arXiv:1410.4664v1 [math.FA] 17 Oct 2014

ON CONVEX-CYCLIC OPERATORS

TERESA BERMUDEZ, ANTONIO BONILLA, AND N. S. FELDMAN

ABSTRACT. We give a Hahn-Banach Characterization for convex-cyclicity. We also obtain
an example of a bounded linear operator S on a Banach space with 0,(S*) = 0 such that S is
convex-cyclic, but S is not weakly hypercyclic and 52 is not convex-cyclic. This solved two
questions of Rezaei in [23] when 0,(5*) = @. We also characterize the diagonalizable normal
operators that are convex-cyclic and give a condition on the eigenvalues of an arbitrary
operator for it to be convex-cyclic. We show that certain adjoint multiplication operators
are convex-cyclic and show that some are convex-cyclic but no convex polynomial of the
operator is hypercyclic. Also some adjoint multiplication operators are convex-cyclic but

not 1-weakly hypercyclic.

1. INTRODUCTION

Let X be a Banach space and let L(X) denote the algebra of all bounded linear operators
on X. A bounded linear operator T on X is cyclic if there exists a (cyclic) vector x such
that the linear span of the orbit of z, Orb(T,xz) = {T"x : n =0,1,---}, is dense in X. An
operator T is called convez-cyclic if there exists a vector x € X such that the convex hull of
Orb(T, z) is dense in X and such a vector x is said to be a convex-cyclic vector for T'. Clearly
all convex-cyclic operators are cyclic. Following Rezaei [23] we will say that a polynomial p
is a convez polynomial if it is a (finite) convex combination of monomials {1, z,2%,...}. So,

" is a convex polynomial if a; > 0 for all k and > ;_ja, = 1.

p(z) = ap+ a1z + -+ a,z
Then the convex hull of an orbit is co(Orb(T, x)) = {p(T)x : p is a convex polynomial}.

A bounded linear operator T' € L(X) is said to be hypercyclic (weakly hypercyclic [11]) if
there is a vector z € X whose orbit is dense in the norm (weak) topology of X. An operator
T is said to be weakly-mizing if T'® T is hypercyclic in X & X.

There are certainly examples of convex-cyclic operators that are not hypercyclic. However
within certain classes of operators, hypercyclicity and convex-cyclicity are equivalent. This
is true for unilateral weighted backward shifts on ¢?(N) and composition operators on the
classical Hardy space, see [23].
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What follows is a list of questions that are answered in this paper. First, notice that every
weakly hypercyclic operator is convex-cyclic since the norm and the weak closure of a convex

set in a Banach space coincide. In [23] Rezaei asks the following question:

Question 1. [23, Question 5.4] Is every convex-cyclic operator acting on an infinite dimen-

sional Banach space weakly hypercyclic?

According to Feldman [16], T" is called 1-weakly hypercyclic if there is an x € X such that
f(Orb(T,x)) is dense in C for each non-zero f € X*. Every weakly hypercyclic operator is
1-weakly hypercyclic and 1-weakly hypercyclic operators are convex-cyclic. Thus it is also
natural to ask if every convex-cyclic operator acting on an infinite dimensional Banach space

1-weakly hypercyclic?

Ansari [2] showed that powers of hypercyclic operators on Banach spaces are hypercyclic
operators. The same result was proven for operators on locally convex spaces by Bourdon
and Feldman [I0]. These results do not have analogues for cyclic operators. The forward
unilateral shift S on ¢2(N) is cyclic but S? is not cyclic, because the codimension of the range
of S? is two. What about powers of convex-cyclic operators? Leén and Romero in [22] give
examples of convex-cyclic operators where 0,(S*) is non-empty that have powers that are

not convex-cyclic. Thus is natural to ask:

Question 2. [23, Question 5.5] If S : X — X a convez-cyclic operator on a Banach space

X with 0,(S*) =0, then is S™ convex-cyclic for every integer n > 17

For a positive integer m and a positive real number p, an operator T € L(X) is called an

(m, p)-isometry if for any = € X,

Sy () iy o,

k=0
An operator T is called an m-isometry if it is an (m, p)-isometry for some p > 0. See [1],

[4] and [19]. Faghih and Hedayatian proved in [15] that m-isometries on a Hilbert space are
not weakly hypercyclic. However, there are isometries that are weakly supercyclic [24] (in

particular cyclic). Thus a natural question is the following:
Question 3. Can an m-isometry be convex-cyclic?
In [3], Badea, Grivaux and Miiller introduced the concept of an e-hypercyclic operator.

Definition 1.1. Let ¢ € (0,1) and let T': X — X be a continuous linear operator. A vector

x € X is called an e-hypercyclic vector for T if for every non-zero vector y € X there exists
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a non-negative integer n such that
[Tz =y <ellyl.-
The operator T is called e-hypercyclic if it has an e-hypercyclic vector.

