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Abstract

We define a new ensemble for self-avoiding walks in the upper half-plane, the fixed
irredicible bridge ensemble, by considering self-avoiding walks in the upper half-plane
up to their n-th bridge height, Yn, and scaling the walk by 1/Yn to obtain a curve in
the unit strip, and then taking n→∞. We then conjecture a relationship between this
ensemble to SLE 8/3 in the unit strip from 0 to a fixed point along the upper boundary
of the strip, integrated over the conjectured exit density of self-avoiding walk spanning
a strip in the scaling limit. We conjecture that there exists a positive constant σ such
that n−σYn converges in distribution to that of a stable random variable as n → ∞.
Then the conjectured relationship between the fixed irreducible bridge scaling limit
and SLE 8/3 can be described as follows: If one takes a SAW considered up to Yn
and scales by 1/Yn and then weights the walk by Yn to an appropriate power, then
in the limit n → ∞, one should obtain a curve from the scaling limit of the self-
avoiding walk spanning the unit strip. In addition to a heuristic derivation, we provide
numerical evidence to support the conjecture and give estimates for the boundary
scaling exponent.
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1 Introduction

1.1 The infinite length upper half-plane self-avoiding walk

Many important 2-dimensional lattice models arise in the study of statistical mechanics.
Among these, the self-avoiding walk is one that has been shown to be a very rich and
interesting model full that comes with a plethora of challenging problems.

The self-avoiding walk was introduced in 1949 by Paul Flory as a model for polymers. An
N -step self-avoiding walk (SAW) on a two-dimensional lattice with lattice spacing δ > 0 is
a sequence of lattice sites

ω = [ω(0), ω(1), . . . , ω(N)]

such that |ω(j + 1)− ω(j)| = δ for all j = 1, . . . , N and such that ω(j) 6= ω(k) for all j 6= k.
Let ΩN be the set of all N -step SAWs ω on the lattice Z2 = Z + iZ which begin at the
origin, i.e. ω(0) = 0. We equip ΩN with the uniform probability measure, i.e. we define
PN(ω) = 1/CN , where CN = |ΩN | is the cardinality of ΩN .

By concatenating an N -step SAW with an M -step SAW, we can see that

CN+M ≤ CNCM . (1.1)

A standard subadditivity argument then shows that there exists a constant µ > 0 such that

lim
N→∞

logCN
N

= log µ, (1.2)

The constant µ is referred to as the connective constant.

We will be considering SAWs ω ∈ ΩN such that Im(ω(j)) > 0 for j = 1, 2, . . ., equipped with
the uniform measure, PH,N . Let HN denote the set of all N -step upper half-plane SAWs
with ω(0) = 0, and let H =

⋃∞
n=0HN be the set of all such upper half-plane SAWs. It was

shown in [6] that the distributional limit as N → ∞ of the measures PH,N exists and gives
a measure on infinite length upper-half plane SAWs. Let H∞ denote the set of all infinite
length upper half-plane SAWs, and let PH,∞ denote the weak limit of the measures PH,N
(considered as measures on H. A SAW ω ∈ HN is called a bridge if

Im(ω(0)) < Im(ω(j)) ≤ Im(ω(N)) (1.3)

for all j = 1, . . . , N . Note that the concatenation of any two bridges is still a bridge, while
not every bridge can be written as the concatenation of two shorter (non-trivial) bridges.
A bridge with the latter property will be said to be irreducible. Let B denote the set of all
bridges rooted at the origin, i.e. all ω ∈ H satisfying (1.3) with ω(0) = 0, and let I denote
the set of all irreducible bridges rooted at the origin.
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An important consequence of the proof of the existence of the limit of the measures PH,N is
that given an ω ∈ H∞, with probability 1, ω can be written as the concatenation of a bridge
with another (translated) upper half-plane SAW. The proof of the existence of PH,∞ utilizes
Kesten’s relation:

∑
ω∈I

µ−|ω| = 1, (1.4)

for the same µ as in (1.2), where |ω| denotes the length, or number of steps, of ω. Kesten’s
relation shows that P(ω) = µ−|ω| is a probability measure on I. By concatenating together
an i.i.d. sequence of irreducible bridges with respect to P, a probability measure is induced
on H, and [6] shows that this is the only possible candidate for the measure PH,∞.

One should then think of upper half-plane SAWs as having a renewal structure to them. At
the end of an irreducible bridge, the future path of the walk lies entirely in the half-plane
above the horizontal line where the bridge ended, and this can be considered as another
infinite length upper half-plane SAW, which can then be written as the concatenation of an
irreducible bridge with another infinite length half-plane SAW.

