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Abstract

We analyze a new group testing scheme, termed semi-quantitative group testing, which may be

viewed as a concatenation of an adder channel and a discrete quantizer. Our focus is on non-uniform

quantizers with arbitrary thresholds. For the most general semi-quantitative group testing model, we

define three new families of sequences capturing the constraints on the code design imposed by the

choice of the thresholds. The sequences represent extensions and generalizations of Bh and certain types

of super-increasing and lexicographically ordered sequences, and they lead to code structures amenable

for efficient recursive decoding. We describe the decoding methods and provide an accompanying

computational complexity and performance analysis.

I. INTRODUCTION

Group testing is a family of pooling methods designed to efficiently identify relatively small

subsets of subjects with some particular characteristic within a large collection of elements [2].

Rather than testing each subject individually, subgroups of subjects are tested simultaneously.

The low abundance of the subjects of interest allows for determining their exact identity with a

small number of tests compared to the number of test elements. Given the ubiquitous nature of

the questions it addresses, this classical group testing paradigm has found many applications in

communication theory, signal processing, computer science, and computational biology [3]-[14].

This work was presented in part at the IEEE 2014 International Symposium on Information Theory (ISIT’14) [1].
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A number of extensions of classical group testing (CGT) models have also been considered in

the literature [2], [11], [15]-[23], including threshold group testing (TGT) [17] and quantitative

group testing (QGT) [11], [23]. In the CGT model [15], the result of a test equals 0 if the test

does not include subjects of interest (i.e., “defectives”), and 1 otherwise. In the TGT model, if

the number of defectives in a test is smaller than a lower threshold, the test outcome equals 0; if

the number of defectives is larger than an upper threshold, the test outcome equals 1; and if the

number of defectives is between the lower and upper threshold, the test result is arbitrary, either

equal to 0 or 1. In QGT, the result of a test equals the exact number of defectives appearing in

the test.

Group testing (GT) is closely related to the field of compressed sensing (CS) [24], [25], and in

particular, integer compressed sensing [26], in so far that both group testing and compressed sens-

ing seek to recover a sparse unknown vector through a small set of measurements. The CS model

particularly shares a number of features with the QGT model, since in both of these problems the

vector of measurements is obtained through the product of a sensing matrix (or test matrix) with

the unknown sparse vector. However, due to the limited precision in obtaining the measurements,

the linearity assumption of the measurements does not apply in many practical applications. In

[27], [28], [29], quantized compressed sensing (QCS) was introduced to overcome the limitation

of infinite precision in CS, while in [18], [19], we introduced the semi-quantitative group testing

(SQGT) paradigm to overcome this issue in the the GT framework. The motivation for using

quantized linear measurements in GT stems from applications in genotyping [19] and conflict

resolution in multiple access channel (MAC) communication. Since a detailed description of

these applications and the motivation behind SQGT is provided in [19], we refer the interested

reader to this publication for more details.

In SQGT, the result of a test is a value from a non-binary alphabet that depends on the

number of defectives through a fixed set of thresholds. Simply put, an SQGT model represents a

concatenation of a QGT model and a quantizer which models the limited precision in obtaining

the measurements. In nonadaptive SQGT, each subject is assigned a unique binary or non-

binary vector (codeword) of length equal to the total number of tests. We always assume that

the available alphabet size for constructing the codewords is a fixed, finite integer which is

imposed by the application of interest. It is customary to arrange the codewords as columns of a

matrix, subsequently referred to as the test matrix (codebook). Each coordinate in the codeword
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assigned to a subject corresponds to a test, and its value reflects the “strength” of the subject

in the test [18], [19]. The interpretation of the word “strength” depends on the application at

hand: for example, “strength” may correspond to the power level of a MAC user, or, it may

correspond to the concentration of the genetic material of an individual. Two important families

of SQGT codes, SQ-disjunct and SQ-separable, were introduced and analyzed in our companion

papers [18], [19]. In the same work, constructions for uniformly quantized SQGT codes were

presented, based on number-theoretic sequence selection methods.

Although the motivation behind SQGT and QCS is the limited precision in obtaining the

measurements, there are some major differences between these models. In QCS, the entries of

the sensing matrix are real or complex numbers, while in SQGT the entries of the test matrix are

positive integers. Integer-valued test matrices are used in applications where the subjects to be

tested come as a whole (or multiples of a predetermined fixed value) and cannot be “subdivided”

into real-valued parts. For example, in the coin-weighing problem, if one has n bags of coins,

where each bag contains q − 1 identical coins, and some of the bags have counterfeit coins,

one can use tests of alphabet size q to find the bag containing counterfeit coins, with many

fewer experiments than using binary tests. Another application of integer-valued test matrices is

in applications where there is more flexibility in choosing the alphabet size of the test matrix

(as compared to binary alphabet test matrices), but a real-valued alphabet may not be practical

due to “limited precision”. Yet another application of such matrices is in scenarios where some

robustness to errors and noise is needed in the testing schemes; integers, unlike reals, are spaced

discretely, which ensures a form of error protection in forming the test matrix.

Another difference between QCS and SQGT is that in the latter case, one is mostly interested

in constructing test matrices that are capable of identifying the defectives with zero error

probability in the presence of errors; however, in QCS, a small error value is tolerated and

only an approximation of the sparse unknown vector is sought. As a result, in prior work

on QCS [27], [29], the focus has been on developing algorithms and deriving distortion-rate

functions and error estimates for the obtained solutions. One should note that the reason zero

error probability may be achieved in SQGT is that the test matrix is integer-valued as opposed

to real-valued, which allows us to construct robust test matrices capable of tolerating errors in
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the vector of test results1.

The central theme of this work is non-adaptive SQGT with non-uniformly spaced thresholds,

the most general framework in which one can study this testing scheme. Although many special

choices of GT with thresholds such as CGT, TGT, and QGT have been studied in the literature,

there is not much known regarding construction of code matrices for SQGT with arbitrary

thresholds. The only exception are some of the preliminary results derived in our companion

paper [19].

The contributions of this paper are threefold. First, we describe three new families of integer

sequences with properties that can be utilized in SQGT. Second, we describe constructions

for SQGT test matrices using these new sequences and show that the resulting schemes are

capable of identifying the defectives in SQGT with arbitrary thresholds. Third, for each of these

constructions we describe a computationally efficient decoding algorithm that can identify the

defectives with zero error probability in the presence of errors in the vector of test results.

The paper is organized as follows. In Section II we introduce the SQGT model and describe

the relevant terminology. In Section III we describe the notion of SQ-separable test matrices

and provide a summary of our results. The derivations of our main results are presented in

Sections IV, V and VI. In Section IV, we introduce quantized Bh sequences, and describe how

to use their elements in conjunction with binary disjunct codes to construct separable SQGT

codes. There, we also describe construction methods for quantized Bh sequences as well as

decoding methods for the resulting codes. In Sections V and VI, we introduce the notion of

semi-quantitative lexicographical orders and their corresponding sequences and describe how to

construct them. In addition, we describe constructions for SQ-separable matrices using these

sequences and present two computationally efficient decoding algorithms for these matrices.

II. THE SEMI-QUANTITATIVE GROUP TESTING MODEL

Throughout the paper, we use bold-face upper-case and bold-face lower-case letters to denote

matrices and vectors, respectively. Calligraphic letters are reserved for sets and sequences. In

addition, asymptotic notations such as o(⋅) and O(⋅) are used in a standard manner. For a

1Another line of research on this subject relates to “small-error” information-theoretic limits of GT, akin to the work described
in [30], [31]. There, the goal is to derive algorithms that succeed "with high probability" rather than with probability one.
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parameter g, we use the notation Og(⋅) to mean that the constant factor in this asymptotic

notation is a function of the parameter g.

Let Z+ denote the set of positive integers. For an integer n ∈ Z+, we write [n] ∶= {0,1, . . . , n−1}
and JnK ∶= {1,2, . . . , n}. With slight abuse of notation, we use A={α1, α2, . . . , αK} to denote both

a set and/or a sequence consisting of K positive integers. The exact meaning will be apparent

from the context, and it will depend on which property of A is being discussed. Note that for

a set of positive integers A, one can view the natural ordering of the elements of A as the

corresponding sequence.

Let n, m, and d denote the number of test subjects, the number of tests, and the number of

defectives, respectively. With each subject, we associate a unique q-ary vector, q ≥ 2, of length

m, termed a codeword. Due to the one-to-one correspondence between the codewords and test

subjects, with some abuse of notation we use D to denote both the set of defectives and the

set of codewords assigned to the defectives. Each coordinate of a codeword corresponds to a

test. If xi ∈ [q]m denotes the codeword of the ith subject, then the kth coordinate of xi, denoted

by xi(k), represents the “strength” of the ith subject in the kth test. The set of codewords is

represented by the codebook C ∈ [q]m×n.

The result of SQGT tests can be represented as a vector y ∈ [Q]m, called the vector of test

results. Each test outcome depends on the number of defectives d and their strengths through a

quantization function fη(⋅), defined as follows.

Definition 1. For a set of thresholds η = [η0 = 0, η1, . . . , ηQ]T and a scalar α ∈ Z+, we define

the quantization function fη ∶ Z+ ↦ [Q] as

fη(α) = r if ηr ≤ α < ηr+1,

where r ∈ [Q]. In words, the function fη(α) returns the index of the quantization bin that

contains its argument.

