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1. Introduction

The aim of this study is to present a detailed and elaborated exposition of the subject

in the title with almost all claims proved by arguments that mostly do not coincide

with those in the original articles. Namely, since much work has been done so far in

the Belgrade school, the present-day views are more mature and hence they differ from

the originally perceived ones, and make possible simpler proofs. This fact alone should

justify writing most of this review as if it were done for the first time. There is also

the additional fact that many results of the research have been previously presented in

the formalism in which bipartite state vectors are written as antilinear Hilbert-Schmidt

operators mapping one subsystem state space into the other (cf [1]), which is not well

known, and it is very rarely used. Eventually, this approach has been found replaceable

by standard basis-independent treatment. The basic aim is an in-depth study of the

Schmidt decomposition. Its various forms are presented with its underlying foundations

in three layers.

We assume that a completely arbitrary bipartite state vector |Ψ〉AB is given.

It is an arbitrary normalized vector in HA⊗HB, where the factor spaces are finite- or

infinite-dimensional complex separable Hilbert spaces, the state spaces of the subsystems

A and B. The statements are, as a rule, asymmetric in the roles of the two factor spaces.

But, as it is well known, for every general asymmetric statement, also its symmetric

counterpart, obtained by exchanging the roles of subsystems A and B, is valid.

Having in mind local, i. e., subsystem measurement, we choose arbitrarily that

it is performed on subsystem B. (That this choice is practical for presentation will be

obvious in relation (30) below and further.) We call subsystem B the ’nearby’ one, and

the opposite subsystem A, which is not affected dynamically by the local measurement,

we call ’distant’. This is not a synonym for ’far away’. But the suggestion of the latter

may help to picture the lack of dynamical influence on subsystem A.

The basic mathematical tool in the analysis are the partial scalar product

(elaborated in Appendix A) and the rules of the partial trace (presented and proved

in Appendix B).

Hermitian operators, i. e., observables and subsystem state operators (density

operators) will be given, unless otherwise stated, in their so-called ’unique’ spectral

forms, which are defined by lack of repetition in the eigenvalues. For instance,

O =
∑

k okPk, k 6= k′ ⇒ ok 6= ok′ , where ”⇒” denotes logical implication. Then

Pk is said to be the eigen-projector of O that corresponds to the eigenvalue ok ,

and its range R(Pk) is the corresponding eigen-subspace. We consider only Hermitian

operators that have a purely discrete spectrum. We call them discrete operators.

Vectors that are not necessarily of norm one are written overlined throughout. Be-

sides, when a number multiplies from the left a vector or an operator, the multiplication

symbol × is put between them for clarity. One should keep in mind the convention

that if a term in a sum has two or more factors and the first is zero, the rest need not be
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defined; it is understood that the entire term is zero. In tensor products of vectors we

put only occasionally the tensor multiplication sign ’⊗’ when more clarity is required.

By ”basis” we mean a complete ortho-normal set of elements throughout.

The reader will not find, hopefully, the abundant use of mathematical structure

(theorems, propositions, lemmata, corollaries, remarks and definitions) annoying. They

are important for the many cross-references in the present paper, as well as for references

in future articles. Besides, they reveal the logical status of the claim they contain.

The arrangement of the exposition in sections and subsections goes as follows.

2 Expansion in a subsystem basis

3 Schmidt decomposition

4 Correlated Schmidt decomposition

5 Twin-correlated Schmidt decomposition

6 Distant measurement and EPR states

6.1 Distant measurement

6.2 EPR states

6.3 Schroedinger’s steering

7 Concluding remarks

AppA Partial scalar product

AppB The partial-trace rules

2. Expansion in a subsystem basis

The natural framework for Schmidt (or biorthogonal) decomposition is decomposition

in a factor-space basis, or, as we shall call it, expansion in a subsystem basis.

Theorem 1. A) Let |Ψ〉AB

(

∈ (HA ⊗HB)
)

be any bipartite state vector. Let

further {|n〉B : ∀n} be an arbitrary basis in the state space HB . Then there exists

a unique expansion in the subsystem basis

|Ψ〉AB =
∑

n

|n〉A |n〉B. (1a)

The ’expansion coefficients’ |n〉A have the form

∀n : |n〉A =
∑

m

(〈m |A 〈n |B|Ψ〉AB)× |m〉A, (1b)

where {|m〉A : ∀m} is an arbitrary basis in HA . The ’expansion coefficients’ |n〉A
in (1a) are elements in HA , and they are not necessarily of norm one. They depend

only on |Ψ〉AB and the corresponding basis elements |n〉B , and not on the choice

of the rest of basis elements in the basis {|n′〉B : ∀n′} .
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The sums in (1a) and (1b), if infinite, are absolutely convergent, and one has

|| |Ψ〉AB||
2 =

∑

n

|||n〉A||
2, (1c)

as well as

∀n : |||n〉A||
2 =

∑

m

|〈m |A 〈n |B|Ψ〉AB|
2. (1d)

In case of infinity, each of the sums is an absolutely convergent series as ’inherited’ from

the absolutely convergent series

|Ψ〉AB =
∑

mn

[(〈m |A 〈n |B|Ψ〉AB)× |m〉A |n〉B]. (1e)

Further, one can suitably write ∀n : |n〉A = |||n〉A||× | n〉A (definition of the

norm -one elements {| n〉A : ∀n} ), and replace these in (1a). Relation (1a) then

becomes

|Ψ〉AB =
∑

n

|||n〉A||× |n〉A |n〉B, (1f)

This is an expansion in the ON set of elements {| n〉A | n〉B : ∀n} in HA ⊗ HB .

Actually, it is ’normal’ in both factors, but orthogonal, in general, only in the second

one. Some norm-one elements | n〉A may not exist, when |n〉A = 0 (depending on

|Ψ〉AB ).

B) The expansion coefficients can be evaluated utilizing the partial scalar

product

∀n : |n〉A =
(

〈n |B|Ψ〉AB

)

A
. (1g)

Proof A) is straightforward, but, on account of the importance of the theorem

(see end of the section), it is presented as easy reading.

Let {| m 〉A : ∀m} be an arbitrary basis in HA . Then one can perform

the expansion (1e). As it is well known, if the double-sum is infinite, the series is

absolutely convergent allowing any change of order in which the terms are written (any

permutation). Hence we can group together all terms around each |n〉B tensor factor

and rewrite (1e) as

|Ψ〉AB =
∑

n

(

∑

m

(〈m |A 〈n |B|Ψ〉AB)× |m〉A
)

|n〉B.

Thus one obtains (1a) and (1b).

In this way we have established that the claimed expansion exists. Now we show

that the ’expansion coefficients’ |n〉A in (1a) do not depend on the choice of the

basis {| m 〉A : ∀m} . Let {| k 〉A : ∀k} be any other basis in HA , and let

∀m : |m〉A =
∑

k Um,k |k〉A be the unitary transition matrix. Then, starting with the

’expansion coefficient’ evaluated in the first basis, we find out its form in the second

basis:

|n〉A =
∑

m

(

(〈m |A 〈n |B|Ψ〉AB)× |m〉A
)

=
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∑

k

∑

k′

∑

m

U∗
m,kUm,k′(〈k |A 〈n |B|Ψ〉AB)× |k〉A.

Since
∑

m U
∗
m,kUm,k′ = δk,k′ is valid for the unitary transition matrix elements, one is

further led to

|n〉A =
∑

k

(〈k |A 〈n |B|Ψ〉AB)× |k〉A.

