
(
uλα,βn

)γ du

u
cα,βn (f) φα,βn

=

∞∑
n=0

∫ ∞
ελα,βn

(1− e−u)
r

u1+γ
du cα,βn (f) φα,βn = Hε(Lα,β)f, ε > 0,
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where Hε was defined in (36).
Suppose that F ∈ Sα,β . We can write, for every l ∈ N,

lim
ε→0+

Hε(Lα,β)F = lim
ε→0+

∑̀
n=0

∫ ∞
ελα,βn

(1− e−u)
r

u1+γ
du cα,βn (F )φα,βn =

1

Cγ,r

∑̀
n=0

cα,βn (F )φα,βn =
F

Cγ,r
,

in the sense of convergence in Lp(·)(0, π). Since Sα,β is dense in Lp(·)(0, π) (Proposition 2.1), Lemma
5.1 leads to

lim
ε→0+

Hε(Lα,β)(f) =
f

Cγ,r
.

Thus, we conclude that L−γα,βg = f .

On the other hand, take f ∈ Hγ,p(·)
α,β (0, π) such that f = L−γα,βg, with g ∈ Lp(·)(0, π). Then, as it

has just been proved,

lim
ε→0+

Iγ,rε f = Cγ,r lim
ε→0+

∫ ∞
ε

(I −Wα,β
u )r

u1+γ
L−γα,βg du = g,

in the sense of convergence in Lp(·)(0, π). �

Remark 5.1. A careful reading of the above proof reveals that we can consider any r ∈ N, r > γ
(not necessarily r < γ ≤ r + 1). This fact implies that the operator Lγα,β can be defined by (6), for
any r ∈ N, r > γ.

6. Proof of Theorem 1.3

Assume that γ > 0. It is not hard to see that ∂γt e−at = eiπγaγe−at, t, a > 0. Thus, we have that,
for every f ∈ Sα,β ∪ C∞c (0, π),

∂γt P
α,β
t f(θ) =

∞∑
n=0

eiπγ(λα,βn )γ/2e−t
√
λα,βn cα,βn (f)φα,βn (θ), θ ∈ (0, π).

Hence, for every f ∈ Sα,β ∪ C∞c (0, π),

gγα,β(f)(θ) <∞, θ ∈ (0, π).

Our first objective is to establish Lpω-boundedness properties of g
γ
α,β-functions.

Proposition 6.1. Let γ > 0 and α, β ≥ −1/2. Then, gγα,β defines a bounded (quasi-linear) operator
from Lpw(0, π) into itself, for every 1 < p <∞ and w ∈ Ap(0, π).

Proof. For every N ∈ N, we define

Gγ,Nα,β (f)(θ) =

(∫ N

1/N

∣∣∣tγ∂γt Pα,βt (f)(θ)
∣∣∣2 dt
t

)1/2

, θ ∈ (0, π).

We will show that, for every 1 < p <∞ and w ∈ Ap(0, π), there exists C > 0 independent of N ∈ N,
such that

(37) ‖Gγ,Nα,β (f)‖Lpw(0,π) ≤ C‖f‖Lpw(0,π), f ∈ Lpw(0, π).

From (37), by using monotone convergence theorem, we deduce that for every 1 < p < ∞ and
w ∈ Ap(0, π), there exists C > 0 satisfying that

‖gγα,β(f)‖Lpw(0,π) ≤ C‖f‖Lpw(0,π), f ∈ Lpw(0, π).

In order to show (37) we apply the local Calderón-Zygmund theory [13] in a Banach valued setting
[38].

By proceeding as in [6, Proposition 2.1] we obtain

(38)
22γ

Γ(2γ)

∫ π

0

∫ ∞
0

tγ∂γt P
α,β
t f(θ)tγ∂γt P

α,β
t (ḡ)(θ)dθ

dt

t
=

∫ π

0

f(θ)ḡ(θ)dθ, f, g ∈ Sα,β .

Thus, for every N ∈ N, we get

(39) ‖Gγ,Nα,β (f)‖2L2(0,π) =
Γ(2γ)

22γ
‖f‖2L2(0,π), f ∈ Sα,β .

Hence, gγα,β and Gγ,Nα,β , N ∈ N, can be extended from Sα,β to L2(0, π) as a bounded operators from
L2(0, π) into itself.
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Let m ∈ N. According to [3, Lemma 4] we have that

(40)
∣∣∣∂mt [te−t

2/4u]
∣∣∣ ≤ Ce−t2/4uu(1−m)/2, t, u ∈ (0,∞).

By (2) and by taking into account that (13) and (40) the differentiation under the integral sign is
justified, so we can write

∂mt P
α,β
t (θ, ϕ) =

1√
4π

∫ ∞
0

∂mt

[ te−t2/4u
u3/2

]
Wα,β
u (θ, ϕ)du, t > 0 and θ, ϕ ∈ (0, π).

From (13) and (40) it follows that∣∣∣∂mt Pα,βt (θ, ϕ)
∣∣∣ ≤C ∫ ∞

0

e−c(t
2+(θ−ϕ)2)/u

u(m+3)/2
du

≤ C

(t2 + (θ − ϕ)2)(m+1)/2
, t > 0 and θ, ϕ ∈ (0, π).(41)

Let f ∈ L2(0, π). By (41) we obtain

∂mt P
α,β
t f(θ) =

∫ π

0

∂mt P
α,β
t (θ, ϕ)f(ϕ)dϕ, t > 0 and θ ∈ (0, π).

