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ON CONVEX-CYCLIC OPERATORS

TERESA BERMÚDEZ, ANTONIO BONILLA, AND N. S. FELDMAN

Abstract. We give a Hahn-Banach Characterization for convex-cyclicity. We also obtain

an example of a bounded linear operator S on a Banach space with σp(S
∗) = ∅ such that S is

convex-cyclic, but S is not weakly hypercyclic and S2 is not convex-cyclic. This solved two

questions of Rezaei in [23] when σp(S
∗) = ∅. We also characterize the diagonalizable normal

operators that are convex-cyclic and give a condition on the eigenvalues of an arbitrary

operator for it to be convex-cyclic. We show that certain adjoint multiplication operators

are convex-cyclic and show that some are convex-cyclic but no convex polynomial of the

operator is hypercyclic. Also some adjoint multiplication operators are convex-cyclic but

not 1-weakly hypercyclic.

1. Introduction

Let X be a Banach space and let L(X) denote the algebra of all bounded linear operators

on X . A bounded linear operator T on X is cyclic if there exists a (cyclic) vector x such

that the linear span of the orbit of x, Orb(T, x) = {T nx : n = 0, 1, · · · }, is dense in X . An

operator T is called convex-cyclic if there exists a vector x ∈ X such that the convex hull of

Orb(T, x) is dense in X and such a vector x is said to be a convex-cyclic vector for T . Clearly

all convex-cyclic operators are cyclic. Following Rezaei [23] we will say that a polynomial p

is a convex polynomial if it is a (finite) convex combination of monomials {1, z, z2, . . .}. So,

p(z) = a0 + a1z + · · · + anz
n is a convex polynomial if ak ≥ 0 for all k and

∑n
k=0 ak = 1.

Then the convex hull of an orbit is co(Orb(T, x)) = {p(T )x : p is a convex polynomial}.

A bounded linear operator T ∈ L(X) is said to be hypercyclic (weakly hypercyclic [11]) if

there is a vector x ∈ X whose orbit is dense in the norm (weak) topology of X . An operator

T is said to be weakly-mixing if T ⊕ T is hypercyclic in X ⊕X .

There are certainly examples of convex-cyclic operators that are not hypercyclic. However

within certain classes of operators, hypercyclicity and convex-cyclicity are equivalent. This

is true for unilateral weighted backward shifts on ℓp(N) and composition operators on the

classical Hardy space, see [23].
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2 ON CONVEX-CYCLIC OPERATORS

What follows is a list of questions that are answered in this paper. First, notice that every

weakly hypercyclic operator is convex-cyclic since the norm and the weak closure of a convex

set in a Banach space coincide. In [23] Rezaei asks the following question:

Question 1. [23, Question 5.4] Is every convex-cyclic operator acting on an infinite dimen-

sional Banach space weakly hypercyclic?

According to Feldman [16], T is called 1-weakly hypercyclic if there is an x ∈ X such that

f(Orb(T, x)) is dense in C for each non-zero f ∈ X∗. Every weakly hypercyclic operator is

1-weakly hypercyclic and 1-weakly hypercyclic operators are convex-cyclic. Thus it is also

natural to ask if every convex-cyclic operator acting on an infinite dimensional Banach space

1-weakly hypercyclic?

Ansari [2] showed that powers of hypercyclic operators on Banach spaces are hypercyclic

operators. The same result was proven for operators on locally convex spaces by Bourdon

and Feldman [10]. These results do not have analogues for cyclic operators. The forward

unilateral shift S on ℓ2(N) is cyclic but S2 is not cyclic, because the codimension of the range

of S2 is two. What about powers of convex-cyclic operators? León and Romero in [22] give

examples of convex-cyclic operators where σp(S
∗) is non-empty that have powers that are

not convex-cyclic. Thus is natural to ask:

Question 2. [23, Question 5.5] If S : X → X a convex-cyclic operator on a Banach space

X with σp(S
∗) = ∅, then is Sn convex-cyclic for every integer n > 1?

For a positive integer m and a positive real number p, an operator T ∈ L(X) is called an

(m, p)-isometry if for any x ∈ X ,

m
∑

k=0

(−1)m−k

(

m

k

)

‖T kx‖p = 0 .

An operator T is called an m-isometry if it is an (m, p)-isometry for some p > 0. See [1],

[4] and [19]. Faghih and Hedayatian proved in [15] that m-isometries on a Hilbert space are

not weakly hypercyclic. However, there are isometries that are weakly supercyclic [24] (in

particular cyclic). Thus a natural question is the following:

Question 3. Can an m-isometry be convex-cyclic?

In [3], Badea, Grivaux and Müller introduced the concept of an ε-hypercyclic operator.

Definition 1.1. Let ε ∈ (0, 1) and let T : X → X be a continuous linear operator. A vector

x ∈ X is called an ε-hypercyclic vector for T if for every non-zero vector y ∈ X there exists
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a non-negative integer n such that

‖T nx− y‖ ≤ ε‖y‖.

The operator T is called ε-hypercyclic if it has an ε-hypercyclic vector.

In [3] it was shown that for every ε ∈ (0, 1), there exists an ε-hypercyclic operator on the

space ℓ1(N) which is not hypercyclic. Bayart in [5] extended this result to separable Hilbert

spaces. Thus it is natural to ask if:

Question 4. Is every ε-hypercyclic operator also convex-cyclic?

An operator T ∈ L(X) is called hypercyclic with support N is there exists a vector x ∈ X

such that the set
{

T k1x+ T k2x+ · · ·+ T kNx : k1, . . . , kN ∈ N
}

is dense in X .