For a vector of positive integers α, fη(α) is a vector with each entry equal to the quantization

of the corresponding entry of α according to Def. 1. For two scalars α,α′ ∈ Z+, and a set of

thresholds η, we write α ≻η α′ to indicate that fη(α) > fη(α′). Next, we define the syndrome

of a set of codewords using fη(⋅).
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1 Q � 1· · ·

dX

j=1

xij
(k)

yD (k)

0, 1, . . . , ⌘1�1, ⌘1, . . . , ⌘2�1, . . . , ⌘Q�1, . . . , ⌘Q�1.

0 2

Fig. 1: The outcome of the kth test (in the absence of error) as a function of ∑d
j=1 xij(k).

Definition 2 (Syndrome of a set of codewords). Let X = {x1,x2, . . . ,xs} = {xj}s1 be a set of

s ≥ 1 codewords of length m in a SQGT model with thresholds η = [η0 = 0, η1, η2, . . . , ηQ]T . The

syndrome of X , denoted by y
X
∈ [Q]m, is defined as y

X
= fη (∑s

j=1 xj).

By this definition, in the absence of any errors, the vector of test results is equal to the

syndrome of defectives, i.e. y = y
D

. However, when errors occur, some entries of y may differ

from y
D

. In particular, if e tests are erroneous, we assume that e entries of y
D

have changed to

an arbitrary value in [Q]2. The relationship between the syndrome of defectives and the strength

of the defectives in a test is illustrated in Fig. 1. One should note that an underlying assumption

in the SQGT model is that ηQ > d(q − 1), which is needed to ensure that the sum of entries

corresponding to defectives is always smaller than ηQ. The previously described parameters and

their definitions are provided in Table I

Note that SQGT includes different group testing models as special cases. For example if

q = Q = 2, η1 = 1, and η2 = +∞ the SQGT model reduces to CGT. Furthermore, if Q−1 = d(q−1)
and ∀r ∈ [Q], ηr = r, then SQGT reduces to the quantitative (adder) model (QGT) with a possibly

non-binary test matrix.

III. SUPERIMPOSED CODES FOR SQGT AND SUMMARY OF THE RESULTS

In [18] and [19], we introduced SQ-separable test matrices to identify the defectives with zero

error-probability. A [q;Q;η; (l ∶ u); e]-SQ-separable code is a q-ary matrix for a SQGT model

with thresholds η = [0, η1, η2, . . . , ηQ]T , capable of uniquely identifying a number of defectives

2Note that this assumption corresponds to the case in which no information is available regarding the pattern of errors (i.e.
worst case scenario). However, more informative assumptions regarding the error pattern can be considered to simplify the
problem, e.g. errors that change the outcome of a test to the value corresponding to an adjacent bin.
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TABLE I: Table of symbols and their definitions

Symbol Definition
n Total number of subjects
m Number of tests
d Number of defectives
Q Size of the output alphabet
q Size of the test matrix alphabet
ηl The lth threshold where l ∈ JQK
D Set of defectives

y ∈ [Q]m Vector of test results
C ∈ [q]m×n Code (test matrix)

e Number of errors in y that C can correct

between l and u, l ≤ d ≤ u, with zero error probability using a Q-ary vector of test results that

contains up to e errors. SQ-separable matrices are defined as follows.

Definition 3 (SQ-separable codes [19]). A m × n matrix is called a [q;Q;η; (l ∶ u); e]-SQ-

separable code if for any two distinct sets of codewords (i.e. columns), X and Z , satisfying

l ≤ ∣X ∣, ∣Z∣ ≤ u, there exists a set of coordinates R, satisfying ∣R∣ ≥ 2e + 1, such that ∀k ∈ R,

y
X
(k) ≠ y

Z
(k), where y

X
and y

Z
are the syndromes of X and Z , respectively (see Def. 2).

Intuitively, SQ-separable codes impose the requirement that any collection of not fewer than

l and not more than u items have a unique syndrome after quantization and in the presence of

errors. One should note that “being SQ-separable” is a necessary condition for a text matrix to

identify the defectives in an SQGT model with zero error probability [19]. In other words, a test

matrix C can identify any number of defectives between l and u with zero error probability in

the presence of up to e errors if and only if C is a SQ-separable code. Due to their generality, it

is not surprising that no universal computationally efficient decoder is currently known that can

identify the defectives using a SQ-separable matrix with zero error probability for an arbitrary

set of thresholds. In order to overcome the issue of efficient decoding, pervious works in the

literature have either relaxed the zero error probability requirement and have used approximation

algorithms such as message passing on factor graphs [19, Appendix A], or they have focused on

special choices of the thresholds (e.g. all the previous work on CGT, TGT, QGT, or SQGT with

uniform thresholds discussed in [19]). Another approach that we used in [19] was to impose
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extra structure on the test matrix which lead to the introduction of SQ-disjunct matrices that

are endowed with simple decoders of computational complexity O(mn). However, due to their

strict structure, the best known SQ-disjunct matrices are not capable of fully utilizing all the

information in the vector of test results to reduce the number of tests.

In this paper, for the first time, we will introduce test matrix constructions for SQ-separable

matrices that are endowed with computationally efficient zero-error decoding algorithms. These

matrices use SQ-disjunct matrices of size mb × nb as building blocks, and depending on the

available alphabet, are able to increase the number of columns (i.e. subjects) K-fold for a

fixed number of rows (i.e. tests); in other words, for a given mb × nb SQ-disjunct matrix, one

can construct mb × Knb SQ-separable matrices, where K depends on q, η, and the specific

construction method. More importantly, we do not focus on any special choice of thresholds, and

the constructions can apply to a wide range of choices for η. To achieve this goal, we introduce

three families of integer sequences that lend themselves to SQGT code design, termed “quantized

Bh”, “type-s semi-quantitative lexicographically ordered sequences (SQLOs)” and “type-l semi-

quantitative lexicographically ordered sequences (SQLOl)” . While SQLOs and SQLOl sequences

are special cases of quantized Bh sequences, they exhibit a special nested structure that allows

for computationally efficient decoding algorithms. These results are summarized in Table II. Note

that the aforementioned sequences have different densities, and therefore for a fixed alphabet size

q, the largest possivle value of K may be different for each sequence. As a result, in the table

we used Kb, Ks, and Kl to distinguish between the value of K corresponding to each sequence.

For a fixed choice of parameters, Kb is in general larger than Ks and Kl. This implies that a

code constructed using a quantized Bh sequence will require a smaller number of tests compared

to the codes constructed using SQLO sequences; however, the computational complexity of its

corresponding decoder will be higher as well. Relevant bounds and detailed discussions of the

properties of the resulting codes are described in the following sections.

In order to gain intuition about these results, we first provide some necessary conditions for the

existence of a SQ-separable matrix with parameters [q;Q;η; (1 ∶d); e]. One necessary condition

that leads to a lower bound on the alphabet size q is that q ≥ η1 + 1. The reason for this bound

is that if a SQ-separable matrix does not satisfy this inequality, all the codewords (i.e. columns

of the test matrix) have the same syndrome which is an all-zero vector of length m. As a result,

if there exists one defective, one cannot uniquely identify which codeword corresponds to the
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TABLE II: A comparative summary of SQGT matrices described in this paper

Test Matrix Theorem 2 Theorem 5 Theorem 8

Parameters [q;Q;η; (1 ∶d); e] [q;Q;η; (1 ∶d); e] [q;Q;η; (1 ∶d); e]

Type SQ-separable SQ-separable SQ-separable

Thresholds Arbitrary Arbitrary Arbitrary

Construction Explicit Explicit Explicit

Num. Tests Oe(d2 log2
n

dKb
) Oe(d2 log2

n
dKs

) Oe(d2 log2
n

dKl
)

Features Decoder of complexity Decoder of complexity Decoder of complexity

O(mn
Kb
+ 2Kb(Kb +md)), O(mn

Ks
+ dm logm + degmaxKs), O(mn

Kl
+ dm logm + degmaxKl),

Uses Kb elements of a Uses Ks elements of a Uses Kl elements of a

quantized Bd sequence SQLOs(η, d) sequence SQLOl(η, d) sequence

defective. In addition, one cannot distinguish between the absence of any defectives and the

presence of exactly one defective. A consequence of this inequality is that if η1 > 1, no binary

[2;Q;η; (1 ∶d); e] exists for this set of thresholds, no matter what the value of other thresholds

are in the SQGT model.

Another simple necessary condition provides a lower bound on the number of tests. Since

a [q;Q;η; (1 ∶d); e]-SQ-separable code must distinguish between different sets of d defectives,

one must have (n
d
) ≤ Qm. As a result, one must have

m ≥ d logQ (n
d
) (1 + o(1)). (1)

Although this lower bound may suggest that the results obtained in this paper, which are of

the form m = Oe(d2 log2
n
dK

), are a factor of d away from the best possible results, one should

note that the results in this paper correspond to the most general choice of thresholds. Due to

this generality of the results, they should hold for any choice of thresholds including the special

case of CGT in which η1 = 1 and η2 = ∞; on the other hand, it is well known that in CGT,

the number of required tests to identify the defectives with zero error probability (even in the

absence of any errors) satisfies [20]

m ≥ d2

2 log2 d
log2 n (1+o(1)). (2)

This implies that without imposing further constraints on the thresholds in SQGT, one cannot

reduce the number of tests by an extra factor of d. We have shown in [19] that by focusing on
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some special cases of thresholds (e.g. equidistant thresholds), this reduction in the number of

tests by a factor of d is possible and one can tightly match the lower bound in (1).

Next, we describe the idea behind the constructions introduced in this paper. The gist of our

constructions is horizontal matrix concatenation, defined as follows.