Thus, if m− 1 ≤ γ < m, (41) leads to∣∣∣∂γt Pα,βt f(θ)
∣∣∣ ≤ C ∫ ∞

0

∫ π

0

∣∣∣∂mt Pα,βt+s (θ, ϕ)
∣∣∣ |f(ϕ)|dϕsm−γ−1ds

≤ C
∫ ∞

0

∫ π

0

|f(ϕ)|
[(t+ s)2 + (θ − ϕ)2](m+1)/2

dϕsm−γ−1ds

≤ C
∫ ∞

0

sm−γ−1

(t+ s)m+1
ds ‖f‖L2(0,π) ≤

C

tγ+1
‖f‖L2(0,π), t > 0 and θ ∈ (0, π).

Hence, we obtain, for every N ∈ N,

(42) Gγ,Nα,β (f)(θ) ≤ C
(∫ N

1/N

dt

t3

)1/2

‖f‖L2(0,π), θ ∈ (0, π).

This estimate shows that, for every N ∈ N, Gγ,Nα,β is a bounded operator from L2(0, π) into itself.
By (39) we conclude that, for every N ∈ N,

(43) ‖Gγ,Nα,β (f)‖2L2(0,π) =
Γ(2γ)

22γ
‖f‖2L2(0,π), f ∈ L2(0, π).

Note that (43), in contrast with (42), shows that the family {Gγ,Nα,β }N∈N is bounded in L(L2(0, π)),
the space of bounded operators from L2(0, π) into itself.

Let N ∈ N. We consider the operator

T γ,Nα,β (f)(θ) =

∫ π

0

Kγ,N
α,β (θ, ϕ)f(ϕ)dϕ,

where, for every θ, ϕ ∈ (0, π), θ 6= ϕ,

[Kγ,N
α,β (θ, ϕ)](t) = tγ∂γt P

α,β
t (θ, ϕ), t ∈ (1/N,N),

and the integral is understood in the L2((1/N,N), dt/t)-Böchner sense.
From (41) we deduce that∥∥∥Kγ,N
α,β (θ, ϕ)

∥∥∥
L2((1/N,N),dt/t)

≤ C
(∫ N

1/N

∣∣∣tγ ∫ ∞
0

sm−γ−1

((t+ s)2 + (θ − ϕ)2)(m+1)/2
ds
∣∣∣2 dt
t

)1/2

≤ C
(∫ N

1/N

t2γ−1

(t+ |θ − ϕ|)2γ+2
dt
)1/2

≤ C

|θ − ϕ|
, θ, ϕ ∈ (0, π), θ 6= ϕ.(44)

Here C > 0 does not depend on N ∈ N.
Let f ∈ L2(0, π) and θ /∈ supp(f). If h ∈ L2((1/N,N), dt/t), (44) allows us to write∫ N

1/N

h(t)[T γ,Nα,β (f)(θ)](t)
dt

t
=

∫ π

0

f(ϕ)

∫ N

1/N

h(t)[Kγ,N
α,β (θ, ϕ)](t)

dt

t
dϕ

=

∫ π

0

f(ϕ)

∫ N

1/N

h(t)tγ∂γt P
α,β
t (θ, ϕ)

dt

t
dϕ =

∫ N

1/N

h(t)

∫ π

0

tγ∂γt P
α,β
t (θ, ϕ)f(ϕ)dϕ

dt

t
.
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Thus, we obtain
[T γ,Nα,β (f)(θ)](t) = tγ∂γt P

α,β
t (f)(θ), a.e. t ∈ (1/N,N).

We are going to show, for every N ∈ N and (θ, ϕ) ∈ (0, π)2 \ D, θ 6= ϕ,

(45)
∥∥∥∂θ(tγ∂γt Pα,βt (θ, ϕ)

)∥∥∥
L2((1/N,N),dt/t)

+
∥∥∥∂ϕ(tγ∂γt Pα,βt (θ, ϕ)

)∥∥∥
L2((1/N,N),dt/t)

≤ C

|θ − ϕ|2
,

for a certain C > 0 which does not depend on N and the domain D is as in Figure 1.
To simplify we call

Φα,β(t, z) =
sinh t

2

(cosh t
2 − 1 + z)α+β+2

, t, z > 0,

to one of the terms appearing in (25). According to [35, Lemma 4.8] we have that, for every m ∈ N,

(46)
∣∣∣∂mt Φα,β(t, z)

∣∣∣ ≤ C { (cosh t
2 − 1 + z)−α−β−(m+3)/2, t ≤ 1, z > 0

(cosh t
2 − 1 + z)−α−β−1, t > 1, z > 0,

and ∣∣∣∂θ∂mt Φα,β(t, q(θ, ϕ, u, v))
∣∣∣+
∣∣∣∂ϕ∂mt Φα,β(t, q(θ, ϕ, u, v))

∣∣∣
≤ C

{
(cosh t

2 − 1 + q(θ, ϕ, u, v))−α−β−(m+4)/2, t ≤ 1, θ, ϕ ∈ (0, π), −1 < u, v < 1
(cosh t

2 − 1 + q(θ, ϕ, u, v))−α−β−3/2, t > 1, θ, ϕ ∈ (0, π), −1 < u, v < 1.
(47)

Let m ∈ N. By using (46) and [35, Lemma 4.4] we get∫ 1

−1

∫ 1

−1

∣∣∣∂mt Φα,β(t, q(θ, ϕ, u, v))
∣∣∣dΠα(u)dΠβ(v)

≤ C



∫ 1

−1

∫ 1

−1

dΠα(u)dΠβ(v)

(cosh t
2 − 1 + q(θ, ϕ, u, v))α+β+(m+3)/2

, t ≤ 1

∫ 1

−1

∫ 1

−1

dΠα(u)dΠβ(v)

(cosh t
2 − 1 + q(θ, ϕ, u, v))α+β+1

, t > 1

≤ C

(cosh t
2 − 1)α+β+1

, t > 0 and θ, ϕ ∈ (0, π).