Given any two SAWs ω1 and ω2, we will write ω1 ⊕ ω2 to denote the walk obtained by
concatenating ω1 and ω2. Then the above result can be stated as follows: With PH,∞-
probability 1, any ω ∈ H∞ can be written as

ω = ω̃ ⊕ ω̂, (1.5)

where ω̃ ∈ I and ω̂ ∈ H∞. Given a finite sequence ω1, . . . , ωj ∈ I, let H∞(ω1, · · · , ωk)
denote the set of all ω ∈ H such that

ω = ω1 ⊕ . . .⊕ ωk ⊕ ω̂, (1.6)

where ω̂ ∈ H∞. Then we have PH,∞(H∞(ω1, . . . , ωk)) = µ−
∑k

1 |ωj |. For a good exposition on
the bridge decomposition of self-avoiding walk, the reader is referred to [2],[9],[6].

1.2 Summary of Results

Consider the set of all infinite upper half-plane SAWs on the lattice Z2 = Z+ iZ rooted at 0,
denoted H∞, under the weak limit of the uniform measure on HN . Given ω ∈ H∞, ω can be
decomposed into the concatenation an i.i.d. sequence of irreducible bridges ω1, ω2, . . . ∈ I.
Let Yn = Yn(ω) denote the height of the n-th irreducible bridge in the concatenation, that
is Yn(ω) = Im(ω(|ω1 ⊕ · · · ⊕ ωn|))− Im(ω(0)) for ω ∈ H∞. We conjecture that there exists
σ > 0 such that,
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lim
n→∞

Yn
nσ

= Y, (1.7)

where Y has the distribution of a stable random variable, and the convergence here is in
distribution. That is, what equation (1.7) is really saying is that we are conjecturing that
there exists σ > 0 such that n−σYn(ω) converges in distribution to that of a stable random
variable as n → ∞. Now given an infinite upper half-plane SAW ω, scale ω by 1/Yn(ω)
to produce a curve in the unit strip and then let n → ∞. This should give a probability
measure on curves in the unit strip beginning at 0 and ending anywhere along the upper
boundary of the strip. We refer to this as the fixed irreducible bridge scaling limit, or fixed
irreducible bridge ensemble. It is then natural to look for some relationship between the fixed
irreducible bridge scaling limit and chordal SLE 8/3.

The simplest relationship would be the following. Take an infinite upper half-plane SAW
ω defined on the lattice Z2 and fix n ∈ N, some large number. Let ω̂ denote ω considered
up to the (random) height Yn(ω). Scale ω̂ by 1/Yn(ω), so as to obtain a curve in the
unit strip. In the limit n → ∞, this gives a probability measure on curves in the unit
strip. Since these curves can end anywhere along the upper boundary of the unit strip, it
is necessary to integrate along the upper boundary of the strip against the conjectured exit
density for the scaling limit of SAW in the unit strip using SLE partition functions. Let
ρ(x) be the conjectured exit density for SAW in the scaling limit in the unit strip derived
in [2] and described in Section 3.1. Chordal SLE 8/3 gives a probability measure on curves
in the unit strip starting at the origin and ending at some prescribed point along the upper
boundary. Thus, it might be reasonable to ask whether the resulting measure is chordal
SLE 8/3, integrated along the density ρ(x). In this paper, we argue that this process of
scaling the walk to obtain a curve in the unit strip gives chordal SLE 8/3 integrated over ρ(x)
if before taking the limit n → ∞, we first weight the walks by Yn(ω)p, where the power p
is conjectured to be −1/σ for σ defined according to (1.7), and then take the limit n→∞.
The conjectured value of σ is σ = 4/3 (see A).

1.3 Scaling limits and SLE partition functions

In this section we review some conjectured scaling limits of self-avoiding walk, along with
SLE partition functions, which we will use in what is to come. One, which we have already
discussed, is the fixed irreducible bridge ensemble, which is obtained by considering a self-
avoiding walk up to its n-th bridge height under the measure PH,∞, scaling by 1/Yn(ω) and
taking n→∞.

The next two scaling limits we consider are examples of the Schramm-Loewner evolution,
introduced by Oded Schramm in [10]. Let D ⊂ C be a bounded,simply connected domain
(other than C) and let z, w ∈ ∂D be boundary points and v ∈ D be an interior point. Given
δ > 0, let [z], [w], [v] denote the lattice points on δZ2 which are a minimum distance from
z, w and v, respectively. One can then consider all SAWs ω in δZ2 beginning at [z] and
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ending at [w], constrained to stay in D. We weight each walk by µ−|ω|. The total weight of
all such walks is then

Zδ(D, z;w) =
∑

ω⊂D:z→w

µ−|ω|. (1.8)

We then define a probability measure on all such walks ω in D from [z] to [w] by assigning
probability µ−|ω|/Zδ(D, z;w) to each such walk. The scaling limit as δ → 0+ is believed to
exist and be equal to chordal SLE 8/3 in D from z to w. We will denote the chordal SLE 8/3

measure supported on curves γ : [0, tγ]→ D such that γ(0, tγ) ⊂ D, γ(0) = z, γ(tγ) = w by
Pchordal
D,z,w . Of particular interest to us will be the chordal SLE 8/3 defined as above where D

is the unit strip S := {z ∈ H : 0 < Im z < 1}, z = 0, and w = x + i, where x ∈ R. We will
denote this probability measure by Pchordal

S,0,x+i.