Remark 1.2. Notice that if T is hypercyclic with support N , then T is convex-cyclic. In

fact, for any y ∈ X , there exist k1, . . . , kN ∈ N such that T k1x + T k2x + · · ·+ T kNx ≈ Ny,

thus
T k1x+ T k2x+ · · ·+ T kNx

N
≈ y .

Any hypercyclic operator with support N satisfies that σp(T
∗) is the empty set [6, Propo-

sition 3.1]. However, there are convex-cyclic operators such that σp(T
∗) is non-empty. So,

hypercyclicity with support N is not equivalent to convex-cyclicity.

In [23], Rezaei characterizes which diagonal matrices on Cn are convex-cyclic as those

whose eigenvalues are distinct and belong to the set C \ (D∪R). This naturally leads to the

question about infinite diagonal matrices and even the following more general question.

Question 5. If T is a continuous linear operator on a complex Banach space X and T has a

complete set of eigenvectors whose eigenvalues are distinct, and belong to the set C\ (D∪R),

then is T convex-cyclic?

In this paper, we answer these five questions and also give some examples. The paper is

organized as follows. In Section 2, we give the Hahn-Banach characterization for convex-

cyclicity. In Section 3, we give an example of an operator S that is convex-cyclic but S2

is not convex-cyclic and thus S is not weakly hypercyclic, this answers Questions 1 and 2

when σp(S
∗) = ∅. In Section 4, we prove that m-isometries are not convex-cyclic, answering

Question 3. In Section 5 we prove that any ε-hypercyclic operator is convex-cyclic. In fact,

every ε-hypercyclic vector is a convex-cyclic vector. Finally, in Section 6 we answer Question
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5 affirmatively and give examples of such operators including diagonal operators and adjoints

of multiplication operators.

Hypercyclic

Cesàro hypercyclic

Weakly hypercyclic

Hypercyclic with support N

ε-hypercyclic

Convex-cyclic Cyclic

Figure 1. Implications between different definitions related with hypercyclic-

ity and cyclicity.

2. The Hahn-Banach Characterization for Convex-Cyclicity

Rezaei gave a (universality) criterion for an operator to be convex-cyclic [23, Theorem

3.10]. In the following result, using the Hahn-Banach Separation Theorem, we give a nec-

essary and sufficient condition for a set to have a dense convex hull, as a result we get a

criterion for a vector to be a convex-cyclic vector for an operator.

Proposition 2.1. Let X be a locally convex space over the real or complex numbers and let

E be a nonempty subset of X. The following are equivalent:

(1) The convex hull of E is dense in X.

(2) For every nonzero continuous linear functional f on X we have that the convex hull

of Re(f(E)) is dense in R.

(3) For every nonzero continuous linear functional f on X we have that

supRe(f(E)) = ∞ and inf Re(f(E)) = −∞.

(4) For every nonzero continuous linear functional f on X we have that

supRe(f(E)) = ∞.

Proof. Let F denote either the real or complex numbers. Clearly (1) ⇒ (2) ⇒ (3) ⇒ (4)

holds. Now assume that (4) holds and by way of contradiction, assume that co(E) is not
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dense in X . Then there exists a point p ∈ X that is not in the closure of co(E). So, by

the Hahn-Banach Separation Theorem ([12, Theorem 3.13]), there exists a continuous linear

functional f on X so that Re(f(x)) < Re(f(p)) for all x ∈ co(E). It follows that Re(f(E))

is bounded from above and thus supRe(f(E)) 6= ∞. This contradicts our assumption that

(4) is true. Thus it must be the case that if (4) holds, then (1) does also. Hence all four

conditions are equivalent. �

Corollary 2.2 (The Hahn-Banach Characterization for Convex-Cyclicity). Let X be a locally

convex space over the real or complex numbers, T : X → X a continuous linear operator,

and x ∈ X. Then the following are equivalent:

(1) The convex hull of the orbit of x under T is dense in X.

(2) For every non-zero continuous linear functional f on X we have

supRe(f(Orb(T, x))) = ∞.

Below are some simple consequences of the Hahn-Banach characterization for convex-cyclic

vectors.

As it was pointed in the Introduction the range of a cyclic operator may not be dense. For

example, the range of the unilateral shift has codimension one. However, the closure of the

range of a cyclic operator has codimension at most one. Notice that the range of hypercyclic

operator is always dense. The Hahn-Banach characterization of convex-cyclicity easily shows

that convex-cyclic operators must also have dense range, see the following result.

Proposition 2.3. If T is a convex-cyclic operator on a locally convex space X, then T has

dense range.

Proof. Suppose that T is a convex-cyclic operator and let x be a convex-cyclic vector for

T , and by way of contradiction, suppose that T does not have dense range. Then there

exists a continuous linear functional f such that f(R(T )) = {0}, where R(T ) denotes

the range of T . By the Hahn-Banach characterization, Corollary 2.2, we must have that

supRe(f(Orb(T, x)) = ∞. However, since T nx ∈ R(T ) for all n ≥ 1 it follows that

f(T nx) = 0 for all n ≥ 1. So, supRe(f(Orb(T, x)) = supRe({f(T 0x), 0}) < ∞. It fol-

lows from Corollary 2.2 that x is not a convex-cyclic vector, a contradiction. Thus, T must

have dense range. �

In general, if T is hypercyclic and c > 1, then cT may not be hypercyclic. However,

León-Saavedra and Müller [21] proved that if T is hypercyclic and α is a unimodular com-

plex number, then αT is hypercyclic. The same property is also true for weak hypercyclic

operators [13, Theorem 2.8]. Next we present a similar result for convex-cyclic operators,

that follows from the Hahn-Banach characterization of convex-cyclic vectors.
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Proposition 2.4. If T is a convex-cyclic operator on a real or complex locally convex space

X, and if c > 1, then cT is also convex-cyclic. Furthermore, every convex-cyclic vector for

T is also a convex-cyclic vector for cT .