Thus, from (25) we can write for each θ, ϕ ∈ (0, π) and t > 0,

∂mt P
α,β
t (θ, ϕ)

= Cα,β

(
sin

θ

2
sin

ϕ

2

)α+1/2(
cos

θ

2
cos

ϕ

2

)β+1/2
∫ 1

−1

∫ 1

−1

∂mt Φα,β(t, q(θ, ϕ, u, v))dΠα(u)dΠβ(v).

Assume that m ∈ N is such that m− 1 ≤ γ < m. From (47) and [35, trigonometric identities in p.
738] we deduce, for every θ, ϕ ∈ (0, π) and t > 0,∫ ∞

0

sm−γ−1

∫ 1

−1

∫ 1

−1

∣∣∣∂θ∂mt Φα,β(t+ s, q(θ, ϕ, u, v))
∣∣∣dΠα(u)dΠβ(v)ds

≤ C
{∫ max{0,1−t}

0

sm−γ−1

(cosh t+s
2 − 1 + 2 sin2 θ−ϕ

4 )α+β+(m+4)/2
ds

+

∫ 1

max{0,1−t}

sm−γ−1

(cosh t+s
2 − 1 + 2 sin2 θ−ϕ

4 )α+β+3/2
ds

+

∫ ∞
1

sm−γ−1e−c(α+β+3/2)(t+s)ds
}
<∞.

Hence, we can write for θ, ϕ ∈ (0, π) and t > 0,

tγ∂θ∂
γ
t P

α,β
t (θ, ϕ) = Cα,β

(
sin

θ

2
sin

ϕ

2

)α+1/2(
cos

θ

2
cos

ϕ

2

)β+1/2 e−i(m−γ)π

Γ(m− γ)
tγ

×
[ ∫ ∞

0

sm−γ−1

∫ 1

−1

∫ 1

−1

∂θ∂
m
t Φα,β(t+ s, q(θ, ϕ, u, v))dΠα(u)dΠβ(v)ds

+
(2α+ 1

4

cos θ2
sin θ

2

− 2β + 1

4

sin θ
2

cos θ2

)∫ ∞
0

sm−γ−1

∫ 1

−1

∫ 1

−1

∂mt Φα,β(t+ s, q(θ, ϕ, u, v))dΠα(u)dΠβ(v)ds
]
.
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By proceeding as in [35, pp. 747-748] (see also the proof of Proposition 4.1), (47) and Minkowski’s
inequality leads to∥∥∥( sin

θ

2
sin

ϕ

2

)α+1/2(
cos

θ

2
cos

ϕ

2

)β+1/2

tγ

×
∫ ∞

0

sm−γ−1

∫ 1

−1

∫ 1

−1

∂θ∂
m
t Φα,β(t+ s, q(θ, ϕ, u, v))dΠα(u)dΠβ(v)ds

∥∥∥
L2((0,∞),dt/t)

≤
(

sin
θ

2
sin

ϕ

2

)α+1/2(
cos

θ

2
cos

ϕ

2

)β+1/2
∫ ∞

0

sm−γ−1

∫ 1

−1

∫ 1

−1

×
∥∥∥tγ∂θ∂mt Φα,β(t+ s, q(θ, ϕ, u, v))

∥∥∥
L2((0,∞),dt/t)

dΠα(u)dΠβ(v)ds

≤ C
(

sin
θ

2
sin

ϕ

2

)α+1/2(
cos

θ

2
cos

ϕ

2

)β+1/2
∫ 1

−1

∫ 1

−1

dΠα(u)dΠβ(v)ds

q(θ, ϕ, u, v)α+β+2

≤ C

|θ − ϕ|2
, θ, ϕ ∈ (0, π), θ 6= ϕ.(48)

In a similar way, by using (46) we obtain∥∥∥( sin
θ

2
sin

ϕ

2

)α+1/2(
cos

θ

2
cos

ϕ

2

)β+1/2

tγ

×
∫ ∞

0

sm−γ−1

∫ 1

−1

∫ 1

−1

∂mt Φα,β(t+ s, q(θ, ϕ, u, v))dΠα(u)dΠβ(v)ds
∥∥∥
L2((0,∞),dt/t)

≤ C
(

sin
θ

2
sin

ϕ

2

)α+1/2(
cos

θ

2
cos

ϕ

2

)β+1/2
∫ 1

−1

∫ 1

−1

dΠα(u)dΠβ(v)ds

q(θ, ϕ, u, v)α+β+3/2

≤ C

|θ − ϕ|
≤ C

|θ − ϕ|2
, θ, ϕ ∈ (0, π), θ 6= ϕ.(49)

Combining (48) and (49) with (29), (30), (31) and (33), we deduce that∥∥∥∂θKγ
α,β(θ, ϕ)

∥∥∥
L2((0,∞),dt/t)

≤ C

|θ − ϕ|2
, (θ, ϕ) ∈ (0, π)2 \ D.

The same procedure allows us to prove that∥∥∥∂ϕKγ
α,β(θ, ϕ)

∥∥∥
L2((0,∞),dt/t)

≤ C

|θ − ϕ|2
, (θ, ϕ) ∈ (0, π)2 \ D.