One can also consider self-avoiding walks starting at a boundary point [z] and ending at an
interior point [v]. The resulting scaling limit is thought to be radial SLE 8/3. However, we
will not be concerned with radial SLE 8/3 in this paper.

In the case that D = H, z = 0, and w =∞, in order to obtain the scaling limit, one must first
find a way to define infinite length SAWs in H. This was done in [6] and is how the measure
PH,∞ was originally defined. The scaling limit of PH,∞ as δ → 0+ is then conjectured to be
Pchordal

H,0,∞ . It is worth mentioning, however, that one can also obtain the probability measure
PH,∞ by a method that is similar in spirit to the method for obtaining the scaling limit for
SAW in bounded domains. If we consider the set of all finite length SAWs in H starting at
0 and weight each such walk ω by µ−|ω|, then the total weight of all such walks is infinite.
If, instead, we weight each such ω by β−|ω| for β > µ, then the total weight is finite. The
limit as β → µ+ has been shown to exist and to give the same measure on infinite half-plane
SAWs as the weak limit on the uniform measures [2].

Finally, let us consider how the normalization factor (1.8) depends on the boundary points
z, w ∈ ∂D. It is conjectured that there exists a boundary scaling exponent b > 0 and a
function H(∂D, z, w) such that as δ → 0+,

Zδ(D, z, w) ∼ δ2bH(∂D, z, w), (1.9)

and H(∂D, z, w) is thought to satisfy the following form of conformal covariance. If Φ is a
conformal transformation from D onto D′, with Φ(z) = z′, Φ(w) = w′, then

H(∂D, z, w) = |Φ′(z)|b|Φ′(z)|bH(∂D, z′, w′). (1.10)

[6, 8, 4]. Note that in [6], the boundary scaling exponent is denoted by a, whereas we are
denoting it by b.

Recently, it has been shown that there are lattice effects which should persist in the scaling
limit for general domains D [3]. Therefore, one cannot expect equations (1.9) and (1.10) to
provide a full description of the scaling limit for general domains D ⊂ C. However, we will
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be restricting our attention to curves in the domains H and S, for which there are no lattice
effects expected to persist in the scaling limit.

In section 3 we will use equation (1.10) to derive the predicted exit density for the scaling
limit of self-avoiding walks in the unit strip beginning at the origin and ending anywhere
along the upper boundary. We will denote the density by ρ(x), where we are assuming that
each walk exits the strip at some point x+ i with x ∈ R.

In section 2 we state our conjecture about how to obtain chordal SLE 8/3 from the fixed
irreducible bridge ensemble precisely and provide a heuristic argument. The conjecture
involves the stability parameter, σ, defined according to (1.7). In order to test this conjecture
(section 4), we require a definite value for σ. We conjecture that σ = 4/3. In the Appendix A,
we present a heuristic argument, originally due to Tom Kennedy via private communication,
in support of this.

2 The conjecture

2.1 Statement of the conjecture

In order to precisely state our conjecture, we first recall some notations introduced in section
1. PH,N denotes the probability measure on N -step upper-half plane SAWs beginning at 0
defined on the lattice Z2, and PH,∞ denotes the probability measure on infinite length SAWs
in the upper half plane beginning at 0 and ending at ∞, defined on the lattice Z2. Pchordal

S,0,x+i

denotes chordal SLE 8/3 measure in the unit strip S on curves beginning at 0 and ending
at x + i, and ρ(x) denotes the exit density along the upper boundary Im(z) = 1 of the
scaling limit for SAW in the unit strip S, starting at 0 and ending anywhere along the upper
boundary. Then the conjecture can be stated as follows:

Conjecture 2.1. The fixed irreducible bridge scaling limit of the SAW and chordal SLE 8/3

in the unit strip S are related by

lim
n→∞

EH,∞
[
Yn(ω)−1/σ1 (ω̂/Yn(ω) ∈ E)

]
EH,∞ [Yn(ω)−1/σ]

=

∫ ∞
−∞

dxρ(x)Pchordal
S,0,x+i(E), (2.1)

where E is an event of simple curves in the unit strip S beginning at 0 and ending anywhere
along the upper boundary of the strip, ω is an infinite upper half-plane SAW, and ω̂ is the
curve ω considered up to the time it reaches height Yn(ω), the nth bridge height of ω.