In [3] it was shown that for every € € (0, 1), there exists an e-hypercyclic operator on the
space (! (N) which is not hypercyclic. Bayart in [5] extended this result to separable Hilbert

spaces. Thus it is natural to ask if:
Question 4. Is every e-hypercyclic operator also convez-cyclic?

An operator T' € L(X) is called hypercyclic with support N is there exists a vector x € X
such that the set

{Tk1x+Tk2x+~-~+TkN:c : kl,...,kNEN}
is dense in X.

Remark 1.2. Notice that if T is hypercyclic with support N, then T is convex-cyclic. In
fact, for any y € X, there exist ki,...,kx € N such that T"z + Tr2g + ... + TFN g = Ny,

thus
Tha+Trg+ .+ Ty

N
Any hypercyclic operator with support /V satisfies that o,(7*) is the empty set [6, Propo-

sition 3.1]. However, there are convex-cyclic operators such that o,(7*) is non-empty. So,
hypercyclicity with support N is not equivalent to convex-cyclicity.

In [23], Rezaei characterizes which diagonal matrices on C" are convex-cyclic as those
whose eigenvalues are distinct and belong to the set C\ (DUR). This naturally leads to the

question about infinite diagonal matrices and even the following more general question.

Question 5. IfT is a continuous linear operator on a complex Banach space X and T has a
complete set of eigenvectors whose eigenvalues are distinct, and belong to the set C\ (DUR),

then is T convez-cyclic?

In this paper, we answer these five questions and also give some examples. The paper is
organized as follows. In Section 2, we give the Hahn-Banach characterization for convex-
cyclicity. In Section 3, we give an example of an operator S that is convex-cyclic but S?
is not convex-cyclic and thus S is not weakly hypercyclic, this answers Questions [I] and
when 0,(5*) = @. In Section 4, we prove that m-isometries are not convex-cyclic, answering
Question [Bl In Section 5 we prove that any e-hypercyclic operator is convex-cyclic. In fact,

every e-hypercyclic vector is a convex-cyclic vector. Finally, in Section 6 we answer Question
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5 affirmatively and give examples of such operators including diagonal operators and adjoints
of multiplication operators.

Cesaro hypercyclic

Weakly hypercyclic

/

Hypercyclic Convex-cyclic —— Cyclic

Hypercyclic with support N

N\

e-hypercyclic

FIGURE 1. Implications between different definitions related with hypercyclic-
ity and cyclicity.

2. THE HAHN-BANACH CHARACTERIZATION FOR CONVEX-CYCLICITY

Rezaei gave a (universality) criterion for an operator to be convex-cyclic [23, Theorem
3.10]. In the following result, using the Hahn-Banach Separation Theorem, we give a nec-
essary and sufficient condition for a set to have a dense convex hull, as a result we get a

criterion for a vector to be a convex-cyclic vector for an operator.

Proposition 2.1. Let X be a locally convex space over the real or complex numbers and let

E be a nonempty subset of X. The following are equivalent:

(1) The convex hull of E is dense in X.
(2) For every nonzero continuous linear functional f on X we have that the convex hull
of Re(f(FE)) is dense in R.

(8) For every nonzero continuous linear functional f on X we have that
sup Re(f(E)) = oo and inf Re(f(E)) = —o0.
(4) For every nonzero continuous linear functional f on X we have that
sup Re(f(E)) = oo.

Proof. Let F denote either the real or complex numbers. Clearly (1) = (2) = (3) = (4)
holds. Now assume that (4) holds and by way of contradiction, assume that co(E) is not
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dense in X. Then there exists a point p € X that is not in the closure of co(E). So, by
the Hahn-Banach Separation Theorem ([I2], Theorem 3.13]), there exists a continuous linear
functional f on X so that Re(f(z)) < Re(f(p)) for all x € co(E). It follows that Re(f(E))
is bounded from above and thus sup Re(f(E)) # oo. This contradicts our assumption that
(4) is true. Thus it must be the case that if (/) holds, then (1) does also. Hence all four

conditions are equivalent. O

Corollary 2.2 (The Hahn-Banach Characterization for Convex-Cyclicity). Let X be a locally
convex space over the real or complex numbers, T : X — X a continuous linear operator,

and x € X. Then the following are equivalent:

(1) The convex hull of the orbit of x under T is dense in X.

(2) For every non-zero continuous linear functional f on X we have
sup Re(f(Orb(T,x))) = oc.

Below are some simple consequences of the Hahn-Banach characterization for convex-cyclic
vectors.

As it was pointed in the Introduction the range of a cyclic operator may not be dense. For
example, the range of the unilateral shift has codimension one. However, the closure of the
range of a cyclic operator has codimension at most one. Notice that the range of hypercyclic
operator is always dense. The Hahn-Banach characterization of convex-cyclicity easily shows

that convex-cyclic operators must also have dense range, see the following result.

Proposition 2.3. If T is a convex-cyclic operator on a locally convex space X, then T has

dense range.