Thus, (45) is established.
By using now the local Calderón-Zygmund theory for singular integrals (see [13]) in the L2((1/N,N), dt/t)-

setting and by taking into account Lemma 4.2, we conclude that, for every 1 < p < ∞ and
w ∈ Ap(0, π), the operator T γ,Nα,β can be extended from L2(0, π)∩Lpw(0, π) to Lpw(0, π) as a bounded
operator T̃ γ,Nα,β from Lpw(0, π) into Lpw

(
(0, π);L2((1/N,N), dt/t)

)
, and there exists C > 0, which does

not depend on N , such that

(50)
∥∥∥T̃ γ,Nα,β (f)

∥∥∥
Lpw

(
(0,π);L2((1/N,N),dt/t)

) ≤ C‖f‖Lpw(0,π), f ∈ Lpw(0, π).

Let f ∈ Lpw(0, π) where 1 < p < ∞ and w ∈ Ap(0, π). We take a sequence (fn)n∈N ⊆ Lpw(0, π) ∩
L2(0, π) such that

fn −→ f, as n→∞, in Lpw(0, π).

As in (42) we obtain that

Gγ,Nα,β (f − fn)(θ) ≤ C‖f − fn‖Lpw(0,π), n ∈ N and θ ∈ (0, π).

Hence,
Gγ,Nα,β (fn)(θ) −→ Gγ,Nα,β (f)(θ), as n→∞ for every θ ∈ (0, π).

On the other hand,

T̃ γ,Nα,β (f) = lim
n→∞

T γ,Nα,β (fn), in Lpw
(
(0, π);L2((1/N,N), dt/t)

)
.

Then, there exists a monotone function φ : N −→ N such that

T γ,Nα,β (fφ(n))(θ) −→ T̃ γ,Nα,β (f)(θ), as n→∞, in L2((1/N,N), dt/t),
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for almost every θ ∈ (0, π). This implies that

Gγ,Nα,β (fφ(n))(θ) −→
∥∥∥T̃ γ,Nα,β (f)(θ)

∥∥∥
L2((1/N,N),dt/t)

, as n→∞,

for almost every θ ∈ (0, π). We conclude that

Gγ,Nα,β (f)(θ) =
∥∥∥T̃ γ,Nα,β (f)(θ)

∥∥∥
L2((1/N,N),dt/t)

, a.e. θ ∈ (0, π),

and from (50) we deduce (37).
Thus the proof of this proposition is completed. �

By using [15, Theorem 1.3] from Proposition 6.1 we infer the following.

Corollary 6.1. Let α, β ≥ −1/2 and γ > 0. Suppose that p ∈ B(0, π). Then, the fractional square
function gγα,β defines a bounded (quasi-linear) operator from Lp(·)(0, π) into itself.

Also Proposition 6.1 and the polarization formula (38) allow us to obtain the converse inequality
for gγα,β .

Corollary 6.2. Let α, β ≥ −1/2 and γ > 0.
(a) If 1 < p <∞ and w ∈ Ap(0, π) then, for a certain C > 0,

‖f‖Lpw(0,π) ≤ C‖g
γ
α,β(f)‖Lpw(0,π), f ∈ Lpw(0, π).

(b) If p ∈ B(0, π), then there exits C > 0 such that

‖f‖Lp(·)(0,π) ≤ C‖g
γ
α,β(f)‖Lp(·)(0,π), f ∈ Lp(·)(0, π).

Proof. We are going to prove (b), (a) can be deduced in a similar way.
For every f ∈ Lp(·)(0, π) and g ∈ Lp′(·)(0, π), we consider the bilinear operators

T (f, g) =

∫ π

0

f(θ)g(θ)dθ,

and

L(f, g) =
22γ

Γ(2γ)

∫ π

0

∫ ∞
0

tγ∂γt P
α,β
t f(θ)tγ∂γt P

α,β
t (g)(θ)

dt

t
dθ.

By using Hölder’s inequality in the variable exponent setting (see [17, Lemma 3.2.20]) we can see
that T and L are bounded from Lp(·)(0, π) × Lp′(·)(0, π) into C. Since Sα,β is a dense subspace
of Lp(·)(0, π) and Lp

′(·)(0, π) (Proposition 2.1), equality (38) holds for every f ∈ Lp(·)(0, π) and
g ∈ Lp′(·)(0, π).

Let f ∈ Lp(·)(0, π). According to the norm conjugate formula ([17, Corollary 3.2.14]), by Propo-
sition 6.1 we can write

‖f‖Lp(·)(0,π) ≤ 2 sup
g∈Lp

′(·)(0,π)
‖g‖

Lp
′(·)(0,π)

≤1

∣∣∣ ∫ π

0

f(θ)g(θ)dθ
∣∣∣

≤ C sup
g∈Lp

′(·)(0,π)
‖g‖

Lp
′(·)(0,π)

≤1

∣∣∣ ∫ π

0

∫ ∞
0

tγ∂γt P
α,β
t f(θ)tγ∂γt P

α,β
t (g)(θ)

dt

t
dθ
∣∣∣

≤ C sup
g∈Lp

′(·)(0,π)
‖g‖

Lp
′(·)(0,π)

≤1

∫ π

0

gγα,β(f)(θ)gγα,β(g)(θ)dθ

≤ C sup
g∈Lp

′(·)(0,π)
‖g‖

Lp
′(·)(0,π)

≤1

‖gγα,β(f)‖Lp(·)(0,π) ‖g
γ
α,β(g)‖Lp′(·)(0,π) ≤ C‖g

γ
α,β(f)‖Lp(·)(0,π).