So we can generate chordal SLE 8/3 in the unit strip by generating an N -step SAW ω for very
large values of N , considered up to height Yn(ω) for large values of n, scaled by 1/Yn(ω),
and then giving it the weight Yn(ω)−1/σ. The conjectured value of σ is 4/3.
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2.2 The derivation

In order to derive Conjecture 2.1, we fix two heights y1 and y2, which we think of as order
1, and a large real number L > 0. We will then only consider curves which have a bridge
point in the region A = {z ∈ H : y1L ≤ Im(z) ≤ y2L}. Let In = I × · · · × I (n times) be
the set of all ω ∈ H∞ such that ω = ω1 ⊕ · · · ⊕ ωn, with ω1, . . . , ωn ∈ I, i.e. the set of all
concatenations of n irreducible bridges beginning at the origin. Recall that if ω̂ ∈ In and
H∞(ω̂) denotes the set of all ω ∈ H∞ such that ω = ω̂ ⊕ ω̃ with ω̃ ∈ H∞, then we have

PH,∞ (H∞(ω̂)) = µ−|ω̂|.

Therefore, the total weight of all SAWs in H∞ with a bridge pont in A is

Z(A) =
∞∑
n=0

∑
ω̂∈In

µ−|ω̂|1 (Yn(ω) ∈ [y1L, y2L]) . (2.2)

Now let E be an event of simple curves in the strip S starting at 0 and ending anywhere
along the upper boundary of the strip. We define the probability of the event E to be
N(E,A)/Z(A), where

N(E,A) =
∞∑
n=0

∑
ω̂∈In

µ−|ω̂|1 (Yn(ω) ∈ [y1L, y2L]) 1 (ω̂/Yn(ω) ∈ E) . (2.3)

According to the definition of PH,∞, we have

N(E,A) =
∞∑
n=0

PH,∞ [1 (Yn(ω) ∈ [y1L, y2L]) 1 (ω̂/Yn(ω) ∈ E)] . (2.4)

Since we have fixed L to be a very large number, this forces each term in the above sum to
be zero other than those corresponding to very large values of n. Then, according to 1.7,
if we fix N ∈ N large enough, N−σYN should have approximately the same distribution as
n−σYn for all n sufficiently large. Therefore, the condition Yn(ω) ∈ [y1L, y2L] can be replaced
with the condition (for very large fixed N)

y1Ln
−σNσ ≤ YN(ω) ≤ y2Ln

−σNσ. (2.5)

Furthermore, since for large values of n, the distribution of ω̂/Yn(ω) approaches the distribu-
tion of a curve pulled from the fixed irreducible bridge ensemble, the condition ω̂/Yn(ω) ∈ E
can be replaced with the condition ω̂/YN(ω) ∈ E. This, along with (2.4) and (2.5) lead to

N(E,A) ≈
∞∑
n=0

EH,∞

[
1

((
Nσ y1L

YN(ω)

)1/σ

≤ n ≤
(
Nσ y2L

YN(ω)

)1/σ
)

1 (ω̂/YN(ω) ∈ E)

]
.

(2.6)
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Now we move the sum on n inside the expectation and consider

∞∑
n=0

1

((
Nσ y1L

YN(ω)

)1/σ

≤ n ≤
(
Nσ y2L

YN(ω)

)1/σ
)
.

This sum is easy to approximate. We have

∞∑
n=0

1

((
Nσ y1L

Yn(ω)

)−1/σ
≤ n ≤

(
Nσ y2L

Yn(ω)

)−1/σ)
≈ L1/σYN(ω)−1/σN(y2 − y1)

= cNL1/σYn(ω)−1/σ,

where c = y2−y1. The factor of cNL1/σ will cancel out of both numerator and denominator,
and what we are left with is

lim
N→∞

N(E,A)

Z(A)
= lim

n→∞

EH,∞
[
Yn(ω)−1/σ1 (ω̂/Yn(ω) ∈ E)

]
EH,∞ [Yn(ω)−1/σ]

. (2.7)

Next, we decompose the sum by the value of the bridge heights. Given a SAW ω ∈ H∞, let
D = D(ω) be the set of bridge heights. That is, D(ω) is the set of all y ≥ 0 such that there
exists n = 0, 1, . . . such that Yn(ω) = y. Then we have

N(E,A) =
∞∑
n=0

∑
ω̂∈In

µ−|ω̂|1 (ω̂/Yn(ω) ∈ E) 1 (Yn(ω) ∈ [y1L, y2L])

=
∑

y∈Z∩[y1L,y2L]

∞∑
n=0

∑
ω̂∈In

µ−|ω̂|1(ω̂/y ∈ E)1(Yn = y)

=
∑

y∈Z∩[y1L,y2L]

PH,∞(ω̂/y ∈ E; y ∈ D)

=
∑

y∈Z∩[y1L,y2L]

PH,∞(ω̂/y ∈ E|y ∈ D)PH,∞(y ∈ D).