Obviously, if the ’expansion coefficient’ were evaluated in the other basis, it would give

the same element of HA . The additional claims in (A) are obvious.

B) Proof of (1g) is given in Appendix A, where the partial scalar product is defined

in ’three and a half ways’; one of them consisting precisely in equating RHS(1b) and

RHS(1g).) ✷

Corollary 1. If the nearby state is pure, i. e., a state vector, e. g. | n̄〉B , then

also the distant state is necessarily pure, but it can be arbitrary (depending on |Ψ〉AB ).

Proof. By assumption ρB ≡ trA
(

| Ψ〉AB〈Ψ |AB

)

=| n̄ 〉B〈 n̄ |B . Choosing

a nearby-subsystem basis {| n 〉B : ∀n} so that it contains | n̄ 〉B , one obtains

〈n |B ρB |n′〉B = δn,n̄δn′,n̄ | n̄〉B〈n̄ |B .

On the other hand, expansion (1a) implies

〈n |B ρB |n′〉B = 〈n |B trA
(

|Ψ〉AB〈Ψ |AB

)

|n′〉B = |n〉A 〈n′ |A.

Altogether,

|n〉A〈n′ |A = δn,n̄δn′,n̄ | n̄〉B〈n̄ |B,

i. e., ∀n : |n〉A = δn,n̄| n̄〉A . Hence, | Ψ〉AB =| n̄〉A | n̄〉B ( | n̄〉A is of norm one

because so are |Ψ〉AB and | n̄〉B ). ✷

As an alternative proof of Corollary 1 one may consider the canonical Schmidt

decomposition (cf Definition 3 and relation (5) together with (6a,b) below). Then the

claim in Corollary 1 is obvious, but the burden of the proof lies on Theorem 3.

We define a term known in the literature.

Definition 1. If ρ is an arbitrary mixed state (density operator that is not a

rewritten state vector) of a quantum system in the state space (Hilbert space) H ,

then one can isomorphically map H onto the subsystem state space HA of a bi-

partite quantum system the state of which is in HA ⊗ HB , and find a state vector

|Ψ〉AB such that its first-subsystem state operator (reduced density operator) ρA is

isomorphic to the initially given ρ . This procedure is called purification.

Theorem 2. On purification. Any mixed state ρ can be purified if it is

written as any mixture

ρ =
∑

n

|n〉 〈n | (1h)
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by writing down a bipartite state vector | Ψ〉AB in the form (1a) with any basis in

HB , denoted as {| n〉B : ∀n} , with expansion coefficients |n〉 given by (1c) with

added index A. The subsystem state operator (reduced density operator) ρA is then

isomorphic to ρ.

Proof. Evaluating ρA ≡ trB | Ψ 〉AB〈 Ψ |AB and keeping in mind that

tr(|n〉A〈n
′ |A) = 〈n′ |A|n〉A = δn,n′ , one obtains ρA =

∑

n |n〉A〈n |A . ✷

To understand the importance of subsystem-basis decomposition (1a), one must

realize that expansion (1a) is a cross-road. A number of different paths lead from it:

(i) Definition of the partial scalar product. Von Neumann in his seminal book [?],

in which he gave the mathematical grounding of quantum mechanics in case of infinite-

dimensional state spaces, did not encompass partial scalar product and partial trace.

Therefore, a careful mathematical exposition of these concepts is given, together with

the basic properties, in Appendices A, B and C.

(ii) The expansion at issue leads to purification (cf Theorem 2 and relation (1d)

above).

(iii) It is the framework for Schmidt decomposition (see section 3 and further).

(iv) Remark 5 and relation (12) below open the way for a more fruitful application

of (1a), particularly for Schrö dinger’s important concept of steering (cf subsection 6.3

below).

(v) Expansion (1a) gives a new angle on the concept of erasure (cf Remark 22

below).

(vi) A theory of preparation in quantum experiments can be based on (1a): If

the preparator is sybsystem B, and the object on which the experiment is conducted

is subsystem A, and if | Ψ 〉AB is the state after interaction, then | n 〉B is the

state of the preparator that the experimenter ’sees’ at the end of the preparation, and

simultaneously |n〉A is then the state of the experimental object (at the beginning of

the experiment). This will be elaborated in future work.

(vii) Expansion (1a) can play a crucial role in Everett’s relative-states interpretation

of quantum mechanics: The state |n〉A is the relative state of subsystem A with respect

to the state |n〉B of subsystem B in the composite-system state |Ψ〉AB . A detailed

discussion of this and its ramifications is left for future work.

Subsystem-basis expansion (1a), and the enumerated paths (i) and (iv)-(vii) that

lead away from it were not analyzed in previous work. This material is new in this article.

3. Schmidt decomposition

Now we define Schmidt (or biorthogonal) decomposition. It is well known and much

used in the literature.
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Definition 2. If besides the basis elements |n〉B also the expansion coefficients

|n〉A are orthogonal in expansion (1a), then one speaks of a Schmidt or biorthogonal

decomposition. It is usually written in terms of subsystem state vectors {|n〉A : ∀n}

that are not only orthogonal, but also normalized:

|Ψ〉AB =
∑

n

αn |n〉A |n〉B, (2),

where ∀n : αn are complex numbers, and ∀n : |n〉A and |n〉B for the same n

value are referred to as partners in a pair of Schmidt states.

The term ”Schmidt decomposition” can be replaced by ”Schmidt expansion” or

”Schmidt form”. To avoid confusion, we’ll stick to the first term throughout (as it is

usually done in the literature).

Theorem 3. Expansion (1a) is a Schmidt decomposition if and only if the

second-tensor-factor-space basis {|n〉B : ∀n} is an eigen-basis of the corresponding

reduced density operator ρB
[

≡ trA
(

|Ψ〉AB〈Ψ |AB

)]

:

∀n : ρB |n〉B = rn |n〉B, 0 ≤ rn. (3)

Proof. Let us evaluate 〈n |A|n′〉A making use of (1b).

〈n |A|n′〉A =
(

〈Ψ |AB|n〉B
)(

〈n′ |B|Ψ〉AB

)

= 〈Ψ |AB

(

|n〉B〈n
′ |B

)

|Ψ〉AB =

tr
(

(|Ψ〉AB〈Ψ |AB)(|n〉B〈n
′ |B)

)

= trB
[(

trA(|Ψ〉AB〈Ψ |AB)
)

(|n〉B〈n
′ |B)

]

=

trB
(

ρB(|n〉B〈n
′ |B)

)

= 〈n′ |B ρB |n〉B.

The third equality in the above derivation, where the expectation value is rewritten as

a suitable trace, is a standard, textbook step. (Evaluating the trace in a basis in which

the relevant state vector is one of the basis elements, the equality becomes obvious.) In

the fourth equality the first partial-trace rule (cf Appendix B) was used.

We have obtained

〈n |A|n′〉A = 〈n′ |B ρB |n〉B. (4)

It is clear from relation (4) that the vectors {|n〉A : ∀n} are orthogonal if and

only if ρB is diagonal, and this is the case if and only if the eigenvalue relations (3)

are valid as claimed. ✷

Corollary 2. If one expands |Ψ〉AB in a second-subsystem basis like in (1a), then

the subsystem state (reduced density operator) ρA is given as a mixture (1c). If, in

addition, the B-subsystem basis is an eigen-basis of ρB , then (1c) is simultaneously
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also a spectral decomposition of ρA (in terms of its eigen-vectors).

Now we turn to a special form of Schmidt decomposition that is often more useful.

