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Abstract. Starting with a substitution tiling, we demonstrate a method for constructing infinitely
many new substitution tilings. Each of these new tilings is derived from a graph iterated function
system and the tiles have fractal boundary. We show that each of the new tilings is mutually
locally derivable to the original tiling. Thus, at the tiling space level, the new substitution rules
are expressing geometric and combinatorial, rather than topological, features of the original. Our
method is easy to apply to particular substitution tilings, permits experimentation, and can be
used to construct border-forcing substitution rules. For a large class of examples we show that the
combinatorial dual tiling has a realization as a substitution tiling. Since the boundaries of our new
tilings are fractal we are led to compute their fractal dimension. As an application of our techniques
we show how to compute the Čech cohomology of a (not necessarily border-forcing) tiling using a
graph iterated function system of a fractal tiling.

1. Introduction

A tiling of the plane is a covering of R2 by closed subsets, called tiles, such that the interiors
of two distinct tiles are disjoint. One method of producing tilings is by substitution: a rule which
expands each tile by a fixed amount and then breaks each expanded tile into smaller pieces, each
of which is an isometric copy of an original tile. The most famous substitution tiling is the Penrose
tiling [27]; many other substitution tilings have been constructed and can be found online in the
Tilings Encyclopedia [31].

1.1. Overview of the field. The study of substitution tilings is motivated by several disparate
fields of mathematics and science. One thing they all have in common is that tilings are always
constructed using a finite set of tiles called prototiles as their building blocks. The study of aperiodic
prototile sets—finite prototile sets that can only form nonperiodic tilings—began with logician
Hao Wang [32]. He tied them to the decidability of the Domino Problem, which asks if there
is an algorithm that can determine whether any given set of (square) prototiles, with specified
edge matching rules, can tile the plane. He conjectured that the problem was decidable, but his
conjecture depended upon non-existence of aperiodic prototile sets. Wang’s student Robert Berger
[12] proved the conjecture false by producing an aperiodic prototile set with 20,426 prototiles. It
was the search for small aperiodic prototile sets that led Penrose to discover his famous tiles.

Research on aperiodic tilings was purely academic until Dan Shechtman’s Nobel Prize-winning
discovery of quasicrystals [28]. In a sense, Shechtman’s discovery was predicted by Alan L. Mackay
[25] when he computed the diffraction of a Penrose tiling. Its ‘impossible’ symmetry was found again
in Shectman’s quasicrystal and it became clear that Penrose tilings could be used as a mathematical
model. Diffraction patterns of quasicrystals are now modeled by the spectral theory of tiling spaces,
in particular the dynamical spectrum of the translation operator (see [2] for a beautiful exposition
of the most recent advances in this theory). The dynamical spectrum of tilings is best understood
in the case of substitution tilings.

2010 Mathematics Subject Classification. Primary 37D40; Secondary 05B45,52C20.
Key words and phrases. fractals; graph iterated function systems; nonperiodic tilings; substitution tilings.
This research was partially supported by the following: the Australian Research Council, the Institute of Mathe-

matics and its Applications at University of Wollongong, the German Research Council (DFG) within the CRC 701,
and the Babette Rogol ’61 Memorial Fund of Vassar College.

1

ar
X

iv
:1

41
0.

47
08

v1
  [

m
at

h.
D

S]
  1

7 
O

ct
 2

01
4



2 NATALIE PRIEBE FRANK, SAMUEL B.G. WEBSTER, AND MICHAEL F. WHITTAKER

An understanding of tiling spaces at this physical level led Bellissard to his gap-labelling con-
jecture [9], which connects the spectral gaps of the Schrödinger operator associated with a tiling
space to the K-theory and cohomology of that space. Bellissard’s conjecture was proven indepen-
dently in [9, 11, 20]. By the same token, tiling spaces provide interesting examples of C∗-algebras,
and the geometry imposed by tilings makes them excellent candidates for study using Connes’
noncommutative geometry program [3].

1.2. Results. The main goal of this paper is to establish a novel method for producing, from
some given substitution tiling, infinitely many new substitution tilings. The method produces finite
sets of prototiles which have fractal boundaries, so we call them fractal realizations of the original
tiling. The construction depends on a synthesis of combinatorics and geometry in a way that has
not previously been capitalized upon in the study of substitution tilings. Moreover, it allows for
hands-on experimentation with an infinitude of choices, and for now it is not completely clear the
significance of making one choice over another. In [16], we gave a somewhat ad-hoc method for
making a fractal realization of the Pinwheel tiling. In this paper we show that a similar construction
works for every primitive substitution tiling where tiles meet singly edge-to-edge and remove the
ad-hoc nature of the construction in [16].

One advantage to our method is that it provides access to some of the physical information
described above. For instance, our new substitutions are easily made to force the border, an essential
property for cohomology computations. When a tiling does not force the border, our method
requires less information than the original approach in [1] and uses the same amount of information,
but is geometrically more elegant, than the most efficient known method [6]. The real power
behind our approach comes from the geometric information encoded in the new substitution, which
we capitalize on by constructing spectral triples on the C∗-algebra of the original tiling space in
[26, 17]. According to Connes’ noncommutative geometry program [3], the existence of spectral
triples implies that fractal realizations are defining a noncommutative Riemannian geometry on the
C∗-algebra of the original tiling space (viewed as a noncommutative manifold).

There are further interesting questions invoked by our fractal substitution tilings. For example, we
give a formula for the fractal dimension of the boundary of the prototiles for any of our fractal tilings.
But what information does the set of all possible fractal dimensions for a given tiling substitution
carry? The answer to this question seems to rely on a deep connection between the combinatorial
graph-theoretic properties of the tiling and the geometric property of fractal dimension. Further
questions arise from a combinatorial standpoint; for example, which substitution tilings admit
combinatorial dual tilings1 that are also substitution tilings? We provide sufficient conditions but
have not yet been able to provide a complete characterization.

Our method of obtaining fractal substitution tilings is different than those that have appeared in
the literature. For example, fractal tilings arise in the seminal work of Kenyon [21] characterizing
the possible expansion factors for substitution tilings. Since then fractal tilings have appeared
many times, for instance in [4, 5, 8, 15, 16]. Our construction distinguishes itself from these in a
few ways. The first is that we begin with a known substitution rule and construct an infinite family
of substitutions whose tiling spaces are mutually locally derivable. In particular, we are able to
construct substitution tilings that are mutually locally derivable to their original but with specified
geometric properties that lend themselves more easily to computation. Our construction differs,
also, because it is not simply a redrawing of existing tiles but rather a recomposition that creates
new tiles. We can understand, and indeed have some control over, the combinatorics of the new
tiles within their tilings.

1Two tilings are combinatorially dual if there is a one-to-one correspondence between their edge sets, between the
tiles of one and the vertices of the other, and vice versa.
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1.3. Methodology–an example. The main tool in our construction is a recurrent pair (G,S),
which is a combinatorial and geometric structure that is compatible with the original substitution.
The best way to illustrate how to construct a recurrent pair is with a simple example. We begin
with a two-dimensional version of the Thue-Morse substitution rule, which we call the “2DTM”
substitution. It has two prototiles, labelled α and β, that are both unit squares. The substitution
expands each prototile by a factor of four and replaces it with the patches shown in Figure 1.

α

ω(α)

β

ω(β)

Figure 1. The two-dimensional Thue-Morse substitution rule.

To construct a recurrent pair (G,S), we begin by embedding a planar graph G into each of the
prototiles α and β, as shown on the left of Figure 2. Note that we have chosen G so that it has
one vertex in the interior of each tile and connects to the interior of each edge. If G were placed in
every tile in an infinite tiling of these tiles, it would construct a new tiling that is combinatorially
dual to the original. In general it is natural to start with such a dual graph for several reasons that
will be outlined in this paper.

Next we construct a new graph S on the prototiles by substituting the prototiles, this time
without expanding, embedding the initial graph into each sub-tile, then selecting a subgraph S that
is combinatorially equivalent to the initial graph if we ignore all vertices of degree two.2 In Figure
2, the embedding stage is labelled R(G), and the selection stage is labelled S. We have made a
choice of S that breaks the inherent symmetry of the 2DTM tilings, but this was not necessary.

Gα R(G)α Sα Fractal Gα

Gβ R(G)β Sβ Fractal Gβ

Figure 2. A recurrent pair on the 2-dimensional Thue-Morse substitution leading
to a fractal graph.

2It is important to note that selecting such a graph is not necessarily possible in general and depends on the
combinatorics of the tiling, the substitution, and G
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We call (G,S) a recurrent pair, and S can be thought of as of graph substitution of G. In fact,
a recurrent pair forms a graph iterated function system (GIFS) and has an attractor (which is a
fractal). Under the right conditions the attractor is a graph that is combinatorially equivalent to
both G and S. We show the attractor for this example in the far right of Figure 2.

Figure 3 shows what happens when the attractor is placed into every tile of a 2DTM tiling.
Everything works perfectly in this example and we obtain a combinatorially dual tiling that is itself
a substitution tiling. The fact that it is a substitution tiling follows from the fact that the attractor
of the recurrent pair (G,S) is invariant under the substitution rule of T .

Figure 3. A patch of the 2-dimensional Thue-Morse tiling with a fractal dual tiling overlaid.

1.4. Organziation of the paper. Given a substitution tiling, our main result is to construct new
substitution tilings using a recurrent pair (G,S). There is a natural map from the edges of G to
the edges of the attractor associated with (G,S). If this natural map is injective, then Theorem
5.7 says that the resulting tiling is mutually locally derivable to the original substitution tiling.
In Theorem 6.2 we provide sufficient injectivity conditions on the recurrent pair for the map to
be injective. Theorem 6.6 implies that every primitive substitution tiling whose tiles meet singly
edge-to-edge has an infinite number of distinct recurrent pairs satisfying the injectivity conditions
and whose fractal realization is border-forcing. We conjecture that every substitution tiling of the
plane with finite local complexity has a recurrent pair with the necessary injectivity conditions. We
also believe that our techniques should extend to tilings with infinite rotational symmetry, such as
the Pinwheel tiling, but have not addressed that in this paper.

We have organized the paper as follows. In Section 2 we introduce substitution tilings along with
the definitions we require in the paper. Section 3 introduces the combinatorics of tilings. We give
an alternative description of tiling substitutions in Section 4 using digit sets, and describe how these
digit sets give rise to a contraction map on prototiles. Section 5 introduces the notion of a recurrent
pair on a substitution tiling T and shows how a recurrent pair produces a fractal realization of T .
In Section 6 we give injectivity conditions on a given recurrent pair and we prove they are what
is needed to guarantee existence of a border-forcing fractal realization. We then show that every
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primitive substitution tiling with tiles meeting singly edge-to-edge has such a recurrent pair. In
Section 7 we compute the fractal dimension of the new prototile boundaries. Section 8 shows how
a recurrent pair can be used to compute the Čech cohomology of the original tiling space. Finally,
in Appendix A we give several examples of fractal realizations of some famous substitution tilings.
Acknowledgements: We are extremely grateful to Michael Baake and Franz Gähler for helping
to rectify an error in the cohomology computations from an early version of the paper. We are also
indebted to Lorenzo Sadun for several helpful conversations and ideas and to Michael Mampusti
for the Mathematica code used to produce some of the figures.

2. Tiling definitions

In this section we introduce the basics of tilings. We provide the assumptions that will be used in
the paper and introduce substitution rules. We establish the relationship between tiling substitution
rules and self-similar tilings so that we may use these two notions interchangeably for the remainder
of the paper.

The tilings in this paper are built out of a finite number of labelled shapes called prototiles. A
prototile p consists of a closed subset of R2 that is homeomorphic to a topological disk, denoted
supp(p), and a label `(p). The purpose of the labels is to distinguish between prototiles that have
the same shape, and a common visualization is by color (for instance white vs. black unit squares).
A prototile set P is a finite set of prototiles.

A tile t is any translate of a prototile: for p ∈ P and x ∈ R2 we use the notation t = p + x to
mean the topological disk supp(p) + x with label `(t) = `(p). Two tiles that are translates of the
same prototile are said to be equivalent; we note that equivalent tiles have congruent supports and
carry the same label.