�

Remark 6.1. Note that Proposition 6.1 together with Corollaries 6.1 and 6.2 tell us that the new
norms ||| · |||Lpw(0,π) and ||| · |||Lp(·)(0,π) defined by

|||f |||Lpw(0,π) = ‖gγα,β(f)‖Lpw(0,π), f ∈ Lpw(0, π),

|||f |||Lp(·)(0,π) = ‖gγα,β(f)‖Lp(·)(0,π), f ∈ Lp(·)(0, π),
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are equivalent to ‖ · ‖Lpw(0,π) on Lpw(0, π) and to ‖ · ‖Lp(·)(0,π) on Lp(·)(0, π), respectively, provided
that the specified conditions are satisfied.

Proof of Theorem 1.3. We first establish that Hγ/2,p(·)
α,β (0, π) ⊆ T

γ,k,p(·)
α,β (0, π). Assume that f, g ∈

Sα,β are such that f = L−γα,βg. We can write

∂kt P
α,β
t

(
L−γ/2α,β g

)
= (−1)k

∞∑
n=0

e−t
√
λα,βn

(λα,βn )(γ−k)/2
cα,βn (g)φα,βn = eiπγ∂k−γt Pα,βt g, t > 0,

because ∂δt e−at = eiπδaδe−at, δ, a, t > 0. Hence, we get

(51) gγ,kα,β
(
L−γ/2α,β g

)
= gk−γα,β (g).

From (51) and Corollaries 6.1 and 6.2 we deduce that, for every f ∈ Sα,β ,

(52)
1

C
‖f‖

H
γ/2,p(·)
α,β (0,π)

≤ ‖gγ,kα,β(f)‖Lp(·)(0,π) ≤ C‖f‖Hγ/2,p(·)α,β (0,π)
,

for a certain C > 0. Since Sα,β is a dense subspace of Hγ/2,p(·)
α,β (0, π), gγ,kα,β can be extended to

H
γ/2,p(·)
α,β (0, π) as a bounded operator g̃γ,kα,β from H

γ/2,p(·)
α,β (0, π) into Lp(·)(0, π). Moreover, (52) holds

for every f ∈ Hγ/2,p(·)
α,β (0, π) when gγ,kα,β is replaced by g̃γ,kα,β .

We are going to see that g̃γ,kα,β = gγ,kα,β . For every N ∈ N, we define

Gγ,k,Nα,β (f)(θ) =
(∫ N

1/N

∣∣tk−γ∂kt Pα,βt f(θ)
∣∣2 dt
t

)1/2

, θ ∈ (0, π).

Let N ∈ N. From (52) it follows that Gγ,k,Nα,β can be extended to H
γ/2,p(·)
α,β (0, π) as a bounded

operator G̃γ,k,Nα,β from H
γ/2,p(·)
α,β (0, π) into Lp(·)(0, π) and

‖G̃γ,k,Nα,β (f)‖Lp(·)(0,π) ≤ C‖f‖Hγ/2,p(·)α,β (0,π)
, f ∈ Hγ/2,p(·)

α,β (0, π).

Note that C does not depend on N . Let f ∈ Hγ/2,p(·)
α,β (0, π). We choose a sequence (fn)n∈N ⊆ Sα,β

such that
fn −→ f, as n→∞, in Hγ/2,p(·)

α,β (0, π).

Then,
Gγ,k,Nα,β (fn) −→ G̃γ,k,Nα,β (f), as n→∞, in Lp(·)(0, π).

Since, Lp(·)(0, π) ⊆ Lp−(0, π), there exists a monotone function φ : N −→ N such that

Gγ,k,Nα,β (fφ(n))(θ) −→ G̃γ,k,Nα,β (f)(θ), as n→∞, a.e. θ ∈ (0, π).

By proceeding as in (42) we deduce that

Gγ,k,Nα,β (fφ(n))(θ) −→ Gγ,k,Nα,β (f)(θ), as n→∞, θ ∈ (0, π).

Then, G̃γ,k,Nα,β = Gγ,k,Nα,β and

‖Gγ,k,Nα,β (f)‖Lp(·)(0,π) ≤ C‖f‖Hγ/2,p(·)α,β (0,π)
.

Since
lim
N→∞

Gγ,k,Nα,β (f)(θ) = gγ,kα,β(f)(θ), θ ∈ (0, π),

Fatou’s Lemma in variable exponent Lp(·)-spaces (see [17, p. 77]) leads to

(53) ‖gγ,kα,β(f)‖Lp(·)(0,π) ≤ C‖f‖Hγ/2,p(·)α,β (0,π)
.

From (52) we also deduce now that

(54) ‖f‖
H
γ/2,p(·)
α,β (0,π)

≤ C‖gγ,kα,β(f)‖Lp(·)(0,π), f ∈ Hγ/2,p(·)
α,β (0, π).

By (53) it follows that Hγ/2,p(·)
α,β (0, π) is contained in T γ,k,p(·)α,β (0, π) and by Proposition 3.3

‖f‖
T
γ,k,p(·)
α,β (0,π)

≤ C‖f‖
H
γ/2,p(·)
α,β (0,π)

, f ∈ Hγ/2,p(·)
α,β (0, π).

Suppose now that f ∈ T γ,k,p(·)α,β (0, π). In order to show that f ∈ Hγ/2,p(·)
α,β (0, π) we can follow the

procedure developed in the proof of [6, Proposition 4.1]. Indeed, that method works because the
following properties hold:
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(i) There exists C > 0 such that, for every n ∈ N,

‖φα,βn ‖Lp(·)(0,π) ≤ C(n+ 1)α+β+5/2.