Proof. Suppose that T is a convex-cyclic operator and let  be a convex-cyclic vector for
T, and by way of contradiction, suppose that 1" does not have dense range. Then there
exists a continuous linear functional f such that f(R(T)) = {0}, where R(T) denotes
the range of T. By the Hahn-Banach characterization, Corollary 2.2 we must have that
sup Re(f(Orb(T,z)) = oco. However, since T"x € R(T) for all n > 1 it follows that
f(Tmz) = 0 for all n > 1. So, sup Re(f(Orb(T,z)) = sup Re({f(T°x),0}) < oo. It fol-
lows from Corollary that x is not a convex-cyclic vector, a contradiction. Thus, 7" must

have dense range. 0

In general, if T is hypercyclic and ¢ > 1, then ¢I" may not be hypercyclic. However,
Ledn-Saavedra and Miiller [21] proved that if 7" is hypercyclic and « is a unimodular com-
plex number, then o7 is hypercyclic. The same property is also true for weak hypercyclic
operators [13, Theorem 2.8]. Next we present a similar result for convex-cyclic operators,

that follows from the Hahn-Banach characterization of convex-cyclic vectors.
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Proposition 2.4. If T is a convez-cyclic operator on a real or complex locally convex space
X, and if ¢ > 1, then cT' is also convex-cyclic. Furthermore, every convex-cyclic vector for

T is also a convex-cyclic vector for cT'.

Proof. Suppose that x is a convex-cyclic vector for 7', and we will show that z is also a
convex-cyclic vector for ¢T', by using the Hahn-Banach characterization (Corollary 2.2)). Let
f be any non-zero continuous linear functional on X. Since z is a convex-cyclic vector
for T, then sup Re(f(T™z)) = oo. Since ¢ > 1, then we have that sup Re[f((cT)"z)] =
sup c"Re[f(T"x)] > sup Re[f(T"x)] = co. So, by the Hahn-Banach characterization, x is a

convex-cyclic vector for cT. O
Corollary 2.5. If |c| > 1 and T is weakly hypercyclic, then cT' is convez-cyclic.

Proof. Let ¢ := €3, where # € R and 3 > 1. Then by de la Rosa [I3, Theorem 2.8] we
obtain that T is weakly hypercyclic, hence €T is convex-cyclic. Thus, ¢T' = B(e?T) is
convex cyclic by Proposition 2.1 O

Let us define the following convex polynomials

14t tF!

2 ife=1

—1
Cck—_l(c’f—l FE 2t fe> 1.
Definition 2.6. Let X and Y be topological spaces. A family of continuous operators
T, : X =Y (i € I) is universal if there exists an x € X such that {T;x : i € I} is dense in

Y.

Let T' € L(X). Denotes M,,(T') the arithmetic means given by

I+ T+ T
= - :

M, (T) :
Recall that an operator 1" is Cesaro hypercyclic if there exists « € X such that {M,(T)x
n € N} is dense in X. See [20].
T\ ™
In [20, Theorem 2.4] it is proved that T is Cesaro hypercyclic if and only if (?) is

} k=1
universal.

Proposition 2.7. Let X be a Banach space, ¢ > 1 and T € L(X) such that cI — T has
dense range. Then the following are equivalent:

T
(1) = is hypercyclic
(2) (pe(T)),ey 18 universal.
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Proof. Notice that if ¢ > 1,

pi(T) (el = T)z = (eI — T)pi(T)x = (¢ — 1)Ckc_ : (:,; - (Z) I) |
O

T
Proposition 2.8. If T is Cesaro hypercyclic or — is hypercyclic for some ¢ > 1, then T is
c

convex-cyclic.

Notice that the proof of the sufficient condition for a bilateral weighted backward shift on

(P(Z) to be convex-cyclic given in [23] Theorem 4.2] is not correct.

3. CONVEX-CYCLIC OPERATORS WHOSE SQUARES ARE NOT CONVEX-CYCLIC

As noted in the Introduction, powers of hypercyclic and weakly hypercyclic operators
remain hypercyclic and weakly hypercyclic, respectively. In this section, we give an example
of a convex-cyclic operator S with ¢,(S*) = () such that S? is not convex-cyclic. Moreover,
the same example gives an operator that is convex-cyclic with 0,(S*) = 0 that is not weakly
hypercyclic.

Recall that Ledén-Saavedra and Romero de la Rosa [22] provide an example of a convex-
cyclic operator S with 0,(S*) # @ such that S™ fails to be convex-cyclic. Also, a 2 x 2
diagonal matrix D with eigenvalues 2i and —2i is convex-cyclic, but D? has a real eigenvalue

and thus is not convex-cyclic.

Theorem 3.1. [17] Let T be a hypercyclic operator on an infinite dimensional separable
Banach space. The following assertions are equivalent:

(1) T & T is hypercyclic.

(2) ToT is cyclic.

Theorem 3.2. ([6, Proposition 2.3] & [28, Corollary 5.2]) Let T' be a hypercyclic operator
on a separable Banach space. Then T & —T is hypercyclic with support 2 and 1-weakly
hypercyclic.