Definition 2.1. Given a set of prototiles P , a tiling is a countable collection of tiles {t1, t2, . . . }
each of which is a translate of a prototile, and such that

(1)
⋃∞
i=1 supp(ti) = R2 and

(2) Int(supp(ti)) ∩ Int(supp(tj)) = ∅ for i 6= j.

The first condition implies that the tiles cover the plane and the second that they intersect on the
boundaries only. These are sometimes referred to as the covering and packing conditions.

A patch is a finite set of tiles whose supports cover a connected set that intersect at most on their
boundaries. Connected finite subsets of tilings are patches, and tilings are sometimes thought of as
infinite patches. We denote the set of all patches from a prototile set P by P∗.

Given a patch or tiling Q and x ∈ R2, the set Q + x := {t + x | t ∈ Q} is also a patch or tiling.
Like tiles, patches and tilings are called equivalent if they are translations of the same patch or
tiling.

Definition 2.2. A tiling T has finite local complexity (FLC) if the set of all two-tile patches
appearing in T is finite up to equivalence. A tiling is nonperiodic if T + x = T implies x = 0.

If Q is a patch of tiles or a tiling and S is a subset of R2, we define the patch

[S]Q := {q ∈ Q | supp(q) ∩ S 6= ∅}.

We note that if Q is a tiling, the support of [S]Q contains S. Sometimes we may abuse notation and
put a tile or patch in place of S, in which case it is understood to mean the Q-patch intersecting
its support.

A very important form of equivalence between tilings with (potentially) different prototile sets is
mutual local derivability.
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Definition 2.3. We say a tiling T ′ is locally derivable from a tiling T if there is an R > 0 such that
if [BR(x)]T = [BR(y)]T + z then [x]T

′
= [y]T

′
+ z. If both T and T ′ are locally derivable from each

other then we say they are mutually locally derivable (MLD).

Remark on notation and assumptions. Throughout this paper, unless otherwise noted, reference
to a tiling T implies the presence of a finite prototile set P that will only be mentioned explicitly
if there is danger of confusion. Tilings will always be assumed to have finite local complexity.

2.1. Tiling substitutions and self-similar tilings.

Definition 2.4. A function ω : P → P∗ is called a tiling substitution if there exists λ > 1 such that
for every p ∈ P ,

λ supp(p) = supp(ω(p)).

In this case λ is called the expansion factor of the substitution.

It is natural to extend the substitution ω to tiles, patches, and tilings. The substitution of a tile
t = p + x, for p ∈ P and x ∈ R2, is the patch ω(t) := ω(p) + λx. The substitution of a patch or
tiling is the substitution applied to each of its tiles. Substitution rules naturally give rise to tilings
by constructing a self-similar tiling as described in [24, p.13].

An alternative approach to substitution tilings is to consider a self-similar tiling, and then find
the substitution ω it determines. In order to define a self-similar tiling we require some notation.
The boundary of a tiling T , denoted ∂T , is the subset of R2 given by the boundaries of all the
supports of tiles in T , i.e. ∂T :=

⋃
t∈T ∂(supp(t)).

Definition 2.5. A tiling T is self-similar if

(1) there exists some λ > 1 such that λ∂T ⊂ ∂T ; and
(2) if t1, t2 ∈ T are translationally equivalent, then the patches enclosed by λ supp(t1) and

λ supp(t2) are translationally equivalent.

The central patch of a self-similar tiling for the 2DTM substitution is shown in Figure 4 with
the origin of R2 marked at the center. It is routine to check that the same patch sits at the centre
of a substituted version of this patch, and so on. Thus, we can extend this patch to a tiling by
substituting an infinite number of times. Since the (ever expanding) central patch is always invariant
under subsequent substitutions, we obtain a self-similar tiling of the plane. We call this particular
tiling a self-similar version of the 2DTM tiling.

Figure 4. A portion of a self-similar 2DTM tiling, with the origin at the center.

To extract ω from a self-similar tiling T , for each prototile p find any equivalent tile t = p+x ∈ T ,
then define ω(p) to be the patch with support λ supp(t) translated by −λx. For the self-similar
version of the 2DTM tiling, notice that the white prototile is sitting in the unit square in the first
quadrant, its substitution is sitting at the 4× 4 square in the first quadrant, its second substitution
will be the 16× 16 square in the first quadrant, and so on.
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3. The combinatorics of tilings

Key to our methodology is the connection between the combinatorics of tilings and their geometry.
In this section we collect the definitions necessary for our construction.

3.1. Combinatorial and geometric graphs. A combinatorial graph K consists of a set V (K),
whose elements we call vertices, and a set E(K), whose elements we call edges. Each edge in E(K)
is defined to be an unordered pair of vertices; we call these vertices the endpoints of that edge. The
degree of a vertex is the number of edges for which it is an endpoint, and a dangling vertex is a
vertex of degree 1. In this paper we will never need to consider vertices with degree 0.

Following Gross and Tucker [18], we define the topological realization K̃ of a combinatorial graph
K as follows. Each edge of K is identified with a copy of [0, 1], where 0 represents one endpoint
vertex of the edge and 1 represents the other. Whenever two edges share a common vertex we

identify the appropriate endpoints of their copies of [0, 1]. The end result is a topological space K̃
that encodes the combinatorics of K.

It is essential for our purposes to visualize combinatorial graphs in the plane by their topological
realizations. Intuitively, we to do this by first choosing a point set in the plane in one-to-one
correspondence with V (K). Then any pair of points whose associated vertices make up an edge are
connected by a Jordan arc.

Definition 3.1. A geometric graph G is an embedding of the topological realization K̃ of a com-
binatorial graph K into the plane. Let ιG denote the embedding map. We say that two geometric
graphs G,H are equivalent if they are embeddings of the same combinatorial graph, and write
G ∼ H.

Combinatorial graphs that can be embedded in the plane are often called planar or plane graphs,
and we call their embeddings geometric graphs. The combinatorial graph that gives rise to a
given connected geometric graph G is not unique because degree two vertices cannot be detected.
However, there is always a unique combinatorial graph K with no vertices of degree two for which

G = ιG(K̃). This makes the following definition of the edge set E(G) quite natural.

Definition 3.2. Let G be a geometric graph and K a combinatorial graph with no vertices of degree

two such that ιG(K̃) = G, where K̃ is the topological realization of K. An edge (resp. vertex) of G
is the image under ιG of the topological realization of an edge (resp. vertex) in K.

3.2. Tilings as geometric graphs. A tiling T in the plane gives rise to a canonical geometric
graph: each point at which three or more tiles meet represents a vertex, and any arc along which
two tiles meet represents an edge. Although this combinatorial graph is quite natural, it can
cause problems because ideally, prototiles would have well-defined edges and vertices that carry
throughout T . However, there are the tilings, such as the chair tiling, whose prototiles will not have
a well defined vertex set unless either the prototile set or the vertex set is enlarged to account for
them. Thus we choose to make a more subtle definition for the graph of a tiling.

Suppose T is a tiling with finite local complexity and prototile set P with boundary ∂P . We
form an equivalence relation on ∂P by a ∼T b if there exists x, y ∈ R2 and p, q ∈ P such that
p + x, q + y ∈ T and a + x = b + y. A set F ⊂ ∂P is T -consistent if it is a union of equivalence
classes of ∼T .

Definition 3.3. A natural vertex of T is a point at which three or more tiles meet; the natural
vertices of P are their representatives on the prototile set. The vertex set of P is the T -consistent
set of points generated by the natural vertices of P . An edge in p ∈ P is a Jordan arc connecting a
pairs of neighboring vertices along the boundary of p.
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Figure 5. A patch from the third substitution of the chair tiling (see Example
4.3). The natural vertices marked with a •, and the vertices in the T -consistent set
generated by the natural vertices are marked with an ×.

In this way the boundary of each prototile is associated with a combinatorial and geometric
graph. In Figure 5 we show how the vertex set for a chair tile is determined in this perspective.

We use this definition of prototile edges and vertices to define a canonical combinatorial graph
KT associated with T . Since every tile in T is a translation of a prototile, the edges and vertices
of the tile are inherited from the prototile by translation. Since the edges and vertices of tiles are
embedded on the boundaries of the tiles, they appear in the supports of more than one tile. To
define the edge and vertex sets of KT we include only one vertex and one edge from any given pair
of adjacent tiles. This combinatorial graph is conveniently equipped with the embedding ιT that
places the vertices and edges where they came from in the first place; the image of ιT is ∂T , the
boundary of T . We note that if T and T ′ are translates of one another, then KT and KT ′ are graph
isomorphic.

Definition 3.4. A tiling is defined to be edge-to-edge if any two tile edges intersect either completely,
at a common vertex, or not at all. A tiling is defined to be singly edge-to-edge provided any two
tiles intersect along at most one edge.

If T is a FLC tiling whose edges and vertices come from the edges and vertices of ∂T , then T
is automatically edge-to-edge. The chair tiling is an instructive example; by adding vertices, as in
Figure 5, we have ensured that tile edges always line up. However, doing so means that chair tilings
are no longer singly edge-to-edge.

3.3. Geometric graphs on prototiles and the tilings they induce. A key construction used
in this work is to make new tilings from a given tiling T by marking all its tiles in a specified way.
This process of turning old tilings into new ones by carving up the prototile set is what is referred
to as recomposition in [19]. Our method for doing this is by embedding geometric graphs into the
supports of the prototiles, then extending to all the tiles of T .

Definition 3.5. A geometric graph G on a prototile set P is the disjoint union
⊔
p∈P Gp of finite

geometric graphs such that Gp ⊂ supp(p) for all p ∈ P . We denote by Kp the underlying com-
binatorial graph of Gp that has no degree 2 vertices; we call its embedding map (ιG)p. A vertex
of Gp that is contained on the boundary of supp(p) is called a boundary vertex of G and a vertex
contained in the interior of supp(p) is called an interior vertex.

We now introduce a condition ensuring that edges of geometric graphs always meet when we
translate prototiles to make a tiling.

Definition 3.6. Suppose T is a FLC tiling and let G be a geometric graph on its prototile set P .
We say that G is T -consistent if

(i) for all p ∈ P , Gp only intersects the boundary of supp(p) at boundary vertices and
(ii) the boundary vertices of G form a T -consistent set.3

3For readers familiar with the Anderson-Putnam complex [1] of a tiling space, a T -consistent embedding is a
geometric graph G on the Anderson-Putnam complex with no dangling vertices.
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The next definition gives sufficient (but not necessary) conditions on G so that it induces a tiling
TG by recomposition.

Definition 3.7. Suppose T is a FLC tiling and let G be a T -consistent geometric graph on its
prototile set P . We say that G is a quasi-dual graph if

(i) the graph Gp is a connected tree for all p ∈ P ,
(ii) the interior of each prototile edge contains exactly one boundary vertex of G, situated on the

interior of that prototile edge, and
(iii) every interior vertex of G has degree at least 3.

If G is a quasi-dual graph such that every prototile contains exactly one interior vertex then we call
G a dual graph.

An example of a dual graph for the 2DTM tiling is given on the left hand side of Figure 2 of the
introduction.

A T -consistent graph G on P extends to a graph in R2 as follows. For each t ∈ T , denote by xt
the translation vector of t for which t = p+ xt for its p ∈ P . Then we define

(3.1) Γ(T,G) =
⋃
p∈P

⋃
{t∈T :t is of type p}

(Gp + xt)

This is a union of Jordan arcs that can also be seen as a geometric graph in R2. It has no dangling
vertices since G is T -consistent; the only way it can fail to be a tiling is if some of the Jordan arcs
do not close up to become Jordan curves.

An empty Jordan curve in Γ(T,G) is a Jordan curve that contains no portion of Γ(T,G) in its
interior. In the following Lemma we define labelled empty Jordan curves to be the tiles of a new
tiling induced by a T -consistent graph.

Lemma 3.8. Suppose G is a T -consistent graph such that each arc in Γ(T,G) is part of an empty
Jordan curve. Then Γ(T,G) is the boundary of a tiling TG such that every empty Jordan curve is
the boundary of a tile in TG.

