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1. Herbert Stahl’s Theorem.

In the paper [1] a conjecture was formulated which now is commonly known
as the BMV conjecture:

The BMV Conjecture. Let A and B be Hermitian matrices of size n × n.
Assume moreover that the matrix B 6= 0 is positive semidefinite that is

x∗Bx ≥ 0 ∀ n× 1 vector-columns x. (1.1)

Then the function
ϕ(t) = trace{exp[−(A+ tB)]} (1.2)

of the variable t is representabe as a Laplace transform of a non-negative

measure dσA,B(λ) supported on the positive half-axis:

ϕ(t) =

∫

λ∈[0,∞)

exp(−λt) dσA,B(λ), ∀ t ∈ (0,∞). (1.3)

Let us note that the function ϕ(t), considered for t ∈ C, is an entire function
of exponential type. The indicator diagram of the function ϕ is the closed
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interval [−λmax,−λmin], where λmin and λmax are the least and the great-
est eigenvalues of the matrix B respectively. Thus if the function ϕ(t) is
representable in the form (1.3) with a non-negative measure dσA,B(λ), then
dσA,B(λ) is actually supported on the interval [λmin, λmax] and the represen-
tation

ϕ(t) =

∫

λ∈[λmin,λmax]

exp(−λt) dσA,B(λ), ∀ t ∈ C, (1.4)

holds for every t ∈ C.
The representability of the function ϕ(t), (1.2), in the form (1.4) with

a non-negative dσA,B is evident if the matrices A and B commute. In this
case dσ(λ) is an atomic measure located on the spectrum of the matrix B. In
general case, if the matrices A and B do not commute, the BMV conjecture
remained an open question for longer than 35 years. In 2011, Herbert Stahl
gave an affirmative answer to the BMV conjecture.

Theorem (H.Stahl) Let A and B are n × n hermitian matrices and B is

positive semi-definite. Then the function ϕ(t) defined by (1.2) is representable

as the Laplace transform (1.4) of a non-negative measure dσA,B(λ) supported

on the interval [λmin, λmax].
The first arXiv version of H.Stahl’s Theorem appeared in [2], the latest

arXiv version - in [3], the journal publication - in [4].
The proof of Herbert Stahl is based on ingenious considerations related

to Riemann surfaces of algebraic functions. In [5], a simplified version of the
Herbert Stahl proof is presented.

2. The goal of this paper.

In the BMV conjecure, which now is the Herbert Stahl theorem, the subject
of consideration is the function ϕ(t) of the form (1.2), where a linear pencil
A + tB of square matrices A and B of arbitrary finite size appears in the
exponential. The goal of the present paper is to discuss a special example of
a function ϕ(t) = trace{exp[−(A + tB)]}, where A+ tB is a linear pencil of
unbounded non-negative operators in the space L2(R).

Namely we consider the operators A and B generated in L2(R) by the
expressions

(Af)(x) = −d2f(x)

dx2
, (2.1)

(Bf)(x) = V (x)f(x), (2.2)

where the following conditions are posed on the real-valued function V :

1. The function V is defined and continuous on the real axis: V ∈ C(−∞,∞).
2. V (0) = 0, (2.3)

V (x) is strictly increasing on [0,+∞) : V (x1) < V (x2) if 0 ≤ x1 < x2,

V (x) is strictly decreasing on (−∞, 0] : V (x1) > V (x2) if x1 < x2 ≤ 0.
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In particular, V (x) > 0 for x ∈ (−∞,∞) \ 0.

3. V (x) → +∞ as x → ±∞ . (2.4)

Let D be the set of all smooth complex valued compactly supported
functions, D ⊂ L2(R). Each of the operators A and B is a symmetric operator
defined on D. Both of these operators are non-negative on D:

〈Af, f〉 ≥ 0, 〈Bf, f〉 ≥ 0, ∀f ∈ D, (2.5)

where 〈 . , . 〉 is the standard scalar product in L2(R). For each t > 0, the
linear combination (A+ tB)f is defined for every f from common domain of
definition D of the operators A and B. Moreover, the operator Lt = (A+ tB)
is non-negative on D:

〈

(A+ tB)f, f
〉

≥ 0, ∀ f ∈ D. (2.6)

The operator Lt = A+ tB admits a selfadjoint extension from D to a domain
of definition Dt. This selfadjoint extension is non-negative on Dt. We preserve
the notation Lt for the extended operator. It turns out that such extension
is unique.