Corollary 3.1. If T is a hypercyclic operator on an infinite dimensional Banach space such
that T ® T s not hypercyclic, then T & —T is convez-cyclic, but not weakly hypercyclic and
(T @ —T)? is not cyclic.

Proof. Suppose that T' is a hypercyclic operator such that T'é@ T is not hypercyclic. Then by
Theorem B, 7T is not cyclic. Thus (T'&T)? is not cyclic, hence (T®—T)* = (T®T)? is
not cyclic. It follows that T'@® —T is not weakly hypercyclic, for if it was, then (T'® —T)? =
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(T ® T)? would be weakly hypercyclic, and hence cyclic, a contradiction. Thus T' & —T is
convex-cyclic but not weakly hypercyclic, and (T' @ —T')? is not cyclic. O

Examples of operators satisfying that T is hypercyclic but T° @ T is not hypercyclic are
given in [14], [8, Corollary 4.15] and [7]. Using these examples we have the following result.

Theorem 3.3. There exists an operator S on ¢y(N) & co(N) or on ¢P(N) & (P(N) with p > 1

that is convex-cyclic, but not weakly hypercyclic, and S? is not convex-cyclic.
Using similar ideas of Shkarin [27, Lemma 6.5] we obtain the following result.
Theorem 3.4. Let T € L(X). If T? is convex-cyclic, then T & —T is convex-cyclic.

Proof. Let x be a convex-cyclic vector for T2 and let S := T'® —T. Then for all y € X there
exists a sequence (pj) of convex polynomials such that py(7?)x converges to y as k tends to
infinity. Thus

pr(S%)(z,x) = (y,y) ,
and
Spr(S?)(z, ) — (Ty, —Ty) .

Since T2 is convex-cyclic, T is convex-cyclic. By Proposition 2.3 the range of T is dense.
By other hand, py(2?) and xpy(2?) are convex polynomials. Thus the closed convex hull of
Orb(S, (x,x)) contains the spaces Ly := {(u,u) :w € X} and Ly := {(u, —u) : u € X}. So,
if we are given (y,z) € X x X, then let (gx) and (hx) be sequences of convex polynomials
such that

@ (S%)(z,x) = (y+ 2,y + 2)
and
Shi(S?)(z,7) = (y — 2,2 —y) .
Then pi(t) := 1qi(t?) + Shy(t?) is a sequence of convex polynomials and
pe(S)(x,2) = (y,2) .
Thus S =T & —T is convex-cyclic. 0J

Ansari [2] proved that an operator T is hypercyclic if and only if 7™ is hypercyclic. In fact
T and T"™ have the same set of hypercyclic vectors for any positive integer n. This property
is also true for weakly hypercyclic vectors (see [10, Theorem 2.4]), thus we get the following

corollary.

Corollary 3.2. If T is weakly-hypercyclic, then T'® —T is convex-cyclic.
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In the following result we obtain that if 7" and 7™ are convex-cyclic operators, the set of

convex-cyclic vectors could be different.

Proposition 3.3. There are hypercyclic operators such that T and T? do not have the same

convez-cyclic vectors.

Proof. Let T be twice the backward shift, T := 2B, on *(N) and let D be the doubling
map on ¢*(N), given by D(xg, z1, s, ...) = (zo, To, T1, T1, Ta, Ta, . ..). By [16, Theorem 5.3]
there exists an z € (?(N) such that x is a 1-weakly hypercyclic vector for T' (and hence a
convex-cyclic vector for T') and Orb(T?, z) C D(¢*(N)). Thus,

co(Orb(T2,z)) C span[Orb(T?, x)] C D(£*(N)) # (*(N) .

Since D(¢%(N)) is a proper closed subspace of ¢?(N), this complete the proof. O

4. M-ISOMETRIES ARE NOT CONVEX-CYCLIC

Bayart proved the following spectral result for m-isometries on Banach spaces.

Proposition 4.1. [4, Proposition 2.3] Let T € L(X) be an m-isometry. Then its approxi-
mate point spectrum lies in the unit circle. In particular, T is one-to-one, T' has closed range
and either o(T) C T or o(T) = D.

On the other hand, Rezaei proved the following properties for convex-cyclic operators.

Proposition 4.2. [23, Propositions 3.2 and 3.3] Let T' € L(X). If T is convex-cyclic, then

(1) [T > 1.
(2) o,(T*) c C\ (DUR).

Theorem 4.1. An m-isometry on a Banach space X is not convex-cyclic.

Proof. If m = 1 and T is an m-isometry, then 7" is actually an isometry, thus ||T|| = 1 and
thus by part (1) of Proposition 4.2 T' cannot be convex-cyclic.