Proof. We begin by constructing a prototile set PG which we will use to define the tiling TG. A
label set L is defined by

L := {[J + x]T : J is an empty Jordan curve and J + x ∈ Γ(T,G)}/ ∼,
where ∼ denotes translational equivalence on patches of tiles in T . Since T has FLC the set L is
finite. A set of prototiles PG is defined by taking the closed set bounded by a representative from
each translational equivalence class of empty Jordan curves for each label in L. Then each empty
Jordan curve in Γ(T,G) uniquely defines a tile that is a translation of a prototile in PG. The union
of all the tiles defined by empty Jordan curves in Γ(T,G) defines a tiling TG, as required. �

IfG is a quasi-dual graph on a substitution tiling T , then the hypotheses of Lemma 3.8 are satisfied
and TG is a tiling. We call tilings arising from quasi-dual graphs quasi-dual tilings. Moreover, if G
is a dual graph, then TG is a labelled combinatorial dual of T .

Proposition 3.9. Suppose T is a tiling with FLC and G is a quasi-dual graph on P, then the
quasi-dual tiling TG has FLC and is mutually locally derivable to T . Moreover, the vertex patterns
in T are in one-to-one correspondence with the tiles in TG.

Proof. Let v be a vertex in T . Consider the edges emanating from v in clockwise order; there is a
unique path through Γ(T,G) connecting each edge to the next by conditions (i) and (ii) of Definition
3.7. These edges form the boundary of the tile in TG that corresponds to v. Moreover, Definition
3.7(i) guarantees that there can be no additional tiles in TG.

Mutual local derivability follows by the fact that vertex patches in T give rise to tiles in TG while
tiles in TG specify their corresponding patches in T by their label. �
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4. Alternate views of tiling substitutions

In this section we describe tiling substitutions using digit sets and digit matrices. We then use
digit sets to define a contraction map on substitution tilings, which turns out to be essential for our
construction. At the end of the section we calculate the digit matrix and contraction map for the
chair substitution.

4.1. Matrices associated with tiling substitutions. We follow the method of Moody and Lee
[23, Section 2]. Consider a fixed tiling substitution ω on prototile set P with expansion factor λ
as in Definition 2.4. Suppose |P| = m and that when P is used as an index set for the rows and
columns of a matrix we keep some fixed order.

Definition 4.1. The substitution matrix of ω is the m×m matrix M indexed by P whose (p, q)-entry
is equal to the number of copies of the prototile q occurring in ω(p).

The substitution matrix contains basic information about ω. A matrix that keeps more geometric
information about the substitution is the digit matrix D = (Dpq), which contains the translation
vectors required to implement the tiling substitution. The patch given by ω(p) is a collection of
translates of the prototiles q ∈ P , where the number of copies of each q is Mpq. The translation

vectors for q in ω(p) are denoted d1
pq, d

2
pq, ..., d

Mpq
pq and we define the entries of the digit matrix D to

be these sets of translation vectors:

Dpq =

{
{dkpq ∈ R2 : k = 1, . . . ,Mpq} if Mpq 6= 0, and

∅ if Mpq = 0

We will use D to translate both subsets of R2 (especially geometric graphs on P) and prototiles

q as follows. For S ⊂ R2 and Dpq 6= ∅ define S + Dpq :=
⋃Mpq

k=1(S + dkpq). If Dpq = ∅ we take the
convention that S + ∅ = ∅. For a tile q and Dpq 6= ∅, we define q + Dpq to be the set of tiles
{q + dkpq : k ∈ 1, 2, ...,Mpq}, and again use the convention that q + ∅ = ∅. With this notation we
can write

(4.1) ω(p) =
⋃
q∈P

(q +Dpq) .

4.2. Tiling contraction maps. In this section we will define a tiling contraction map R. When
restricted to prototiles we want R to be equal to λ−1ω, which subdivides each prototile into subtiles
rather than inflating and then subdividing. However, we want R to be a more general map and we
will see that the domain of R plays an important role in its definition. In particular, we would like
R to be a ‘shrink-and-replace’ rule on patches of tiles and on disjoint unions of compact subsets of
R2, though our prototypical application is to geometric graphs embedded in tiles. We will use the
notation R regardless of what type of object is being acted on, with the understanding that the
output is always the same type as the input.

Before defining R we will define its domain. In order to define the domain of R we need to decide
whether we want it to act on disjoint unions of compact subsets of R2 or on patches of scaled tiles.
For the former, let H(R2) denote the set of nonempty compact subsets of R2 and define the domain
of R to be X :=

⊔
p∈P H(R2). The latter is slightly trickier. Given a prototile set P , consider the

set of all nonempty patches of translated prototiles, denoted P∗. For any 0 < κ ≤ 1 the set κP∗ is
the set of all nonempty patches of prototiles scaled by κ. When we want R to act on scaled patches

of tiles the domain is then XP :=
⋃

0<κ≤1

⊔
p∈P

κP∗.
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Definition 4.2. The tiling contraction map R is defined as follows. Let B = tp∈PBp be an element
of X or XP . For each p ∈ P let

(4.2) R(B)p =
⋃
q∈P

λ−1 (Bq +Dpq) ,

and then R(B) = tp∈PR(B)p.

Since R has the same definition regardless of the domain we now illustrate the difference. The
first case is if B ∈ X, and then R(B) ∈ X as well. By comparing equation (4.2) to equation (4.1)
we see that if B = tp∈P supp(p) then we have

R(B) =
⊔
p∈P

⋃
q∈P

λ−1(supp(q) +Dpq) =
⊔
p∈P

supp(p) = B.

Thus the disjoint union of prototile supports is fixed under the action of R and is therefore the
attractor of the dynamical system (X,R). In the special case that G is a geometric graph on P ,
then R(G) is also a geometric graph on P . If G is T -consistent then R(G) will be T -consistent
with no dangling vertices in its interior. Moreover, if G is quasi-dual then R(G) will be connected
but will have too many boundary vertices to be quasi-dual itself. In the next section we will be
selecting subgraphs of R(G) to define recurrent pairs.

On the other hand, if B ∈ XP , then R(B) may fail to be in XP . This can happen when the
patches that make upR(B)p have overlapping interiors. To deal with this annoyance we will restrict
our attention to those B for which supp(Bp) = supp(p) for all p ∈ P , in which case both R(B)
and Rn(B) are elements of XP for all n ∈ N. With a slight abuse of terminology we write Rn(P)
for Rn(tp∈P p). Then R(P)p = λ−1ω(p) for all p ∈ P . We call a tile in R(P)p a subtile; and R
can be applied repeatedly so that Rn(P) consists of patches of P-tiles scaled by λ−n that we call
n-subtiles.

Example 4.3 (The Chair tiling). Let P be the set of four prototiles with long side length 1 and the
origin in the corner marked by the dot, as depicted in Figure 6. These are the prototiles of the Chair
tiling. The expansion factor for the chair substitution is λ = 2, and the substitution of prototile p1

•
p1

•
p2

•
p3

•
p4

•
p1

•
p1

p1

p2

p4

Figure 6. The 4 prototiles of the chair tiling and the substitution of prototile p1.

also appears in Figure 6; the substitution of each of its three rotations are just the rotation of this
substitution about the origin. The digit matrix for the Chair substitution is

D =


{

(0, 0), (1
2
, 1

2
)
}

{(0, 2)} ∅ {(2, 0)}
{(0,−2)}

{
(0, 0), (1

2
,−1

2
)
}

{(2, 0)} ∅
∅ {(−2, 0)}

{
(0, 0), (−1

2
,−1

2
)
}

{(0,−2)}
{(−2, 0)} ∅ {(0, 2)}

{
(0, 0), (−1

2
, 1

2
)
}
 .

Thus, for B = t4
i=1Bi in X or XP , the tiling contraction map R is given by

R


B1

B2

B3

B4

 =
1

2


B1 ∪

(
B1 + (1

2
, 1

2
)
)
∪
(
B2 + (0, 2)

)
∪
(
B4 + (2, 0)

)(
B1 + (0,−2)

)
∪B2 ∪

(
B2 + (1

2
,−1

2
)
)
∪
(
B3 + (2, 0)

)(
B2 + (−2, 0)

)
∪B3 ∪

(
B3 + (−1

2
, 1

2
)
)
∪
(
B4 + (0,−2)

)(
B1 + (−2, 0)

)
∪
(
B3 + (0, 2)

)
∪B4 ∪

(
B4 + (−1

2
, 1

2
)
)
 .
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5. Constructing fractal tilings from self-similar tilings

In this section we construct fractal substitution tilings. Our method uses a self-similar tiling
to construct the fractal tiling explicitly. We use this method rather than standard techniques
from fractal geometry because we obtain more information about the relationship between the
the original tiling and a fractal realization. In particular, our techniques allow for the possibility
of experimentation and we are able to pinpoint a necessary condition for a recurrent pair on a
substitution tiling to give rise to a fractal substitution tiling.

Here is a brief overview of the method. Suppose T is a fixed self-similar tiling with prototile set
P and substitution map ω. Given a geometric graph G on P satisfying the consistency conditions
of Definition 3.6, we let T (0) := TG be the tiling defined in Definition 3.8 obtained by embedding G
in all the tiles of T . We then select a geometric graph S ⊂ R(G) with the same combinatorics as
G, forming a recurrent pair (G,S). The map taking G to S acts as a substitution rule on edges,
and we define the map ψ to be the extension of the substitution to the boundary of T (0) and obtain
a tiling T (1) := ψ(T (0)). Assuming certain injectivity conditions on the recurrent pair (G,S) and
iterating this process leads to a limiting tiling T (∞), which is also a self-similar tiling.

5.1. Recurrent pairs and edge refinement maps. Recall that two geometric graphs B and
C are said to be equivalent, and we write B ∼ C, provided there exists a combinatorial graph
K and embeddings ιB and ιC of the topological realization of K such that Image(ιB) = B and
Image(ιC) = C. In this case there is a homeomorphism between B and C given by ιC ◦ ι−1

B .

Definition 5.1. A pair of T -consistent geometric graphs (G,S) on P is said to be a recurrent pair
for (T, ω) if the following conditions hold:

(i) S ⊂ RN(G) for some N ∈ N,

(ii) for all p ∈ P , Gp ∼ Sp with homeomorphism denoted by ψ̃p : Gp → Sp.

(iii) v is a boundary vertex of Gp if and only if ψ̃p(v) is a boundary vertex of Sp, in which case
both lie in the same edge of p.

Notice also that we can always take N = 1 in the definition of a recurrent pair by replacing R
with RN . So after we find a recurrent pair (G,S) we will typically assume S ⊂ R(G).

Figure 2 of the introduction shows how a recurrent pair for the 2DTM substitution is constructed.
The leftmost images show the prototiles α and β with dual graphs Gα and Gβ inscribed. The disjoint
union of Gα and Gβ is the graph G. The images labelled R(G)α and R(G)β show the graph G
inscribed in each tile of the substitution. The images labelled Sα and Sβ show the selection of a
graph S that makes (G,S) a recurrent pair for the 2DTM substitution.

Notice that in a recurrent pair, since S ⊂ R(G), an edge of S is made up of a union of edges
from G rescaled by λ−1, and S passes through many vertices of R(G) that do not affect the mutual
underlying combinatorial graph K since they are of degree 2. There is a very meaningful sense
in which we think of S as being the substitution of the graph G; describing how to iterate the
substitution to produce fractals is our next task.4

In all that follows, we suppose that when G is drawn in all the tiles of T , it forms the boundary
of a tiling called TG, defined by Lemma 3.8, which we take to be our initial tiling T (0). Since

the boundary graph of T (0) consists of translated elements of G we can extend the ψ̃p maps to a

map ψ : ∂T (0) → R2 that redraws an edge of T (0) the same way ψ̃p redrew it in its corresponding
prototile. That is, if z ∈ ∂T (0) is in the support of the tile t = p + x ∈ T for p ∈ P and x ∈ R2,

then ψ(z) = ψ̃p(z − x) + x.