Indeed, according to [17, Theorem 3.3.11], Lp+(0, π) is continuously contained in Lp(·)(0, π).
Then, from [35, (3)] it follows that

‖φα,βn ‖Lp(·)(0,π) ≤ C‖φα,βn ‖Lp+ (0,π) ≤ C(n+ 1)α+β+5/2, n ∈ N.

Assume that h ∈ Lp(·)(0, π). Hölder’s inequality ([17, Lemma 3.2.20]) implies that

|cα,βn (h)| ≤ C(n+ 1)α+β+5/2‖h‖Lp(·)(0,π), n ∈ N.

(ii) For every δ > 0, we define fδ = Pα,βδ (f) and

Fδ =

∞∑
n=0

(λα,βn )γ/2e−δ
√
λα,βn cα,βn (fδ)φ

α,β
n .

Property (i) implies that Fδ ∈ Lp(·)(0, π) and fδ = L−γ/2α,β Fδ ∈ Hγ/2,p(·)
α,β (0, π), δ > 0. We

choose ` ∈ N such that 2(`− γ) > 1 and ` > k. (54) allows us to write

‖Fδ‖Lp(·)(0,π) = ‖fδ‖Hγ/2,p(·)α,β (0,π)
≤ C‖gγ,`α,β(fδ)‖Lp(·)(0,π), δ > 0.

(iii) As in [6, Proposition 2.6] we can prove that

‖gγ,`α,β(f)‖Lp(·)(0,π) ≤ C‖g
γ,k
α,β(f)‖Lp(·)(0,π).

Moreover, straightforward manipulations lead to

gγ,`α,β(fδ)(θ) ≤ gγ,`α,β(f)(θ), θ ∈ (0, π), δ > 0,

because 2(`− γ) > 1. Then, we obtain

‖Fδ‖Lp(·)(0,π) ≤ C‖g
γ,k
α,β(f)‖Lp(·)(0,π), δ > 0.

(iv) By using Banach-Alaoglu’s Theorem, Proposition 3.3 and [17, Theorem 3.2.13] we conclude
that f = L−γ/2α,β F , for a certain F ∈ Lp(·)(0, π) such that

‖F‖Lp(·)(0,π) ≤ C‖g
γ,k
α,β(f)‖Lp(·)(0,π).

Thus, we prove that f ∈ Hγ/2,p(·)
α,β (0, π) and

‖f‖
H
γ/2,p(·)
α,β (0,π)

≤ C‖f‖
T
γ,k,p(·)
α,β (0,π)

.

�

7. Proof of Theorem 1.4

In order to establish this theorem we use the ideas developed in the proof of [33, Proposition 4.3].
First of all, we introduce some spectral multipliers of Hörmander type, associated with the Jacobi
operator.

Lemma 7.1. Let γ > 0, 1 < p < ∞, w ∈ Ap(0, π) and α, β ≥ −1/2 such that α + β 6= −1. We
consider, for each t > 0, the functions

• m`
ε(t) =

∑̀
j=0

εj2
jγ

(t+ 1)γ
a

(
t

2j−1

)
, ` ∈ N and ε = (εj)

`
j=0 ∈ {−1, 1}`+1.

• M(t) =

(
t+ 1

t

)γ
φ(t), where φ ∈ C∞(0,∞) is such that φ(t) = 0, 0 < t < λα,β0 /2; and

φ(t) = 1, t ≥ λα,β0 .
Then, the spectral multipliers m`

ε(Lα,β) and M(Lα,β) define bounded operators in Lpw(0, π). More-
over,

sup
`,ε
‖m`

ε(Lα,β)‖Lpw(0,π)→Lpw(0,π) <∞.
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Proof. By Proposition 3.1, it is enough to notice that, for every k ∈ N, there exists C > 0 such that

sup
t>0

∣∣∣tk dk
dtk

m`
ε(t)
∣∣∣ ≤ C, ` ∈ N and ε ∈ {−1, 1}`+1.

and

sup
t>0

∣∣∣tk dk
dtk

M(t)
∣∣∣ ≤ C.

�

Proof of Theorem 1.4; the case of Hγ,p(·)
α,β (0, π) ⊆ F γ,2,p(·)α,β (0, π). Let ε = (εj)

`
j=0 ∈ {−1, 1}`+1 with

` ∈ N. We can write,
∞∑
n=0

m`
ε(λ

α,β
n )(λα,βn + 1)γcα,βn (f)φα,βn =

∞∑
n=0

(λα,βn + 1)γcα,βn (f)φα,βn
∑̀
j=0

εj2
jγ

(λα,βn + 1)γ
a

(
λα,βn
2j−1

)

=
∑̀
j=0

εj2
jγ
∞∑
n=0

a

(
λα,βn
2j−1

)
cα,βn (f)φα,βn

=
∑̀
j=0

εj2
jγΦα,βj (f), f ∈ Lpw(0, π).(55)

Note that the serie
∞∑
n=0

is actually a finite sum. From Lemma 7.1, it follows that

∥∥∥∑̀
j=0

εj2
jγΦα,βj (f)

∥∥∥
Lpw(0,π)

=
∥∥∥ ∞∑
n=0

m`
ε(λ

α,β
n )M(λα,βn )(λα,βn )γcα,βn (f)φα,βn

∥∥∥
Lpw(0,π)

≤ C
∥∥∥ ∞∑
n=0

(λα,βn )γcα,βn (f)φα,βn

∥∥∥
Lpw(0,π)

, f ∈ Lpw(0, π),

provided that
∞∑
n=0

(λα,βn )γcα,βn (f)φα,βn ∈ Lpw(0, π). Also, we get

∥∥∥∑̀
j=0

εj2
jγΦα,βj (f)