Proof. Suppose that x is a convex-cyclic vector for T , and we will show that x is also a

convex-cyclic vector for cT , by using the Hahn-Banach characterization (Corollary 2.2). Let

f be any non-zero continuous linear functional on X . Since x is a convex-cyclic vector

for T , then supRe(f(T nx)) = ∞. Since c > 1, then we have that supRe[f((cT )nx)] =

sup cnRe[f(T nx)] ≥ supRe[f(T nx)] = ∞. So, by the Hahn-Banach characterization, x is a

convex-cyclic vector for cT . �

Corollary 2.5. If |c| ≥ 1 and T is weakly hypercyclic, then cT is convex-cyclic.

Proof. Let c := eiθβ, where θ ∈ R and β ≥ 1. Then by de la Rosa [13, Theorem 2.8] we

obtain that eiθT is weakly hypercyclic, hence eiθT is convex-cyclic. Thus, cT = β(eiθT ) is

convex cyclic by Proposition 2.4. �

Let us define the following convex polynomials

pck(t) :=















1 + t+ · · ·+ tk−1

k
if c = 1

c− 1

ck − 1
(ck−1 + ck−2t+ · · ·+ tk−1) if c > 1 .

Definition 2.6. Let X and Y be topological spaces. A family of continuous operators

Ti : X → Y (i ∈ I) is universal if there exists an x ∈ X such that {Tix : i ∈ I} is dense in

Y .

Let T ∈ L(X). Denotes Mn(T ) the arithmetic means given by

Mn(T ) :=
I + T + · · ·+ T n−1

n
.

Recall that an operator T is Cesàro hypercyclic if there exists x ∈ X such that {Mn(T )x :

n ∈ N} is dense in X . See [20].

In [20, Theorem 2.4] it is proved that T is Cesáro hypercyclic if and only if

(

T k

k

)∞

k=1

is

universal.

Proposition 2.7. Let X be a Banach space, c > 1 and T ∈ L(X) such that cI − T has

dense range. Then the following are equivalent:

(1)
T

c
is hypercyclic

(2) (pck(T ))k∈N is universal.
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Proof. Notice that if c > 1,

pck(T )(cI − T )x = (cI − T )pck(T )x = (c− 1)
ck

ck − 1

(

x−

(

T

c

)k

x

)

.

�

Proposition 2.8. If T is Cesàro hypercyclic or
T

c
is hypercyclic for some c ≥ 1, then T is

convex-cyclic.

Notice that the proof of the sufficient condition for a bilateral weighted backward shift on

ℓp(Z) to be convex-cyclic given in [23, Theorem 4.2] is not correct.

3. Convex-cyclic operators whose squares are not convex-cyclic

As noted in the Introduction, powers of hypercyclic and weakly hypercyclic operators

remain hypercyclic and weakly hypercyclic, respectively. In this section, we give an example

of a convex-cyclic operator S with σp(S
∗) = ∅ such that S2 is not convex-cyclic. Moreover,

the same example gives an operator that is convex-cyclic with σp(S
∗) = ∅ that is not weakly

hypercyclic.

Recall that León-Saavedra and Romero de la Rosa [22] provide an example of a convex-

cyclic operator S with σp(S
∗) 6= ∅ such that Sn fails to be convex-cyclic. Also, a 2 × 2

diagonal matrix D with eigenvalues 2i and −2i is convex-cyclic, but D2 has a real eigenvalue

and thus is not convex-cyclic.

Theorem 3.1. [17] Let T be a hypercyclic operator on an infinite dimensional separable

Banach space. The following assertions are equivalent:

(1) T ⊕ T is hypercyclic.

(2) T ⊕ T is cyclic.

Theorem 3.2. ([6, Proposition 2.3] & [28, Corollary 5.2]) Let T be a hypercyclic operator

on a separable Banach space. Then T ⊕ −T is hypercyclic with support 2 and 1-weakly

hypercyclic.

Corollary 3.1. If T is a hypercyclic operator on an infinite dimensional Banach space such

that T ⊕ T is not hypercyclic, then T ⊕−T is convex-cyclic, but not weakly hypercyclic and

(T ⊕−T )2 is not cyclic.

Proof. Suppose that T is a hypercyclic operator such that T ⊕T is not hypercyclic. Then by

Theorem 3.1, T ⊕T is not cyclic. Thus (T ⊕T )2 is not cyclic, hence (T ⊕−T )2 = (T ⊕T )2 is

not cyclic. It follows that T ⊕−T is not weakly hypercyclic, for if it was, then (T ⊕−T )2 =



8 ON CONVEX-CYCLIC OPERATORS

(T ⊕ T )2 would be weakly hypercyclic, and hence cyclic, a contradiction. Thus T ⊕ −T is

convex-cyclic but not weakly hypercyclic, and (T ⊕−T )2 is not cyclic. �

Examples of operators satisfying that T is hypercyclic but T ⊕ T is not hypercyclic are

given in [14], [8, Corollary 4.15] and [7]. Using these examples we have the following result.