4We will make this definition with the aid of our self-similar tiling T ; a different but equivalent formulation can
be made using the prototile set P only.
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Lemma 5.2. The map ψ : ∂T (0) → R2 is a homeomorphism onto its image.

Proof. Since ψ restricted to the interior of any T -tile is the translation of a homeomorphism, the
only question is what happens on ∂T (0) ∩ ∂T . Part (iii) in the definition of a recurrent pair along
with the fact that S is T -consistent imply that ψ is well-defined and continuous. The fact that G
is T -consistent implies that ψ is injective. Thus ψ is a homeomorphism. �

We define the tiling T (1) to be the tiling with boundary ψ(∂T (0)); its tiles are given by the empty
Jordan curves in this graph and we allow a tile in T (1) to inherit the label of its corresponding tile
in T (0). It should be noted that ∂T (1) = ψ(∂T (0)) is the boundary of the tiling TS induced by S on
T . Like T (0), the tiling T (1) is typically not self similar but is pseudo-self-similar [15] and the two
tilings are combinatorially equivalent and mutually locally derivable.

The set ψ(∂T (0)) = ∂(T (1)) is not contained in ∂T (0), but because it is induced from the self-
similar tiling T it is contained in λ−1(∂T (0)). Thus if we wish to apply ψ again, we must do so on
λψ(∂T (0)). Taking this into account we define ψ(n) : ∂T (0) → R2 by

(5.1) ψ(n)(z) = λ−n(λψ)n(z)

That is, the edges in ∂T (0) are redrawn and then inflated by λ so that the result is again in ∂T (0),
after which they are redrawn and inflated again until this has happened n times. Rescaling the
result by λ−n brings it back to the original scale. The map (λψ)n can be thought of as a kind of
‘inflate-and-subdivide’ rule for edges of G, taking an edge in ∂T (0) to a sequence of edges in ∂T (0)

of length approximately λn times as long.
The map ψ(n) is a homeomorphism for any finite n and we define T (n) to be the tiling with

boundary graph ψ(n)(∂T (0)) whose tiles inherit the labels of their corresponding tiles in T (0):

Definition 5.3. For each tile t ∈ T (0) we define the tile t(n) in T (n) as being supported by the set
enclosed by ψ(n)(∂t) and carrying the label of t.

We define ψ(∞) to be the pointwise limit of ψ(n), whose existence is proved in the following lemma.

Lemma 5.4. The sequence (ψ(n))∞n=1 is uniformly Cauchy. Hence the pointwise limit, denoted ψ(∞),
is continuous.

Proof. Fix ε > 0. Let C = maxt∈T diam t, and choose N ∈ N such that Cλ−N < ε. Fix m,n > N ,
and assume without loss of generality that m < n. For z ∈ ∂T we have

|ψ(m)(z)− ψ(n)(z)| = |λ−m(λψ)m(z)− λ−n(λψ)n(z)|
= λ−m|(ψλ)m(z)− λ−(n−m)(λψ)n−m(λψ)m(z)|
= λ−m|y − ψ(n−m)(y)| (letting y = (λψ)m(z))

≤ λ−mC
(
since y and ψ(n−m)(y) are in the same tile of T

)
< ε.

So (ψ(n))∞n=1 is uniformly Cauchy, and ψ(∞) is continuous. �

5.2. The limiting fractal tiling. When ψ(∞) is injective its image forms the boundary of a tiling
which we denote T (∞) and which we will show is self-similar. Under the condition of injectivity we
make the formal definition of a fractal realization.

Definition 5.5. For each tile t ∈ T (0) we define the tile t(∞) in T (∞) as being supported by the set
enclosed by ψ(∞)(∂t) and carrying the label of t. We call T (∞) a fractal realization of T (0) (or of G).

We collect a few observations about ψ(n), ψ(∞), T (n) and T (∞) in the following lemma.
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Lemma 5.6. When ψ(∞) is injective,

(1) ψ(1) = ψ
(2) If z ∈ ∂T (0) and z ∈ supp(t) for a T -tile t, then ψ(n)(z) ∈ supp(t) for all n.
(3) T , T (0), T (n), and T (∞) are MLD for all n ∈ N, and
(4) For any z ∈ ∂T (0) and n ∈ N,

(5.2) λnψ(∞)(z) = ψ(∞)((λψ)n(z)).

Proof. The first part follows directly from the definition of ψ(k). The second follows from the
construction of ψ(n) by induction, since it is true for ψ = ψ(1). The fact that T (0), T (n), and T (∞)

are MLD is immediate from the definitions. Since every tile in T (0) corresponds to a patch in T we
see that T (0) and T are MLD. Part (3) can be seen by considering only k > n in the following:

λnψ(∞)(z) = lim
k→∞

λn−k(λψ)k(z)

= lim
k→∞

λn−k(λψ)k−n((λψ)n(z))

= ψ(∞)((λψ)n(z)) �

Theorem 5.7. Let T be self-similar tiling with expansion factor λ, and let (G,S) be a recurrent
pair for T . If ψ(∞) is injective then T (∞) is a self-similar tiling with expansion factor λ and finite
local complexity.

Proof. To show T (∞) has finite local complexity we show that it has finitely many types of 2-tile
patches up to translation. Since ψ is injective, patches in T (∞) are in one-to-one correspondence
with patches in T (0). The number of two-tile patches in T (0) is governed by the number of types of
patches in the original self-similar tiling T that intersect a two-tile patch in T (0). Since T is FLC,
this number is finite. Hence both T (0) and T (∞) (and all other T (n)) have FLC.

To prove T (∞) is self-similar we show that its boundary is invariant under scaling by λ and that
equivalent tiles inflate to equivalent patches. The former follows directly from Lemma 5.6, since
if x = ψ(∞)(z) ∈ ∂T (∞), λx = ψ(∞)((λψ)(z)) ∈ ∂T (∞), as desired. To prove the latter suppose t1
and t2 are equivalent tiles in T (0) so that t

(∞)
1 and t

(∞)
2 are equivalent tiles in T (∞) . Denote by

[t1]T and [t2]T the patches in T that intersect the supports of t1 and t2, respectively; these are also
equivalent, by definition, since t1 and t2 carry the same label. Since T is self-similar the T -patches
in λ supp[t1]T and λ supp[t2]T are equivalent. This means that the T (0)- and T (∞)-patches contained

completely inside them are equivalent as well. Since supp(t
(∞)
1 ) is contained in [t1]T the same way

supp(t
(∞)
2 ) is contained in [t2]T , λ supp(t

(∞)
1 ) and λ supp(t

(∞)
2 ) support equivalent T (∞)-patches, as

required. �

Under these circumstances we will let P(∞) denote the set of prototiles for the self-similar tiling
T (∞), and let ω(∞) denote its substitution map.

6. The existence of fractal dual and quasi-dual tilings

The process described in the previous section can be used to find recurrent pairs with injective
ψ(∞) maps by experimentation. This section contains technical results related to the existence of
such pairs in general.

In the first part of this section we provide sufficient conditions on a recurrent pair (G,S) for
the map ψ(∞) to be injective. These conditions result in fractal tilings that are quasi-dual to their
original self-similar tilings. In the second part of the section we show that every singly edge-to-edge
self-similar tiling has a recurrent pair satisfying the injectivity conditions. In the third part of
this section we prove that if a singly edge-to-edge self-similar tiling has convex prototiles, then its
labelled combinatorial dual has a fractal realization.
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6.1. Conditions under which ψ(∞) is injective. Next we introduce conditions that ensure that
the combinatorics of ψ(∞)(∂T (0)) are identical to the combinatorics of T (0). One way this can fail if
the interior of an edge in ψ(n)(∂T (0)) approaches the boundary of a tile in the original self-similar
tiling T as n→∞. If ψ(∞)(z) ∈ ∂T and z /∈ ∂T , it can happen that an additional tile (or tiles) can
arise in T (∞) either by two edges coming together that were apart in T (0) or by an edge doubling
back on itself. Infinitely many arbitrarily small tiles are also a danger in this situation. We can
avoid these troubles by keeping ψ(n)(∂T (0)) away from the boundary of T except at T -consistent
boundary vertices.

Another way the combinatorics of ψ(∞)(∂T (0)) can fail to be those of ∂T (0) is if ψ(n)(z) approaches
the vertex of a tile in T as n→∞. In this situation there may still be a perfectly good self-similar
tiling T (∞), but we’ve lost control of its combinatorics and its substitution rule is not guaranteed
to be border forcing.

Before we give the injectivity conditions we set some notation. In what follows, for a real number
k > 0 and any tiling T , the notation kT represents the tiling obtained by rescaling all the tiles of T
by a factor of k and keeping the labels the same. Recall that if B is any subset of R2 or patch of tiles
and Q is a tiling or patch the notation [B]Q represents the patch in Q whose support intersects B.
In particular, for p ∈ P note that [B]R

n(P)p is the patch of n-subtiles of Rn(P) in p that intersect
B.

Definition 6.1 (Injectivity conditions). Let S be a geometric graph on P . If there is an N ∈ N
for which the following four conditions hold, we say that S satisfies the injectivity conditions for
N-subtiles.

(I1) For any p ∈ P and edges e 6= f in Sp, the patches [e]R
N (P)p and [f ]R

N (P)p have intersecting
interiors if and only if e and f share a common vertex v;

(I2) If e 6= f ∈ Sp share a common vertex v then [e]R
N (P)p ∩ [f ]R

N (P)p = [v]R
N (P)p , the single

subtile containing v, and this subtile is contained in the interior of supp(p);

(I3) For each p ∈ P , [Sp]
RN (P)p does not contain any vertex of p in its support; and

(I4) For e in Sp, the support of [e]R
N (P)p intersects the boundary of p if and only if e does, in

which case supp[e]R
N (P)p ∩ ∂p is connected.

Notice that if (G,S) is a recurrent pair, G is a quasi-dual graph, and S satisfies the injectivity
conditions for N -subtiles, then condition (I3) along with the definition of a recurrent pair implies
that S is also a quasi-dual graph. In general these conditions imply that the interior of the patch of
subtiles that S runs through retracts to a geometric graph that has nearly the same combinatorics
as S. If the combinatorics differ it is at interior vertices of S, several of which could be collapsed
into a single vertex in the retraction.

Given a recurrent pair (G,S) we make two assumptions on the embeddings ιG and ιS, which can
be considered “without loss of generality”. The first is that G is a piecewise linear graph. If for some
reason it is not, it can be redrawn as one: the topological realization of the combinatorial graph
K corresponding to the geometric graph G can always be embedded into supp(P) in a piecewise
linear fashion. We assume, then, that such an embedding has been chosen for G. The second is on
the embedding ιS of S, which we can control since S, being a subgraph of R(G), is also a piecewise
linear graph. Letting B ⊂ e ∈ E(G) or E(S), denote by |B| the arc length of the smallest sub-arc
of e containing B. In this case we assume that ιS has been chosen so that for any e ∈ E(G) there

is a Ke such that for all B ⊂ e we have |ιS ◦ ι−1
G (B)| = Ke|B|. In other words, ψ̃ is a piecewise

constant-speed parameterization taking G to S.
One further technical note is on the edge set of ∂(T (0)), which can be thought of in two different

ways. One way is to consider the vertex set endowed by the tiling T (0), and another is to allow
∂(T (0)) to inherit the edge and vertex sets of G. The latter has extra vertices wherever the boundary
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of T (0) intersects the boundary of T . In all the proofs in this section we consider an edge of T (0) to
mean a copy of an edge in G.

Proposition 6.2. Suppose (G,S) is a recurrent pair such that G is quasi-dual and the parameteri-

zation ψ̃ : G→ S is piecewise constant-speed. If S satisfies the injectivity conditions on N-subtiles
for some N , then ψ(∞) : ∂T (0) → ∂T (∞) is injective.

We prove Proposition 6.2 using a sequence of lemmas, each of which implicitly has the assumptions
of Proposition 6.2. For convenience of notation we will assume N = 1; the general case can be
surmised by replacing the substitution rule ω by ωN , which changes the expansion factor to λN and
the tiling contraction map to RN .