Similarly, we find that

Z(A) =
∑

y∈Z∩[y1L,y2L]

PH,∞(y ∈ D).

In [2], it was shown that conditioning on the event that a SAW ω ∈ H∞ has a bridge height
at y and considering the walk up to height y gives the law for self-avoiding walk in the strip
{z ∈ H : 0 < Im z < y}. Therefore, by taking y large enough, and scaling the walk by 1/y,
one should expect to get a distribution approaching that of the distribution of SAW in the
unit strip S starting at 0 and ending anywhere along the upper boundary of the strip, in the
scaling limit. It follows that if we sum PH,∞(ω̂/y ∈ E|y ∈ D) over all y ∈ Z ∩ [y1L, y2L],
then take the limit L→∞, which is effectively the same as taking the limit N →∞ in 2.7,
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N(E,A)/Z(A) should converge to the law for SLE 8/3 in the unit strip, starting at 0 and
ending at x+ i, x ∈ R, integrated over the density ρ(x). In other words, we have

lim
L→∞

N(E,A)

Z(A)
= lim

L→∞

∑
y∈Z∩[y1L,y2L] PH,∞(ω̂/y ∈ E|y ∈ D)PH,∞(y ∈ D)∑

y∈Z∩[y1L,y2L] PH,∞(y ∈ D)
(2.8)

≈ lim
L→∞

cPH,∞(ω̂/L ∈ E|L ∈ D)PH,∞(L ∈ D)

cPH,∞(L ∈ D)
(2.9)

=

∫ ∞
−∞

dxρ(x)Pchordal
S,0,x+i(E). (2.10)

This completes the derivation of conjecture 2.1.

3 SLE predictions of random variables

3.1 The density function ρ(x)

In this section we will use SLE partition functions to derive a conjecture for the exit density,
ρ(x), for the scaling limit of self-avoiding walk defined on the unit strip, along the upper
boundary. Recall that for a simply connected domain D and points z, w ∈ ∂D, the SLE
partition function H(D, z, w) satisfies the conformal covariance property (1.10). It was
predicted in [6] that the boundary scaling exponent for SAW is b = 5/8. Using this value, the
conformal covariance property takes the following form: If Φ is any conformal transformation,
then

H(D, z, w) = |Φ′(z)Φ′(w)|5/8H(Φ(D),Φ(z),Φ(w)). (3.1)

This defines H(D, z, w) up to specifying it for a particular choice of domain D and boundary
points z and w. The convention we follow is of taking H(H, 0, 1) = 1.

First note that if we take Φ to be a dilation Φ(z) = xz, for x ∈ R \ {0}, then by (3.1), we
have

H(H, 0, x) =

(
1

x2

)5/8

=
1

x5/4
. (3.2)

Therefore we can calculate H(S, 0, x+ i) by considering the conformal map f : S → H such
that f(0) = 0, f(x + i) = −eπx − 1, given by f(z) = eπz − 1. We have |f ′(0)| = π and
|f ′(x+ i)| = πeπx. Thus,

H(S, 0, x+ i) = |f ′(0)|5/8 |f ′(x+ i)|5/8H(H, 0,−eπx − 1)

=

[
π2eπx

(1 + eπx)2

]5/8
=

[
π2

cosh2(πx/2)

]5/8
.
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According to (1.9), this shows that the probability density function ρ(x) should be given by

ρ(x) = c
[
cosh

(πx
2

)]−5/4
, (3.3)

where c is a normalization constant.

3.2 The right-most excursion

Given a SAW ω defined in the unit strip S with lattice spacing δ, let X(ω) = maxj Re ω(j)
denote the rightmost excursion of ω, i.e. the right-most point on the SAW in the strip. Based
on the results of Section 3.1, we conjecture that, in the scaling limit, X has distribution given
by

lim
δ→0+

P (X < ξ) =

∫ ∞
−∞

Pchordal
S,0,x+i

(
max
t

Re γ(t) < ξ
)
ρ(x) dx, (3.4)

where γ(t) is an SLE 8/3 curve in the unit strip, starting at 0 and ending at x + i, and ρ(x)
is given by (3.3). To calculate Pchordal

S,0,x+i (maxt Re(γ(t)) < ξ), we use the following form of
conformal invariance: If D is a simply connected domain, z, w ∈ ∂D, and f : D → D′ is a
conformal transformation,

Pchordal
D,z,w (γ[0,∞) ∩ A = ∅) = Pchordal

D′,f(z),f(w) (γ̃[0,∞) ∩ f(A) = ∅) , (3.5)

where Pchordal
D,z,w denotes chordal SLE 8/3 measure inD, starting at z and ending at w, Pchordal

D′,f(z),f(w)

denotes chordal SLE 8/3 measure in D′, starting at f(z) and ending at f(w), and A is a closed
set such that A ⊂ D, z, w /∈ A, A ∩D ⊂ ∂D and D \ A is simply connected.