Theorem 3.3. There exists an operator S on c0(N)⊕ c0(N) or on ℓp(N)⊕ ℓp(N) with p ≥ 1

that is convex-cyclic, but not weakly hypercyclic, and S2 is not convex-cyclic.

Using similar ideas of Shkarin [27, Lemma 6.5] we obtain the following result.

Theorem 3.4. Let T ∈ L(X). If T 2 is convex-cyclic, then T ⊕−T is convex-cyclic.

Proof. Let x be a convex-cyclic vector for T 2 and let S := T ⊕−T . Then for all y ∈ X there

exists a sequence (pk) of convex polynomials such that pk(T
2)x converges to y as k tends to

infinity. Thus

pk(S
2)(x, x) → (y, y) ,

and

Spk(S
2)(x, x) → (Ty,−Ty) .

Since T 2 is convex-cyclic, T is convex-cyclic. By Proposition 2.3, the range of T is dense.

By other hand, pk(x
2) and xpk(x

2) are convex polynomials. Thus the closed convex hull of

Orb(S, (x, x)) contains the spaces L0 := {(u, u) : u ∈ X} and L1 := {(u,−u) : u ∈ X}. So,

if we are given (y, z) ∈ X × X , then let (qk) and (hk) be sequences of convex polynomials

such that

qk(S
2)(x, x) → (y + z, y + z)

and

Shk(S
2)(x, x) → (y − z, z − y) .

Then pk(t) :=
1
2
qk(t

2) + t
2
hk(t

2) is a sequence of convex polynomials and

pk(S)(x, x) → (y, z) .

Thus S = T ⊕−T is convex-cyclic. �

Ansari [2] proved that an operator T is hypercyclic if and only if T n is hypercyclic. In fact

T and T n have the same set of hypercyclic vectors for any positive integer n. This property

is also true for weakly hypercyclic vectors (see [10, Theorem 2.4]), thus we get the following

corollary.

Corollary 3.2. If T is weakly-hypercyclic, then T ⊕−T is convex-cyclic.
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In the following result we obtain that if T and T n are convex-cyclic operators, the set of

convex-cyclic vectors could be different.

Proposition 3.3. There are hypercyclic operators such that T and T 2 do not have the same

convex-cyclic vectors.

Proof. Let T be twice the backward shift, T := 2B, on ℓ2(N) and let D be the doubling

map on ℓ2(N), given by D(x0, x1, x2, . . .) = (x0, x0, x1, x1, x2, x2, . . .). By [16, Theorem 5.3]

there exists an x ∈ ℓ2(N) such that x is a 1-weakly hypercyclic vector for T (and hence a

convex-cyclic vector for T ) and Orb(T 2, x) ⊆ D(ℓ2(N)). Thus,

co(Orb(T 2, x)) ⊆ span[Orb(T 2, x)] ⊆ D(ℓ2(N)) 6= ℓ2(N) .

Since D(ℓ2(N)) is a proper closed subspace of ℓ2(N), this complete the proof. �

4. m-isometries are not convex-cyclic

Bayart proved the following spectral result for m-isometries on Banach spaces.

Proposition 4.1. [4, Proposition 2.3] Let T ∈ L(X) be an m-isometry. Then its approxi-

mate point spectrum lies in the unit circle. In particular, T is one-to-one, T has closed range

and either σ(T ) ⊆ T or σ(T ) = D.

On the other hand, Rezaei proved the following properties for convex-cyclic operators.

Proposition 4.2. [23, Propositions 3.2 and 3.3] Let T ∈ L(X). If T is convex-cyclic, then

(1) ‖T‖ > 1.

(2) σp(T
∗) ⊂ C \ (D ∪ R).

Theorem 4.1. An m-isometry on a Banach space X is not convex-cyclic.

Proof. If m = 1 and T is an m-isometry, then T is actually an isometry, thus ‖T‖ = 1 and

thus by part (1) of Proposition 4.2, T cannot be convex-cyclic.

Assume that m ≥ 2 and that T is convex-cyclic and a strict (m, p)-isometry for some

p > 0. We will use an argument similar to the proof of [4, Theorem 3.3]. Let

|x| := lim
n→∞

‖T nx‖

n
m−1

p

.

By [4, Proposition 2.2] we have that |.| is a semi-norm on X and T (Ker(|.|) ⊂ Ker(|.|),

where Ker(T ) denotes the kernel of T . Also the codimension of Ker(|.|) is positive, because

T is not a (m − 1)-isometry. Moreover, for each x ∈ X , |Tx| = |x| and there exists C > 0

such that |x| ≤ C‖x‖ for all x ∈ X .
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Let Y := X/Ker(|.|) and T be the operator induced by T on Y . Then |Tx| = |x| for all

x ∈ Y . So, T is an isometry on Y .

Since T is convex-cyclic there exists a vector x ∈ X such that the convex hull generated

by Orb(T, x) is dense in X . Given y ∈ X and ε > 0 there exists a convex polynomial such

that ‖y − pn(T )x‖ <
ε

C
. Thus |y − pn(T )x| ≤ C‖y − pn(T )x‖ < ε. Then |y − pn(T )x| < ε

and we obtain that T is convex-cyclic in Y .

Thus the extension of T to the completion of Y is a convex-cyclic isometry on a Banach

space; which is a contradiction. �

Corollary 4.3. An m-isometry on a Banach space is not 1-weakly hypercyclic.

5. ε-hypercyclic operators versus convex-cyclic operators

Let us now exhibit the relation between ε-hypercyclic and convex-cyclic operators.

Theorem 5.1. Every ε-hypercyclic vector is a convex-cyclic vector.