The injectivity conditions (I1)-(I4) are designed to keep ψ(n)(e) away from the boundaries of both
of T (0) and T except where the combinatorics of ∂T explicitly require it, while the constant-speed
assumption keeps edges from collapsing onto themselves in the limit.

A key observation in everything that follows is that if e is an edge in ∂T (0) for which e = ep + z

for some edge ep ∈ Gp and z ∈ R2, then [ψ(e)]λ
−1T = [ψ̃(ep)]

R(P)p + z by the self-similarity of T .
Thus edges is ψ(∂T (0)) follow the same injectivity conditions, when intersected with λ−1T , as edges
in S do when intersected with R(P).

Lemma 6.3. Suppose that e ∈ E(∂T (0)) and B is an edge in ∂T such that B ∩ e = ∅. Then
[λψ(e)]T ∩ λB = ∅.

Proof. If e has no vertex in ∂T then by (I4), [ψ(e)]λ
−1T ∩ B = ∅. If e has a vertex in ∂T then by

(I3) and (I4), [ψ(e)]λ
−1T must intersect ∂T only on the edge that e does. However, B ∩ e = ∅, and

[λψ(e)]T ∩ λB = ∅. �

Lemma 6.4. Suppose that x, y ∈ ∂T (0) and that there exists n ∈ N such that (λψ)n(x) and (λψ)n(y)
are on disjoint edges in ∂T (0). Then ψ(∞)(x) 6= ψ(∞)(y).

Proof. Denote by ex and ey the edges in ∂T (0) containing x and y, respectively. If x and y are in
distinct tiles in T , then even if those tiles share a common boundary segment, that segment cannot
intersect both ex and ey without violating either the fact that G is quasi-dual or that ex ∩ ey = ∅.
Thus, in this case, it follows that ψ(∞)(x) 6= ψ(∞)(y).

Next we consider the case where ex and ey are in the same T -tile. Since λψ is injective, we have
that (λψ(ex))∩ (λψ(ey)) = ∅. Then (I1) implies that int(supp[λψ(ex)]

T )∩ int(supp[λψ(ey)]
T ) = ∅.

If supp[λψ(ex)]
T ∩ supp[λψ(ey)]

T = ∅, then we are done since ψ(∞)(x) ∈ suppλ−1[λψ(ex)]
T and

ψ(∞)(y) ∈ suppλ−1[λψ(ey)]
T . If not, then [λψ(ex)]

T and [λψ(ey)]
T share some part B of their

boundary. Since G is quasi-dual, neither λψ(ex) nor λψ(ey) intersect B, for otherwise λψ(ex)
would pass through B into the interior of [λψ(ey)]

T or vice versa. By Lemma 6.3, we have that
[(λψ)2(ex)]

T ∩λB = ∅. So there exist tx, ty ∈ T satisfying (λψ)2(x) ∈ tx, (λψ)2(y) ∈ ty and tx∩ty =
∅. Since λ2ψ(∞)(x) = ψ(∞)((λψ)2(x)) ∈ supp(tx) and λ2ψ(∞)(y) = ψ(∞)((λψ)2(y)) ∈ supp(ty), we
have ψ(∞)(x) 6= ψ(∞)(y).

Now suppose that there exists n ∈ N such that (λψ)n(x) and (λψ)n(y) are on disjoint edges in
E(∂T (0)). Then by the previous argument, ψ(∞)((λψ)n(x)) 6= ψ(∞)((λψ)n(y)), making λnψ(∞)(x) 6=
λnψ(∞)(y), and in turn ψ(∞)(x) 6= ψ(∞)(y), as desired. �

Lemma 6.4 implies that edges that are disjoint in T (0) remain disjoint in T (∞). The next lemma
shows that ψ(∞) restricted to edges of T (0) is injective, meaning that an edge in T (0) cannot loop back
onto itself in T (∞). This is the part of the proof that uses the assumption that the parameterizations
are piecewise constant-speed.

Lemma 6.5. For each e ∈ E(∂T (0)), ψ(∞)|e is injective.



FRACTAL DUAL SUBSTITUTION TILINGS 17

Proof. Fix x, y ∈ e ∈ E(∂T (0)), and suppose that ψ(∞)(x) = ψ(∞)(y). We will show x = y. Write
xn := (λψ)n(x) and yn := (λψ)n(y). In order for ψ(∞)(x) and ψ(∞)(y) to be equal, Lemma 6.4
implies that for each n ∈ N, xn and yn are either on the same or adjacent edges in E(∂T (0)). This
breaks into two cases: either they are on the same edge for all n or there is an N such that if n ≥ N ,
xn and yn are on adjacent edges.

We first suppose that xn and yn are on the same edge en in ∂T (0) for all n. For each n, we have
en+1 ⊂ λψ(en), and we let ln be the arc in en for which λψ(ln) = en+1. Set ρ = maxn∈N(|ln|/|en|).
We can deduce that ρ < 1 by injectivity condition (I2) because for every e ∈ E(∂T ), λψ(e) is a

union of at least 2 edges in E(∂T ). The constant-speed assumption on ψ̃ extends to guarantee that
λψ is piecewise constant-speed as well.

For each n ∈ N and k ≤ n we know that (λψ)−(n−k)(en) and (λψ)−(n−k)(ln) are in the same edge
in ∂T (0) and the constant-speed assumption implies that

|(λψ)−n(ln)|
|(λψ)−n(en)|

=
|(λψ)−(n−1)(ln)|
|(λψ)−(n−1)(en)|

= · · · = |ln|
|en|
≤ ρ.

Since x, y ∈ (λψ)−n(ln) for all n, we have that

|x− y| ≤ |(λψ)−n(ln)| ≤ ρ|(λψ)−n(en)| = ρ|(λψ)−(n−1)(ln−1)|
≤ ρ2|(λψ)−(n−1)(en−1)| = ρ2|(λψ)−(n−2)(ln−2)| ≤ · · · ≤ ρn|e0|

Since this is true for all n and ρ is strictly less than one we have shown x = y when xn and yn are
on the same edge of ∂T (0) for all n.

Now suppose there is an N such that if n ≥ N then xn and yn are on adjacent edges that share
a vertex vn. Since ψ is continuous, the edges containing (λψ)n(xN) and (λψ)n(yN) share the vertex
(λψ)n(vN) for all n ∈ N. Then

‖(λψ)n(xN)− (λψ)n(vN)‖ ≤ max
t∈T

diam(t)

for all n ∈ N. Multiplying both sides by λ−n then gives

‖ψ(n)((λψ)N(x))− ψ(n)(vN)‖ ≤ λ−n max
t∈T

diam(t)

for all n ∈ N. This implies that ψ(∞)(xN) = ψ(∞)(vN), and since xN and vN are always on the same
edge the first case in this proof shows that xN = vN . This argument shows that also yN = vN .
Since (λψ)N is injective this implies that x = y and we have shown that ψ(∞) is injective on edges
of ∂T (0). �

Proof of Proposition 6.2. Fix x, y ∈ ∂T and suppose that x 6= y. If ψ(n)(x) and ψ(n)(y) are on the
same or on disjoint edges for some n, then Lemmas 6.4 and 6.5 imply that ψ(∞)(x) 6= ψ(∞)(y).
The only other option is that ψ(n)(x) and ψ(n)(y) are on adjacent edges for all n, but the proof of
Lemma 6.5 shows that this cannot happen if x 6= y. Thus ψ(∞) is injective. �

6.2. Existence of recurrent pairs with injective edge refinements. In this section we prove
that every singly edge-to-edge, primitive self-similar tiling T with finite local complexity has a
recurrent pair (G,S) satisfying the conditions of Proposition 6.2. In this case the map ψ(∞) is
injective and the tiling T gives rise to a fractal substitution tiling T (∞). The construction of the
recurrent pair often requires multiple iterations of the substitution ω, so the expansion factor of
T (∞) is always a power of the expansion factor of T .

Theorem 6.6. Suppose T is a singly edge-to-edge, primitive self-similar tiling with FLC. Let T have
substitution ω and prototile set P. Then T has a recurrent pair (G,S) satisfying the conditions of
Proposition 6.2, and hence T has a fractal realization.
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The proof of the Theorem 6.6 is an algorithm for constructing the recurrent pair (G,S). The
algorithm begins with Lemma 6.7 followed by a finite number of iterations of Lemma 6.8. Lemma 6.7
and 6.8 are implicitly assumed to have the assumptions of Theorem 6.6.

Recall that we say that a graph G satisfies the injectivity conditions for N -subtiles if conditions
(I1) - (I4) of Definition 6.1 are satisfied with respect to the subtiles RN(P). Also recall that we say
a graph G0 is T -consistent if it satisfies Definition 3.6.

Lemma 6.7. Let G0 be a T -consistent dual graph in P. Then there exists N ∈ N and a T -consistent
quasi-dual graph G1 ⊂ RN(G0) such that G1 satisfies the injectivity conditions for N-subtiles.

Proof. By primitivity, there exists n ∈ N such that for each p ∈ P , there is a copy of p interior to
Rn(P)p. More precisely, there exists x ∈ R2 such that the n-subtile p0 = λ−np + x has support
contained in the interior of Rn(P)p.

Now fix p ∈ P and let Vp denote the vertices of p. Since p0 ⊂ int(p), there exists a geometric
graph Hp ⊂ p \ int(p0) consisting of |Vp| disjoint edges, where the edge associated to v ∈ Vp has
endpoints v ∈ p and v0 = λ−nv + x ∈ p0. Let V 0

p denote the collection of such vertices. Note that
the geometric graph Hp connects the vertices of p with their corresponding vertices p0, and the
existence of Hp is guaranteed since p \ p0 is an annulus. Let H be the disjoint union H :=

⊔
p∈P Hp.

Let M ∈ N be large enough so that for each p ∈ P there are at least three M -subtile edges along
each edge of p and three M -subtile edges along each edge of p0. Now let E(Hp) denote the set of
edges of Hp. Set ε to be less than the minimum of

ε1 = min
p∈P
{d(e, f) | e 6= f ∈ E(Hp)} and

ε2 = min
p∈P
{d(e, f) | e ∈ E(Hp), f ∈ ∂p \ ∂([Vp ∪ V 0

p ]R
M (P)p)}

Then since λ > 1, we can choose N ≥M such that λ−N maxp∈P diam p < ε/3.

Let OB = ∪p∈P{∂p \ ∂([Vp]
RM (P)p)} and let IB = ∂p0 \ ∂([V 0

p ]R
M (P)p). Choose a T -consistent set

of vertices contained in the set OB ∩ RN(G0) with exactly one vertex for each edge e ∈ P , and
denote the set of vertices by OV . By our choice of N with respect to ε > 0, for every edge e ∈ P
there is at least one path in RN(G0) connecting OV with any vertex in IB ∩RN(G0) that does not
cross any edge of Hp. We choose one such path, which we denote xe, with the additional restriction
that once it enters an interior N -subtile it continues through interior subtiles until it reaches its
destination on the boundary of p0. Note that xe must connect the edge e ∈ E(p) to its counterpart

λ−ne + x in p0, and [xe]
RN (P)p must intersect the boundary of p in a connected set. Moreover, for

e 6= f ∈ p, we have [xe]
RN (P)p ∩ [xf ]

RN (P)p = ∅. Let Xp = ∪e∈pxe. Although the component graphs
of X =

⊔
p∈P Xp are disconnected, X satisfies the injectivity conditions for N -subtiles.

In order to complete the proof, for each p ∈ P , we need to connect the points Xp∩ IB ⊂ ∂p0 by a
tree in p0. To that end, consider the connected graph RN(G0)p0 , which we can prune until we have
a tree connecting the points Xp ∩ IB with no dangling vertices. Let Yp denote this tree.

Set G1 :=
⊔
p∈P Xp ∪ Yp. Then, by construction, the graph G1 is quasi-dual and satisfies the

injectivity conditions for N -subtiles. �

When G′ ⊂ RN(G) is a geometric graph we have been interested in the patches of N -subtiles
intersecting the edges of G′. The next lemma states that the paths in RN(G′) running through
those same patches are unique when G and G′ are both quasi-dual.