The operator Lt = A + tB, where A is of the form (2.1), B is of the

form (2.2), the function V satisfies the conditions (2.3) and (2.4), and t > 0
is called the quantum anharmonic oscillator. The function V (x) is said to be

the potential function

In the special case V (x) = x2, the operator Lt is said to be the quantum har-

monic oscillator.

For one-parametric family Lt = − d2

dx2 + tV (x) of anharmonic oscilla-
tors, we formulate the conjecture which is an analog the BMV conjecture.
For one-parametric family Lt of anharmonic oscillators with a homogeneous

potential function (see Definition below), we confirm the analog of the BMV
conjecture even in a stronger form.

Definition 2.1. Let ρ > 0 be a positive number. The potential function V is

said to be homogeneous of order ρ if

V (ξx) = ξρV (x), ∀ ξ > 0, ∀x ∈ (−∞,∞). (2.7)

It is clear that any homogeneous potential function V is of the form

V (x) =

{

c+|x|ρ, for x > 0,

c−|x|ρ, for x < 0,
(2.8)

where

ρ > 0, c+ > 0, c− > 0 are strictly positive constants. (2.9)
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3. The spectrum of quantum anharmonic oscillator.

We would not like to discuss the questions related to the domain of definition
of the operator Lt. The only fact which is important for us is the following:

Lemma 1.

1. For each t ∈ (0,∞), the spectrum of the anharmonic operator Lt is

discrete. The eigenvalue problem

− d2f(x)

dx2
+ tV (x)f(x) = λ(t)f(x), f(x) ∈ L2(R), f 6≡ 0, (3.1)

has solution only for λ(t) = λn(t), where λn(t), n = 0, 1, 2, 3, . . ., is

a sequence of strictly positive numbers tending to ∞:

0 < λ0(t) < λ1(t) < λ2(t) < λ3(t) < . . . , (3.2)

λn(t) → ∞ as n → ∞, ∀ t > 0. (3.3)

2. If the potential function V of the anharmonic oscillator is homogeneous

of order ρ > 0, then for each n = 0, 1, 2, 3, . . ., the eigenvalue λn(t) is

a homogeneous function of t of order 2/(2 + ρ):

λn(t) = t2/(2+ρ)λn(1), n = 0, 1, 2, 3, . . . , 0 < t < ∞. (3.4)

3. For each t > 0, the operator e−L(t) is the trace class operator :

trace e−L(t) =
∑

0≤n<∞
exp[−λn(t)] < ∞, ∀ t ∈ (0,∞). (3.5)

Proof.

1. For each t > 0, the operator Lt is of the form

− d2

dx2
+ V (x), (3.6)

where the potential function V (x) ≥ 0 satisfies the condition (2.4). It is well
known1 that under condition (2.4), the spectrum of the operator (3.6) is
discrete. Since V (x) is positive for x 6= 0, the spectrum is strictly positive.
Thus the conditions (3.2) and (3.3) hold.
2. Let λ be an eigenvalue of the operator L1, that is the equation

− d2f(x)

dx2
+ V (x)f(x) = λf(x), f(x) ∈ L2(R), f 6≡ 0, (3.7)

has a solution. Taking arbitrary ξ > 0, we change variable x → y = ξx. The
equation (3.7) will be transformed to the equation

− d2g(y)

dy2
+ tV (y)g(x) = λ(t)g(y), (3.8)

where
t = ξ−(ρ+2), λ(t) = t2/ρ+2λ, g(y) = f(t1/(ρ+2)y). (3.9)

3. For r > 0, let N(r) = #{k : λk < r}, (3.10)

1See for example [6, Chapt.II, Sect.28], Theorem 5.
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– the number of those eigenvalues λk of the eigenvalue problem (3.7) which
are less than r. In [7], the asymptotic relation

N(r) ∼
∫

η:V (η)<r

√

r − V (η) dη, r → +∞. (3.11)

was established for a wide class of potential functions V (x). In particular,
(3.11) holds for any homogeneous potential function V . Using (2.8), one can
transform (3.11) to the form

N(r) ∼ CV · r 1
2
+ 1

ρ as r → +∞, (3.12)

where

CV = (c
1/ρ
+ + c

1/ρ
− )

1

ρ

1

2
√
π

Γ( 1ρ )

Γ( 1ρ + 3
2 )

· (3.13)

The condition (3.5) follows from the asymptotic relation (3.12) and from
(3.4). Indeed

∑

0≤n<∞
e−λn(t) =

∑

0≤n<∞
e−t

2
ρ+2 λn =

∫

0≤r<∞

e−t
2

ρ+2 r dN(r) =

= t
2

ρ+2

∫

0≤r<∞

e−t
2

ρ+2 r N(r) dr < ∞ .