Proof. Let x be an ε-hypercyclic vector for an operator T and we will prove that for a

non-zero vector y ∈ X and δ > 0, there exists a convex polynomial p such that

‖p(T )x− y‖ < δ .

Since ε ∈ (0, 1), there exists N ∈ N such that 2εN‖y‖ < δ. As x is an ε-hypercyclic vector

for T , there exists a positive integer k1 such that

∥

∥T k1x−Ny‖ ≤ ε‖Ny
∥

∥ = εN‖y‖ .

If T k1x−Ny = 0, we choose l2 such that
∥

∥

∥

∥

T l2x−
N

N − 1
εNy

∥

∥

∥

∥

≤ εN+1 N

N − 1
‖y‖ .

Thus
∥

∥

∥

∥

N − 1

N
T l2x− εNy

∥

∥

∥

∥

≤ εN+1‖y‖ .

Hence
∥

∥

∥

∥

1

N
T k1x+

N − 1

N
T l2x− y

∥

∥

∥

∥

=

∥

∥

∥

∥

N − 1

N
T l2x

∥

∥

∥

∥

≤ 2εN‖y‖ < δ

and the proof ends by letting p(z) = 1
N
zk1 + N−1

N
zl2 .

If T k1x−Ny 6= 0, there exists a positive integer k2 such that

∥

∥T k1x+ T k2x−Ny‖ = ‖T k2x− (Ny − T k1x)
∥

∥ ≤ ε‖Ny − T k1x‖ ≤ ε2N‖y‖ .
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If T k1x+ T k2x−Ny = 0, analogously to the above situation we choose l3 such that
∥

∥

∥

∥

1

N
T k1x+

1

N
T k2x+

N − 2

N
T l3x− y

∥

∥

∥

∥

=

∥

∥

∥

∥

N − 2

N
T l3x

∥

∥

∥

∥

≤ 2εN‖y‖ < δ

and the proof ends.

If T k1x+ T k2x−Ny 6= 0, there exists a positive integer k3 such that
∥

∥T k1x+ T k2x+ T k3x−Ny
∥

∥ ≤ ε3N‖y‖ .

By induction, in the step N , if T k1x+ T k2x+ · · ·+ T kN−1x−Ny = 0, we choose lN such

that
∥

∥

∥

∥

1

N
T k1x+

1

N
T k2x+ · · ·+

1

N
T kN−1x+

1

N
T lNx− y

∥

∥

∥

∥

≤ 2εN‖y‖ < δ

and the proof ends.

If T k1x+ T k2x+ · · ·+ T kN−1x−Ny 6= 0, there exists a positive integer kN such that
∥

∥T k1x+ T k2x+ · · ·+ T kN−1x+ T kNx−Ny
∥

∥ ≤ εNN‖y‖

Thus
∥

∥

∥

∥

T k1x+ · · ·+ T kNx

N
− y

∥

∥

∥

∥

≤ εN‖y‖ < δ

Ending completely the proof. �

6. Diagonal Operators and Adjoint Multiplication Operators

By a Fréchet space we mean a locally convex space that is complete with respect to a

translation invariant metric.

If A is a nonempty collection of polynomials and T is an operator on a space X , then T

is said to be A-cyclic and x ∈ X is said to be an A-cyclic vector for T if {p(T )x : p ∈ A} is

dense in X . Furthermore, T is said to be A-transitive if for any two nonempty open sets U

and V in X , there exists a p ∈ A such that p(T )U ∩ V 6= ∅. Since the set of all polynomials

with the topology of uniform convergence on compact sets in the complex plane forms a

separable metric space, then any set of polynomials is also separable, hence the following

result is routine (see for example the Universality Criterion in [18, Theorem 1.57]).

Proposition 6.1. Suppose that T : X → X is a continuous linear operator on a real or

complex Fréchet space and A is a nonempty set of polynomials. Then the following are

equivalent:

(1) T has a dense set of A-cyclic vectors.

(2) T is A-transitive. That is, for any two nonempty open sets U, V in X, there is a

polynomial p ∈ A such that p(T )U ∩ V 6= ∅.

(3) T has a dense Gδ set of A-cyclic vectors.
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By choosing various sets of polynomials for A, we can get results for hypercyclic and

supercyclic operators, as well as cyclic operators that have a dense set of cyclic vectors. If

A is the set of all convex polynomials, then we get the following immediate corollary.

Corollary 6.2. Let T : X → X be a continuous linear operator on a real or complex Fréchet

space, then the following are equivalent.

(1) T has a dense set of convex-cyclic vectors.

(2) T is convex-transitive. That is, for any two nonempty open sets U, V in X, there is

a convex polynomial p such that p(T )U ∩ V 6= ∅.

(3) T has a dense Gδ set of convex-cyclic vectors.

Proposition 6.3. Let A be a nonempty set of polynomials and let {Tk : Xk → Xk}
∞
k=1 be

a uniformly bounded sequence of linear operators on a sequence of Banach spaces {Xk}
∞
k=1

such that for every n ≥ 1, the operator Sn =
n
⊕

k=1

Tk on X(n) =
n
⊕

k=1

Xk has a dense set of

A-cyclic vectors. Then T =

∞
⊕

k=1

Tk is A-cyclic on X(∞) =

∞
⊕

k=1

Xk and T has a dense set of

A-cyclic vectors.