It is called canonical Schmidt decomposition. It is due to the fact that the non-trivial

phase factors of the non-zero coefficients αn in (2) can be absorbed either in the basis

elements in HA or in those in HB (or partly in the former and partly in the latter).

Definition 3. If in a Schmidt expansion (2) all αm are non-negative real

numbers, then we write the expansion in the following way:

|Ψ〉12 =
∑

i

r
1/2
i | i〉A | i〉B, (5)

and the sum is confined to non-zero terms (one is reminded of all this by the re-

placement of the index n by i in this notation). Relation (5) is called canonical

Schmidt decomposition. (The term ”canonical” reminds of the form of (5), i. e., of

∀i : r
1/2
i > 0. )

Needless to say that every | Ψ〉AB can be written in the form of a canonical

Schmidt decomposition, and it is, of course, non-unique.

Corollary 3. Every canonical Schmidt decomposition (5) is accompanied by the

spectral forms of the reduced density operators:

ρs =
∑

i

ri | i〉s〈i |s, s = A,B. (6a, b)

(Note that the same eigenvalues ri appear in (5) and in the two spectral forms (6a)

and (6b). Note also that (6a) is the same as (1c) if the RHS(1c) is determined by (1a),

and {|n〉B : ∀n} is an eigen-basis of ρB .)

Proof. The Schmidt canonical decomposition (5) allows the straightforward

evaluation

ρA ≡ trB
(

|Ψ〉AB〈Ψ |AB

)

=
∑

i,i′
r
1/2
i r

1/2
i′ trB

(

| i〉A | i〉B〈i
′ |A 〈i′ |B

)

=

∑

i,i′
r
1/2
i r

1/2
i′ (| i〉A〈i

′ |A)tr
(

| i〉B〈i
′ |B

)

= RHS(6a)

(the first partial-trace rule was made use of). Relation (6b) is proved symmetrically. ✷

One should note that the ranges R(ρs), s = A,B , of the reduced density opera-

tors ρs, s = A,B are equally dimensional. The common dimension is the number

of terms in a canonical Schmidt decomposition (5). (It is sometimes called the Schmidt

rank of the given bipartite state vector.)
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We denote the range-projectors of the reduced density operators ρs, s = A,B

by Qs, s = A,B . It is seen from (6a,b) that

Qs =
∑

i

| i〉s〈i |s, s = A,B (6c, d)

are valid. The reduced density operators have equal positive eigenvalues {ri > 0 : ∀i}

(implying equality of the multiplicities of the distinct ones among them). The possible

zero eigenvalues may differ arbitrarily (cf (6a,b)).

The Schmidt canonical decomposition was studied in [3].

Corollary 4. The following relations are always valid:

|Ψ〉AB = Qs |Ψ〉AB, s = A,B.

Proof. Since Qs =
∑

i | i〉s〈i |s, s = A,B , the claim is obvious when |Ψ〉AB is

written as a canonical Schmidt decomposition (5). ✷

Corollary 5. One always has

|Ψ〉AB ∈ R(QAQB).

Remark 1. If we enumerate by j the distinct positive common eigenvalues

{rj > 0 : ∀j} of ρs, s = A,B , and by Qj
s, s = A,B the corresponding eigen-

projectors, then one has the relations

ρs =
∑

j

rjQ
j
s, s = A,B, (7a)

R̄(ρs) = R(Qs) =
⊕
∑

j

R(Qj
s) s = A,B. (7b)

∀j : dim
(

R(Qj
A)

)

= dim
(

R(Qj
B)

)

<∞. (7c)

As to (7b), one should note that if and only if dim(R(ρs)
)

= ∞, s = A,B , then the

range R(ρs) is a linear manifold that is not equal but only dense in its topological

closure R̄(ρs), s = A,B . The symbol ”⊕” denotes orthogonal sum of subspaces.

One should also note that all positive-eigenvalue eigen-subspaces R(Qj
s) are

necessarily always finite dimensional ((7c)) because
∑

i ri = 1 (a consequence of

the normalization of | Ψ 〉AB ), and hence no positive-eigenvalue can have infinite

degeneracy. But there may be denumerably infinitely many distinct positive eigenvalues

rj .
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We refer to (7a), (7b) and (7c) as the subsystem picture of |Ψ〉AB . It serves

as a first layer of an underlying grounding for Schmidt decomposition.

Remark 2. One can say that one has a canonical Schmidt decomposition (5) if

and only if the expansion is bi-ortho-normal and all expansion coefficients are positive.

Remark 3. A canonical Schmidt decomposition (5) of any bipartite state vector

| Ψ〉AB is non-unique because the eigen-sub-basis {| i〉B : ∀i} of ρB spanning its

range R(ρB) is non-unique. Even if ρB is non-degenerate in all its positive eigen-

values, there is the non-uniqueness of the phase factors of | i〉B .

4. Correlated Schmidt decomposition

We investigate further the mentioned non-uniqueness (see end of the preceding section).

In the canonical Schmidt decomposition (5) it is clear that the entanglement in |Ψ〉AB

boils down to the choice of the partner in the terms of the decomposition.

We introduce explicitly this choice of a partner keeping in mind the subsystem

picture (cf (7a)-(7c)). It turns out that the best thing to do is to define an antiunitary

map that takes the (topologically) closed range R̄(ρB) onto the symmetrical entity

R̄(ρA).

The map is called the correlation operator, and it is denoted by the symbol

Ua [4], [3], [5].

Definition 4. If a canonical Schmidt decomposition (5) is given, then the two ON

sub-bases of equal power {| i〉B : ∀i} and {| i〉A : ∀i} appearing in it determine

an antiunitary, i. e., antilinear and unitary, operator Ua, the correlation operator

- a correlation entity inherent in the given state vector |Ψ〉AB:

∀i : | i〉A ≡
(

Ua | i〉B
)

A
. (8)

The correlation operator Ua, mapping R̄(ρB) onto R̄(ρA), is well defined by

(8) and by the additional requirements of antilinearity (complex conjugation of numbers,

coefficients in any linear combination on which the operator may act) and continuity

(if the bases are infinite). (Both these requirements follow from that of antiunitarity.)

Preservation of every scalar product up to complex conjugation, which, by definition,

makes Ua antiunitary, is easily seen to follow from (8) and the requirements of anti-

linearity and continuity because Ua takes a basis into another one.

Definition 5. On account of Definition 4 and (8), any canonical Schmidt
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decomposition (5) of any bipartite state vector |Ψ〉AB can be written in the form

|Ψ〉AB =
∑

i

r
1/2
i

(

Ua | i〉B
)

A
⊗ | i〉B. (9)

This form is called a correlated canonical Schmidt decomposition. (In [6], section

2, instead of the term ’correlated’ the term ’strong’ was used.)

One should note that (9) contains all the entities that appear in (5) plus (explicitly)

the correlation operator Ua , which is implicitly contained in (5). Expansion (9) makes

explicit the fact that the opposite-subsystem eigen-sub-basis {| i〉A : ∀i} in (5) is not

just any such set of vectors once the eigen-sub-basis {| i〉B : ∀i} is chosen.

Theorem 4. The correlation operator Ua is uniquely determined by the given

(arbitrary) bipartite state vector |Ψ〉AB.