Definition 4 (Horizontal concatenation). Consider K ≥ 2 matrices Cj ∈ Rm×n, 1 ≤ j ≤K. The

horizontal concatenation of these matrices is a matrix defined by C = [C1,C2 . . . ,CK], such

that for j ∈ JKK and l ∈ JnK, the ((j − 1)n + l)th column of C is equal to the lth column of Cj .

For the subsequently described code constructions, we use binary disjunct matrices for CGT

as building blocks for constructing SQ-separable codes. For completeness, we start by defining

SQ-separable codes [19] and binary disjunct codes for CGT [16], [2].

.

Definition 5 (Binary d-disjunct codes for CGT). A binary CGT d-disjunct code capable of

correcting up to e errors is a code of length m and size n with the property that for any codeword

z and any subset of d other codewords, X , z ∉ X , there exists a set of coordinates R of size at

least 2e + 1, so that ∀k ∈ R and ∀x ∈ X , z(k) = 1 and x(k) = 0.

Before describing the main results of this paper, we introduce a simple code construction that

provides the intuition behind the derivations of the main results.

Theorem 1. Consider a SQGT system with thresholds η = [0, η1, η2, η3, . . . , ηQ]T where Q ≥ 4.

Fix a binary d-disjunct code matrix Cb of dimensions mb × nb, capable of correcting up to e

errors. Form a matrix C of length m = mb and size n = 2nb by concatenating C1 = α1Cb and

C2 = α2Cb horizontally, where α1 = η1 and α2 = max{η2, η3 − η1}. The constructed code is a

[q;Q;η; (1 ∶d); e]-SQ-separable code with q = max{η2, η3 − η1} + 1.

Proof: Consider two distinct subsets of codewords, X1 and X2, such that 1 ≤ ∣X1∣, ∣X2∣ ≤ d.

Without loss of generality, assume that ∣X1∣ ≤ ∣X2∣. Since the two sets are distinct, X2/X1 ≠ ∅.

Let z′ ∈ X2/X1. By construction, z′ = αzb for some α ∈ {α1, α2} and some binary codeword zb

of Cb. Let z′′ be another codeword of C with the same support as z′, obtained by multiplying

zb by {α1, α2}/{α}.

If z′′ ∉ X1, then by the construction of C and Def. 5, there exists a set of coordinates R of
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size at least 2e + 1, such that ∀k ∈ R, z′(k) ≥ α1 = η1 and x(k) = 0, ∀x ∈ X1. Since ∀k ∈ R,

∑x∈X2
x(k) ≥ z′(k) ≥ η1, and ∑x∈X1

x(k) = 0, it follows that

y
X2

(k) ≥ y
{z′}

(k) > y
X1

(k).

On the other hand, if z′′ ∈ X1 ∩ X2, there exists a set of coordinates R of size at least 2e + 1,

such that ∀k ∈ R, z′(k) ∈ {α1, α2}, z′′(k) ∈ {α1, α2}, and x(k) = 0 ∀x ∈ X1/{z′′}. Since ∀k ∈ R,

∑x∈X2
x(k) ≥ z′(k) + z′′(k) = α1 + α2 = max{η1 + η2, η3} ≥ η3 and ∑x∈X1

x(k) ≤ α2 < η3, and

since ηQ > η1 +max{η2, η3 − η1}, it follows that

y
X2

(k) ≥ y
{z′,z′′}

(k) > y
X1

(k).

If z′′ ∈ X1/X2, we have to separately analyze two cases: if z′ = α2zb, then there exists a set of

coordinates R of size at least 2e + 1, such that ∀k ∈ R, z′(k) = α2, z′′(k) = α1, and x(k) = 0

∀x ∈ X1/{z′′}. Since ∀k ∈ R, ∑x∈X2
x(k) ≥ z′(k) = α2 ≥ η2, and ∑x∈X1

x(k) = α1 = η1 < η2, it

follows that

y
X2

(k) ≥ y
{z′}

(k) > y
X1

(k).

However, for the case that z′′ ∈ X1/X2 and z′ = α1zb, there exists a set of coordinates R of size

at least 2e + 1, such that ∀k ∈ R, z′(k) = α1, z′′(k) = α2, and x(k) = 0 ∀x ∈ X2/{z′}. Since

∀k ∈ R, ∑x∈X1
x(k) ≥ z′′(k) = α2 ≥ η2, and ∑x∈X2

x(k) = α1 = η1 < η2, we conclude that

y
X2

(k) < y
{z′′}

(k) ≤ y
X1

(k).

This completes the proof.

In [19, Construction 1], it was shown that multiplying a binary d-disjunct code of dimension

mb × nb by η1 results in a SQ-disjunct code of the same dimension. On the other hand, Thm. 1

shows that one may increase the number of test subjects twofold, using only m =mb tests. The

increase is achieved by using a carefully chosen multiplier for the second block. More precisely,

this choice of α2 satisfies two properties. First, since α2 ≻η α1, none of the two columns of

C have the same syndrome, and therefore can be uniquely distinguished. Second, the fact that

α1 +α2 ≻η α2 ≻η α1, ensures that if we can identify a column of Cb that corresponds to at least

one defective, denoted by xb, it is possible to determine if {α1xb}, or {α2xb}, or {α1xb, α2xb}
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are the columns of C that correspond to the defectives. These two properties, combined with the

disjunctness property of Cb, ensure that any collection of up to d items has a unique syndrome

after quantization, even in the presence of up to e errors. This construction can be generalized

to include concatenations of more than two matrices using the new families of quantized Bh

sequences and the SQLOs and SQLOl sequences, described next.

IV. SQ-SEPARABLE CODES USING QUANTIZED Bh SEQUENCES

We start by introducing quantized Bh sequences which generalize the well known Bh se-

quences from number theory. First, we define the standard Bh sequences [32].

Definition 6 (Bh sequence). A finite sequence of positive integers A = {α1, α2, . . . , αK} is a Bh

sequence if ∀A1,A2 ⊆ A such that A1 ≠ A2, ∣A1∣ = ∣A2∣ = h, one has ∑αi∈A1
αi ≠ ∑αi∈A2

αi.

Similar to the classical Bh sequences which require distinct subset sums of cardinality h, in

quantized Bh sequences we require that the quantized sums of subsets of size up to h be distinct.

These sequences can be used to generalize Thm. 1 to construct SQ-separable codes.

Definition 7 (Quantized Bh sequence). A finite sequence of positive integers A = {α1, α2, . . . , αK}
is called a quantized Bh sequence with respect to η if

1) αK ≻η αK−1 ≻η ⋅ ⋅ ⋅ ≻η α1 ≻η 0 (i.e., all elements of A lie in different quantization bins).

2) ∀A1,A2 ⊆ A such that A1 ≠ A2, ∣A1∣ ≤ h and ∣A2∣ ≤ h, one either has ∑αi∈A1
αi ≻η

∑αi∈A2
αi or ∑αi∈A2

αi ≻η ∑αi∈A1
αi (the sums of elements of distinct subsets lie in different

quantization bins).

Intuitively, we require that all the elements of the sequence are located in different quantization

bins, none of them is in the same bin as 0, and in addition, all the sums that are formed by

adding elements of subsets of cardinality at most h fall into different bins. Note that when K = 2,

setting α1 = η1 and α2 = max{η2, η3 − η1} as was done in Thm. 1 ensures that the condition in

the aforementioned definition are met.

Remark 1. Note that the cardinality of a finite quantized Bh sequence may be smaller than the

value of h. For example, A = {η1} is a quantized Bh sequence with respect to η, for any h ∈ Z+.

However, one seeks to find the densest such sequence given an upper bound on the values of its

largest element.
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Quantized Bh sequences can be used to construct SQ-separable codes as shown in the next

theorem.

Theorem 2. Fix a binary d-disjunct code matrix Cb of dimensions mb×nb, capable of correcting

up to e errors. Let A = {α1, α2, . . . , αK} be a quantized Bd sequence with respect to η. Form a

matrix C of length m =mb and size n =Knb by concatenating K matrices Ci = αiCb, 1 ≤ i ≤K,

horizontally. The constructed code is a [q;Q;η; (1 ∶d); e]-SQ-separable code with q = αK + 1.

Proof: In order to show that the constructed code is [q;Q;η; (1 ∶ d); e]-SQ-separable, we

consider two distinct sets of codewords X1 and X2 that satisfy 1 ≤ ∣X1∣, ∣X2∣ ≤ d. The idea is to

show that the syndrome of these two sets contain at least 2e+1 different entries. Without loss of

generality, we assume that ∣X1∣ ≤ ∣X2∣. Since the two sets are distinct, one must have X2/X1 ≠ ∅,

and therefore we choose zr ∈ X2/X1. By construction, zr = αrzb for some binary codeword zb

in Cb and some αr ∈ A.

For the fixed binary codeword zb, let Z , be the set of codewords of C generated by multiplying

zb with the elements of A. Let Z1 = X1 ∩Z and Z2 = X2 ∩Z , be the set of codewords with the

same support as zb in X1 and X2, respectively. Also, let AZ1 ⊂ A and AZ2 ⊆ A be the set of

coefficients used to form the codewords in Z1 and Z2, respectively. Given that A is a quantized

Bd sequence, we have to separately consider two different scenarios.

Case 1: ∑αi∈AZ2
αi ≻η ∑αi∈AZ1

αi.

By construction of C and Def. 5, there exists a set of coordinates Rr of size at least 2e + 1,

such that ∀k ∈ Rr,
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

zr(k) = αr,

x(k) = 0 ∀x ∈ X1/Z1.