Proof. Suppose that for every n ≥ 1 the operators Sn are A-cyclic and have a dense set

of A-cyclic vectors. We will show that T is A-transitive. Let U and V be two nonempty

open sets in X(∞). Since the vectors in X with only finitely many non-zero coordinates are

dense in X , then we may choose vectors x = (xk)
∞
k=1 and y = (yk)

∞
k=1 in X(∞) such that

xk = 0 and yk = 0 for all sufficiently large k, say xk = 0 and yk = 0 for all k ≥ N , and

such that x ∈ U and y ∈ V . Since SN is A-cyclic and has a dense set of A-cyclic vectors in

X(N), there exists a vector u = (u1, u2, . . . , uN) ∈ X(N) such that u is an A-cyclic vector for

SN and so that (u1, u2, . . . , uN) is close enough to (x1, x2, . . . , xN) so that the infinite vector

û = (u1, u2, . . . , uN , 0, 0, . . .) ∈ U . Since SN is A-cyclic, there is a polynomial p ∈ A such

that p(SN)(u1, u2, . . . , uN) is close enough to (y1, y2, . . . , yN) such that p(T )û ∈ V . Thus,

T is A-transitive on X(∞), and thus by Proposition 6.1 we have that T has a dense set of

A-cyclic vectors. �

We next apply the previous proposition to infinite diagonal operators where A is the

set of all convex polynomials. This extends the finite dimensional matrix result given by

Rezaei [23, Corollary 2.7] to infinite dimensional diagonal matrices.

Theorem 6.1. Suppose that T is a diagonalizable normal operator on a separable (real or

complex) Hilbert space with eigenvalues {λk}
∞
k=1.



ON CONVEX-CYCLIC OPERATORS 13

(a) If the Hilbert space is complex, then T is convex-cyclic if and only if we have that the

eigenvalues {λk}
∞
k=1 are distinct and for every k ≥ 1, |λk| > 1 and Im(λk) 6= 0.

(b) If the Hilbert space is real, then T is convex-cyclic if and only if the eigenvalues {λk}
∞
k=1

are distinct and for every k ≥ 1 we have that λk < −1.

Proof. By the spectral theorem we may assume that T = diag(λ1, λ2, . . .) is an infinite

diagonal matrix acting on ℓ2
C
(N) and let {ek}

∞
k=1 be the canonical unit vector basis where ek

has a one in its kth coordinate and zeros elsewhere.

(a) If T is convex-cyclic with convex-cyclic vector x = (xn)
∞
n=1 ∈ ℓ2

C
(N), then by Corol-

lary 2.2 we must have for every k ≥ 1 that ∞ = supn≥1Re(〈T nx, ek〉) = supn≥1Re(λn
kxk).

This implies that xk 6= 0 and that |λk| > 1 for each k ≥ 1. Likewise, since the Hilbert space

is complex in this case, we must have

∞ = sup
n≥1

Re

(

〈T nx,
−i

xk
ek〉

)

= sup
n≥1

Re

(

λn
kxk

i

xk

)

= sup
n≥1

Re(iλn
k) .

This implies that λk cannot be real, hence Im(λk) 6= 0 for all k ≥ 1.

Conversely, suppose that for every k ≥ 1 we have that |λk| > 1 and Im(λk) 6= 0. Then

for n ≥ 1, let Tn := diag(λ1, λ2, . . . , λn) be the diagonal matrix on Cn where λk is the kth

diagonal entry. Since the eigenvalues {λk}
∞
k=1 are distinct and |λk| > 1 and Im(λk) 6= 0 for

1 ≤ k ≤ n, then we know from Rezaei [23] that Tn is convex-cyclic on Cn and that every

vector all of whose coordinates are non-zero is a convex-cyclic vector for Tn. Since such

vectors are dense in Cn for every n ≥ 1, then it follows from Proposition 6.3 that T is also

convex-cyclic and has a dense set of convex-cyclic vectors. (b) The proof of the real case is

similar to that above. �

The next theorem says that if an operator has a complete set of eigenvectors whose eigen-

values are distinct, not real, and lie outside of the closed unit disk, then the operator is

convex-cyclic.

Theorem 6.2. Let S := {reiθ : r > 1 and 0 < |θ| < π} = C \ (D ∪ R). Suppose that T is a

bounded linear operator on a complex Banach space X and that T has a countable linearly

independent set of eigenvectors with dense linear span in X such that the corresponding

eigenvalues are distinct and are contained in the set S. Then T is convex-cyclic and has a

dense set of convex-cyclic vectors.

Proof. Suppose that {vn}
∞
n=1 is a linearly independent set of eigenvectors for T that have

dense linear span in X and such that the corresponding eigenvalues {λn}
∞
n=1 are distinct and

contained in the set S. By replacing each eigenvector vn with a constant multiple of itself we

may assume that
∑∞

n=1 ‖vn‖
2 < ∞. Let D be the diagonal normal matrix on ℓ2(N) whose nth
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diagonal entry is λn. Then define a linear map A : ℓ2(N) → X by A({an}
∞
n=1) =

∑∞

n=1 anvn.