Proof. Let {| j, kj〉B : ∀kj, ∀j} and {| j, lj〉B : ∀lj , ∀j} be two arbitrary eigen-

sub-bases of ρB spanning R̄(ρB). The vectors are written with two indices, j

denoting the eigen-subspace R(Qj
B) , ∀j : Qj

B ≡
∑

kj | j, kj〉B〈j, kj |B, corresponding

to the eigenvalue rj of ρB to which the vector belongs, and the other index kj (

lj ) enumerates the vectors within the eigen-subspace R(Qj
B) in case the eigenvalue

rj of ρB is degenerate, i. e., if its multiplicity is more than 1.

The proof goes as follows. Let

∀j : |j, kj〉B =
∑

lj

U
(j)
kj ,lj

|j, lj〉B,

where
(

U
(j)
kj ,lj

)

are unitary sub-matrices. Then, keeping Ua one and the same, we

can start out with the correlated Schmidt decomposition in the kj-eigen-sub-basis, and

after a few simple steps (utilizing the antilinearity of Ua and the unitarity of the

transition sub-matrices), we end up with the correlated Schmidt decomposition (of the

same |Ψ〉AB ) in the lj-eigen-sub-basis. Complex conjugation is denoted by asterisk.

|Ψ〉AB =
∑

j

r
1/2
j

∑

kj

(

Ua |j, kj〉B
)

A
|j, kj〉B =

∑

j

r
1/2
j

∑

kj

{(

∑

lj

[(

U
(j)
kj ,lj

)∗(

Ua |j, lj〉B
)

A

]

⊗
(

∑

l′
j

U
(j)
kj ,l′j

|j, l′j〉A
)

B

}

=

∑

j

r
1/2
j

∑

lj

∑

l′
j

{(

∑

kj

(

U
(j)
kj ,lj

)∗
U

(j)
kj ,l′j

)(

Ua |j, lj〉B
)

A
⊗ |j, l′j〉B

}

=

∑

j

r
1/2
j

∑

lj

∑

l′
j

{

δlj ,l′j

(

Ua |j, lj〉B
)

A
⊗ |j, l′j〉B

}

=
∑

j

r
1/2
j

∑

lj

(

Ua |j, lj〉B
)

A
|j, lj〉B.

✷

It may seem that the uniqueness of Ua when | Ψ 〉AB is given is a poor

compensation for the trouble one has treating an antilinear operator. But the difficulty is
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more psychological than practical, because all that distinguishes an antiunitary operator

from a unitary one is

(i) its antilinearity - it complex-conjugates the numbers in any linear combination

on which it acts - and

(ii) its property that it complex-conjugates every scalar product (preserving its ab-

solute value): 〈ψ ||φ〉 = [(〈ψ | U †
a)(Ua |φ〉)]∗ . The full compensation comes, primarily

from the insight in entanglement that Ua furnishes, from its practical usefulness, and,

at last but not at least, from its important physical meaning.

The physical meaning of the correlation operator Ua is best discussed in the con-

text of Schrödinger’s steering (see three passages beneath relation (34) in subsection 6.3

below). One should realize that physical meaning in quantum mechanics comes always

heavily packed in mathematics. One must discern the physics in the haze of the formal-

ism. This is attempted below.

Remark 4. If a correlated Schmidt canonical expansion (9) is written down, then

it can be viewed in two opposite ways:

(i) as a given bipartite state vector |Ψ〉AB determining its two inherent entities,

the reduced density operator ρB in spectral form (cf (6b)) and the correlation operator

Ua (cf (8)), both relevant for the entanglement in the state vector (and one can read

them in the given expansion);

(ii) as a given pair (ρB, Ua) ( Ua mapping antiunitarily R̄(ρB) onto some

equally dimensional subspace of HA ) determining a bipartite state vector |Ψ〉AB.

The second view of correlated Schmidt expansion allows a systematic generation

and classification of all state vectors in HA ⊗HB (cf [7]).

Theorem 5. The expansion coefficients {|n〉A : ∀n} in any subsystem-basis

expansion (1a) can be evaluated, besides by (1b), also utilizing the reduced density

operator ρB and the correlation operator Ua as follows:

∀n : |n〉A =
(

Uaρ
1/2
B |n〉B

)

A
. (10)

Proof. We substitute a canonical Schmidt decomposition of | Ψ〉AB in (1b) for

an arbitrary n value:

|n〉A = 〈n |B|Ψ〉AB = 〈n |B
(

∑

i

r
1/2
i | i〉A | i〉B

)

=
∑

i

r
1/2
i 〈n |B| i〉B× | i〉A. (11a)

On the other hand, evaluating the RHS of (10) making use of the spectral form

(6b) of ρB and of (8), we obtain:

Uaρ
1/2
B |n〉B = Ua

(

∑

i

r
1/2
i | i〉B〈i |B

)

|n〉B =
∑

i

r
1/2
i (〈i |B|n〉B)∗ × (Ua | i〉B)A =

∑

i

r
1/2
i 〈n |B| i〉B× | i〉A. (11b)
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The asterisk denotes complex conjugation. It is required by the antilinearity property of

the correlation operator. Comparing (11a) and (11b), we see that the RHS’s are equal,

hence so are the LHS’s. ✷

Theorem 5, as it stands, is new with respect to previous work. Though, in [3]

(relation (34) there) an analogous result was obtained, but the derivation was formu-

lated and presented in the approach in which bipartite states are written as antilinear

Hilbert-Schmidt mappings of HB into HA . This approach is almost never used in

the literature.

Remark 5. Substituting (10) in (1a) one obtains

|Ψ〉AB =
∑

n

(

Uaρ
1/2
B |n〉B

)

A
⊗ |n〉B. (12)

This can be called a generalized correlated canonical Schmidt decomposition.

Note that the nearby subsystem basis {| n〉B : ∀n} is not necessarily an eigen-basis

of ρB ; it is arbitrary. This is how it is a generalization. Form (12) of expansion in a

subsystem basis is relevant for Schrödinger’s steering discussed in detail in subsection

6.3 below.

Remark 6. Theorem 5 and relation (10) enables one to prove the uniqueness

of the correlation operator Ua independently of Theorem 4. Namely, this uniqueness

is a consequence of the uniqueness of the partial scalar product (proved in Appendix A).

Remark 7. When a pair of ON sub-bases {|i〉B : ∀i} and {|i〉A : ∀i} appearing

in a canonical Schmidt decomposition (5) is given, one can extend Ua to the entire

HB , denote the extended operator as Ūa , and write

Ūa =
∑

i

| i〉AK〈i |B, (13a)

where K is complex conjugation (denoted by asterisk when acting on numbers).

Definition (13a) is actually symbolical. Its true meaning consists in the following.

∀ |φ〉B ∈ HB : Ūa |φ〉B =
(

∑

i

| i〉AK〈i |B
)

|φ〉B ≡
∑

i

(〈i |B|φ〉B)∗ | i〉A. (13b)

The extended operator Ūa acts as Ua in the range R(ρB) , and it acts as zero in

the null space of ρB . In other words, one can write

Ūa = UaQB, (13c)

where QB is the range projector of ρB . Since QB projects onto the range, it does

not matter that Ua is defined only on the range.
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Remark 8. As one can easily see, utilizing complete ON eigen-bases of ρs ,

s = A,B (cf (6a-d) and (8)), one has

ρA = UaρBU
−1
a QA, ρB = U−1

a ρAUaQB. (14a, b)

Thus, the reduced density operators are, essentially, ”images” of each other via the

correlation operator. (The term ”essentially” points to the fact that the dimensions of

the null spaces are independent of each other.) Property (14a,b) is called twin operators.

(More will be said about such pairs of operators below, cf Definition 6 below.)