Consequently, ∀k ∈ Rr we have the following sequence of inequalities:

y
X2

(k) ≥ y
Z2

(k) (3)

> y
Z1

(k) (4)

= y
X1

(k) (5)

where (3) follows since Z2 ⊆ X2, (4) follows since ∑αi∈AZ2
αi ≻η ∑αi∈AZ1

αi, and (5) follows
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since x(k) = 0, ∀x ∈ X1/Z1.

Case 2: ∑αi∈AZ1
αi ≻η ∑αi∈AZ2

αi.

In this case, we cannot use the set of coordinates Rr, since (4) no longer holds. On the other

hand, this case happens only if AZ1/AZ2 ≠ ∅. Consequently, one has Z1/Z2 ≠ ∅; let zs ∈ Z1/Z2,

where zs = αszb for some αs ∈ AZ1 . Similar to case 1, by considering on X2 instead of X1, there

exists a set of coordinates Rs of size at least 2e + 1, such that ∀k ∈ Rs,
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

zs(k) = αs,

x(k) = 0 ∀x ∈ X2/Z2.

As a result, the following inequalities hold:

y
X1

(k) ≥ y
Z1

(k) (6)

> y
Z2

(k) (7)

= y
X2

(k), (8)

where (6) follows since Z1 ⊆ X1, (7) follows since ∑αi∈AZ1
αi ≻η ∑αi∈AZ2

αi, and (8) follows

since x(k) = 0, ∀x ∈ X2/Z2. Note that even though ∣X1∣ ≤ ∣X2∣, unlike for Case 1, we have

y
X1

(k) > y
X2

(k) for all k ∈ Rs.

A. Fundamental limits and constructions of quantized Bh sequences

Quantized Bh sequences ensure that a set of integers and their subset sums are placed into

different quantization bins. As a result, for a fixed set of Q thresholds η, the existence of

quantized Bh sequences with a predetermined cardinality K depends on the thresholds. As

mentioned in Remark 1, the cardinality of a quantized Bh sequence may be smaller than h. For

example, one can always choose A = {η1} as a quantized Bh sequence with K = 1. For the case

of K = 2, the sequence A = {η1,max{η2, η3 − η1}} used in Thm. 1 is a quantized Bh sequence

with respect to η as long as Q ≥ 4 and ηQ > η1 +max{η2, η3 − η1}. These two examples imply

that for any set of thresholds, there always exists a quantized Bh sequence, which in the worst

case scenario has cardinality K = 1.

We discuss next constructions of quantized Bh sequences with K > 2. From a practical
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perspective, and given that in most applications q cannot be too large, a greedy algorithm for

finding a quantized Bh sequence is the simplest constructive approach. In the greedy approach,

one starts with α1 = η1; then, given the first i elements of the sequence, to find αi+1, one increases

the value of αi until the properties of the quantized Bh sequence are satisfied.

Although this method works for small values of K, for large values of K this procedure

has a high computational complexity. Alternatively, one can use standard subset-sum distinct

sequences3 [32], and generalizations of standard Bh sequences to construct a family of quantized

Bh sequences as described in the next theorem.

Theorem 3. Consider a SQGT model with thresholds η = [0, η1, η2, . . . , ηQ]T ; ∀s ∶ 1 ≤ s ≤ Q,

and let gs = maxi∶1≤i≤s ηi−ηi−1 be the largest gap of the first s thresholds. Let B = {β1 < β2 < . . .}
be a sequence for which all the subset sums of at most h elements are distinct. For a fixed s,

2 ≤ s ≤ Q, let Ks be the largest positive integer that satisfies ηs > gs∑Ks

i=max{1,Ks−h} βi. Then

all the sequences of the form As = {gs β1, gs β2, . . . , gs βKs} are quantized Bh sequences with

respect to η.

Proof: First note that ηs > gs∑Ks

i=max{1,Ks−h} βi guarantees that the sum of up to h members

of As never exceeds the largest threshold ηQ. Now, fix a value of s ∶ 1 ≤ s ≤ Q, and consider

any two distinct sets A1,A2 ⊆ As, ∣A1∣ ≤ h and A2 ≤ h, which are obtained by multiplying the

elements of B1 ⊆ B and B2 ⊆ B with gs, respectively. Suppose fη (∑αi∈A1
αi) = fη (∑αi∈A2

αi);

as a result, there exists r, 1 ≤ r ≤ s, such that ηr−1 ≤ ∑αi∈A1
αi < ηr and ηr−1 ≤ ∑αi∈A2

αi < ηr.
Consequently,

∣ ∑
αi∈A1

αi − ∑
αi∈A2

αi∣ ≤ ηr − ηr−1 − 1 < gs. (9)

However, since all the sums of up to h elements of B are distinct and ∣B1∣ ≤ h and ∣B2∣ ≤ h,

∣∑βi∈B1 βi −∑βi∈B2 βi∣ ≥ 1. Consequently,

∣ ∑
αi∈A1

αi − ∑
αi∈A2

αi∣ = gs
RRRRRRRRRRR
∑
βi∈B1

βi − ∑
βi∈B2

βi

RRRRRRRRRRR
≥ gs, (10)

which contradicts (9).

3A subset-sum distinct sequence is a sequence of positive integers such that the sum of the elements of its subsets are distinct.
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Given this theorem, one can construct quantized Bh sequences using the sequences mentioned

in the theorem or the more strict subset-sum distinct sequences, for which many constructions

are known in the literature [32], [33], [34]. One should note that for a fixed value of K, the

construction of quantized Bh sequences described in this theorem may not generate the densest

sequence; however, this construction has the important property that it applies to any set of

thresholds and only depends on a condition that can be easily verified given the thresholds.

Remark 2. All the subset-sums consisting of at most h elements of a quantized Bh sequence

must fall into different quantization bins; since there are Q such bins, the following bounds

on the number of elements of a quantized Bh sequence hold: Let A be a finite quantized Bh

sequence with respect to η such that ∣A∣ =K. If K ≤ h, then K ≤ log2Q. On the other hand, if

K > h, then ∑h
i=0 (Ki ) ≤ Q.

Remark 3. Let B be a subset-sum distinct sequence (i.e. a sequence such that all its subsets

sum up to distinct values). Assume that a positive integer K satisfies the condition in Thm. 3;

then, this theorem can be used to construct a quantized Bh sequence A, ∣A∣ = K, using

B = {β1, β2, . . . , βK}. There exist a large body of literature describing constructive bounds on

βK [33], [34]. All bounds are of the form βK ≤ c2K , where c < 1 is a constant that depends

on the construction (e.g. c = 0.22002 in [34]). Given a bound of this form, one has αK < cg2K ,

where g is the largest gap for the first K thresholds.

The aforementioned bound is exponential in K, where the base of the exponential equals 2. In

Lemma 2, we will prove an upper bound on αK in which the base of the exponential function is

strictly smaller than 2. Although this bound applies to SQLOs sequences, given that any SQLOs

sequence is also a quantized Bh sequence, it can be considered an upper bound for quantized Bh

sequences as well. This implies that the bound in Lemma 2 is asymptotically tighter compared

to aforementioned bound.

B. A decoding algorithm for SQGT codes constructed using quantized Bh sequences

We describe next a decoding algorithm for codes constructed using Theorem 2. Let D denote

the set of codewords of C corresponding to the defectives. Also, let XD be the set of binary

codewords each corresponding to the support of at least one codeword in D; clearly, ∣XD∣ ≤ ∣D∣ ≤
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Algorithm 1: Dec-QBh

Input: y ∈ [Q]m, Cb ∈ [2]m× n
K , η, A, e ≥ 0

Output: D̂

Step 1: Initialize X ← ∅ and D̂ ← ∅
For i = 1,2, . . . , nK do

If the number of coordinates j for which the i-th codeword of Cb does not satisfy
xi(j) ≤ y(j) is at most equal to e, set X ← X ∪ {xi}.

End
End

Step 2:
Form B the ordered list of the distinct sums of elements of subsets of A with cardinality

at most d and their corresponding subsets.

Step 3:
Form u

D
such that u

D
(j) is the upper threshold of the quantization bin in which y(j) lies.

For i = 1,2, . . . , ∣X ∣ do
Find βl, the largest element of B such that the number of coordinates j for which
βlxi(j) < u

D
(j) is not satisfied is at most e.

Let Ai,l ⊆ A be the set with the sum equal to βl.
Set D̂i ← {codewords of C of the form z = αxi, ∀α ∈ Ai,l}.

End

Return D̂ = ⋃i D̂i

d. The following example illustrates the relationship between D and XD.

Example 1. As an example, suppose that in a SQGT system D = {[2,0,2,2]T , [6,0,6,6]T , [2,0,2,0]T};

in this case one has XD = {[1,0,1,1]T , [1,0,1,0]T}.

The decoding procedure is performed in three steps. The idea is to use the disjunctness property

of binary disjunct matrices and the property of quantized Bh sequences to first recover the set

XD in Step 1, and then use this set to recover D in Steps 2 and 3. The steps of the decoding

algorithm are listed in Algorithm 1.