Notice that since {an}
∞
n=1 ∈ ℓ2(N), then we have that

‖A({an}
∞
n=1)‖ =

∥

∥

∥

∥

∥

∞
∑

n=1

anvn

∥

∥

∥

∥

∥

≤

(

∞
∑

n=1

|an|
2

)1/2( ∞
∑

n=1

‖vn‖
2

)1/2

= C‖{an}
∞
n=1‖ℓ2(N)

where C := (
∑∞

n=1 ‖vn‖
2)1/2, which is finite. The above inequality implies that A is a well

defined continuous linear map from ℓ2(N) to X . It follows that since the eigenvectors {vn}
∞
n=1

have dense linear span in X , that A has dense range. Also, if {en}
∞
n=1 is the standard unit

vector basis in ℓ2(N), then clearly A(en) = vn for all n ≥ 1 and thus A intertwines D

with T . To see this notice that AD(en) = A(λnen) = λnvn = T (vn) = TA(en). Thus

AD(en) = TA(en) for all n ≥ 1, thus AD = TA. Finally, since D has distinct eigenvalues

that all lie in the set S, it follows from Proposition 6.1 that D is convex-cyclic and has a

dense set of convex-cyclic vectors. Since A intertwines D and T and A has dense range,

then A will map convex-cyclic vectors for D to convex-cyclic vectors for T . Thus, T is

convex-cyclic and has a dense set of convex-cyclic vectors. �

If G is an open set in the complex plane, then by a reproducing kernel Hilbert space H of

analytic functions on G we mean a vector space of analytic functions on G that is complete

with respect to a norm given by an inner product and such that point evaluations at all

points in G are continuous linear functionals on H. Naturally we also require that f = 0 in

H if and only if f(z) = 0 for all z ∈ G. This is equivalent to the reproducing kernels having

dense linear span in H. Given such a space H, a multiplier of H is an analytic function ϕ

on G so that ϕf ∈ H for every f ∈ H. In this case, the closed graph theorem implies that

the multiplication operator Mϕ : H → H is a bounded linear operator.

Corollary 6.4. Suppose that G is an open set in C with components {Gn}n∈J and H is a

reproducing kernel Hilbert space of analytic functions on G, and that ϕ is a multiplier of H.

If ϕ is non-constant on every component of G and ϕ(Gn) ∩ {z ∈ C : |z| > 1} 6= ∅ for every

n ∈ J , then the operator M∗
ϕ is convex-cyclic on H and has a dense set of convex-cyclic

vectors.

Proof. We will show that the eigenvectors for M∗
ϕ with eigenvalues in the set S = C\ (D∪R)

have dense linear span in H. It will then follow from Theorem 6.2 that M∗
ϕ is convex-cyclic.

Every reproducing kernel for H is an eigenvector for M∗
ϕ. In fact, if λ ∈ G, then M∗

ϕKλ =

ϕ(λ)Kλ, where Kλ denotes the reproducing kernel for H at the point λ ∈ G. By assumption,

for every component Gn of G, ϕ is non-constant on Gn, thus the set {λ ∈ Gn : |ϕ(λ)| > 1} is a

nonempty open subset of Gn. Also since ϕ is an open map on Gn, ϕ cannot map the open set

{λ ∈ Gn : |ϕ(λ)| > 1} into R. Thus, for all n ∈ J , En = {λ ∈ Gn : |ϕ(λ)| > 1 and ϕ(λ) /∈ R}
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is a nonempty open subset of Gn. Let E :=
⋃

n∈J En. Then for every λ ∈ E, Kλ is an

eigenvector for M∗
ϕ with eigenvalue ϕ(λ) which lies in S = C \ (D ∪ R). Since E ∩ Gn is a

nonempty open set for every n ∈ J , then the corresponding reproducing kernels {Kλ : λ ∈ E}

have dense linear span in H. Finally, since ϕ is non-constant on En for each n ∈ J , we can

choose a countable set {λn,k}
∞
k=1 in En that has an accumulation point in En in such a

way that ϕ is one-to-one on {λn,k}
∞
n,k=1. Then the countable set {Kλn,k

}∞n,k=1 is a set of

independent eigenvectors with dense linear span in H and with distinct eigenvalues. It now

follows from Theorem 6.2 that M∗
ϕ is convex-cyclic and has a dense set of convex-cyclic

vectors. �

Remark 6.5. In the previous corollary, if G is an open connected set, ϕ is a non-constant-

multiplier of H and if the norm of Mϕ is equal to its spectral radius, then M∗
ϕ is convex-cyclic

if and only if ϕ(G) ∩ {z ∈ C : |z| > 1} 6= ∅. This is the case if H is equal to H2(G) or

L2
a(G), the Hardy space or Bergman space on G or if Mϕ is hyponormal.

Next we give an example of a convex-cyclic operator that is not 1-weakly hypercyclic.

Example 6.6. Let M∗
2+z be the adjoint of the multiplication operator associated to the

multiplier ϕ(z) := 2+z on H2(D). By [28, Theorem 5.5] the operator M∗
2+z = 2I+B, where

B is the unilateral backward shift, is not 1-weakly-hypercyclic, however M∗
2+z is convex-cyclic

by Corollary 6.4.

The following result is true since powers of convex polynomials are also convex polynomials.

Proposition 6.7. If T is an operator on a Banach space and there exists a convex polynomial

p such that p(T ) is hypercyclic, then T is convex-cyclic.

By a region in C we mean an open connected set in C. In the following theorem, we

consider the operator which is the adjoint of multiplication by z, the independent variable.

Theorem 6.3. Suppose that G is a bounded region in C and G ∩ {z : |z| > 1} 6= ∅.

Suppose also that H is a reproducing kernel Hilbert space of analytic functions on G, then

M∗
z is convex-cyclic on H. In fact, there exists a convex polynomial p such that p(M∗

z ) is

hypercyclic on H.