Lemma 6.8. Suppose that G and G′ ⊂ RN(G) are quasi-dual graphs in P such that, for some
M ∈ N, G′ satisfies the injectivity conditions for M-subtitles. Then there is a unique quasi-dual
graph H ⊂ RN(G′) such that [G′p]

RN (P)p = [Hp]
RN (P)p for all p ∈ P, which satisfies the injectivity

conditions for (M +N)-subtiles.
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Proof. For each p ∈ P , consider the patch of N -subtiles Qp := [G′p]
RN (P)p and boundary N -subedges

Ep := {e ∈ RN(P)p ∩ ∂p | e∩G′ 6= ∅}. Since G′ is quasi-dual and T is singly edge-to-edge there is
a unique quasi-dual graph Hp with edges in RN(G′)p through the patch Qp with dangling vertices
exactly on the edges Ep. Let H :=

⊔
p∈P Hp. By construction, H is a quasi-dual graph satisfying

[G′p]
RN (P)p = [Hp]

RN (P)p for all p ∈ P .

Since G′ satisfies the injectivity conditions for M -subtiles and H ⊂ RN(G′), it follows that H
satisfies the injectivity conditions for (M +N)-subtiles. �

We can now prove Theorem 6.6.

Proof of Theorem 6.6. Let G0 and G1 be the quasi-dual graphs from Lemma 6.7. If G0 ∼ G1, the
proof is complete with G = G0 and S = G1. If not, apply Lemma 6.8 with G0 = G and G1 = G′ to
obtain G2 := H.

If G1 ∼ G2 then we are done with G = G1 and S = G2. If not, we continue iterating this process
of applying Lemma 6.8 to the last two graphs in the sequence. We claim that there exists n ≥ 2
such that Gn ∼ Gn+1.

Since each prototile has only a finite number of edges and each graph Gj is quasi-dual, the number
of interior vertices (with degree greater than two) is bounded by half the number of edges of the
prototile. Suppose Gi � Gi+1, for i ≥ 2, then there exists p ∈ P such that (Gi)p � (Gi+1)p. Then
the construction in Lemma 6.8 implies that the number of interior vertices of (Gi+1)p is greater
than the number of interior vertices of (Gi)p. Since the number of interior vertices of each prototile
is bounded, this process must end. So there exists n ∈ N such that Gn ∼ Gn+1, and we let G := Gn

and S := Gn+1.
Lemma 6.7 shows that G1 satisfies the injectivity conditions for N -subtiles. Lemma 6.8 implies

that each graph Gi in the algorithm satisfies the injectivity conditions for iN -subtiles. Thus, every
graph in the sequence continues to satisfy the injectivity conditions. In particular, S ⊂ RN(G)
satisfies the injectivity conditions for (n + 1)N -subtiles. Moreover, since G0 is a dual tiling and

G ⊂ RnN(G0) and S ⊂ R(n+1)N(G0) the map ψ̃ can be chosen to be piecewise constant-speed.
Thus, (G,S) satisfies the conditions of Proposition 6.2 and Theorem 6.6 is proved. �

6.3. Self-similar combinatorial dual tilings. The construction in Section 6.2 invites the ques-
tion of when the (G,S) recurrent pair are both dual graphs. We give a sufficient condition in the
following result.

Theorem 6.9. Let T be a singly edge-to-edge, primitive self-similar tiling whose tiles are all convex.
Then the combinatorial dual tiling of T has a self-similar realization.

Proof. Let G be a T -consistent dual graph P , embedded such that Gp has exactly one boundary
vertex in the interior of each edge of p and there is one interior vertex that is connected by a
straight-line edge to each boundary vertex. By primitivity we can choose N such that

(1) RN(P)p contains a tile of type p in its interior for each p ∈ P and
(2) there is a T -consistent set of boundary vertices in RN(G) such that if v is in this set and

in p ∈ P , then supp[v]R
N (P)p does not contain any vertex of p. Denote by VB such a

T -consistent set that has exactly one vertex per prototile edge.

We let the vertex set of Sp be (VB)p along with a single interior vertex vp,int chosen from the
interior of an N -subtile p0 of type p lying in the interior of RN(P)p. We construct the edges of Sp
as follows. Let l(v) be the line connecting the boundary vertex v ∈ Sp to its counterpart in p0. We

take as the edge in Sp a path in RN(G) through [l(v)]R
N (P)p connecting v to vp,int.

Notice that if v 6= w are boundary vertices in p, by convexity the RN(P)p-patches intersecting
l(v) and l(w) cannot intersect except at p0 and perhaps on their boundaries, and thus (I1) and (I2)
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are satisfied. G was already dual and thus quasi-dual and (I3) and (I4) follow from the construction

and by convexity. The map ψ̃ can be chosen to be piecewise constant-speed so that all the conditions
of Proposition 6.2 hold.

Thus we have a recurrent pair (G,S) for which TG = T (0) is a labelled dual tiling of T . Since
T (∞) is combinatorially equivalent to TG the result follows. �

7. Edge contraction map and Hausdorff dimension of ∂T (∞)

We mentioned earlier that it is possible to see the edge refinement map ψ̃ as a substitution rule
on prototile supports. We make this precise here, using the formalism of digit sets and the tiling
contraction map used to describe a substitution rule. For simplicity we assume that S ⊂ R(G) but
all results extend to the general case of S ⊂ RN(G).

Once this is done it is possible to see the edges of T (∞), or more precisely their counterparts in P ,
as the invariant set of a graph iterated function system. This system satisfies the strong open set
condition, so [22] implies that the Hausdorff dimension of its attractor (our edges) is the Mauldin-
Williams dimension. In this way we obtain a geometric invariant on the set of fractal realizations
of a particular tiling.

7.1. Edge refinement as a contraction map RE. Suppose that (G,S) is a recurrent pair for a
substitution ω with expansion λ.

Let the edge set of G, denoted E(G), be the collection of all edges in G: E(G) =
⋃
p∈P E(Gp).

Analogous to the tiling contraction case, we assign a copy of H(R2) for each e ∈ E(G) and define

XE =
⊔
e∈E(G) H(R2). Consider a fixed e ∈ E(Gp) and consider its counterpart ψ̃(e) ⊂ S. By

definition we know that ψ̃(e) is a subset of R(G)p and thus is comprised of subedges of the form
λ−1(f +d), where f is an edge in a prototile q and d is some element of the digit set Dpq. We define

the matrix ME by letting ME
ef be the number of copies of f appearing in ψ̃(e) for all f ∈ E(G).

This makes ME a nonnegative integer matrix whose rows and columns are indexed by E(G).
Suppose that f is an edge in the prototile q. The digit set DE

ef is obtained by taking all of the

digits in Dpq giving copies of f in ψ̃(e):

(7.1) DE
ef = {d ∈ Dpq | ψ̃(e) ∩ λ−1 (f + d) = λ−1 (f + d)}

For B ∈ XE and e ∈ E(G) we define

(7.2) RE(B)e =
⋃
q∈P

⋃
f∈E(Gq)

λ−1
(
Bf +DE

ef

)
With this definition we see that for e ∈ E(G),

ψ̃(e) =
⋃
q∈P

⋃
f∈E(Gq)

λ−1
(
f +DE

ef

)
=
(
RE

(
tf∈E(G)f

))
e

We can iterate RE but not ψ̃, since the latter is only defined for edges e ∈ E(G). However we

can define ψ̃(n)(e) for n ∈ N ∪ {∞} using ψ(n): take any edge e′ ∈ T (0) for which e′ = e + x, then

ψ̃(n)(e) = ψ(n)(e′) − x. It is a tedious, but not difficult, chase through notation to verify that if
B = tf∈E(G)f , then

ψ̃(n)(e) =
(
(RE)n(B)

)
e

Let A(∞) ⊂ XE represent the attractor ofRE, and let S(∞) ⊂ X represent the canonical projection

of A(∞) onto the support of the prototiles: S
(∞)
p =

⋃
e∈E(Gp) A

(∞)
e .
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Proposition 7.1. Let (G,S) be a recurrent pair and T a self-similar tiling for the substitution ω.

Then ψ(∞)(∂T (0)) = Γ(T, S(∞)). If ψ(∞) is injective, then ∂T (∞) = ∂T
(∞)
S .

The first part says that even if Γ(T, S(∞)) is not the boundary of a tiling, it still corresponds
to ψ(∞)(∂T (0)). The second part does not quite extend to imply that TS(∞) and T (∞) are actually
equal, because there is the possibility that the tile labels differ slightly if the tiles of TS(∞) intersect
larger T -patches than those that T (0) did, since, by definition, those endow the tiles of T (∞) with
their labels.

Proof. We must show that if e ∈ E(G), then ψ̃(∞)(e) = A
(∞)
e . We have

⊔
e∈E(G)

ψ̃(∞)(e) =
⊔

e∈E(G)

(
lim
n→∞

ψ̃(n)(e)
)

= lim
n→∞

⊔
e∈E(G)

ψ̃(n)(e) = lim
n→∞

Rn
E

 ⊔
e∈E(G)

e

 = A(∞),

since A(∞) is the attractor of RE. �

7.2. Hausdorff dimension. We will prove the following theorem.

Theorem 7.2. Suppose that (G,S) is a recurrent pair for a tiling T with substitution ω having
expansion factor λ which satisfies the injectivity conditions of Definition 6.1. Let ME be the edge
substitution matrix with largest eigenvalue λE. Then the Hausdorff dimension of ∂T (∞) is lnλE

lnλ
.

It is important to notice that while M is always a primitive matrix, by assumption, it often
happens that ME is not. Theorem 7.2 can be deduced almost directly from the definition of the
Hausdorff dimension when ME is primitive. In the interest of completeness we prove Theorem 7.2
by describing a fractal realization as the fixed point of a graph-directed iterated function system
(GIFS), as defined in [14, 22]. In particular, [22] allows us to compute the Hausdorff dimension of
the boundary of T (∞) by computing the Mauldin-Williams dimension of the GIFS.

We begin by defining a directed combinatorial graph ∆ that has one vertex, denoted ve, for each
edge e ∈ E(G). The edge set E(∆) contains an edge ε from ve to vf for each copy of f that appears

as a subedge in ψ̃(e). That is, there are ME
ef edges pointing from ve to vf . To each vertex ve we

associate a copy of R2. To each edge ε ∈ E(∆) from e to f we assign a digit d ∈ DE
ef and construct

the map x 7→ λ−1(x + d) and call this map hε. These are the components necessary to define a
GIFS; since the maps hε are taken directly from the definition of RE we refer to this as the GIFS
given by RE.

Our fractal graph A(∞) (as a vector of edges) is invariant for this GIFS in the sense that for each

vertex ve ∈ V (∆), A
(∞)
e =

⋃
vf∈V (∆)

⋃
ε∈Eef

hε(A
(∞)
e ), where Eef denotes edges from ve to vf .

The Hausdorff dimension of the invariant set of a GIFS has bounds that depend on the contraction
factors of the maps hε. In our case, each contraction factor is exactly λ−1 and this leads to the
lower and upper bounds being equal, and in fact lnλE/ lnλ as soon as we can establish that the
GIFS satisfies the strong open set condition given here (and adapted to our notation.)

Definition 7.3 ([14], Definition 3.11). A GIFS with attractor set A(∞) satisfies the strong open set
condition if, for each ve ∈ V (∆), there exists an open set Ue ⊂ R2 satisfying:

(1) For all vertices ve, vf and ε ∈ Eef , hε(Uf ) ⊂ Ue;
(2) For all vertices ve, vf and vf ′ , ε ∈ Eef and ε′ ∈ Eef ′ with ε 6= ε′, we have hε(Uf )∩hε′(Uf ′) = ∅;

and
(3) For each vertex ve, Ue ∩ A(∞)

e 6= ∅.