Assume that m > 2 and that T is convex-cyclic and a strict (m, p)-isometry for some
p > 0. We will use an argument similar to the proof of [4, Theorem 3.3]. Let
[T |

m—1
n rp
By [4, Proposition 2.2] we have that |.| is a semi-norm on X and T(Ker(].]) C Ker(].]),

where Ker(T) denotes the kernel of T'. Also the codimension of Ker(|.|) is positive, because

|z| ;== lim
n—oo

T is not a (m — 1)-isometry. Moreover, for each x € X, |Tz| = |z| and there exists C' > 0
such that |z| < C||z|| for all z € X.
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Let Y := X/Ker(].|) and T be the operator induced by 7" on Y. Then |Tz| = |z| for all
T €Y. So, T is an isometry on Y.

Since T' is convex-cyclic there exists a vector x € X such that the convex hull generated
by Orb(T, z) is dense in X. Given y € X and € > 0 there exists a convex polynomial such
that [ly — pa(T)z]| < % Thus |y — pa(T)z| < Clly — pa(T)z|| < e. Then |7 — pu(T)7| < ¢
and we obtain that T is convex-cyclic in Y.

Thus the extension of T to the completion of Y is a convex-cyclic isometry on a Banach

space; which is a contradiction. O

Corollary 4.3. An m-isometry on a Banach space is not 1-weakly hypercyclic.

5. €-HYPERCYCLIC OPERATORS VERSUS CONVEX-CYCLIC OPERATORS

Let us now exhibit the relation between e-hypercyclic and convex-cyclic operators.
Theorem 5.1. Every e-hypercyclic vector is a convex-cyclic vector.

Proof. Let x be an e-hypercyclic vector for an operator 7" and we will prove that for a

non-zero vector y € X and o > 0, there exists a convex polynomial p such that

lp(T)x = yll <6

Since € € (0,1), there exists N € N such that 2e¥||y|| < 6. As x is an e-hypercyclic vector

for T', there exists a positive integer k; such that
|T%2 — Ny|| < e[| Ny[| = eNly] -

If TF1z — Ny = 0, we choose I, such that

| ETasst
Thus
HN—lle Nyl < Ny
Hence
HNTM e H HiT < 2:Vy] <5

and the proof ends by letting p(z) = +2% 4 212k,
If T%12 — Ny # 0, there exists a positive integer ky such that

|74+ Thz — Ny|| = T2 — (Ny — T92) | < el Ny — Tha]| < &Ny -
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If TFig + T*22 — Ny = 0, analogously to the above situation we choose I3 such that

N-2
TT%

1 1 N —2
_Tkl _Tkz 7Tl3 o
H N T+ N T+ N T —Yy
and the proof ends.
If TFa 4 Tk2z — Ny # 0, there exists a positive integer ks such that

< 2Nyl <o

| Tz + T*2 + Tz — Ny|| < *Njy]| .

By induction, in the step N, if TFa + Tk2g + ... + T*v-12 — Ny = 0, we choose [ such
that

1 1 1 1
'NTklx + NTk% +---+ NTkalx + NTle — yH < 2Nyl <
and the proof ends.
If TFa 4 Theg + ... 4 ThNv-12 — Ny # 0, there exists a positive integer ky such that

Thus
Thz+- 4+ Thvg

N
Ending completely the proof. OJ

—yH <Nyl < 5

6. DIAGONAL OPERATORS AND ADJOINT MULTIPLICATION OPERATORS

By a Fréchet space we mean a locally convex space that is complete with respect to a
translation invariant metric.

If A is a nonempty collection of polynomials and T is an operator on a space X, then T
is said to be A-cyclic and x € X is said to be an A-cyclic vector for T if {p(T)xz :p € A} is
dense in X. Furthermore, T is said to be A-transitive if for any two nonempty open sets U
and V in X, there exists a p € A such that p(T)U NV # (). Since the set of all polynomials
with the topology of uniform convergence on compact sets in the complex plane forms a
separable metric space, then any set of polynomials is also separable, hence the following

result is routine (see for example the Universality Criterion in [I8, Theorem 1.57]).

Proposition 6.1. Suppose that T : X — X is a continuous linear operator on a real or
complex Fréchet space and A is a nonempty set of polynomials. Then the following are
equivalent:
(1) T has a dense set of A-cyclic vectors.
(2) T is A-transitive. That is, for any two nonempty open sets U,V in X, there is a
polynomial p € A such that p(T)U NV # 0.
(3) T has a dense Gs set of A-cyclic vectors.
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By choosing various sets of polynomials for A, we can get results for hypercyclic and
supercyclic operators, as well as cyclic operators that have a dense set of cyclic vectors. If

A is the set of all convex polynomials, then we get the following immediate corollary.

Corollary 6.2. LetT : X — X be a continuous linear operator on a real or complex Fréchet

space, then the following are equivalent.

(1) T has a dense set of convex-cyclic vectors.
(2) T is convex-transitive. That is, for any two nonempty open sets U,V in X, there is
a convex polynomial p such that p(T)U NV # ().

(3) T has a dense G set of convez-cyclic vectors.

Proposition 6.3. Let A be a nonempty set of polynomials and let {T}, : X — Xy}32, be

a uniformly bounded sequence of linear operators on a sequence of Banach spaces {Xy}32,
n

such that for every n > 1, the operator S,, = @Tk on XM = @Xk has a dense set of
k=1 k=1

A-cyclic vectors. Then T = @Tk s A-cyclic on X () = @Xk and T has a dense set of
k=1 k=1
A-cyclic vectors.