Proof. Choose n ≥ 1 such that Gn := {zn : z ∈ G} satisfies Gn∩{z ∈ C : Re(z) < 1} 6= ∅. To

see how to do this, choose a polar rectangle R = {reiθ : r1 < r < r2 and α < θ < β} such that

R ⊆ G. Then simply choose a positive integer n such that n(β−α) > 2π. Then Rn ⊆ Gn and

Rn will contain the annulus {reiθ : rn1 < r < rn2}, so certainly Gn ∩ {z ∈ C : Re(z) < 1} 6= ∅.

Now if 0 < a ≤ 1, then the convex polynomial pa(z) = az + (1− a) maps the disk B(a−1
a
, 1
a
)
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onto the unit disk. Notice that the family of disks {B(a−1
a
, 1
a
) : 0 < a < 1} is the family of

all disks that are centered on the negative real axis and pass through the point z = 1. Thus

it follows that {z ∈ C : Re(z) < 1} =
⋃

0<a<1 B(a−1
a
, 1
a
). So we can choose an a ∈ (0, 1)

such that Gn ∩ ∂B(a−1
a
, 1
a
) 6= ∅. It follows that the polynomial p(z) = pa(z

n) is a convex

polynomial and furthermore it satisfies p(G) ∩ ∂D 6= ∅.

Thus M∗
p is hypercyclic on H. However, M∗

p = p#(M∗
z ) where p#(z) = p(z). Also, since p

is a convex polynomial, all of its coefficients are real, thus p# = p. Thus, p(M∗
z ) = p#(M∗

z ) =

M∗
p is hypercyclic on H. �

In the next result we give an example of an operator that is convex-cyclic but no convex

polynomial of the operator is hypercyclic. In other words, the operator is purely convex-

cyclic.

Example 6.8. Let {αn}
∞
n=1 and {βn}

∞
n=1 be two strictly decreasing sequences of positive

numbers that are interlaced and converging to zero. In other words, 0 < αn+1 < βn+1 < αn

for all n ≥ 1 and αn → 0 (and hence βn → 0). For each n ≥ 1, let

Gn := {reiθ : 2 < r < 2 +
1

n
and αn < θ < βn}.

Let G :=
⋃∞

n=1Gn and let L2
a(G) be the Bergman space of all analytic functions on G that are

square integrable with respect to area measure on G. Then the operator M∗
z is purely convex-

cyclic on L2
a(G); meaning that M∗

z is convex-cyclic on L2
a(G), but p(M∗

z ) is not hypercyclic

on L2
a(G) for any convex polynomial p.

Proof. By Corollary 6.4 we know that M∗
z is convex-cyclic on L2

a(G). In order to show that

no convex polynomial of M∗
z is hypercyclic, suppose, by way of contradiction, that there

exists a convex polynomial p such that p(M∗
z ) is hypercyclic. Since p is a convex polynomial

it has real coefficients thus p#(z) = p(z) where p#(z) := p(z). Thus p(M∗
z ) = M∗

p# = M∗
p

and it follows that M∗
p is hypercyclic on L2

a(G). Thus it follows that every component Gn

of G must satisfy that p(Gn) ∩ ∂D 6= ∅. However since p is a convex polynomial, p is

(strictly) increasing on the interval [0,∞). Thus, p(2) > p(1) = 1. Choose an ε > 0 such

that ε < p(2) − 1. Since p is continuous at z = 2, and since we have an ε > 0, then there

exists a δ > 0 such that if |z − 2| < δ, then |p(z)− p(2)| < ε. Notice that for n sufficiently

large we have that Gn ⊆ B(2, δ), thus, p(Gn) ⊆ B(p(2), ε) ⊆ {z ∈ C : Re(z) > 1}. Thus,

p(Gn) ∩ ∂D = ∅ for all large n, a contradiction. It follows that no convex polynomial of M∗
z

is hypercyclic, hence M∗
z is purely convex-cyclic. �
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7. Open Questions

It is well known that hypercyclic operators have a dense set of hypercyclic vectors. In

fact, the set of hypercyclicic vectors is a dense Gδ set.

Question 1. If T is convex-cyclic, then does T have a dense set of convex-cyclic vectors?

Sanders [24] proved that if T : H → H is a hyponormal operator on a Hilbert space H ,

then T is not weakly hypercyclic. A hyponormal operator is pure if its restriction to any of

its reducing subspaces is not normal. That is, a hyponormal operator T is pure if T cannot

be written in the form T = S ⊕N where N is a normal operator.

Question 2. Are there pure hyponormal operators or continuous normal operators that are

convex-cyclic?

Question 3. If T is convex-cyclic on a complex Hilbert space, then is (−1)T also convex-

cyclic?

The above question is true for diagonal normal operators/matrices and the other examples

in this paper and also whenever T 2 is convex-cyclic.

Question 4. If T is a convex-cyclic operator, then how big can the point spectrum of T ∗

be? Can it have non-empty interior?

Bourdon and Feldman [10] showed that if a vector x ∈ X has a somewhere dense orbit

under a bounded linear operator T , then the orbit of x under T must be everywhere dense

in X . A similar question was posed for convex-cyclicity by Rezaei. Recently, León-Saavedra

and Romero de la Rosa provide an example where Bourdon and Feldman’s result fails for

convex-cyclic operators T such that σp(T
∗) 6= ∅.

Question 5. [23, Question 5.5] Let X be a Banach space and T ∈ L(X) where σp(T
∗) = ∅.

If x ∈ X and co(Orb(T, x)) is somewhere dense in X , then is co(Orb(T, x)) dense in X?

Since it is unknown if there exists a Banach space on which every hypercyclic operator is

weakly mixing, we ask:

Question 6. Given a separable Banach space X, is there a convex-cyclic operator S on X

such that S2 is not convex-cyclic?
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