∥∥∥
Lpw(0,π)

≤ C
∥∥∥ ∑

n∈N
λα,βn ≤2`

(λα,βn )γcα,βn (f)φα,βn

∥∥∥
Lpw(0,π)

, f ∈ Lpw(0, π).(56)

Observe that, the constant C > 0 does not depend on ε or `.
By using Khintchine’s inequality ([45, Vol. I, p. 213]) from (56) we deduce that,∥∥∥(∑̀

j=0

(2jγ |Φα,βj (f)|)2
)1/2∥∥∥

Lpw(0,π)
≤ C

∥∥∥ ∑
n∈N

λα,βn ≤2`

(λα,βn )γcα,βn (f)φα,βn

∥∥∥
Lpw(0,π)

, f ∈ Lpw(0, π),

where C > 0 does not depend on `. According to [15, Theorem 1.3], there exists C > 0 such that∥∥∥(∑̀
j=0

(2jγ |Φα,βj (f)|)2
)1/2∥∥∥

Lp(·)(0,π)
≤ C

∥∥∥ ∑
n∈N

λα,βn ≤2`

(λα,βn )γcα,βn (f)φα,βn

∥∥∥
Lp(·)(0,π)

, f ∈ Lp(·)(0, π).

We have taken into account that:
(a) For every n ∈ N, the mapping f 7−→ cα,βn (f) is bounded from Lp(·)(0, π) into C.
(b) For every j ∈ N, the mapping f 7−→ Φα,βj (f) is bounded from Lp(·)(0, π) into itself (Propo-

sition 3.1). Also, we used that
√
a2 + b2 ≤ a+ b, a, b ≥ 0.

(c) Sα,β is dense in Lp(·)(0, π) (Proposition 2.1).
Taking `→∞, Proposition 3.5 allow us to deduce that∥∥∥( ∞∑

j=0

(2jγ |Φα,βj (f)|)2
)1/2∥∥∥

Lp(·)(0,π)
≤ C‖f‖

H
γ,p(·)
α,β (0,π)

, f ∈ Hγ,p(·)
α,β (0, π).

�
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Next, we prove the converse inclusion of Theorem 1.4. As before, we need to study previously
some Jacobi spectral multipliers. It is convenient to introduce the following notation. We define,

Ns = {4`+ s : ` ∈ N}\{0}, s = 0, 1, 2, 3.

Also we consider the function

b(t) = a(t/2) + a(t) + a(2t), t > 0.

Note that supp b ⊆ [1/4, 4] and b(t) = 1, t ∈ [1/2, 2], because a(t) + a(2t) = 1, t ∈ [1/2, 1], and
supp a ⊆ [1/2, 2].

Lemma 7.2. Let 1 < p <∞, w ∈ Ap(0, π) and α, β ≥ −1/2 such that α + β 6= −1. We consider,
for each t > 0, the functions

• m`
ε,s(t) =

∑̀
j=0, j∈Ns

εjb

(
t

2j−1

)
, s = 0, 1, 2, 3, ` ∈ N and ε = (εj)

`
j=0 ∈ {−1, 1}`+1;

• M`(t) =
∑̀
j=0

2jγ

(t+ 1)γ
a

(
t

2j−1

)
, ` ∈ N;

• R`(t) = φ/M`(t), where φ is as in Lemma 7.1;

• R(t) =

(
t

t+ 1

)γ
.

Then, the spectral multipliers m`
ε,s(Lα,β),M`(Lα,β), R`(Lα,β) and R(Lα,β) define bounded operators

in Lpw(0, π). Moreover,

sup
s,`,ε
‖m`

ε,s(Lα,β)‖Lpw(0,π)→Lpw(0,π) <∞,

and

sup
`

(
‖M`(Lα,β)‖Lpw(0,π)→Lpw(0,π) + ‖R`(Lα,β)‖Lpw(0,π)→Lpw(0,π)

)
<∞.

Proof. Again, by Proposition 3.1, it suffices to take into account that, for every k ∈ N there exists
C > 0 for which

sup
t∈(0,∞)

∣∣∣tk dk
dtk

m`
ε,s(t)

∣∣∣ ≤ C,
where C > 0 does not depend on s, ` or ε. Also, M` = m`

ε in Lemma 7.1, for ε = (1)`j=0. Finally,
for every k ∈ N, there exists C > 0 such that

sup
t≥λα,β0 /2

∣∣∣tk dk
dtk

1

M`(t)

∣∣∣ ≤ C,
where C > 0 does not depend on `. �

Proof of Theorem 1.4; the case of F γ,2,p(·)α,β (0, π) ⊆ Hγ,p(·)
α,β (0, π). Suppose that s ∈ {0, 1, 2, 3} and

n ∈ N\{0}. We define

gα,βs,` (f) =
∑̀

j=0, j∈Ns

2jγΦα,βj (f), ` ∈ N and f ∈ L1(0, π).

There exists at most an unique jn ∈ Ns such that λα,βn ∈ [2jn−2, 2jn). Hence,

b

(
λα,βn
2jn−1

)
= 1 and b

(
λα,βn
2j−1

)
= a

(
λα,βn
2j−1

)
= 0, j ∈ Ns, j 6= jn.