Theorem 4. Algorithm Dec-QBh is capable of identifying up to d defectives in the presence of

at most e errors in the vector of test results y.
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Proof: In the first step of the algorithm, and for each codeword of the binary codebook Cb,

we count the number of coordinates for which the test result is smaller than the corresponding

entry of the codeword. In order to show that the set X recovered in Step 1 is equal to XD, we

first show that X ⊇ XD. Each codeword in D can be written as zi = αxi, 1 ≤ i ≤ ∣D∣, for some

α ∈ A and some binary codeword xi in XD. We need to show that if xi ∈ XD, then xi ∈ X , or

equivalently, the number of coordinates j for which

xi(j) ≤ y(j) (11)

is not satisfied is at most e. All the entries of y which are not erroneous are equal to the

corresponding entries of the syndrome of defectives y
D

. As a result, (11) is trivially satisfied

for entries of xi that are equal to zero, since for these entries y
D

is equal to zero and an error

can only increase the corresponding coordinate in y. On the other hand, since A is a quantized

Bd sequence, its smallest element satisfies α1 ≥ η1. Consequently, a nonzero entry of xi results

in a nonzero entry in y
D

, which is a nonzero entry in y unless an error occurs; since the

nonzero entries of xi are equal to 1 (the smallest positive integer) and there are at most e errors,

condition (11) is satisfied for all except up to e nonzero entries. Consequently, X ⊇ XD.

Next, we show that if xi ∈ X , then xi ∈ XD, or equivalently X ⊆ XD. Suppose this is not true

and let x ∈ X /XD. Since Cb is a binary disjunct matrix and ∣XD∣ ≤ d, then there exists a set of

coordinates R such that ∣R∣ ≥ 2e + 1 and ∀j ∈ R one has x(j) = 1 while xi(j) = 0, ∀xi ∈ XD.

Consequently, ∀j ∈ R, one has y
D
(j) = 0, which implies that y(j) = 0 unless an error occurred.

Since there are at most e errors, x(j) > y(j) for at least e + 1 coordinates, which implies that

x ∉ X . This contradicts the starting assumption. Hence, X ⊆ XD.

Now given that Step 1 recovered the set X = XD, we only need to show that Step 3 recovers

D given XD. For each xi ∈ XD, let Ai,t be the “true” set of coefficients used to generate the

codewords in D with the same support as xi. Also, let βt = ∑α∈Ai,t
α be the sum of these

coefficients. Since the error-free entries of y are equal to y
D

, then for all 1 ≤ j ≤ m, one has

βtxi(j) < uD(j) unless an error occurred in the j-th coordinate. Since there are at most e errors,

there are at most e coordinates for which this condition is not satisfied. As a result, βl ≥ βt.
In order to complete the proof, we show that no value of β′ ∈ B such that β′ > βt satisfies

the condition in Step 3 and hence conclude that βl ≤ βt. From the disjunctness property of Cb,



19

there exists a set of coordinates Ri such that ∣Ri∣ ≥ 2e+1 and ∀j ∈ Ri, xi(j) = 1, while all other

codewords in XD have the value zero at that coordinate. As a result, ∀j ∈ Ri,

∑
z∈D

z(j) = ∑
α∈Ai,t

αxi(j) = ∑
α∈Ai,t

α = βt.

Since there are at most e errors in y, there exists a set of coordinates R′
i ⊆ Ri with ∣R′

i∣ ≥ e+ 1,

such that ∀j ∈ R′
i,

uD(j) > ∑
z∈D

z(j) = βt.

Consider β′ ∈ B such that β′ > βt. Since A is a quantized Bd sequence, β′ ≻η βt implies that

∀j ∈ R′
i one has β′ ≥ uD(j) > βt. Given ∣R′

i∣ ≥ e + 1, the condition in Step 3 is not satisfied

for such a choice of β′ and hence βt ≥ βl. As a result, Step 3 uniquely recovers βl = βt which

corresponds to the set Ai,t. Consequently, D̂ = D in the presence of up to e errors in the vector

of test results, as claimed.

Remark 4. The computational complexity of Algorithm 1 is equal to O(mnK +2K(K +md)). The

computational complexity of Step 1 is O(mnK ). The second step requires ∑min{d,K}
i=1 (K

i
)(i − 1) =

O(K2K) summations. Finally, the computational complexity of Step 3 is O(dm2K).

Due to the exponential growth of the the computational complexity of the decoding algorithm

with K, the codes constructed using quantized Bh sequences are most suitable for small values

of K. On the other hand, for larger values of K, we introduce two other families of sequences

that lead to codes with significantly smaller decoding complexity.

V. SQ-SEPARABLE CODES USING SQLOs SEQUENCES

As discussed earlier, the codes constructed using quantized Bh sequences have a decoding

algorithm with computational complexity O(mnK +2K(K+md)). Although for small values of K

the dominant term is mn
K , for large values of K the exponential growth of the complexity with

K is problematic. In this section we introduce the notion of SQLOs sequences and use them

to construct SQ-separable codes with a decoding algorithm that has computational complexity

linear in K.
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Definition 8 (SQLOs(η, h) sequences). Given a set of thresholds η, a sequence of positive

integers A = {α1, α2, . . . , αK} is termed a SQLOs(η, h) sequence if

1) αK ≻η αK−1 ≻η . . . α2 ≻η α1 ≻η 0 (i.e., all elements of A lie in different quantization bins).

2) For any two distinct nonempty nested subsets A1 ⊂ A2 ⊆ A such that ∣A1∣ ≤ h and ∣A2∣ ≤ h,

one has ∑αi∈A2
αi ≻η ∑αi∈A1

αi (i.e., the sums of elements of nested subsets fall into

different quantization bins).

3) For any two distinct nonempty subsets A1,A2 ⊆ A that are not nested and ∣A1∣ ≤ h

and ∣A2∣ ≤ h, one has ∑αi∈A2
αi ≻η ∑αi∈A1

αi whenever ∃α ∈ A2/A1 such that α ≻η α′,
∀α′ ∈ A1/A2 (i.e., two subsets that are not nested are ordered based on their largest

distinct element).

The properties above induce a partial order on the subsets of a SQLOs sequence.

The SQLOs properties for K = 2 and h ≥ 2 simply translates to α2 + α1 ≻η α2 ≻η α1 ≻η 0,

while for K = 3 and h ≥ 3 it translates into α3+α2+α1 ≻η α3+α2 ≻η α3+α1 ≻η α3 ≻η α2+α1 ≻η
α2 ≻η α1 ≻η 0. The following example describes a SQLOs sequence.

Example 2. It can be easily verified that A = {3,6,12} is a SQLOs sequence with respect to

the thresholds η = [0,3,6, . . . ,24]T , since fη(12 + 6 + 3) = 7 > fη(12 + 6) = 6 > fη(12 + 3) = 5 >
fη(12) = 4 > fη(6 + 3) = 3 > fη(6) = 2 > fη(3) = 1 > 0.

SQLOs sequences obey a more stringent set of constraints compared to the quantized Bh

sequences. As a result, one is able to use these constraints to reduce the computational complexity

of the decoder. In the next proposition, we show that in fact any SQLOs sequence is also a

quantized Bh sequence, but the converse is not necessarily true.

Proposition 1. A sequence of K positive integers A is a SQLOs(η, h) sequence if and only if

both of the following properties are satisfied:

1) A is a quantized Bh sequence.

2) ∀i ∶ 1 ≤ i ≤K and ∀A′ ⊆ {α1, α2, . . . , αi−1} such that ∣A′∣ ≤ h, one has αi ≻η ∑αj∈A′ αj .

Proof: First, we show that if A is a SQLOs(η, h) sequence, it satisfies properties 1 and 2. It

is easy to see that since A is a SQLOs(η, h) sequence, it satisfies the first property of quantized

Bh sequences, i.e. αK ≻η αK−1 ≻η ⋅ ⋅ ⋅ ≻η α1 ≻η 0.



21

Let A1 and A2 be two arbitrary nonempty distinct subsets of A such that ∣A1∣ ≤ h and ∣A2∣ ≤ h.

We need to show that ∑αi∈A1
αi ≻η ∑αi∈A2

αi or ∑αi∈A2
αi ≻η ∑αi∈A1

αi. If these two subsets are

nested, i.e. if A1 ⊂ A2 or A2 ⊂ A1, from the second property of a SQLOs sequence, it follows

that ∑αi∈A2
αi ≻η ∑αi∈A1

αi or ∑αi∈A1
αi ≻η ∑αi∈A2

αi, respectively. Otherwise, the third property

of a SQLOs(η, h) sequence ensures that A is a quantized Bh sequence. On the other hand,

from the third property of a SQLOs(η, h) sequence, one can directly conclude that the second

property of the proposition holds.

Now we show that if A satisfies the two properties stated in the proposition, then it is a

SQLOs(η, h) sequence. Since A is a quantized Bh sequence, the first property of a SQLOs(η, h)
sequence is automatically satisfied.

Next, consider two distinct nonempty nested subsets A1 ⊂ A2 ⊆ A such that ∣A1∣ ≤ h and ∣A2∣ ≤
h. Since ∑αi∈A2

αi and ∑αi∈A1
αi fall into different quantization bins, due to the second property

of a quantized Bh sequence, and since ∑αi∈A2
αi > ∑αi∈A1

αi, one has ∑αi∈A2
αi ≻η ∑αi∈A1

αi.

Now consider two distinct nonempty subsets A1,A2 ⊆ A that are not nested, such that ∣A1∣ ≤ h
and ∣A2∣ ≤ h. Assume that ∃α ∈ A2/A1 such that α ≻η α′, ∀α′ ∈ A1/A2. In this case, it holds that

∑
αi∈A2

αi ≻η α ≻η ∑
αi∈A1

αi,

where the last inequality follows from the second property of the proposition. This completes

the proof of the proposition.

As a result of the first condition in Proposition 1, one can directly use a SQLOs(η, h) sequence

instead of a quantized Bh sequence to construct SQ-separable codes, as formally stated in the next

theorem. In addition, the second property in Proposition 1 allows us to reduce the computational

complexity of the decoder significantly. This is a consequence of the fact that superincreasing

sequences4 are knapsack-solvable in linear time [35]. In other words, given an integer and a

finite superincreasing sequence, it is possible to determine in linear time whether the integer

can be expressed as a sum of distinct elements of the sequence, and if so to identify these

elements [35].