�

Remark 3.1. The detailed spectral analysis of the quantum harmonic oscilla-
tor was done by P.A.M. Dirac in 1930, [13]. For quantum harmonic oscillator

L = − d2

dx2
+ x2, the eigenvalues λn and the eigenfunctions hn(x) are:

λn = 2n+ 1, hn(x) = ex
2/2 · dn

dxn
e−x2

. (3.14)

The method of spectral analysis invented by Dirac is purely algebraic. Now
this method is known as the method of ladder operators. For systematic pre-
sentation of the method of ladder operators we refer to [14, sec.2.3.1].

4. Absolutely monotonic functions.

Definition 4.1. Let Φ(t) be a function defined on an interval (a, b), (a, b) ⊂ R.
The function Φ(t) is said to be absolutely monotonic on (a, b) if it satisfies
the conditions

∆n
hΦ(t) ≥ 0, ∀n = 0, 1, 2, 3, . . . , ∀ t, h ∈ R : a < t+ nh < b, (4.1)

where ∆n
hΦ(t)

def

=
n
∑

k=0

(−1)n−k
(

n
k

)

Φ(t+ kh) is the n-th difference of the func-

tion Φ.
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In implicit form, absolutely monotonic functions appeared in the paper
[9] of S.N. Berstein. (The terminology "absolutely monotomic function" did
not appear in [9].) Systematic presentation of the theory of absolutely mono-
tonic functions was done in the paper [10]. Concerning absolutely monotonic
functions and related questions, we refer to the books of N.I. Akhiezer [11,
Chapter V, Section 5] and D.W. Widder [12, Chapter 4].

Theorem (S.N. Bernstein)
1. Let a function Φ(t) be absolutely monotonic on some interval (a, b) of
the real axis. Then the function Φ is infinitely differentiable on (a, b): Φ ∈
C∞(a, b), and the conditions

Φ(n)(t) ≥ 0, ∀ t ∈ (a, b), n = 0, 1, 2, . . . , (4.2)

are satified, where Φ(n)(t) is the n-th derivative of the function Φ.
2. Let a function Φ(t) be infinitely differentiable on some interval (a, b) of the
real axis, and let the conditions (4.2) hold. Then the function Φ is absolutely
monotonic on the interval (a, b), that is the conditions (4.1) hold.

Lemma 4.2. Let {Φm(t)} be a sequence of functions each of them is absolutely

monotonic on an interval (a, b) of the real axis. Assume that for each t ∈ (a, b)
there exist the final limit

Φ(t)
def
= lim

m→∞
Φm(t), t ∈ (a, b). (4.3)

Then the limiting function Φ is absolutely monotonic on the interval (a, b).

Proof. Take and fix n. Take arbitrary t and h so that t ∈ (a, b), t+nh ∈ (a, b).
Passing to the limit in the inequality ∆n

hΦm(t) ≥ 0 as m → ∞, we come to
the inequality ∆n

hΦ(t) ≥ 0. �

Theorem (S.N. Bernstein - D.V. Widder).
1. Let Φ(t) be a absolutely monotonic function on the negative half-axis
t : {−∞ < t < 0}. Then there exists a non-negative measure dσ(λ) supported
on the half-axis [0,∞) such that the function Φ is representable in the form

Φ(t) =

∫

λ∈[0,∞)

etλ dσ(λ), ∀ t ∈ (−∞, 0). (4.4)

Such a mesure dσ(λ) is unique.
2. Let dσ(λ) be a non-negative measure supported on the half-axis [0,∞).
Assume that the integral in the right hand side of (4.4) is finite for each
t ∈ (−∞, 0). Then the function Φ(t) which is defined by the equality (4.4) is
absolutely monotonic on (−∞, 0).

Thus the Herbert Stahl theorem can be reformulated as follows:
Let A and B be Hermitian n × n matrices, and moreover B ≥ 0. Let the
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function ϕ(t) is defined by (1.2) for t ∈ (0,∞). Then the function ϕ(−t),
considered as a function of the variable t, is absolutely monotonic on (−∞, 0).

Lemma 4.3. Let Ψ(t) be an infinitely differentiable real-valued function defined

on the half-axis (−∞, 0). Assume that the derivative Ψ′(t) of the function Ψ
is an absolutely monotonic function on (−∞, 0), that is

Ψ(k)(t) ≥ 0 ∀ t ∈ (−∞, 0), k = 1, 2, 3, . . . . (4.5)

Then the function

Φ(t)
def

= exp [Ψ(t)] (4.6)

is absolutely monotonic.