Proposition 7.4. Suppose (G,S) is a recurrent pair satisfying the injectivity conditions (I1)-(I4)
of Definition 6.1. Then the GIFS given by RE satisfies the strong open set condition.
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Proof. Fix an edge e ∈ E(G) in the prototile p; e is associated to a unique vertex of our GIFS. Denote

by e(∞) = A
(∞)
e its counterpart in the attractor and define Ue as follows. Let ae be the set of interior

vertices of e(∞) that are endpoints of e(∞) (i.e., endpoints of e(∞) interior to the support of p; by the
injectivity conditions this has either one or two elements). Let Ue,n = int([e(∞)]R

n(P)p \ [ae]
Rn(P)p).

Then set Ue =
⋃
n∈N Ue,n. Then the injectivity conditions (I1)–(I4) then guarantee that these Ue

satisfy conditions (1)–(3) of Definition 7.3. �

The Mauldin-Williams dimension [22] of the invariant set F of a GIFS is defined as follows.
Suppose each hε has similiarity ratio rε < 1. Define a matrix ME(s) by ME

ef (s) =
∑

ε∈Eef
rsε , where

e and f represent edges in G and therefore vertices in ∆. Let Φ(s) denote the spectral radius of
ME(s). The Mauldin-Williams dimension dimMW (F ) of F is the unique s1 for which Φ(s1) = 1.

Proof of Theorem 7.2. In [14, Section 3] it is shown that if ‖hε(x) − hε(y)‖ = rε‖x − y‖ for each
ε ∈ Eef and x, y in the copy of R2 associated with vf , and if the GIFS satisfies the strong open set

condition, then the Hausdorff dimension dimH A
(∞)
e = dimMW (A

(∞)
e ) for each vertex ve. Our GIFS

satisfies the strong open set condition by Proposition 7.4 and has rε = λ−1 for all ε. This means
that ME(s) = λ−sME, where ME is the edge substitution matrix given by (G,S). This implies that
Φ(s) = λ−sλE, where λE is the spectral radius of ME. Solving λ−sλE = 1 gives s = lnλE/ lnλ. �

8. Čech Cohomology of a tiling space

In this section we relate our fractal tiling construction to the Anderson-Putnam complex and
Čech cohomology. Given an nonperiodic and primitive substitution tiling along with a recurrent
pair satisfying the injectivity conditions of Definition 6.1, we show that defining an orientation on
the recurrent pair (G,S) gives rise to the substitution maps and boundary maps for the associated
fractal realization. If the recurrent pair is quasi-dual then the fractal realization forces its border and
is mutually locally derivable to the original substitution tiling. Putting this together, a recurrent
pair (G,S) can be used to compute the cohomology of the original tiling. The upshot of our
construction is that Čech cohomology is readily computable for tilings that do not force the border.
We illustrate our method by computing the cohomology for the 2-dimensional Thue-Morse (2DTM)
tiling. We begin with some background on substitution tiling spaces and their cohomology.

8.1. A brief description of the tiling space of a substitution. A substitution ω with expansion
λ generates a topological space Ω of tilings often called the hull. This consists of all tilings T such
that for every finite patch of tiles in T there exists a prototile p ∈ P and an N for which a copy of
the patch appears inside ωN(p). That is, every patch in T is admissible by the substitution.

The topology on Ω is generated by the ‘big ball’ metric, which measures how close two tilings
are by how little they differ on big balls around the origin.5 We will not define it precisely here
but refer readers to [29, p.5] for details. It is possible to define Ω as the orbit closure of a fixed
self-similar tiling T under the action of translation, and in this view Ω is often called the hull of T .

The substitution ω extends to all tilings in Ω in a natural way. Given a tiling T ∈ Ω and a tile
t ∈ T , we place the patch ω(t) atop λ supp(t). Doing this for all the tiles of T yields a tiling we
call ω(T ) which also lives in Ω. When the substitution on Ω is invertible we call the substitution
recognizable. This means that in any location of any tiling T it is possible to determine the exact
type and location of the supertile ω(t) at that spot using only local information. Since all the tilings
considered in this paper are nonperiodic, [30] implies that they are recognizable.

5This is a continuous analogue to the standard metric used on shift spaces in symbolic dynamics.
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8.2. Border-forcing. For topological analysis of tiling spaces, it is crucial that the substitution
have the property of forcing its border. This means that whenever a supertile ωN(t) appears in
T ∈ Ω, the patch [ωN(t)]T of tiles (which includes those immediately adjacent to ωN(t) in T ) are
independent of T and appear in identical fashion anywhere else ωN(t) appears in any tiling in Ω.
Formally, the substitution forces the border if whenever t and t′ are equivalent tiles in T , then
[ωN(t)]T and [ωN(t′)]T are equivalent patches.

When ω is border-forcing its tiling space is homeomorphic to the inverse limit of its approximants
as discussed below, which is key to cohomology computations on Ω. The following theorem gives
conditions for border-forcing that are sufficient but not necessary; it is often possible to tell by
inspection whether a given recurrent pair will produce a substitution with the desired result.

Proposition 8.1. Let (G,S) be a recurrent pair for a self-similar tiling T satisfying the conditions
of Proposition 6.2. Then the substitution map ω(∞) for the tiling T (∞) is border-forcing.

Proof. The fact that G and S are quasi-dual and form a recurrent pair means that for any t ∈ T (0)

and its counterpart t(∞) ∈ T (∞) we have [t]T = [t(∞)]T , and that both t and t(∞) are on the interior
of the same patch of T -tiles. By definition, the equivalence class of this patch forms the label for
both t and t(∞). Let k1 = maxt∈T (0) diam[t]T . Then every ball of radius 2k1 contains a patch of tiles
in T which determine at least one tile in T (∞).

There is a strictly positive minimum distance k2 between ∂t(∞) and ∂ supp[t(∞)]T , where the
minimum is taken over all t(∞) ∈ T (∞). Choose N such that λNk2 > 2k1. For this N , we know
that ωN([t(∞)]T ) determines all of the T -tiles on its interior, and this includes all of the T -tiles a

distance of 2k1 or less from λN(supp t(∞)). By choice of k1 this patch determines [ωN(∞)(t
(∞))]T

(∞)
,

as desired. �

Corollary 8.2. Suppose T is a self-similar tiling satisfying the conditions of Theorem 6.6 and
let Ω denote its hull. Then there are infinitely many border-forcing substitutions ω(∞) such that

(Ω(∞), ω(∞)) is topologically conjugate to (Ω, ω).

Proof. The proof of Theorem 6.6 can be adapted to produce an infinite number of distinct recurrent
pairs. In particular, Lemma 6.7 can be adapted by

(1) using a quasi-dual graph in place of G0 or
(2) allowing N to increase, giving several distinct G1 graphs for each N . �

8.3. Čech cohomology of a substitution tiling. We begin with a very brief description of the
Anderson-Putnam complex and Čech cohomology of a border forcing tiling space in two dimensions.
We refer the reader to [1] or [24] for further details. Suppose Ω is the tiling space of a border forcing
nonperiodic substitution tiling with finite local complexity and prototile set P . A finite CW complex
Γ, called the approximant, is defined by identifying edges and vertices in two prototiles whenever
those edges or vertices are common in any two translates that occur in a patch in the tiling space.
Anderson and Putnam [1] have shown that the tiling space Ω is the inverse limit of the approximant
for tilings that force the border

(8.1) Ω = lim
←−

(Γ, f),

where f is the forgetful map described in [24, Section 2.5].
Since the approximant is a finite CW complex, we obtain a chain complex in simplicial homology.

However, homology is not well-behaved with respect to inverse limits so we use cohomology instead,
and consider the dual cochain complex. Let Γ0, Γ1 and Γ2 denote the functions from the vertices,
edges, and tiles into the group of integers, respectively. There are coboundary maps δ0 : Γ0 → Γ1

and δ1 : Γ1 → Γ2 defined by taking the transpose of the matrix defining the homology boundary
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maps. We then have the following cochain complex:

0 −→ Γ0 δ0−→ Γ1 δ1−→ Γ2 −→ 0.

From [24, Theorem 3.4], Čech cohomology and singular cohomology are equal on finite CW com-
plexes. Thus we obtain the cohomology groups of the approximant Γ by

Ȟ0(Γ) = ker(δ0), Ȟ1(Γ) = ker(δ1)/ Im(δ0), and Ȟ2(Γ) = Γ2/ Im(δ1).

Since we have a substitution tiling there are substitution maps on vertices, edges, and tiles,
which we denote by A0, A1, and A2 respectively. Since cohomology is contravariant, the inverse
limit appearing in (8.1) turns into direct limits on the cohomology groups of the approximant. Thus,
the Čech cohomology of Ω is given by

(8.2) Ȟ i(Ω) = lim
−→

(H i(Γ), A∗i )

where A∗i denotes the map induced by the substitution on the singular cohomology group H i(Γ).

8.4. Cohomology from a recurrent pair (G,S). We now relate the Anderson-Putnam complex
to our situation in order to compute the cohomology of a tiling T using a fractal realization of
T . In fact, it is not necessary to see the fractal at all: once a recurrent pair (G,S) satisfying the
injectivity conditions is identified, it is possible to do all computations using the graphs G and
S. We illustrate the construction in Section 8.5 by computing the Čech cohomology of the two
dimensional Thue-Morse tiling using a recurrent pair (G,S). We note that it may be useful to have
the example in Section 8.5 at hand while reading this section.

Suppose T is a strongly nonperiodic tiling with finite local complexity and prototile set P ad-
mitting a recurrent pair (G,S) satisfying the injectivity conditions of Definition 6.1. Let Ω be the
tiling space associated with T . Using the construction in Section 5 we obtain a fractal tiling T (∞)

with tiling space Ω(∞) and prototile set P(∞). Proposition 5.7 implies that T (∞) is a self-similar
nonperiodic tiling and Proposition 8.1 implies that T (∞) forces the border.

We will show that the Anderson-Putnam complex is completely determined by the recurrent pair
(G,S). First the approximant Γ of Ω(∞).

Let VI denote the set of interior vertices of G and for each v ∈ VI let fv denote the function that
takes the value one on v and zero on VI \ v. Then Γ0 is generated by {fv | v ∈ VI} and Γ0 ∼= Z|vI |.

We now look at Γ1. Since we have assumed that (G,S) satisfies the conditions of Proposition 6.2,
ψ(∞) is a bijective map from T (0) to T (∞), which induces a bijection taking edges in G to fractal
edges whose translations make up T (∞). More specifically, there are two types of edges involved
in computing the cohomology of the approximant. The first are pairs of edges in G that form a
single edge when we take the quotient by the equivalence relation ∼T described in section 3.2 (two
boundary vertices are identified if they ever meet in any patch in T ). We call pairs of these edges
a (single) boundary edge. The second type are edges that connect two interior vertices of G within
a prototile, and we call these edges interior edges. Let E be the union of the boundary edges and
the interior edges. For e ∈ E let fe denote the function that takes the value one on e and zero on
E \ e. Then Γ1 is generated by {fe | e ∈ E} and Γ1 ∼= Z|E|.

For Γ2, recall that the prototile set P(∞) is in bijective correspondence with distinct vertex
patterns in T . For p ∈ P(∞), let fp denote the function that takes the value one on p and zero on

P(∞) \ p. Then Γ2 is generated by {fp | p ∈ P(∞)} and Γ2 ∼= Z|P(∞)|.
To compute the cohomology of the approximant it remains to determine the coboundary maps.

We accomplish this by finding the boundary maps in homology and then taking adjoints. The first
step is to assign an orientation to each edge in E (forming the dual space of Γ1). As in [24, Section
3.2], let ∂2 be the matrix with a row for each oriented edge in E and a column for each prototile in
P(∞). For e ∈ E and p ∈ P(∞), a +1 is added to the (e, p) entry if edge e appears as an edge in p in
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the same orientation and a −1 is added if it appears in the opposite orientation. The coboundary
map δ1 : Γ1 → Γ2 is the transpose matrix δ1 = ∂t2. Let ∂1 be the matrix with a row for each interior
vertex VI , and a column for each oriented edge in E. For each e ∈ E, place a +1 in the (v, e) entry
if v is the range vertex of e and place a −1 in the (w, e) entry if w is the source vertex of e. The
coboundary map δ0 : Γ0 → Γ1 is the transpose matrix δ0 = ∂t1. Putting all of this together leads to
the cohomology groups of the approximants Ȟ(Γi) for i = 0, 1, 2.