Conformal invariance is built into the definition of every SLEκ measure. However, SLE 8/3

measure also satisfies the following restriction property: If D is a simply connected domain,
z, w ∈ ∂D, and D′ ⊂ D is another simply connected domain with z, w ∈ ∂D′, then

Pchordal
D,z,w (γ[0,∞) ∩ A = ∅|γ[0,∞) ⊂ D′) = Pchordal

D′,z,w (γ̃[0,∞) ∩ A = ∅) , (3.6)

where A is as in (3.5), along with the assumption that A ⊂ D′. In [7], [5], it is shown that for
any probability measure on a certain type of random subsets in the plain called restriction
hulls, which satisfy (3.5), (3.6), the probability in (3.5) can be computed by

Pchordal
H,0,∞ (K ∩ A = ∅) = Φ′A(0)α, (3.7)

for some real number α, where K is a restriction hull and ΦA is the unique conformal
transformation mapping H \ A onto H with ΦA(0) = 0, ΦA(∞) =∞, and ΦA(z) = z + o(1)
as z →∞.

In the case of SLE 8/3, it is known that α = 5/8, and therefore we have

Pchordal
H,0,∞ (γ[0,∞) ∩ A = ∅) = Φ′A(0)5/8. (3.8)
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It is well known that the map f(z) = eπx defines a conformal transformation from the unit
strip to the half-plane H satisfying f(0) = 1, f(x+ i) = −eπx. Therefore, the map

Ψx(z) =
eπz − 1

eπz + eπx
(3.9)

defines a conformal transformation from S onto H with Ψx(0) = 0 and Ψx(x + i) = ∞. It
follows then from (3.5) that if x < ξ,

Pchordal
S,0,x+i

(
max
t

Re(γ(t)) < ξ
)

= Pchordal
S,0,x+i (γ[0,∞) ∩ {z ∈ S : Re(z) ≥ ξ} = ∅)

= Pchordal
H,0,∞ (γ̃[0,∞) ∩Ψx ({z ∈ S : Re(z) ≥ ξ}) = ∅) .

Let A = Ψx ({z ∈ S : Re(z) ≥ ξ}). Then we can write A = {z ∈ H : |z − c(x, ξ)| ≤ a(x, ξ)},
where

c(x, ξ) =
1

2

(
eπξ + 1

eπξ − eπx
+

eπξ − 1

eπξ + eπx

)
a(x, ξ) =

1

2

(
eπξ + 1

eπξ − eπx
− eπξ − 1

eπξ + eπx

)
.

In this case we can write down ΦA explicitly. We have

ΦA(z) = (z − c(x, ξ)) +
a(x, ξ)2

z − c(x, ξ)
. (3.10)

Evaluating the derivative of (3.10) at 0 and using (3.8), we find that

Pchordal
S,0,x+i

(
max
t

Re(γ(t)) < ξ
)

= Φ′A(0)5/8

=

[
1−

(
a(x, ξ)

c(x, ξ)

)2
]5/8

.

Therefore, we can calculate the distribution of the right most excursion of SAW in the strip
in the scaling limit by

lim
δ→0+

P (X < ξ) =

∫ ξ

−∞

[
1−

(
a(x, ξ)

c(x, ξ)

)2
]5/8

ρ(x) dx,

where ρ(x) is given by (3.3). Thus, by our Conjecture, 2.1, we should have

lim
n→∞

Eδ
H,∞

[
Yn(ω)−1/σ1(maxj Re(ω(j))/Yn(ω) < ξ)

]
Eδ

H,∞ [Yn(ω)−1/σ]
=

∫ ξ

−∞

[
1−

(
a(x, ξ)

c(x, ξ)

)2
]5/8

ρ(x) dx.

(3.11)
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4 Simulations

The pivot algorithm provides us with a fast chain Monte Carlo algorithm for simulating the
self-avoiding walk in the full plane or the half-plane. It has also recently been shown in [2]
that the pivot algorithm can be used to simulate self-avoiding walks in the strip S. Taking
lattice effects into account (see [3]), it should also be possible to simulate the self-avoiding
walk in other domains using the pivot algorithm. Recently, Nathan Clisby has developed a
very fast implementation of the pivot algorithm, [1], and that is the algorithm that we use
for our simulations.