Proof. Suppose that for every n > 1 the operators S, are A-cyclic and have a dense set
of A-cyclic vectors. We will show that T" is A-transitive. Let U and V be two nonempty
open sets in X (). Since the vectors in X with only finitely many non-zero coordinates are
dense in X, then we may choose vectors x = ()52, and y = ()32, in X() such that
xr = 0 and y, = 0 for all sufficiently large k, say x;, = 0 and y, = 0 for all £ > N, and
such that x € U and y € V. Since Sy is A-cyclic and has a dense set of A-cyclic vectors in
X W) there exists a vector u = (u,us, ..., uy) € X®) such that u is an A-cyclic vector for
Sy and so that (uy, ug, ..., uy) is close enough to (z1, s, ..., xy) so that the infinite vector
= (uy,us,...,uyn,0,0,...) € U. Since Sy is A-cyclic, there is a polynomial p € A such
that p(Sn)(u1,us, ..., uy) is close enough to (y1,ys,...,yn) such that p(T)u € V. Thus,
T is A-transitive on X(*) and thus by Proposition we have that T has a dense set of

A-cyclic vectors. O

We next apply the previous proposition to infinite diagonal operators where A is the
set of all convex polynomials. This extends the finite dimensional matrix result given by

Rezaei [23, Corollary 2.7] to infinite dimensional diagonal matrices.

Theorem 6.1. Suppose that T is a diagonalizable normal operator on a separable (real or

complex) Hilbert space with eigenvalues { A} ;.
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(a) If the Hilbert space is complex, then T is convex-cyclic if and only if we have that the
eigenvalues { A\ }32, are distinct and for every k > 1, |\¢| > 1 and Im()\;) # 0.

(b) If the Hilbert space is real, then T is convex-cyclic if and only if the eigenvalues { g},
are distinct and for every k > 1 we have that A\ < —1.

Proof. By the spectral theorem we may assume that T' = diag(\i, Ag,...) is an infinite
diagonal matrix acting on /% (N) and let {e;}72; be the canonical unit vector basis where ey,
has a one in its k" coordinate and zeros elsewhere.

(a) If T is convex-cyclic with convex-cyclic vector z = (x,)2; € (4(N), then by Corol-
lary we must have for every k& > 1 that oo = sup,,»; Re((T"z, ex)) = sup,,>, Re(A\jwy).
This implies that x; # 0 and that |A;| > 1 for each k > 1. Likewise, since the Hilbert space
is complex in this case, we must have

oo = sup Re ((T":ﬂ, _:Zek)) = sup Re ()\Za:ki) = sup Re(i\}) .
n>1 Tk n>1 Tk n>1
This implies that \; cannot be real, hence I'm(\;) # 0 for all £ > 1.

Conversely, suppose that for every £ > 1 we have that |\ > 1 and Im()\;) # 0. Then
for n > 1, let T, := diag(\1, Mo, ..., \n) be the diagonal matrix on C* where )\, is the k'
diagonal entry. Since the eigenvalues {\;}32, are distinct and |Ax| > 1 and Im(\;) # 0 for
1 < k < n, then we know from Rezaei [23] that T,, is convex-cyclic on C" and that every
vector all of whose coordinates are non-zero is a convex-cyclic vector for 7},. Since such
vectors are dense in C” for every n > 1, then it follows from Proposition that T is also
convex-cyclic and has a dense set of convex-cyclic vectors. (b) The proof of the real case is

similar to that above. 0]

The next theorem says that if an operator has a complete set of eigenvectors whose eigen-
values are distinct, not real, and lie outside of the closed unit disk, then the operator is

convex-cyclic.

Theorem 6.2. Let S = {re? :r>1and 0 < 0] <7} =C\ (DUR). Suppose that T is a
bounded linear operator on a complex Banach space X and that T has a countable linearly
independent set of eigenvectors with dense linear span in X such that the corresponding
eigenvalues are distinct and are contained in the set S. Then T is convex-cyclic and has a

dense set of convex-cyclic vectors.

Proof. Suppose that {v,}>, is a linearly independent set of eigenvectors for 7" that have
dense linear span in X and such that the corresponding eigenvalues {\,,}°° ; are distinct and
contained in the set S. By replacing each eigenvector v,, with a constant multiple of itself we

may assume that - | [lv,]|? < co. Let D be the diagonal normal matrix on ¢*(N) whose n'"
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diagonal entry is A,. Then define a linear map A : (2(N) — X by A({a,}22,) =D 07 antn.
Notice that since {a, }>°, € *(N), then we have that

00 00 1/2 . 1/2
S v < (Z\aﬁ) (vanW) = Cl{any e
n=1 n=1 n=1

where C 1= (3°°7, ||va]|?)Y/2, which is finite. The above inequality implies that A is a well