In terms of subspaces, to (14a,b) correspond the image-relations

R(QA) = UaR(QB), R(QB) = U−1
a R(QA). (14c, d)

One obtains an even more detailed view when one takes into account the eigen-

subspaces R(Qj
s) of ρs corresponding to (the common) distinct positive eigenvalues

rj of ρs, where Qj
s projects onto the rj−eigen-subspace, s = A,B (cf the

subsystem picture (7a)-(7c)). Then one obtains a view of the entanglement in a given

composite state |Ψ〉AB in terms of the so-called correlated subsystem picture [4]:

ρs =
∑

j

rjQ
j
s, s = A,B, (15a, b)

and in terms of subspaces

R̄(ρs) =
⊕
∑

j

R(Qj
s), s = A,B, (15c, d)

where ” ⊕ ” denotes an orthogonal sum of subspaces.

Further, as it is also straightforward to see in eigen-bases of ρs, s = A,B ,

∀j : R(Qj
A) = UaR(Qj

B), R(Qj
B) = U−1

a R(Qj
A). (15e, f)

In words, the correlation operator makes not only the ranges of the reduced density

operators ”images” of each other, but also all positive-eigenvalue eigen-subspaces of

the reduced density operators. In other words, the correlation operator Ua, making

the reduced density operators ρs, s = A,B ’images’ of each other, makes also the

eigen-decompositions of the ranges R(ρs), s = A,B ’images’ of each other.

The relations (14a)-(14d) and (15a)-(15f) constitute the correlated subsystem

picture of the given state vector | Ψ〉AB in terms of operators and corresponding

subspace state entities. This is the second layer in the underlying grounding of the

(correlated) Schmidt decomposition.

5. Twin-correlated Schmidt decomposition

In the correlated subsystem picture of a given bipartite state vector | Ψ〉AB (in the

preceding section) we have searched for a comprehension of entanglement and its canon-

ical form, but doing so we have investigated only state entities ρA, ρB, Ua . Now, we
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introduce observables that can contribute to the theory by enriching and broadening

our understanding.

Lemma 1. Let | Ψ〉AB be a bipartite state vector, ρA its first-subsystem re-

duced density operator, QA the range projector of the latter, and OA =
∑

k okP
k
A a

first-subsystem observable in spectral form. Let further P 6=0
A be the sum of all those

eigen-projectors P k
A of OA that do not nullify | Ψ〉AB . Then, P 6=0

A QA = QA ,

i. e., P 6=0
A ≥ QA , or, in words, P 6=0

A is ’larger’ than QA or equivalently

R(P 6=0
A ) ⊇ R(QA) .

Proof. One can write

ρA ≡ trB
(

|Ψ〉AB〈Ψ |AB

)

= trB
(

(
∑

k

P k
A) |Ψ〉AB〈Ψ |AB

)

= P 6=0
A ρA

(the second partial-trace rule in Appendix B has been utilized).

Taking an eigen-sub-basis {|i〉A : ∀i} of ρA spanning its range, one can further

write ρA in spectral form and one obtains
∑

i

ri | i〉A〈i |A=
∑

i

riP
6=0
A | i〉A〈i |A, ∀i : ri > 0.

Applying this to an eigen-vector | ī 〉A corresponding to rī > 0 , one obtains

rī | ī 〉A = rīP
6=0
A | ī〉A . Finally, since QA =

∑

i | i〉A〈 i |A , the claimed relation

follows. ✷

Definition 6. Let OA ≡
∑

k akP
k
A and OB ≡

∑

l blP
l
B be opposite-subsystem

Hermitian operators (observables) in spectral form. If one can renumerate all eigen-

projectors P k
A and P l

B that do not nullify the given composite state vector |Ψ〉AB

by a common index, e. g. m , so that

∀m : Pm
A |Ψ〉AB = Pm

B |Ψ〉AB (16)

is valid, then the operators Oa and OB are said to be twin operators or twin

observables in |Ψ〉AB .Twin projectors will also be called twin events.

In [8] twin observables were called ’physical twins’, and also ’algebraic twins; were

mentioned. They were defined by OA |Ψ〉AB = OB |Ψ〉AB .

Remark 9. Introducing P 6=0
s ≡

∑

m P
m
s , s = A,B , Lemma 1 implies P 6=0

s Qs =

Qs , i. e., that Qs is a sub-projector of P 6=0
s : Qs ≤ P 6=0

s , or equivalently,

R(Qs) ⊆ R(P 6=0
s ), s = A,B. Further, we can define P=0

s , s = A,B as the sum

of all nullifying eigen-projectors: P=0
A ≡

∑

k′ P
k′

A , where ∀k′ : P k′

A |Ψ〉A,B = 0 , and

symmetrically for subsystem B. Then it further follows that ∀k′ : P k′

s ≤ P=0
s ≤ Qc

s ,

where Qc
s ≡ Is −Qs is the null-projector of ρs, s = A,B .
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Proposition 1. The corresponding results am and bm of subsystem

measurements of twin observables are equally probable and ideal measurement

causes equal change of the bipartite state:

∀m : 〈Ψ |AB Pm
A |Ψ〉AB = 〈Ψ |AB Pm

B |Ψ〉AB, (17)

|Ψ〉AB〈Ψ |AB →
∑

m

(

Pm
A |Ψ〉AB〈Ψ |AB Pm

A

)

=
∑

m

(

Pm
B |Ψ〉AB〈Ψ |AB Pm

B

)

. (18)

Proof follows obviously from Definition 6 and relation (16). ✷

Theorem 6. If OA and OB are twin operators (cf Definition 6), then

each of their non-nullifying eigen-projectors Pm
s , s = A,B commutes with the

corresponding reduced density operator

∀m : [Pm
A , ρA] = 0. [Pm

B , ρB] = 0. (19a, b)

Proof. Straightforward evaluation, utilizing (16) and both partial-trace rules

from Appendix B, gives:

Pm
A ρA = Pm

A trB
(

|Ψ〉AB〈Ψ |AB

)

= trB
(

(Pm
A |Ψ〉AB)〈Ψ |AB

)

=

trB
(

(Pm
B |Ψ〉AB)〈Ψ |AB

)

= trB
(

|Ψ〉AB)(〈Ψ |AB Pm
B )

)

=

trB
(

|Ψ〉AB)(〈Ψ |AB Pm
A )

)

=
[

trB
(

|Ψ〉AB)(〈Ψ |AB

)]

Pm
A = ρAP

m
A

The symmetrical claim is proved symmetrically. ✷

We now state and prove (for the reader’s convenience) a basic claim of quantum

mechanics that is crucial for our further development of the correlated subsystem picture

(elaborated in the preceding section).

Lemma 2. Let O =
∑

k okPk and Ō =
∑

l ōlP̄l be two commuting hermitian

operators (each with a purely discrete spectrum) in spectral form. Then also

∀k, ∀l : [Pk, P̄l] = 0.