We use the pivot algorithm to generate self-avoiding walks in the half-plane with number
of steps N = 1 million. Each iteration of the algorithm is highly correlated, so there is no
point in sampling each iteration. Instead, we sample every 100 iterations. In this way, we
generated 144 million samples.

We first test the conjectured density ρ(x) given by (3.3) against the sampled data. We take
n = 100, sample self-avoiding walks in the half-plane, considering them up to their 100th
bridge point, and then scale them by 1/Yn to get a curve in the unit strip. To test the
exit density of these curves against ρ(x), we split the interval [−3, 3] into 600 equal parts of

length dx = 0.01. We then plot a histogram by summing the weights Y
−1/σ
n for each curve ω

sampled which satisfies x ≤ Re(ω(s)/Yn) < x+ dx, divided by the sum of the weights Y
−1/σ
n

for every curve sampled. Here we are using s to denote the time at which ω reaches height
Yn. We have also plotted a histogram of the exit density of the curves in the strip obtained
from our samples by normalizing by the number of samples generated instead of the sum of
the weights Y

−1/σ
n in order to show that we do not get the conjectured exit density ρ.

Next we test the conjecture by making a prediction for the scaling exponent b in (1.9) and

(1.10). We do this by plotting the log of EN [Y
−1/σ
n 1(x ≤ Re(ω(s)/Yn) < x + dx)] versus

the log of cosh−2(π(x+ dx/2)/2). We take evenly spaced values of the interval [−1.90, 1.90]
with spacing dx = 0.01. By Conjecture 2.1, we should have

log
(
EN [Y −1/σn 1(x ≤ Re(ω(s)/Yn) < x+ dx)]

)
= b log

(
cosh−2(π(x+ dx/2)/2)

)
+ const.

(4.1)
Therefore, the data points should lie on a line. The slope of the line should be b, which is
conjectured to be 5/8 = 0.625.

The line shown in Figure 3 was calculated using unweighted least-squares. No attempt was
made to find an error estimate. The slope of the least-squares fit is 0.625303. If we let b
denote the slope of our least-squares fit, then comparing b with the conjectured value, we
have

b− 5/8 = 0.000303. (4.2)

We have also plotted a log-log graph of the expected value of 1(x ≤ Re(ω(s)/Yn) < x +
dx) versus cosh−2(π(x + dx/2)/2 by calculating the expected value through the number of

samples as opposed to summing the weights Y
−1/σ
n . This should be compared to Figure 3.
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Figure 1: Histogram of exit points along the upper boundary of the strip for the fixed
irreducible bridge ensemble. The conjectured density ρ(x) is represented by the solid curve,
while the histogram is represented by the data points.

The slope of the least-squares fit in this case is 0.444367.

Next, we perform numerical tests on the rightmost excursion, which we are denoting by
X. After generating our self-avoiding walks in the half-plane with N = 1 million steps,
and considering them up to their 100th bridge point (i.e. taking n = 100), we scale the

walks by 1/Yn and weight the probability measure by Y
−1/σ
n . We denote the probability

obtained in this manner by PN,n. Of course this depends on the number of steps in the
walk, as well as the value of n. But for large enough values of N, n, this measure should
look very close to the fixed irreducible bridge measure. Conjecture 2.1 then states that
limn→∞ limN→∞PN,n = Pchordal

S,0,x+i, integrated against ρ(x). Given ξ ≥ 0, by equation (3.11),
we should have (approximately)

PN,n(X < ξ) =

∫ ξ

−∞

[
1−

(
a(x, ξ)

c(x, ξ)

)2
]5/8

ρ(x) dx. (4.3)

We use numerical integration to calculate the right hand side of (4.3). Figure 5 shows a plot
of the cumulative distribution function for X under the measure PN,n obtained from our
simulations, along with the conjectured cumulative distribution function for X given by the
right hand side of (4.3), for values of ξ between 0 and 5. In the scale of the figure, the two
curves look almost identical. In Figure 6, we plot the difference between the simulated cdf
for X and the conjectured cdf for X.
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Figure 2: Histogram of exit points along the upper boundary of the strip obtained by
normalizing by the number of samples generated, as opposed to normalizing by the sum
of the weights Y

−1/σ
n . Once again ρ(x) is represented by the solid curve.
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Figure 3: log-log plot of EN [Y
−1/σ
n 1(x ≤ Re(ω(s)/Yn) < x + dx)] versus cosh−2(π(x +

dx/2)/2). The slope of the least-squares fit is 0.625303.
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Figure 4: log-log plot of EN [1(x ≤ Re(ω(s)/Yn) < x + dx)] versus cosh−2(π(x + dx/2)/2).