Theorem 5. Fix a binary d-disjunct code matrix Cb of dimensions mb×nb, capable of correcting

4A superincreasing sequence is a sequence of positive integers such that each element of the sequence is at least as large as
the sum of all the elements preceding it.
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up to e errors. Let A = {α1, α2, . . . , αK} be a SQLOs(η, d) sequence. Form a matrix C of length

m =mb and size n =Knb by concatenating K matrices Ci = αiCb, 1 ≤ i ≤K, horizontally. The

constructed code is a [q;Q;η; (1 ∶d); e]-SQ-separable code with q = αK + 1.

Proof: The proof directly follows from Proposition 1 and Thm. 2. Since any SQLOs(η, d)
sequence is a quantized Bd sequence, Thm. 2 implies that the code C is a [q;Q;η; (1 ∶ d); e]-
SQ-separable code with q = αK + 1.

A. Fundamental limits and constructions of SQLOs sequences

We discuss next construction methods and fundamental density limits for SQLOs sequences.

Given a set of thresholds, a simple greedy algorithm can be used to find a SQLOs sequence by

checking the properties in Def. 8, as demonstrated in the following example.

Example 3. Suppose η = [0,2,5,6,10,13,15,16,18,21]T and h ≥ K = 3; the greedy algorithm

mentioned above produces A = {2,5,11}.

Alternatively, one can use the following theorem to construct SQLOs sequences using super-

increasing sequences.

Definition 9. A sequence of positive integers B = {β1, β2, . . .} is called h-superincreasing if

∀j > 1, βj > ∑j−1
i=max{1,j−h} βi.

Theorem 6. Consider a SQGT system with thresholds η = [0, η1, η2, . . . , ηQ]T ; ∀s ∶ 1 ≤ s ≤ Q, let

gs = maxi∶1≤i≤s ηi−ηi−1 be the largest gap of the first s thresholds. Let B = {β1 < β2 < . . .} be a h-

superincreasing sequence. For a fixed s, 2 ≤ s ≤ Q, let Ks be the largest positive integer that sat-

isfies ηs > gs∑Ks

i=max{1,Ks−h} βi. Then all the sequences of the form As = {gs β1, gs β2, . . . , gs βKs}
are SQLOs(η, h) sequences.

Proof: Let As be a fixed sequence satisfying the conditions of the theorem. First note

that ηs > gs∑Ks

i=max{1,Ks−h} βi guarantees that the sum of up to h members of As never exceeds

the largest threshold ηQ. Next, we show that As is a quantized Bh sequence. Fix a value of

s ∶ 1 ≤ s ≤ Q. Consider any two distinct sets A1,A2 ⊆ As, ∣A1∣ ≤ h and ∣A2∣ ≤ h, which are

obtained by multiplying the elements of B1 ⊆ B and B2 ⊆ B with gs, respectively. Suppose

that fη (∑αi∈A1
αi) = fη (∑αi∈A2

αi); as a result, there exists an integer r, 1 ≤ r ≤ s, such that
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ηr−1 ≤ ∑αi∈A1
αi < ηr and ηr−1 ≤ ∑αi∈A2

αi < ηr. Consequently,

∣ ∑
αi∈A1

αi − ∑
αi∈A2

αi∣ ≤ ηr − ηr−1 − 1 < gs. (12)

Since B1 ≠ B2, the set (B1 ∪ B2)/(B1 ∩ B2) is nonempty. Let βl be the largest element of this

set, and without loss of generality assume that βl ∈ B1. Since B is a h-superincreasing sequence

and ∣B1∣ ≤ h and ∣B2∣ ≤ h, one has βl > ∑βi∈B2 βi. This implies that ∑βi∈B1 βi > ∑βi∈B2 βi, or

equivalently, that ∣∑βi∈B1 βi −∑βi∈B2 βi∣ ≥ 1. Consequently,

∣ ∑
αi∈A1

αi − ∑
αi∈A2

αi∣ = gs
RRRRRRRRRRR
∑
βi∈B1

βi − ∑
βi∈B2

βi

RRRRRRRRRRR
≥ gs, (13)

which contradicts (12); hence As is a quantized Bh sequence.

In order to complete the proof, we need to show that ∀αj ∈ As, 1 ≤ j ≤ Ks, and ∀A1 ⊆
{α1, α2, . . . , αj−1} ⊆ As such that ∣A1∣ ≤ h, one has αj ≻η ∑αi∈A1

αi. Suppose this were not true

and that fη (αj) ≤ fη (∑αi∈A1
αi) = r, 1 ≤ r ≤ s. As a result,

αj − ∑
αi∈A1

αi < gs. (14)

Let βj = αj

gs
and let B1 ⊆ B be the set which was used to construct A1. Since B is a h-

superincreasing sequence and ∣B1∣ ≤ h, one has

βj > ∑
βi∈B1

βi⇒ βj − ∑
βi∈B1

βi ≥ 1. (15)

By multiplying both sides of (15) by gs, one has αj −∑αi∈A1
αi ≥ gs which contradicts (14). As

a result, As is a SQLOs(η, h) sequence.

Given this result, one can construct SQLOs(η, h) sequences using h-superincreasing se-

quences, as demonstrated in the following example.

Example 4. For example, the sequence B = {1,2,22,23, . . .} is a superincreasing sequence, hence

an h-superincreasing sequence for any value of h, and can be used to construct SQLOs(η, h)
sequences. Given this sequence, one obtains a SQLOs(η, h) sequence such that αK = gs2K−1.

Nevertheless, a simple construction based on recursive equations results in a better upper

bound on the smallest value for αK , as described in Lemma 2. We next state a theorem by
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Ostrovsky [36, Thm. 1.1.4] which we will use in the proof of Lemma 2. The proof of this result

can be found in [36, P. 3].

Lemma 1. Let P (x) = xn − a1xn−1 − ⋅ ⋅ ⋅ − an, where all the coefficients ai, 1 ≤ i ≤ n, are non-

negative, and at least one is nonzero. If the greatest common divisor of the indices of the positive

coefficients equals 1, then the polynomial P (x) has a unique positive root r; in addition, for

any other root of this polynomial denoted by r′, one has ∣r′∣ < r.

Given this lemma, we will prove the following result.

Lemma 2. Let γ be the largest positive real root of the polynomial g(x) = xh+1 − 2xh + 1.

Also, assume that a positive integer K satisfies the condition in Thm. 6; then one can construct

a SQLOs(η, h) sequence such that αK = Og (γK), where g is the largest gap for the first K

thresholds, and γ < 2.

Proof: We construct a sequence B as follows. First, ∀1 ≤ i ≤ h, we set βi = 2i−1. Then, for

i > h, we let βi = βi−1+βi−2+⋅ ⋅ ⋅+βi−h+1. Clearly, this sequence is a h-superincreasing sequence.

The characteristic equation5 of this recurrence is of the form f(x) = xh − xh−1 − ⋅ ⋅ ⋅ − x − 1 = 0,

which satisfies the condition of Lemma 1. In addition, the greatest common divisor of the indices

of the positive coefficients is 1, since all these coefficients are equal to 1. Consequently, Lemma 1

implies that this equation has a unique real positive root, γ, and that the absolute values of all

the other roots are strictly smaller than γ. Consequently, βK = O (γK). Simplifying this equation

by multiplying both sides by (x − 1), the equation becomes xh+1 − 2xh + 1 = 0. Consequently,

one has αK = Og (γK), where γ is the largest positive real root of g(x).

Next, we show that γ < 2. Evaluating g(x) = xh+1 − 2xh + 1 on the real axis reveals that this

function has two local optima at x = 0 and x = 2h
h+1 , and is monotonically increasing for x > 2h

h+1 .

On the other hand, g(2) > 0; in addition, for all h ≥ 1, one has 2 > 2h
h+1 ; consequently, ∀x > 2,

f(x) > f(2) > 0. As a result, the largest positive real solution to g(x) = 0 is strictly smaller than

2 for any finite value of h, i.e. γ < 2.

5The characteristic equation of a linear recurrence relation ai = c1ai−1 + c2ai−2 + ⋅ ⋅ ⋅ + chai−h is an equation of the form
xh − c1xh−1 − c2xh−2 − ⋅ ⋅ ⋅ − ch = 0, the roots of which are used to solve the recurrence.
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B. A decoding algorithm for SQGT codes constructed using SQLOs sequences

We next describe the Dec-SQLOs algorithm, the decoding procedure for codes based on

SQLOs sequences. This algorithm comprises of two steps. The first step is identical to the first

step of Algorithm 1. However, Steps 2 and 3 in Algorithm 1 are replaced by a single step which

has a significantly lower computational complexity than steps 2 and 3. The steps of Dec-SQLOs

are listed in Algorithm 2. The first step identifies the set XD. Given this set, Step 2 identifies

the set of defectives D. In order to show that the second step can identify up to d defectives

in the presence of up to e errors, we state the following lemma and proposition which we find

useful for our subsequent proofs.

Lemma 3. Consider a SQ-separable code constructed using Thm. 5 and let y be the vector of

test results with at most e erroneous entries. Fix any binary codeword xi ∈ XD, and let Si be the

set of nonzero coordinates of xi. Also, let S ′i ⊆ Si, with ∣S ′i ∣ = 2e + 1, be the set of coordinates

such that for any fixed k ∈ S ′i , one has y(k) ≤ y(j), ∀j ∈ Si/S ′i . Then, there exists a set S ′′i ⊆ S ′i
such that ∣S ′′i ∣ ≥ e + 1, and ∀j ∈ S ′′i , one has y(j) = y

D
(j) = fη (∑α∈Ai,t

α); in this equation,

Ai,t ⊆ A denotes the set of coefficients corresponding to the defective codewords with the same

support as xi6.