Proof. Let | k, qk〉 be a complete ON eigen-basis of O : ∀k, qk : O | k, qk〉 =

ok | k, qk 〉 . Then O(Ō | k, qk 〉) = ŌO | k, qk 〉 = ok(Ō | k, qk 〉) . Hence,

Pk(Ō | k, qk〉) = (Ō | k, qk〉) = ŌPk | k, qk〉 . Further, for k′ 6= k , Pk(Ō | k′, qk′〉) =

PkPk′(Ō | k′, qk′ 〉) = 0 = ŌPk | k′, qk′ 〉 . Thus, ∀k : [Pk, Ō] = 0 . Applying this re-

sult to the last commutation itself, one finally obtains ∀k, l : [Pk, P̄l] = 0 as claimed.✷
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Definition 7. Let OB =
∑

k akP
k
B be a nearby-subsystem observable that

commutes with the corresponding reduced density operator ρB of a given bipartite

state vector | Ψ 〉AB . We re index the non-nullifying eigen-projectors of OB by

m . Then, according to  L2, each eigen-projector Pm
B of OB commutes with Qc

B ,

the null-projector of ρB (cf Remark 9), because it is also the eigen-projector of ρB
corresponding to its zero eigenvalue. This implies that it also commutes with QB

because the latter is ortho-complementary to Qc
B . Hence, for each value of m , we

can define the minimal sub-projector Pmin,m
B that acts on | Ψ〉AB equally as

Pm
B . Equivalently:

∀m : Pmin,m
B |Ψ〉AB = Pm

B |Ψ〉AB, Pmin,m
B ≤ Pm

B , P
min,m
B ≤ QB. (20a)

Naturally,

∀m : Pmin,m
B = Pm

B QB = QBP
m
B QB. (20b)

Finally, we can define

Omin
B ≡

∑

m

amP
min.m
B (20c)

and call it the minimal part of OB .

Proposition 2. If OB =
∑

k akP
k
B commutes with ρB , then the corresponding

minimal operator Omin
B can be obtained as follows:

Omin
B ≡ OBQB. (20d)

Proof. We write OB = (
∑

m amP
m
B ) +

∑

k′ ak′P
k′

B . Here by P k′

B are denoted

the nullifying eigen-projectors of OB (cf Remark 9). Then (20b), (20c), and Remark

9 imply

OBQB =
(

∑

m

amP
m
B +

∑

k′
ak′P

k′

B

)

QB =

(

∑

m

amP
min,m
B +

∑

k′
ak′P

k′

B Q
c
B

)

QB =
∑

m

amP
min.m
B = Omin

B .

✷

Remark 10. Commutation (19b) and Remark 9, which claims that QB =

QB
∑

m P
m
B , and since ∀j : Qj

BQB = Qj
B , the former relation implies ∀j :

Qj
B

∑

m P
m
B = Qj

B , in conjunction with (20b), lead to the following spectral operator

decomposition:

ρB =
∑

j

rj
∑

m

Qj
BP

min,m
B , (21a)

or in terms of the corresponding subspaces

R(QB) =
⊕
∑

j

⊕
∑

m

(

R(Qj
B) ∩R(Pmin,m

B

)

. (21b)



Subsystem expansion 18

Naturally, the RHS of (21a) may contain zero operator terms, and on the RHS of (21b)

may appear corresponding zero subspaces.

Remark 11. As it is well known, the commutation relations (19b) and (19a) imply

that there exist common eigen-bases of ρB and Omin
B in R(QB) as well as of ρA

and Omin
A in R(QA) . We are primarily interested in the former. Let by (jm)′

be denoted a pair of indices for which Qj
BP

min,m
B 6= 0 . We introduce a third index

q(jm)′ to enumerate the ortho-normal vectors in the corresponding non-zero subspaces

R(Qj
B) ∩ R(Pmin,m

B ) .

Remark 12. The decomposition without zero terms is

QB =
∑

(jm)′

Qj
BP

min,m
B =

∑

(jm)′

∑

q(jm)′

|(jm)′q(jm)′〉B〈(jm)′q(jm)′ |B . (22)

Definition 8. Expanding a given bipartite state | Ψ〉AB in the subsystem sub-

basis appearing in (22), we obtain, what we call, the twin-correlated canonical

Schmidt decomposition:

|Ψ〉AB =
∑

(jm)′

∑

q(jm)′

r
1/2
j |(jm)′q(jm)′〉A |(jm)′q(jm)′〉B, (23a)

with

∀(jm)′q(jm)′ : |(jm)′q(jm)′〉A =
(

Ua |(jm)′q(jm)′〉B
)

A
(23b)

(cf the correlated canonical Schmidt decomposition (5)). If the role of the correlation

operator Ua is not made explicit in (23a) or, equivalently, if (23b) is not joined to it,

i. e., (23a) itself (as it stands) we call twin-adapted canonical Schmidt decompo-

sition.

As a consequence of (23b), one has

∀(jm)′ : Qj
AP

min,m
A = Ua

(

Qj
BP

min,m
B

)

U−1
a QA, (24a)

∀(jm)′ : Qj
BP

min,m
B = U−1

a

(

Qj
AP

min,m
A

)

UaQB. (24b)

The following result is another obvious consequence of (23b).

Theorem 7. If Omin
s , s = A,B are minimal twin observables for |Ψ〉AB , then

∀m : Pmin,m
B =

′
∑

j

∑

q(jm)′

|(jm)′q(jm)′〉B〈(jm)′q(jm)′ |B, (25a)
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∀m : Pmin,m
A =

′
∑

j

∑

q(jm)′

|(jm)′q(jm)′〉A〈(jm)′q(jm)′ |A, (25b)

where the prim the sum over j denotes restriction to those terms in which j with

the given m gives a non-zero subspace in (21b). Further,

∀m : Pmin,m
A = UaP

min,m
B U−1

a QA, (26a)

∀m : Pmin,m
B = U−1

a Pmin,m
A UaQB. (26b)

Relations (22), (23b), (24a,b) and (26a,b) constitute the twin-correlated subsys-

tem picture. It is the third and most intricate layer of the underlying foundation of

Schmidt decomposition. It completes the correlated subsystem picture (see (14a)-(14d)

and (15a)-(15f)) by the pair of minimal twin observables Omin
A , Omin

B , and the latter

picture was, in turn, a completion of the subsystem picture (cf (7a)-(7c)) by the corre-

lation operator.

The original articles [1] - [8], which have been reviewed here, did not present the

third layer of foundation sufficiently precisely and transparently. Therefore, a com-

pletely new and different derivation is given in this section.

One may wonder if there may exist two different observables OA and ŌA both

twins with one and the same opposite-subsystem observable OB in a given |Ψ〉AB .

Proposition 3. If OA and ŌA are both twin observables with one and the

same opposite-subsystem observable OB , then

Omin
A = Ōmin

A .

Proof follows immediately from (26a). ✷

Remark 13. Thus, in this case, one can have OA 6= ŌA only if ρA is singular,

and then the only difference is in the terms Pm
A Q

c
A , where Qc

A ≡ IA − QA is the

null-space projector of ρA . The operators Pm
A Q

c
A are sub-projectors of Qc

A . These

terms in the projectors Pm
A = Pm

A QA + Pm
A Q

c
A nullify |Ψ〉AB . Taking OA or ŌA

means no difference for the entanglement in | Ψ〉AB because the latter takes place

between R(QB) and R(QA) (with no regard to the null spaces of ρs, s = A,B ).

The minimal form of a discrete subsystem Hermitian operator that commutes with

the corresponding reduced density operator of the given bipartite state vector |Ψ〉AB

(cf Definition 7 and Proposition 2) was not defined explicitly in previous work. Hence,

the presentation there of this last and most intricate form of Schmidt decomposition
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and its underlying entanglement foundation was not so transparent. In the present ex-

position there is new insight and there are new results.

One may wonder which observables OB do have a twin observable in the given

bipartite state.