[A{an} 20l =

defined continuous linear map from ¢?(N) to X. It follows that since the eigenvectors {v, }°2,
have dense linear span in X, that A has dense range. Also, if {e,}°°, is the standard unit
vector basis in (?(N), then clearly A(e,) = v, for all n > 1 and thus A intertwines D
with 7. To see this notice that AD(e,) = A(Aen) = v, = T(v,) = TA(e,). Thus
AD(e,) = TA(e,) for all n > 1, thus AD = T'A. Finally, since D has distinct eigenvalues
that all lie in the set S, it follows from Proposition that D is convex-cyclic and has a
dense set of convex-cyclic vectors. Since A intertwines D and T and A has dense range,
then A will map convex-cyclic vectors for D to convex-cyclic vectors for T. Thus, T is

convex-cyclic and has a dense set of convex-cyclic vectors. ([l

If G is an open set in the complex plane, then by a reproducing kernel Hilbert space H of
analytic functions on G we mean a vector space of analytic functions on G that is complete
with respect to a norm given by an inner product and such that point evaluations at all
points in G are continuous linear functionals on H. Naturally we also require that f =0 in
H if and only if f(z) =0 for all z € G. This is equivalent to the reproducing kernels having
dense linear span in ‘H. Given such a space H, a multiplier of H is an analytic function ¢
on G so that ¢f € H for every f € H. In this case, the closed graph theorem implies that

the multiplication operator M, : H — H is a bounded linear operator.

Corollary 6.4. Suppose that G is an open set in C with components {G,}nes and H is a
reproducing kernel Hilbert space of analytic functions on G, and that ¢ is a multiplier of H.
If ¢ is non-constant on every component of G and p(G,) N{z € C: |z| > 1} # 0 for every
n € J, then the operator Mg 1is convez-cyclic on H and has a dense set of conver-cyclic

vectors.

Proof. We will show that the eigenvectors for M7 with eigenvalues in the set S = C\ (DUR)
have dense linear span in H. It will then follow from Theorem that M7 is convex-cyclic.

Every reproducing kernel for H is an eigenvector for M. In fact, if A € G, then MZK) =
©(A) Ky, where K, denotes the reproducing kernel for H at the point A € G. By assumption,
for every component G,, of G, ¢ is non-constant on G,,, thus the set {\ € G, : |p(\)| > 1}is a
nonempty open subset of G,,. Also since ¢ is an open map on G,,, ¢ cannot map the open set

{Ae G, i |p(N)] > 1} into R. Thus, foralln € J, E, ={A € G, : |p(A)| > 1 and p(A) ¢ R}
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is a nonempty open subset of G,. Let E := |J,.; En,. Then for every A € E, K is an
eigenvector for M7 with eigenvalue ©()\) which lies in S = C\ (DUR). Since ENG, is a
nonempty open set for every n € J, then the corresponding reproducing kernels { K, : A € E'}
have dense linear span in H. Finally, since ¢ is non-constant on E,, for each n € J, we can
choose a countable set {\,x}?2; in E, that has an accumulation point in £, in such a
way that ¢ is one-to-one on {A,;}7%—;. Then the countable set {K) ,}n%—; is a set of
independent eigenvectors with dense linear span in ‘H and with distinct eigenvalues. It now
follows from Theorem that M7 is convex-cyclic and has a dense set of convex-cyclic

vectors. ]

Remark 6.5. In the previous corollary, if G is an open connected set, ¢ is a non-constant-
multiplier of H and if the norm of M, is equal to its spectral radius, then M is convez-cyclic
if and only if p(G)N{z € C: |z| > 1} # 0. This is the case if H is equal to H*(G) or
L%(G), the Hardy space or Bergman space on G or if M, is hyponormal.

Next we give an example of a convex-cyclic operator that is not 1-weakly hypercyclic.

Example 6.6. Let M, , be the adjoint of the multiplication operator associated to the
multiplier p(z) := 24z on H*(D). By [28, Theorem 5.5] the operator My, , = 21 + B, where
B is the unilateral backward shift, is not 1-weakly-hypercyclic, however M, , is convex-cyclic
by Corollary [6.4]

The following result is true since powers of convex polynomials are also convex polynomials.

Proposition 6.7. IfT is an operator on a Banach space and there exists a convex polynomaial

p such that p(T) is hypercyclic, then T is convez-cyclic.

By a region in C we mean an open connected set in C. In the following theorem, we

consider the operator which is the adjoint of multiplication by z, the independent variable.

Theorem 6.3. Suppose that G is a bounded region in C and G N{z : |z| > 1} # 0.
Suppose also that H is a reproducing kernel Hilbert space of analytic functions on G, then
M is convez-cyclic on H. In fact, there exists a convex polynomial p such that p(M}) is

hypercyclic on H.