Proof: Let Ri be the maximal set of coordinates such that ∀j ∈ Ri, xi(j) = 1 and x(j) = 0

for all x ∈ XD/{xi}. Since xi is a codeword of Cb and since ∣XD∣ ≤ d, the disjunctness property

implies that such a set exists and that ∣Ri∣ ≥ 2e + 1; clearly, Ri ⊆ Si. Let Ai,t be the set of

coefficients used to generate the codewords in D with the same support as xi. For all k ∈ Ri,
one has ∑z∈D z(k) = ∑α∈Ai,t

α, and ∀j ∈ Si/Ri, one has ∑z∈D z(j) > ∑α∈Ai,t
α. Note that the

strict inequality follows since Ri is a maximal set. Since all the sums of up to d elements of A
fall into different quantization bins, for any k ∈ Ri and for any j ∈ Si/Ri, one has

fη (∑
z∈D

z(k)) < fη (∑
z∈D

z(j)) .

As a result, if there were no errors in y, one would have S ′i ⊆ Ri. Each erroneous entry of

y removes at most one coordinate of Ri from S ′i . Since there are at most e errors and ∣S ′i ∣ =

6As an example, assume that xi ∈ XD and let {αj1xi, αj2xi, αj3xi} ∈ D be the only codewords in C with the same support
as xi in D. In this case, Ai,t = {αj1 , αj2 , αj3}.
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Algorithm 2: Dec-SQLOs

Input: y ∈ [Q]m, Cb ∈ [2]m× n
K , η, A, e ≥ 0

Output: D̂

Step 1: Initialize X ← ∅ and D̂ ← ∅
For i = 1,2, . . . , nK do

xi ← the i-th codeword of Cb

Ni ← number of coordinates j for which xi(j) > y(j)
If Ni ≤ e then

Set X ← X ∪ {xi}
End

End

Step 2:
For i = 1,2, . . . , ∣X ∣ do

Set Si ← {the set of nonzero coordinates of xi}
Set S ′i ← {subset of Si with ∣S ′i ∣ = 2e + 1 s.t. ∀k ∈ S ′i and ∀j ∈ Si/S ′i , one has y(k) ≤ y(j)}
Initialize the multiset B′ ← ∅
For j = 1,2, . . . , ∣S ′i ∣ do

ηu ← the upper threshold of the quantization bin of y(j)
ηl ← the lower threshold of the quantization bin of y(j)
β ← the integer ηl ≤ β < ηu that can be written as the sum of up to d elements of A

(use Proposition 2)
Update the multiset B′ ← B′ ∪ {β}

End
Set β̂t ← the element of B′ with at least e + 1 repetitions
Set Âi,t ← {the unique subset of A with the sum equal to β̂t}
Set D̂i ← {codewords of C of the form z = αxi, ∀α ∈ Âi,t}

End

Return D̂ = ⋃i D̂i

2e + 1, there exists a set of coordinates S ′′i ⊆ S ′i ∩ Ri with cardinality at least e + 1 for which

the corresponding entries of y are error-free. As a result, ∀j ∈ S ′′i one has y(j) = y
D
(j) =

fη (∑α∈Ai,t
α).

Proposition 2. Given a SQLOs(η, d) sequence A and a fixed integer β, one can identify whether

β can be written as a sum of up to d elements of A with an algorithm of computational complexity
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O(K), where K = ∣A∣. Given that the answer to this question is positive, one can identify the

elements of A which sum up to β with computational complexity O(K).

Proof: This problem is known as the knapsack-solvability problem [35]. From the second

property of Proposition 1, ∀i ∶ 1 ≤ i ≤ K and ∀A1 ⊆ {α1, α2, . . . , αi−1} such that ∣A1∣ ≤ d, one

has αi ≻η ∑αj∈A1
αj , which also implies that αi > ∑αj∈A1

αj .

To find the answer to the query with linear computational complexity, we perform a standard

knapsack recursion [35]. First, we initialize the procedure by setting β′ ← β and Âβ ← ∅. Then,

in the i-th iteration, we compare the value of β′ with the i-th largest element of A, αK−i+1. If

β′ ≥ αK−i+1, then we update β′ ← β′ − αK−i+1 and Âβ ← Âβ ∪ {αK−i+1}; otherwise, we go to

the next iteration. The procedure stops with a negative answer to the first query if ∣Âβ ∣ > d or if

β′ > 0 and no element in A is left that is smaller than or equal to β′. Otherwise, the procedure

stops when β′ = 0 with a positive answer to the first query, and Âβ corresponds to the elements

of A that sum up to β. Note that this procedure is based on the superincreasing property of a

SQLOs sequence, which implies that the largest element of A that does not exceed β′ must be

present in the sum.

The previous proposition and lemma provide the core of the second step of Algorithm 2. The

idea is that for each xi ∈ XD, we use Lemma 3 to find S ′i . The majority of elements y(j), j ∈ S ′i ,
correctly correspond to the bin in which βt = ∑α∈Ai,t

α is located. Each correctly identified bin

contains a finite number of integers, one of which is the true value of βt. As a result, by testing

each such integer, we can determine whether it can be written as the sum of up to d elements

of A or not using the algorithm in Proposition 2. The integer for which the answer to this query

is positive is equal to βt, which can then be used to identify the elements of Ai,t.

Theorem 7. The Dec-SQLOs algorithm is capable of identifying up to d defectives in the presence

of at most e errors in the syndrome of defectives.

Proof: Since the first step of this algorithm is identical to the first step of the Dec-QBh

algorithm, it follows that X = XD. Therefore, we only need to show that Step 2 recovers D given

XD.

Fix a binary vector xi ∈ XD. Fix a coordinate j ∈ S ′i , and let ηl and ηu be the lower and upper

thresholds of the quantization bin corresponding to y(j). Since all the sums of up to d elements
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of A fall into different bins, there exists exactly one subset sum β in [ηl, ηu) that corresponds

to the sum of up to d elements of A. As a result, one can test all the (ηu − ηl) integers in this

bin using Proposition 2 to find the unique value of β that can be written as sum of up to d

elements of A. On the other hand, as was shown in Lemma 3, there exists a set S ′′i ⊆ S ′i such

that ∣S ′′i ∣ ≥ e + 1, and consequently ∀j ∈ S ′′i one has y(j) = fη (∑α∈Ai,t
α) = fη (βt). As a result,

the element β in the multiset B′ with multiplicity at least e + 1 corresponds to βt, or in other

words β̂t = βt. This implies that Âi,t = Ai,t, and consequently, D̂ = D.

Remark 5. The computational complexity of the Dec-SQLOs algorithm is equal to O(mnK +
dm logm + degmaxK), where gmax = maxi=1,2,...,Q (ηi − ηi−1) is the largest gap between the

consecutive thresholds. The computational complexity of Step 1 is O(mnK ). On the other hand,

sorting the elements of Si to find S ′i requires O(dm logm) computations. One can identify the

elements of A that sum up to a fixed integer in linear time., i.e. using O(K) computational steps.

As a result, the algorithm for finding β in each iteration has complexity O(egmaxK). Hence,

finding Âi,t requires O(degmaxK) computational steps.

VI. SQ-SEPARABLE CODES USING SQLOl SEQUENCES

The SQLOs sequences introduced in the previous section resolves the problem of exponential

growth of decoding computational complexity with respect to K. However, due to the superin-

creasing property of these sequences (the second property in Prop. 1) the multipliers αK tend

to grow rapidly as a function of K. In order to overcome this issue while preserving efficient

decoding, we introduce a new family of integer sequences, termed SQLOl sequences.

Definition 10 (SQLOl(η, h) sequences). Given a set of thresholds η, a sequence of positive

integers A = {α1, α2, . . . , αK} is a SQLOl(η, h) sequence if

1) αK ≻η αK−1 ≻η . . . α2 ≻η α1 ≻η 0 (i.e., all elements of A lie in different quantization bins).

2) For any two subsets A1 ⊆ A and A2 ⊆ A such that ∣A1∣ < ∣A2∣ ≤ h, one has ∑αi∈A2
αi ≻η

∑αi∈A1
αi (i.e., subsets of different cardinality are ordered based on the number of their

members).

3) For any two distinct subsets A1 = {α′1, α′2, . . . , α′s} and A2 = {α′′1 , α′′2 , . . . , α′′s } with elements

listed in an increasing order such that ∣A1∣ = ∣A2∣ = s ≤ h, one has ∑α′′i ∈A2
α′′i ≻η ∑α′i∈A1

α′i
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if there exists r ∶ 1 ≤ r ≤ s such that ∀i ∶ 1 ≤ i < r, α′i = α′′i and α′′r ≻η α′r (i.e., two subsets

with the same cardinality are lexicographically ordered).

The following example illustrates how SQLOl properties may lead to denser sequences com-

pared to SQLOs sequences.

Example 5. As an example, consider the set of thresholds η = [0,2,5,6,10,11,15,18]T and let

h = 2 and K = 3. The sequence A1 = {2,5,10} is a SQLOs(η,2) sequence that has the smallest

value for α3, i.e. α3 = 10. On the other hand, the sequence A2 = {4,5,6} is a SQLOl(η,2)
sequence that has the smallest value for α3, i.e. α3 = 6.