Theorem 8. Let | Ψ〉AB be any bipartite state vector and let OB ≡
∑

l blP
l
B

be an observable for the nearby subsystem B. It has a twin observable OA if and only

if

A) It, as an operator, commutes with the corresponding reduced density operator:

ρB ≡ trA
(

| Ψ〉AB〈Ψ |AB

)

, [OB, ρB] = 0 . Then there exists a unique minimal

twin observable Omin
A .

B) If the bipartite state is expanded in an eigen-basis {| l, ql〉B : ∀l, ql} of OB

|Ψ〉AB =
∑

l

∑

ql

| l, ql〉A | l, ql〉B

the ’expansion coefficients’ satisfy the orthogonality conditions: 〈l, ql |A| l
′, ql′〉A = 0

whenever l 6= l′ .

Proof A) follows in a straightforward way from (22), for which the commutation

of OB with ρb is sufficient (cf Lemma 2). Then, with the help of (23b), the eigen-

projectors (Pmin
A )m are defined by (25b).

B) Obvious. hfill ✷

One may further wonder if it can happen that [OB, ρB] = 0 , one expands |Ψ〉AB

in the common eigen-basis of these two operators and one does not obtain a twin-adapted

Schmidt decomposition of the bipartite state.

Remark 14. The answer is NO: it cannot happen. One necessarily ob-

tains a twin-adapted Schmidt decomposition in terms of Omin
B and Omin

A ≡
∑

m om
(

UaP
min,m
B U−1

a

)

QA (cf Definition 7 and Proposition 2), where QA =
∑

i

(

Ua | i〉B
)

A

(

〈i |B U †
a

)

A
, and the eigenvalues {om : ∀m} are arbitrary distinct

non-zero real numbers (they are irrelevant).

One may also wonder if there exits a bipartite state that has no twin observables.

The answer is again: NO. Formally, the reduced density operators ρs, s = A,B

themselves are twin operators, as obvious in the canonical Schmidt decomposition (cf

(5) ). They, or any other Hermitian operators with the same eigen-projectors, can be

viewed as minimal (in the sense of Definition 7) twin observables.
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6. Distant measurement and EPR states

The ’correlation operator as an entanglement entity’ approach furnished a specific view

of a historically important notion: the EPR paradox.

6.1. Distant measurement

Let any bipartite state vector | Ψ 〉AB be given, and let OA =
∑

m amP
m
A + O′

A

and OB =
∑

m bmP
m
B + O′

B be twin observables in it (cf Definition 6). The relations

O′
A |Ψ〉AB = 0 = O′

B |Ψ〉AB are valid.

The change of state in non-selective [9] (when no definite-result sub-ensemble is

selected) ideal measurement [10], [11], [12]

|Ψ〉AB〈Ψ |AB →
∑

m

(

Pm
B |Ψ〉AB〈Ψ |AB Pm

B

)

(27)

can be caused, in principle, by direct measurement on the nearby subsystem B .

Further, this composite-system change of state implies the ideal-measurement change of

state

ρB →
∑

m

(

Pm
B ρBP

m
B

)

on the nearby subsystem B (obtained when the partial trace over subsystem A is taken).

In this case, by the very definition of subsystem measurement, there is no inter-

action between the measuring instrument and the distant subsystem A.

Proposition 4. In spite of lack of interaction with the distant subsystem A in

the composite-system change-of-state (27), this subsystem nevertheless undergoes the

ideal-measurement change

ρA →
∑

m

(

Pm
A ρAP

m
A

)

(28)

due to the entanglement in |Ψ〉AB .

Proof. The change is implied by (18), and seen by taking the partial trace over

subsystem B. ✷

Definition 9. Change (28) is said to be due to distant measurement (on the

distant subsystem A) [3].

Remark 15. It has been proved in [13] that the ideal change (28) on the distant

subsystem A can be caused by any exact subsystem measurement of the twin ob-

servable on the nearby subsystem B. The entanglement in |Ψ〉AB does not distinguish,

as far as influencing the distant subsystem is concerned, ideal measurement, non-ideal
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nondemolition (synonyms: predictive, first-kind, repeatable) measurement and even de-

molition (synonyms: retrodictive, second-kind, non-repeatable) measurements on the

nearby susbsystem as long as they are exact measurements.

Remark 16. One should notice that distant measurement is always ideal

measurement. Moreover, the non-selective version does not change the state

of the opposite distant subsystem A at all. Namely, on account of the commutation

∀m : [Pm
A , ρA] = 0 (cf (19a) in Theorem 6), one has

∑

m

Pm
A ρAP

m
A =

∑

m

ρAP
m
A = ρA

∑

m

Pm
A = ρA(

∑

m

Pm
A +

∑

k̄

P k̄
A) = ρA,

(cf Remark 9). Hence, only the selective version of distant measurement may

change the distant state.

Remark 17. One may further write

ρA =
∑

m

Pm
A ρAP

m
A =

∑

m

[tr(ρBP
m
B )] ×

(

Pm
A ρAP

m
A

/

[tr(ρAP
m
A )]

)

and view mathematically ρA as an orthogonal mixture of substates (selected

subensembles empirically) each predicting a definite value of OA . The selective dis-

tant measurements reduce ρA to the corresponding state term. Since non-selective

measurement is actually the entirety of all selective measurements, the true physical

meaning of the change (28) is in making the term states available to selective measure-

ment.

Remark 18. Let ρA =
∑

m wmρ
m
A ( wm being statistical weights: ∀m : wm ≥

0,
∑

mwm = 1 ) be an arbitrary orthogonal decomposition of the distant state ρA . It

can be realized by non-selective distant measurement caused by a suitable subsystem

measurement on the nearby subsystem B. Namely, the range projectors Qm
A of the term

states ρmA are orthogonal. Defining ∀m : Pmin,m
A ≡ Qm

A and OA ≡
∑

m amP
min,m
A

( am any distinct real numbers), one has the commutation [OA, ρA] = 0 , and, ac-

cording to Theorem 8 (reading it in reverse), there exists a minimal twin observable

OB for the opposite subsystem. Its measurement gives rise to the distant measurement

of OA , and hereby to the orthogonal state decomposition that we have started with.

Let us for the moment forget about twin observables, and consider more general

ones.

Remark 19. Non-selective measurement of any nearby-subsystem observable

OB =
∑

l blP
l
B gives rise to a distant state decomposition

ρA ≡ trB
(

|Ψ〉AB〈Ψ |AB

)

=
∑

l

trB
(

P l
B(|Ψ〉AB〈Ψ |AB)

)

=
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∑

l

trB
(

P l
B(|Ψ〉AB〈Ψ |AB)P l

B

)

=

∑

l

〈Ψ |AB P l
B |Ψ〉AB × trB

(

P l
B(|Ψ〉AB〈Ψ |AB)P l

B

)/[

tr
(

P l
B(|Ψ〉AB〈Ψ |AB)P l

B

)]

.

(Idempotency and the first partial-trace rule - cf Appendix B - have been made use of.)

Note that selective measurement of the same nearby subsystem observable gives, by,

what is called, distant preparation, a term state in the above distant state decomposi-

tion. The latter itself is a way of writing ρA as a mixture.

Remark 20. Clearly, a subsystem measurement of a twin observable OB =
∑

l blP
l
B in a given state | Ψ 〉A,B (cf Definition 6) measures actually the corre-

sponding minimal observable Omin
B =

∑

m bmP
min,m
B (cf Definition 7 and Proposition

2). But, on account of the correlation operator as an entanglement entity contained

in the bipartite state, simultaneously and ipso facto also the distant twin observable

Omin
A =

∑

m amP
min,m
A =

∑

m am
(

UaP
min,m
B U−1

a

)

is distantly measured. This makes the

role of entanglement transparent.