In order to compute the Čech cohomology of the tiling space Ω(∞) the final ingredients are the
substitution maps. The matrix A0 is the |VI |×|VI | substitution matrix on interior vertices, described
entirely by the substitution of interior vertices from G to S. The matrix A1 is an |E| × |E| matrix
with a +1 added to the (e, f) entry if f appears in the substitution of e in the same orientation as
e and a −1 if f appears in the opposite orientation, where the substitution is determined by the
graph S. The matrix A2 is a |P(∞)|× |P(∞)| matrix where entry (p, q) is the number of translations
of prototile q appearing in the substitution of prototile p.

Computing the Čech cohomology of Ω(∞) is now an exercise in linear algebra. Lemma 5.6(3)
implies that Ω(∞) is mutually locally derivable to Ω, and hence the Čech cohomology groups of the
two tiling spaces are equal.

8.5. Cohomology of the two dimensional Thue-Morse tiling. We compute the cohomology
of the 2-dimensional Thue-Morse (2DTM) tiling using the recurrent pair shown in Figure 2 of the
introduction.

We label the edges of the graph G and define an orientation on these edges as in Figure 8 and
extend the orientation to S. It is essential that the orientation be consistent across pairs of edges
connected by boundary vertices, since they become edges in the AP complex of T (∞).

1

3
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4
5

7
6

8

Figure 7. The prototiles of the 2DTM tiling with an orientated dual graph G inscribed.
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Figure 8. The 8 prototiles of the fractal realization of the 2DTM tiling from (G,S).
Each orientated (single) edge is labelled by a pair of edges from G as pictured in the
bounding squares (which are only present to label the edges).
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Applying the machinery from Section 5 we obtain the tiles appearing in Figure 8 along with their
substitution appearing in Figure 9.

Figure 9. The substitutions of the 8 fractal prototiles (not to scale).

Our first goal is to define the matrices used to compute the cohomology Ȟ i(Ω(∞)). The fractal
edges of the tiles are in bijective correspondence with pairs of edges in G whose endpoints are
identified in S by boundary vertices. Since we will be interested in the substitution matrices of
these edges, we label them in the ordered set {42, 46, 82, 86, 31, 35, 71, 75}. The pictures above give
rise to the matrices:

A0 =

(
1 0
0 1

)
δ1 =



0 0
−1 1
1 −1
0 0
0 0
−1 1
1 −1
0 0


δ2 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −1 1 0 0 1 −1 0
0 1 −1 0 0 −1 1 0
1 0 0 −1 0 0 0 0
−1 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 1
0 0 0 0 1 0 0 −1



A1 =



1 1 1 1 0 0 0 0
0 2 1 1 0 0 0 −1
1 1 2 0 1 0 0 0
1 1 1 1 1 0 0 −1
0 0 0 0 1 1 1 1
1 0 0 −1 0 2 1 0
−1 0 0 1 1 1 2 1
0 0 0 0 1 1 1 1


A2 =



2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
1 1 5 4 3 0 1 1
0 0 4 5 0 3 2 2
2 1 3 3 3 3 2 1
0 1 3 3 3 3 0 1
0 2 3 3 1 1 3 3
2 0 3 3 1 1 3 3



The zeroth cohomology of the approximant Γ is generated by ker(δ0) = (11)t, which is viewed
as the function assigning the value 1 to each vertex in Γ. So Ȟ0(Γ) ∼= Z. Since A0 is the identity
matrix, it follows that Ȟ0(Ω(∞)) ∼= Z as well.
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The first cohomology of the approximant Γ is given by Ȟ1(Γ) = ker(δ1)/ Im(δ0), and routine
linear algebra shows that

Ȟ1(Γ) = span





1
0
0
1
0
0
0
0


,



0
1
1
0
0
0
0
0


,



0
0
0
0
1
0
0
1


,



0
1
0
0
0
1
0
0




∼= Z4.

The induced matrix A∗1 on Ȟ1(Γ) has eigenvalues {4, 4, 1, 1} and eigenvectors EV (A∗1):

A∗1 =


2 1 0 0
2 3 0 0
0 −1 2 2
1 0 1 3

 EV (A∗1) =




1
2
0
1

 ,


−1
−2
1
0

 ,


−2
2
0
1

 ,


−1
1
1
0


 .

Thus, we have Ȟ1(Ω(∞)) ∼= Z[1/4]2 ⊕ Z2.
Finally, Ȟ2(Γ) = Z8/ Im(δ1) and we see that

Ȟ2(Γ) = span





1
1
0
0
0
0
0
0


,



0
0
1
1
0
0
0
0


,



0
0
0
0
1
1
0
0


,



0
0
0
0
0
0
1
1


,



1
−1
0
0
0
0
0
0




.

The induced matrix A∗2 on Ȟ2(Γ) has nonzero eigenvalues {16, 4, 4, 1} with eigenvectors EV (A∗2):

A∗2 =


4 1 2 2 0
4 9 6 6 0
4 3 6 2 0
4 3 2 6 0
0 0 0 0 0

 EV (A∗2) =




1
4
2
2
0

 ,


4
9
6
6
0

 ,


4
3
6
2
0

 ,


4
3
2
6
0


 .

Thus, we have Ȟ2(Ω(∞)) ∼= Z[1/16]⊕ Z[1/4]2 ⊕ Z.

Appendix A. Examples

A.1. A fractal dual for the Ammann-Beenker (“octagonal”) tiling. We consider the version
of this tiling using two labelled right triangles and a parallelogram, where the labels keep track of
the handedness of the tiles. These tiles come in rotations by π/4, all of which we treat the same way.
In Figure 10 we show the parallelogram and one copy of the triangle; all rotations and reflections
will carry along geometric graphs. Denoting P = {α, β} we define G to be a T -consistent dual graph
in both α and β. We show G,R(P),R(G), and select S as in Figure 10. The fractal realization of
the Ammann-Beenker Tiling induced by (G,S) is shown in Figure 11.

In Figure 12 we show the substitution rule for the prototiles of the fractal realization.

A.2. Penrose’s “Pentaplexity” tiling [27]. The simplest self-similar version of the Penrose
tilings has a prototile set with forty triangles, the two tiles on the left of Figure 13, their la-
belled reflections, and all rotation by π/5 of these four prototiles. These triangles can be combined
to produce either the kite and dart or the rhombus tilings, and all three prototile sets have matching
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α and Gα R(G)α Sα

β and Gβ R(G)β Sβ

Figure 10. A recurrent pair and resulting fractal for the dual graph of the Ammann-
Beenker tiling

Figure 11. A patch of a fractal dual Ammann-Beenker tiling

rules that make them aperiodic tile sets. The kite/dart and rhombus versions are only pseudo-self-
similar and not actually self-similar, so we’ve chosen to work with the triangle version instead. One
interesting note about the fractal tiling we obtain is that it is closely related to the pentaplexity
version of the Penrose tiling that arises in the first six images of [27]. We choose an initial graph G
on the two prototiles as pictured in Figure 13 along with a choice of S that produces a recurrent
pair. We then extend these graphs to all forty prototiles by reflection and rotation. What we gain
in simplicity by working with one iteration of the substitution we pay for with an inability to con-
struct S in a way that satisfies the injectivity conditions for any level of N -subtiles. The recurrent
pair (G,S) does not give rise to an injective ψ(∞) because one edge in each prototile is collapsed
into a vertex, so Theorem 5.7 does not apply. Nonetheless ψ(∞)(∂T (0)) forms the boundary of a
self-similar tiling T (∞), a patch of which is shown in Figure 14.

There are five tile types in this fractal Penrose prototile set (ignoring rotations), some of which
are shown along with their substitutions in Figure 15. The connection to the tiles developed by
Penrose at the beginning of [27] were discussed in a 2013 talk [13].

A.3. Two ways to construct fractal realizations of the chair tiling. If we endow the chair
tiles with vertices from a tiling T as described in section 3.2, then each tile is an octagon and the
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Figure 12. The substitution rules of this fractal realization of the Ammann-Beenker
octagonal tiling.

α and Gα R(G)α Sα

β and Gβ R(G)β Sβ

Figure 13. A recurrent pair for the Penrose triangles; note that each triangle come
in two reflections and so do their geometric graphs.

tiling is edge-to-edge but not singly edge-to-edge. Thus the existence theorem does not directly
apply. Nonetheless it is possible to use the existence algorithm in Section 6.2 to establish numerous
fractal realizations by quasi-dual graphs. Interestingly, none of these quasi-dual graphs can actually
be duals.

Another approach is to label the tiles of T by the number of natural edges they have. It turns
out that there are three types of tiles in this case and they have 4, 5, and 6 edges. We can expand
our prototile set to have twelve labels rather than four (once rotations are accounted for) and it is
routine to write down the tiling substitution for each of the three tile types. We exhibit a self-similar
fractal realization for the dual tiling in this situation.

There are many other possible ways to manage the chair tiling, for instance by passing to the
“square chair” version [24, p.16], which subdivides each chair tile into three labelled squares. The
square chair is single edge-to-edge so that fractal realizations are guaranteed by Theorem 6.6. This
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Figure 14. A patch of the fractal pentaplexity tiling.

Figure 15. A fractal version of the pentaplexity substitution.

is an MLD operation and, as above, yields equivalent hulls, but the geometry and combinatorics
are not as well preserved.

Example A.1 (Chairs as octagons). We consider there to be four chair tiles, each octagons, with
natural and inherited vertices as shown in Figure 5. As usual, we treat all rotations the same so
our figures contain only one tile.

We begin by noticing the simple reason why the dual tiling can never have a self-similar realization.
The dual graph G0 has, on each prototile, a single interior vertex of degree 8. Trying to find a
subgraph S of RN(G0) that is equivalent to G0 is doomed to failure: no matter which vertex of
degree 8 is selected from the interior, there will be two edges emanating from that vertex that come
back together in an adjacent subtile and cannot therefore both be part of a tree. This illustrates
how essential the singly edge-to-edge condition is to our construction.

It is possible to run the algorithm guaranteeing existence in Theorem 6.6 to obtain a quasi-dual
recurrent pair for the octagonal chair tiling even though the tiling is not singly edge-to-edge. The
ultimate choice of G has a minimum of two vertices on the interior of the prototile and the minimum
number of iterations required to satisfy the injectivity conditions is 3. Instead, we choose to exhibit
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a recurrent pair that is not quasi-dual and whose limiting fractal intersects prototile vertices but
for which ψ(∞) is injective nonetheless.

The initial graph G has 9 edges and two interior vertices, and two of the boundary vertices have
degree 2; we show this graph on the left of Figure 16. Conveniently, there is a subgraph of R(G)α
that is isomorphic to G which we extract as shown in the same figure.

α and Gα R(G)α Sα

Figure 16. A recurrent pair and limiting fractal for the chairs as octagons.

On the far right of Figure 16 we see the result of iterating the graph substitution induced by this
recurrent pair. The central edge has migrated to the boundary of the prototile and touches one of
its vertices. The fact that there is no problem with the injectivity of ψ(∞) can be seen by looking
at the patch of fractiles superimposed on chairs shown in Figure 17.

Figure 17. A patch of the octagonal chair tiling with a fractal realization overlaid.

Example A.2 (Colored chairs). Figure 18 shows the three types of chairs along with their dual
graphs, embedded in their final fractal form. Although the graph edges appear to intersect prototile
vertices, they do not: the natural vertices of these tile types do not include the graph vertices as
they appear in the tiling.

Figure 18. The three chair tiles and their fractal dual graphs
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The substitutions of the three tile types appear in Figure 19. It should be noted that one
substitution is not enough to find a recurrent pair for the dual substitution, however: none of
the three graphs in R(G) contain combinatorially equivalent subgraphs. Thus, we used R2(G) to
produce the graph S for our recurrent pair.

Figure 19. Substitution of the three chairs (not to scale)

In Figure 20 we show a patch of the chair with the self-similar dual tiling overlaid atop it.

Figure 20. A patch of the chair tiling with its fractal dual overlaid.
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