Without taking the weights Y
−1/σ
n into account, the slope of the least-squares fit is 0.444367.

A Appendix: Argument that σ = 4/3

Here we give an argument, originally due to Tom Kennedy via private communication, that
the value of σ defined by (1.7) is 4/3. Let Bh(z) denote the generating function for bridges
starting at the 0 with h. That is, if ω ∈ Bn, we set h(ω) = Im(ω(n)) and

Bh(z) =
∑
ω∈B

z|ω|1(h(ω) = h).

In [6], Lawler Schramm and Werner conjecture that we should have Bh(z) � h−1/4, where
here � means that the ratio of both sides are bounded away from 0 and ∞. The argument
goes as follows: If we constrain a bridge to have an endpoint at a fixed point of height
h, the decay goes like h−2b, where b = 5/8. The number of endpoints that contribute to
Bh(z) is of order h. We begin by running an i.i.d. sequence of irreducible bridges until the
concatenation of which has height which strictly exceeds some number L > 0. This happens
with probability 1, and therefore we have
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Figure 5: Plot of the conjectured cdf for the rightmost excursion of SAW in the strip in
the scaling limit as δ → 0+ and the simulated rightmost excursion for SAW in the fixed
irreducible bridge ensemble. The conjectured cdf is colored in red, while the simulated cdf
is colored in green. In the scale of the image, it is difficult to see the difference.

1 =
∞∑
n=1

∑
ω1,...,ωn∈I

µ−
∑n

j=1 |ωj |1

(
n∑
j=1

h(ωj) > L

)
1

(
n−1∑
j=1

h(ωj) ≤ L

)

=
L∑
h=0

∞∑
n=1

∑
ω1,...,ωn∈I

µ−
∑n

j=1 |ωj |1

(
n−1∑
j=1

h(ωj) = h

)
1

(
n∑
j=1

h(ωj) > L

)

=
L∑
h=1

∞∑
n=1

∑
ω1,...,ωn−1∈I

µ−
∑n−1

j=1 |ω
j |1

(
n−1∑
j=1

h(ωj) = h

) ∑
ωn∈I

µ−|ω
n|1 (h(ωn) + h > L)

=
L∑
h=0

Bh(µ
−1)
∑
ω∈I

µ−|ω|1(h(ω) > L− h).

Now we use
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Figure 6: Plot of the difference in values for the conjectured cdf for the rightmost excursion
and the simulated cdf for the rightmost excursion. We subtracted the simulated values for
the cdf from the conjectured values. The error is small, but one can see that the error is
larger near x = 0. This is because there is a systematic error present due to the fact that
we have chosen a finite value for n. There is a slight bias for bridge points falling closer to
x = 0 with a finite n. Choosing values of n much higher than n = 100 also creates some
issues, since the number of one-million step SAWs with the given number of bridge points is
drastically reduced for larger values of n.

∑
ω∈I

µ−|ω|1(h(ω) > L− h) = P(h(ω) > L− h), (A.1)

where we are using P to denote the probability measure on I defined by P(ω) = µ−|ω|. We
would like to develop a relationship between Bh(z), and the cumulative distribution function
for the height of an irreducible bridge. Using (A.1), we have

1 =
L∑
h=0

Bh(µ
−1)P(h(ω) > L− h). (A.2)

Let us now assume that Bh(µ
−1) � h−1/4 and P(h(ω) > h) � h−p for some power p. We
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will split the above identity into two sums: one from 0 to L/2− 1, and one from L/2 to L.
In the first sum, L − h/2 is at least L/2, and so P(h(ω) > L − h) is (up to multiplicative
constants) L−p. So the first sum behaves like

L/2−1∑
h=0

h−1/4L−p � L−p+3/4.

In the second sum, h ≥ L/2 and so Bh(µ
−1) is (up to multiplicative constants) L−1/4. So

the second sum behaves like

L∑
L/2

L−1/4(L− h)−p =

L/2∑
0

L−1/4h−p � L3/4−p,

so both sums behave like L3/4−p. As L → ∞, the identity says that this cannot diverge or
go to zero, and so we should have p = 3/4.

In conclusion, P(h(ω) > h) decays like

P(h(ω) > h) � h−3/4.

This tells us which stable process the sum of n irreducible bridges converges to in distribution.
Let Yn denote the n-th bridge height. We want to find σ so that Yn grows like nσ. The cdf
F (h) of the irreducible bridge heights converges to 1 like 1 − h−3/4 as h → ∞. If there are
n irreducible bridges, the larges one will roughly have height h, so F (h) ≈ 1 − 1/n. Thus
h ∼ n4/3, i.e. σ = 4/3.
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