Proof. Choose n > 1 such that G := {z" : z € G} satisfies G"N{z € C: Re(z) < 1} # 0. To
see how to do this, choose a polar rectangle R = {re? : r; < r < ry and a < § < 3} such that
R C G. Then simply choose a positive integer n such that n(f—a«) > 27. Then R" C G™ and
R™ will contain the annulus {re? : r7 < r < 72}, so certainly G"N{z € C: Re(z) < 1} # 0.
Now if 0 < a < 1, then the convex polynomial p,(z) = az + (1 — a) maps the disk B(%2, 1)

a ’a
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onto the unit disk. Notice that the family of disks {B(%1,1): 0 < a < 1} is the family of
all disks that are centered on the negative real axis and pass through the point z = 1. Thus
it follows that {z € C : Re(z) < 1} = Uyeuey B(1, 1), So we can choose an a € (0,1)
such that G" N OB(1, 1) + (). It follows that the polynomial p(z) = p,(z") is a convex
polynomial and furthermore it satisfies p(G) N D # ().

Thus M; is hypercyclic on H. However, My = p# (M) where p*(z) = p(z). Also, since p
is a convex polynomial, all of its coefficients are real, thus p* = p. Thus, p(M}) = p#(M}) =

M is hypercyclic on H. OJ

In the next result we give an example of an operator that is convex-cyclic but no convex
polynomial of the operator is hypercyclic. In other words, the operator is purely convex-

cyclic.

Example 6.8. Let {a,}>2, and {B,}>2, be two strictly decreasing sequences of positive
numbers that are interlaced and converging to zero. In other words, 0 < i1 < Bpy1 < Qp
for alln > 1 and a,, — 0 (and hence 5, — 0). For eachn > 1, let

, 1
Gni={re®:2<r <2+ = and a, <0 < B,}.
n

Let G =", Gy, and let L2(G) be the Bergman space of all analytic functions on G that are
square integrable with respect to area measure on G. Then the operator M is purely convez-
cyclic on L2(G); meaning that M} is convex-cyclic on L2(G), but p(M}) is not hypercyclic

on L2(GQ) for any convex polynomial p.

Proof. By Corollary 6.4l we know that M} is convex-cyclic on L?(G). In order to show that
no convex polynomial of M} is hypercyclic, suppose, by way of contradiction, that there
exists a convex polynomial p such that p(M}) is hypercyclic. Since p is a convex polynomial
it has real coefficients thus p#(z) = p(z) where p#(z2) := p(Z). Thus p(M}) = = My
and it follows that M} is hypercyclic on L3(@G). Thus it follows that every component G,
of G must satisfy that p(G,) N JD # (. However since p is a convex polynomial, p is
(strictly) increasing on the interval [0,00). Thus, p(2) > p(1) = 1. Choose an ¢ > 0 such
that € < p(2) — 1. Since p is continuous at z = 2, and since we have an € > 0, then there
exists a 0 > 0 such that if |z — 2| < §, then |p(z) — p(2)| < . Notice that for n sufficiently
large we have that G,, C B(2,9), thus, p(G,) C B(p(2),e) C {z € C: Re(z) > 1}. Thus,
p(G,) NOD = ( for all large n, a contradiction. It follows that no convex polynomial of M*

is hypercyclic, hence M} is purely convex-cyclic. 0
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7. OPEN QUESTIONS

It is well known that hypercyclic operators have a dense set of hypercyclic vectors. In

fact, the set of hypercyclicic vectors is a dense Gy set.
Question 1. If T is convez-cyclic, then does T have a dense set of convex-cyclic vectors?

Sanders [24] proved that if T : H — H is a hyponormal operator on a Hilbert space H,
then T is not weakly hypercyclic. A hyponormal operator is pure if its restriction to any of
its reducing subspaces is not normal. That is, a hyponormal operator 1" is pure if T cannot

be written in the form T'= S @& N where N is a normal operator.

Question 2. Are there pure hyponormal operators or continuous normal operators that are

convex-cyclic?

Question 3. If T is convez-cyclic on a complex Hilbert space, then is (—1)T also convez-

cyclic?

The above question is true for diagonal normal operators/matrices and the other examples

in this paper and also whenever T2 is convex-cyclic.

Question 4. If T is a convex-cyclic operator, then how big can the point spectrum of T

be? Can it have non-empty interior?

Bourdon and Feldman [I0] showed that if a vector € X has a somewhere dense orbit
under a bounded linear operator T', then the orbit of x under T must be everywhere dense
in X. A similar question was posed for convex-cyclicity by Rezaei. Recently, Leén-Saavedra
and Romero de la Rosa provide an example where Bourdon and Feldman’s result fails for

convex-cyclic operators 1" such that o,(17*) # @.

Question 5. [23, Question 5.5] Let X be a Banach space and T € L(X) where 0,(T*) = 0.
If 2 € X and co(Orb(T, x)) is somewhere dense in X, then is co(Orb(T, z)) dense in X?

Since it is unknown if there exists a Banach space on which every hypercyclic operator is

weakly mixing, we ask:

Question 6. Given a separable Banach space X, is there a convex-cyclic operator S on X

such that S? is not convex-cyclic?
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