Proof. Since the function Ψ is real valued, the inequality

Φ(t) > 0, ∀ t ∈ (−∞, 0), (4.7)

holds for the function Φ. To establish the inequalities

Φ(k)(t) ≥ 0, ∀ t ∈ (−∞, 0), k = 1, 2, 3, . . . (4.8)

we remark that

Φ(k)(t) = Φ(t) · Pk(Ψ
′(t),Ψ′′(t) . . . , Ψ(k)(t)), k = 1, 2, . . . , (4.9)

where Pk(y1, . . . , yk) is a polynomial of the variables y1, . . . , yk with non-

negative coefficients. Indeed,

P1(y1) = y1, Pk+1(y1, y2, . . . yk, yk+1) =

= y1Pk(y1, . . . , yk) +
∑

1≤j≤k

∂Pk

∂yj
(y1, . . . , yk)yj+1, k = 1, 2, 3, . . . . �

Lemma 4.4. Given numbers a > 0 and α ∈ (0, 1), let the function Ψ(t) be

defined as

Ψ(t) = −a(−t)α, t ∈ (−∞, 0), (4.10)

where the branch of the function sα is chosen which takes positive values for

s > 0.
Then the derivative Ψ′(t) of the function Ψ(t) is a absolutely monotonic

function on (−∞, 0).

Proof. For k = 1, 2, 3, . . . ,,

dk

dtk
Ψ(t) = (−1)k−1α(α − 1) · · · · ·

(

α− (k − 1)
)

(−t)α−k.

It is clear that (−1)k−1α(α − 1) · · · · ·
(

α− (k − 1)
)

> 0. �

Lemma 4.5. Given a numbers a > 0 and α ∈ (0, 1), let the function Φa,α(t)
be defined as

Φa,α(t) = exp[−a(−t)α], t ∈ (−∞, 0), (4.11)

where the branch of the function sα is chosen which takes positive values for

s > 0.
Then the function Φa,α is absolutely monotonic on the half-axis (−∞, 0).
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Proof. Lemma 4.5 is a consequence of Lemmas 4.3 and 4.4. �

Lemma 4.6. Let {an} be a sequence of positive numbers and α > 0. Assume

that
∑

n

e−anτ < ∞ ∀ τ > 0. (4.12)

Then the function

Φ(t) =
∑

n

e−an(−t)α (4.13)

is absolutely monotonic on (−∞, 0).

Proof. Lemma 5 is a consequence of Lemma 4.5 and Lemma 4.2. �

5. Main Theorem.

The following fact is a direct consequence of above stated reasonings.

Theorem 5.1. Let

Lt = − d2

dx2
+ tV (x), (5.1)

where V (x) is of the form (2.8), be an one-parametric family of quantum

anharmonic oscillators with a homogeneous potential.

Then the function

ϕ(t) = trace e−Lt =
∑

0≤n<∞
e−λn(t), (5.2)

where {λn(t)}0≤n<∞ is the sequence of all eigenvalues of the operator Lt, is

representable in the form

ϕ(t) =

∫

λ∈[0,∞)

e−λt dσ(λ), 0 < t < ∞, (5.3)

where dσ is a non-negative measure supported on [0,∞).

Actually we proved more. Namely, we proved that under assumptions
of the above Theorem, each summand e−λn(t) of the sum in the right hand
side of (5.2) is representable in the form

e−λn(t) =

∫

λ∈[0,∞)

e−λt dσn(λ), 0 < t < ∞, (5.4)

where dσn is a non-negative measure supported on [0,∞). So

dσ =
∑

0≤n<∞
dσn, (5.5)

where dσ and dσn are the measures which appear in the integral representa-
tions (5.3) and (5.4) respectively.

If the potential V is a homogeneous even function: V (x) = V (−x), that
is if c+ = c− in (2.8), then for each t the subspaces L2

ev
(R) and L2

od
(R) of
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even and odd functions from L2(R) are invariant with respect to the operator
Lt, (5.1). In particular, each eigenfunction of the operator Lt is either even
or odd. So the function ϕ(t), (5.2), splits into the sum of two functions

ϕ(t) = ϕev(t) + ϕod(t), (5.6)

where the sums

ϕev(t) =
∑

ev
n

e−λn(t), ϕod(t) =
∑

od
n

e−λn(t) (5.7)

are taken over n corresponding to even and odd eigenfunctions respectively.
From (5.4), the integral representations

ϕev(t) =

∫

λ∈[0,∞)

e−λt dσev(λ), ϕod(t) =

∫

λ∈[0,∞)

e−λt dσod(λ), 0 < t < ∞,

(5.8)
follow, where dσev and dσod are non-negative measures supported on [0,∞).