Observe that m`
ε,s(λ

α,β
n ) = εjn , provided that jn ≤ `, and m`

ε,s(λ
α,β
n ) = 0, otherwise. We can write

gα,βs,` (f) =
∑̀

j=0, j∈Ns

2jγ
∞∑
n=0

a

(
λα,βn
2j−1

)
cα,βn (f)φα,βn =

∞∑
n=0

an c
α,β
n (f)φα,βn , f ∈ L1(0, π).
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where an = 2jnγa
(
λα,βn /2jn−1

)
, if jn ≤ `, and an = 0, otherwise. Note that the above serie is

actually a finite sum. Also, we have that

m`
ε,s(Lα,β)gα,βs,` (f) =

∞∑
n=0

m`
ε,s

(
λα,βn

)
an c

α,β
n (f)φα,βn =

∞∑
n=0

εjnan c
α,β
n (f)φα,βn

=
∑̀

j=0, j∈Ns

2jγεj

∞∑
n=0

a

(
λα,βn
2j−1

)
cα,βn (f)φα,βn =

∑̀
j=0, j∈Ns

2jγεjΦ
α,β
j (f).

Then,

m`
ε,s(Lα,β)m`

ε,s(Lα,β)gα,βs,` (f) =

∞∑
n=0

an c
α,β
n (f)φα,βn = gα,βs,` (f).

Assume that 1 < p <∞ and w ∈ Ap(0,∞). From Lemma 7.2 we get

‖gα,βs,` (f)‖Lpw(0,π) ≤ C‖m`
ε,s(Lα,β)gα,βs,` (f)‖Lpw(0,π) ≤ C

∥∥∥ ∑̀
j=0, j∈Ns

2jγεjΦ
α,β
j (f)

∥∥∥
Lpw(0,π)

, f ∈ Lpw(0, π),

where C > 0 does not depend on ε or `. By using Khintchine’s inequality argument we obtain

‖gα,βs,` (f)‖Lpw(0,π) ≤ C
∥∥∥ ∑̀
j=0, j∈Ns

(2jγεj |Φα,βj (f)|)2)1/2
∥∥∥
Lpw(0,π)

, f ∈ Lpw(0, π),

where C > 0 does not depend on `. According to [15, Theorem 1.3],

‖gα,βs,` (f)‖Lp(·)(0,π) ≤ C
∥∥∥ ∑̀
j=0, j∈Ns

(2jγεj |Φα,βj (f)|)2)1/2
∥∥∥
Lp(·)(0,π)

, f ∈ Sα,β ,

where C > 0 does not depend on `. As in the proof of the first inclusion we obtain

‖gα,βs,` (f)‖Lp(·)(0,π) ≤ C
∥∥∥ ∑̀
j=0, j∈Ns

(2jγεj |Φα,βj (f)|)2)1/2
∥∥∥
Lp(·)(0,π)

, f ∈ Lp(·)(0, π).(57)

According to (55) we have that, for every f ∈ L1(0, π),

∞∑
n=0

M`(λ
α,β
n )(λα,βn + 1)γcα,βn (f)φα,βn =

∞∑
n=0,λα,βn ≤2`

εjnc
α,β
n (f)φα,βn =

∑̀
j=0

2jγΦα,βj (f).

By using (57), Lemma 7.2 and [15, Theorem 1.3] we can write∥∥∥ ∞∑
n=0,λα,βn ≤2`

(λα,βn )γcα,βn (f)φα,βn

∥∥∥
Lp(·)(0,π)

=
∥∥∥ ∞∑
n=0

R(λα,βn )(λα,βn + 1)γR`(λ
α,β
n )M`(λ

α,β
n )cα,βn (f)φα,βn

∥∥∥
Lp(·)(0,π)

≤ C
∥∥∥∑̀
j=0

2jγΦα,βj (f)
∥∥∥
Lp(·)(0,π)

≤ C
( 3∑
s=0

∥∥∥ ∑̀
j=0, j∈Ns

2jγΦα,βj (f)
∥∥∥
Lp(·)(0,π)

+ ‖Φα,β0 ‖Lp(·)(0,π)

)

≤ C
( 3∑
s=0

∥∥∥( ∑̀
j=0, j∈Ns

(2jγ |Φα,βj (f)|)2
)1/2∥∥∥

Lp(·)(0,π)
+ ‖Φα,β0 ‖Lp(·)(0,π)

)

≤ C
∥∥∥(∑̀

j=0

(2jγ |Φα,βj (f)|)2
)1/2∥∥∥

Lp(·)(0,π)
, f ∈ Lp(·)(0, π).(58)
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Suppose now that f =
∑̀
n=m

cα,βn (f)φα,βn , where m, ` ∈ N, m ≤ `. Since supp a ⊆ [1/2, 2], we have

that

Φα,βj =

∞∑
n=0

a

(
λα,βn
2j−1

)
cα,βn (f)φα,βn =

∑̀
n=m

a

(
λα,βn
2j−1

)
cα,βn (f)φα,βn = 0,

provided that j > 2 + log2 ` or j < log2m. Then, from (58) we deduce that∥∥∥ ∑̀
n=m

(λα,βn )γcα,βn (f)φα,βn

∥∥∥
Lp(·)(0,π)

≤ C
∥∥∥( 2+log2 `∑

j=log2m

(2jγ |Φα,βj (f)|)2
)1/2∥∥∥

Lp(·)(0,π)
.(59)

Let f ∈ F γ,2,p(·)α,β (0, π). By (59), the series
∑̀
n=m

(λα,βn )γcα,βn (f)φα,βn converges in Lp(·)(0, π). Hence,

f ∈ Hγ,p(·)
α,β (0, π) and by (58) and Proposition 3.5, we conclude that

‖f‖
H
γ,p(·)
α,β (0,π)

≤ C‖f‖
F
γ,2,p(·)
α,β (0,π)

.

�
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