The SQLOl properties impose a partial order on the subsets of the sequence. For example, if

K = 3 and h ≥K, these properties translate into α3 +α2 +α1 ≻η α3 +α2 ≻η α3 +α1 ≻η α2 +α1 ≻η
α3 ≻η α2 ≻η α1 ≻η 0. Similarly to the case of SQLOs sequences, it is not difficult to see that any

SQLOl(η, h) sequence is also a quantized Bh sequence; however, the converse is not necessarily

true. As a result, the following theorem holds.

Theorem 8. Fix a binary d-disjunct code matrix Cb of dimensions mb×nb, capable of correcting

up to e errors. Let A = {α1, α2, . . . , αK} be a SQLOl(η, d) sequence. Form a matrix C of length

m =mb and size n =Knb by concatenating K matrices Ci = αiCb, 1 ≤ i ≤K horizontally. The

constructed code is a [q;Q;η; (1 ∶d); e]-SQ-separable code with q = αK + 1.

Proof: Since any SQLOl(η, d) sequence is a quantized Bd sequence, the proof follows

directly from Thm. 2.

A. Fundamental limits and construction of SQLOl sequences

In [37], two types of lexicographically ordered sequences were defined that are closely related

to the SQLOl sequences. For simplicity, we call these sequences “lex(h)” and “strong-lex(h)”

and we provide their definition for completeness.

Definition 11. A sequence of positive integers B = {β1, β2, . . .} is a lex(h) sequence, if for any

two distinct subsets B1 = {β′1, β′2, . . . , β′h} and B2 = {β′′1 , β′′2 , . . . , β′′h} with elements listed in an

increasing order, one has ∑β′′i ∈B2 β
′′
i > ∑β′i∈B1 β

′
i if there exists an integer r, 1 ≤ r ≤ h, such that

∀i, 1 ≤ i < r, β′i = β′′i and β′′r > β′r.
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Definition 12. A sequence of positive integers B = {β1, β2, . . .} is a strong-lex(h) sequence, if

it is a lex(s) sequence ∀s ≤ h; in addition, for any two subsets B1 ⊆ B and B2 ⊆ B such that

∣B1∣ < ∣B2∣ ≤ h, one has ∑βi∈B2 βi > ∑βi∈B1 βi.

The strong-lex(h) sequences can be used to construct SQLOl sequences as shown in the next

proposition.

Proposition 3. Consider a SQGT model with thresholds η = [0, η1, η2, . . . , ηQ]T ; ∀s ∶ 1 ≤ s ≤ Q,

let gs = maxi∶1≤i≤s ηi−ηi−1 be the largest gap of the first s thresholds. Let B = {β1 < β2 < . . .} be a

strong-lex(h) sequence. For a fixed s, 2 ≤ s ≤ Q, let Ks be the largest positive integer that satisfies

ηs > gs∑Ks

i=max{1,Ks−h} βi. Then all the sequences of the form As = {gs β1, gs β2, . . . , gs βKs} are

SQLOl(η, h) sequences.

Proof: The proof of this proposition follows along the same lines as the proof of Thms. 3

and 6, and is hence omitted.

As we demonstrated through a simple example earlier, the SQLOl properties may result in

denser sequences compared to SQLOs properties. However, a SQLOl(η, h) sequence constructed

from strong-lex(h) sequences according to Proposition 3 does not improve the bound αK =
Og (γK) derived in Lemma 2. This can be shown as follows. We define an optimal lex(h)

sequence as a lex(h) sequence B = {β1, β2, . . . , βK} with the smallest possible value of βK .

In [37, Thm. 1], it was proven that the largest element of an optimal lex(h) sequence satisfies

βK = O (γK), where γ is the largest root of xh+1 − 2xh + 1 = 07. Since any strong-lex(h)

sequence needs to also satisfy the lex(h) property, one can conclude that a SQLOl(η, h) sequence

constructed from strong-lex(h) sequences according to Proposition 3 cannot improve the bound

αK = Og (γK).

B. Decoding algorithm for SQGT codes constructed using SQLOl sequences

Next, we describe the Dec-SQLOl algorithm, the decoding procedure for codes based on

SQLOl sequences. This algorithm resembles the Dec-SQLOs algorithm, and similar intuition

also applies as follows. In the first step, one identifies X = XD, the set of binary codewords

7Note that there exists a typo in the statement of [37, Thm. 1], in which γ is defined as the largest root of xh+1 −xh + 1 = 0.
However, it is evident from the proof of the theorem that γ is in fact the largest root of xh+1 − 2xh + 1 = 0.
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corresponding to the support of the codewords in D. To complete the decoding, one needs to

identify the set of elements Ai,t ⊆ A which are used to form the codewords in D from the binary

codeword xi, ∀xi ∈ XD.

Since in the proof of Lemma 3 we only used the quantized Bd property, this lemma also holds

for codes constructed using Thm. 8. As a result, using the notation defined in Lemma 3, for

any binary codeword xi ∈ XD there exists at least e+1 elements of S ′i , denoted by S ′′i , such that

∀j ∈ S ′′i one has y(j) = fη (∑α∈Ai,t
α). This implies that the majority of elements y(j), j ∈ S ′i ,

correctly correspond to the bin in which βt = ∑α∈Ai,t
α is located. Each correctly identified bin

contains a limited number of integers, one of which is the true value of βt. As a result, by testing

each such integer, we can determine whether it can be written as the sum of up to d elements

of A or not. The integer for which the answer to this query is positive is equal to βt, which can

then be used to identify the elements of Ai,t.
As a result, given a SQLOl sequence A and an integer β, the main issue is to efficiently

determine whether β can be written as the sum of up to d elements of A; and if so, what those

elements are. In Lemma 4, an algorithm with computational complexity of O(K) is described

that can perform this task.

Lemma 4. Given a SQLOl(η, d) sequence A and a fixed integer β, it is possible to identify

whether β can be written as a sum of up to d elements of A with complexity O(K), where

K = ∣A∣. Given that the answer to this question is positive, one can identify these elements of

A with complexity O(K).

Proof: Suppose β can be written as the sum of s ≤ d elements of A, and let At ⊆ A be the

subset such that ∑α∈At
α = β. The value of s = ∣At∣ can be easily determined as follows. First,

we form the set Γ = {γ1, γ2, . . . , γK}, where γi = ∑i
j=1αi, 1 ≤ i ≤ K. As a consequence of the

second property in Def. 10, for any 1 ≤ i ≤K, γi is larger than all j-subsets of A for j < i. On

the other hand, due to the third property in Def. 10, γi is smaller than all j-subsets of A for

j ≥ i. Consequently, one can determine s using s = min{i ∶ β < γi} − 1.

Given the value of s, we can determine the elements of At successively using K iterations.

First, we initialize the procedure by setting s′ ← s, β′ ← β, and A′ ← ∅. In the i-th iteration,

1 ≤ i ≤ K, we determine whether αi ∈ At or not. At the beginning of the i-th iteration, A′

equals At ∩{α1, α2, . . . , αi−1}, and s′ is equal to the number of remaining unidentified elements
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of At, i.e. s′ = ∣At/A′∣. In addition, β′ is equal to the sum of s′ elements in At/A′. To determine

whether αi is in At, we use the following rule: if β′ < αi+1 + αi+2 + ⋅ ⋅ ⋅ + αi+s′ , then αi ∈ At; the

reason is that the sum of any s′ elements of {αi, αi+1, . . . , αK} that does not include αi is at

least as large as αi+1 + αi+2 + ⋅ ⋅ ⋅ + αi+s′ . Therefore, if β′ < αi+1 + αi+2 + ⋅ ⋅ ⋅ + αi+s′ , then αi must

be in At. Given that this condition is satisfied, we update A′ ← A′ ∪ {αi}, β′ ← β′ − αi, and

s′ ← s′ − 1. Otherwise, we go to the next iteration. The algorithm stops after K iterations. At

the end, if s′ = 0 and ∣A′∣ ≤ d, the answer to the first query is positive and A′ = At. Otherwise

the answer to the query is negative.

The decoding algorithm for codes constructed using Thm. 8 is described in Algorithm 3.

Note that the main difference between this algorithm and Algorithm 2 is that in Step 2, we use

Lemma 4 instead of Proposition 2.
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Algorithm 3: Dec-SQLOl

Input: y ∈ [Q]m, Cb ∈ [2]m× n
K , η, A, e ≥ 0

Output: D̂

Step 1: Initialize X ← ∅ and D̂ ← ∅
For i = 1,2, . . . , nK do

xi ← the i-th codeword of Cb

Ni ← number of coordinates j for which xi(j) > y(j)
If Ni ≤ e then

Set X ← X ∪ {xi}
End

End

Step 2:
For i = 1,2, . . . , ∣X ∣ do

Set Si ← {the set of nonzero coordinates of xi}
Set S ′i ← {subset of Si with ∣S ′i ∣ = 2e + 1 s.t. ∀k ∈ S ′i and ∀j ∈ Si/S ′i , one has y(k) ≤ y(j)}
Initialize the multiset B′ ← ∅
For j = 1,2, . . . , ∣S ′i ∣ do

ηu ← the upper threshold of the quantization bin for y(j)
ηl ← the lower threshold of the quantization bin for y(j)
β ← the unique integer ηl ≤ β < ηu that can be written as the sum of up to d elements

of A (use Lemma 4)
Update the multiset B′ ← B′ ∪ {β}

End
Set β̂t ← the element of B′ with at least e + 1 repetitions
Set Âi,t ← {the unique subset of A with the sum equal to β̂t}
Set D̂i ← {codewords of C of the form z = αxi, ∀α ∈ Âi,t}

End

Return D̂ = ⋃i D̂i
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