In the case of the one-parametric family of harmonic oscillators,

Lt = − d2

dx2
+ tx2, the functions ϕ, ϕev, ϕod can be calculated explicitly:

ϕ(t) =
1

sh
√
t
, ϕev(t) =

e
√
t

sh
√
2t

, ϕod(t) =
e−

√
t

sh
√
2t

, 0 < t < ∞. (5.9)

(See (3.14) and (3.4) with ρ = 2.) Without using Lemma 4 and the repre-
sentation (5.7), it is not so evident that the functions ϕev(−t), ϕod(−t) are
absolutely monotonic on (−∞, 0).

6. A conjecture for the anharmonic oscillator

which is analogous to the BMV conjecture for matrices.

Let us formulate a conjecture. Assume that two functions V0 and V1 are given
which satisfy the conditions:

1. V0 and V1 are defined on the whole real axis R and are continuous there:
V0 ∈ C(R), V1 ∈ C(R).

2. The positivity condition:

V0(x) > 0, V1(x) > 0 ∀x ∈ (−∞,∞) \ 0. (6.1)

3. The unboundedness condition

V0(x) + V1(x) → ∞ as x → ±∞. (6.2)

Let as consider the one-parametric family of operators

Lt = − d2

dx2
+
(

V0(x) + tV1(x)
)

, (6.3)

where t ∈ (0,∞).
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The conditions (6.1) and (6.2) ensure that for each t > 0 the spectrum
of the operator Lt is discrete and strictly positive. This means that for each
t > 0, the eigenvalue problem

− d2f(x)

dx2
+
(

V0(x) + tV1(x)
)

f(x) = λf(x), f(x) ∈ L2(R), f 6≡ 0 (6.4)

is solvable only for those values λ = λn(t) which form a sequence tending to
+∞:

0 < λ0(t) < λ1(t) < λ2(t) < · · · , λn(t) → +∞ as n → ∞.

Let us define the function Φ(t) = trace e−L(t) as

Φ(t) =
∑

n

e−λn(t), (6.5)

where the sum is taken over all eigenvalues λn(t) of the eigenvalue prob-
lem (6.4).

If both functions V0 and V1 are even: V0(x) = V0(−x), V1(x) = V1(−x),
then each eigenfunction f(x) of the eigenvalue problem (6.4) is either even
or odd. In this case we can define the "partial" traces

Φev(t) =
∑

ev
n

e−λn(t), Φod(t) =
∑

od
n

e−λn(t), (6.6)

where the sums
∑

ev
and

∑

od
are taken over n corresponding even and

odd eigenfunctions of the eigenvalue problem (6.4).

Of course we should pose some condition on the functions V0 and V1

which ensure that

Φ(t) < ∞ ∀ t > 0. (6.7)

The condition

4. lim
|x|→∞

ln(V0(x) + V1(x))

ln |x| > 0 (6.8)

is more than sufficient for (6.7).

Conjecture. Let V0(x) and V1(x) be functions from C(R) which satisfy the
conditions (6.1), (6.2), and (6.8). Let Φ(t) be the "trace" function constructed
from the eigenvalues λn(t) of the eigenvalue problem (6.4). Then the function
Φ(−t) is absolutely monotonic on (−∞, 0), so the function Φ admits the
integral representation

Φ(t) =

∫

λ∈[0,+∞)

e−tλ dσ(λ), t ∈ (0,+∞), (6.9)

where dσ(λ) is a non-negative measure supported on [0,+∞).
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If both functions V0 and V1 are even, then each of the "partial trace
functions" Φev and Φod admit the integral representation

Φev(t) =

∫

λ∈[0,+∞)

e−tλ dσev(λ), Φod(t) =

∫

λ∈[0,+∞)

e−tλ dσod(λ), t ∈ (0,∞), (6.10)

where dσev and dσod are non-negative measures supported on [0,∞).

It is interesting to confirm this conjecture even in the special case of the
one parametric family of quartic oscillators

− d2

dx2
+ (x2 + tx4). (6.11)

Question. For which functions V0 and V1, each summand e−λn(t) of the "trace
sum" (6.5) possesses the property "the function e−λn(−t) is absolutely mono-

tonic on (−∞, 0)".
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