To my knowledge it is an open question if the counterpart of Remark 18 holds true

for non-orthogonal decompositions of ρA , i. e., if every such decomposition can be

given rise to by measurement of some nearby-subsystem observable.

6.2. EPR states

Definition 10. If a bipartite state vector | Ψ〉AB allows distant measurement of

two mutually incompoatible observables (non-commuting operators) OA and ŌA ,

then we say that we are dealing with an EPR state (following the seminal Einstein-

Podolsky-Rosen article [14]).

Theorem 9. A state | Ψ〉AB is an EPR one if and only if at least one of the

positive eigenvalues rj of ρB
(

≡ trA | Ψ〉AB〈Ψ |AB

)

is degenerate, i. e., has

multiplicity at least two. This amounts to some repetition in the expansion coefficients

r
1/2
i in the canonical Schmidt decomposition (5).

Proof. Considering the twin-correlated subsystem picture (cf (22), (23b), (24a,b),

and (26a,b)), it is straightforward to see that if at least one non-zero subspace

R
(

Qj
BP

min,m
B

)

, indexed by (jm)′ , is two or more dimensional, then, and only

then, one can have two different eigen-bases {| (jm)′q(jm)′ 〉B : ∀(jm)′, ∀q(jm)′} and

{|(jm)′r(jm)′〉B : ∀(jm)′, ∀r(jm)′} so that the correlation operator Ua can determine

the corresponding (also different) eigenbases {
(

Ua | (jm)′q(jm)′〉B
)

A
: ∀(jm)′, ∀q(jm)′}

and {
(

Ua|(jm)′r(jm)′〉B
)

A
: ∀(jm)′, ∀r(jm)′} of distant incompatible minimal observ-

ables Omin
A and Ōmin

A . ✷
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The original EPR paper [14] discussed the two-particle state |Ψ〉AB defined by a

fixed value ~P of the total linear momentum ~̂pA + ~̂pB = ~P , where ~̂ps, s = A,B

are the particle linear momentum vector operators, and a fixed value ~r of the relative

radius vector ~̂rA − ~̂rB = ~r . (For clarity, this time operators are denoted with hats to

distinguish them from fixed values of vectors.)

The discussion went essentially as follows: If one performs a position measurement

of the nearby particle B and obtains the value ~rB , then ipso facto the distant particle

A acquires without interaction, via distant measurement, the value ~rA ≡ ~r + ~rB . On

the other hand, as an alternative, one can perform a linear momentum measurement

of the nearby particle with a result ~pB and also obtain, by distant measurement, a

definite value of the linear momentum ~pA = ~P − ~pB of the distant particle without

interaction.

The authors found this conclusion paradoxical in view of the contention that

quantum mechanics was complete, and |Ψ〉AB did not contain the mentioned values

obtained without interaction (with a ’spooky’ action as Einstein liked to say), and,

moreover, it could not contain the two incompatible values simultaneously as valid

for one and the same pair of particles because position and linear momentum are

incompatible.

As a slight formal objection, one may notice that the mentioned fixed values of the

total linear momentum and the relative radius vector belong to continuous spectra, and

the corresponding state is of infinite norm (a generalized vector). Bohm pointed out [15]

that one can easily escape this formal difficulty by taking for |Ψ〉AB not the original

EPR state described above, but the well known singlet two-particle spin state

|Ψ〉AB ≡ (1/2)1/2
(

(|+〉A |−〉B− |−〉A |+〉B)
)

, (29)

where + and − denote spin-up and spin-down respectively along any axis. For the

same | Ψ〉AB given by (29) one can choose either the z-axis or the x-axis, and make

an argument in complete analogy with the EPR one described above. Then it is fully

within the quantum formalism.

It appears that the authors of [14] consider that the paradoxicalness of an EPR

state lies in its contradiction with completeness of the quantum-mechanical description

of an individual bipartite system (which was claimed by the Copenhagen ı). Actually,

this contradiction may be viewed to be present in every entangled bipartite state

| Ψ〉AB because it has at least one pair of twin observables (cf the final parts of the

preceding section). They make possible selective distant measurement, and it creates

(or finds) a definite value of the distant twin observable that was not a sharp value in

|Ψ〉AB .

One can find articles in the literature in which all entangled bipartite states are

called EPR states. It might be due to realization of this point. The more so, since

Schrödinger’s view of distant correlations, discussed in the next subsection, brings home
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this point.

Let us return to the singlet state given by (29). (It is hard to find a simpler and

better known EPR state.) Let us choose to measure the spin component of the nearby

particle B along the z-axis. Let further the measuring instrument be in the initial or

ready-to-measure state |0〉mi , and the experimenter in the ready-to-watch the result

state |0〉e . The entire four-partite system is in the initial state

|Ψ〉AB ≡ (1/2)1/2
(

|+〉A |−〉B− |−〉A |+〉B
)

⊗ |0〉mi |0〉e. (30)

At the end of the measurement, the four-partite system is, e. g., in the state

|+〉A |−〉B⊗ |z,−B,+A〉mi |z,−B ,+A〉e, (31)

where | z,−B,+A〉mi is the state of the measuring instrument in which the so-called

’pointer position’ show the results ” − ” for subsystem B, and ” + ” for the distant

subsystem A, and | z,−B ,+A〉e is the analogous state of the experimenter in which

the counterpart of the ’pointer position’ is the corresponding contents of consciousness.

Einstein et al. were troubled by the idea that, in transition from (30) to (31), the

result ” +A ” was brought about in a distant action without interaction ( a ’spooky’

action), which could not be reconciled with basic physical ideas that reigned outside

quantum mechanics. It seems to me that the father of relativity ideas in physics has

fallen victim to the Bohrian (or Copenhagen) suggestion that (31) describes absolute

reality. But no wonder; this was more than two decades before Everett’s relative-state

ideas appeared [16].

In previous work [17] (in subsection 7C there) I have adopted, what I call

humorously, a ’pocket edition’ of Everett’s relative-state interpretation of quantum

mechanics. (I was sticking to the idea of a laboratory, forgetting about parallel worlds in

a multiverse [18].) I have called the approach relative reality of unitarily evolving

states (by acronym: RRUES).

Let me apply RRUES to the above direct measurement on subsystem B, and to the

simultaneous distant measurement on subsystem A.

If the unitary evolution of the system does not change spin projections, then the

above initial four-partite state (30) evolves into the state

(1/2)1/2
(

|+〉A |−〉B⊗ |z,−B ,+A〉mi |z,−B,+A〉e +

|−〉A |+〉B⊗ |z,+B,−A〉mi |z,+B,−A〉e
)

. (32)

Here the state (31) is one of the components, one of the ’branches’ in Everett’s

terminology. The point is that the result in (31) is relative to the state

| z,−B,+A 〉mi | z,−B,+A 〉e of the ’observer’. ’Reality’ of the measurement results

are only relative to the branch in which the ’observer’ finds himself. I think this is a

suitable realization of Mermin’s Ithaca mantra ”the correlations, not the correlata” [19].
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One might object that replacing ’absolute reality’ of the description of a quantum

state by its ’relative reality’ is unacceptable. It is well known that for some time the

same objection was raised when Einstein replaced absolute motion by relative motion.

Nowadays we find no difficulty with it.

Thus, in RRUES there is no ’spooky’ action in distance without interaction. One

might wonder if ’RRUES’ as a new term is justified, when it is pure Everett’s relative-

state theory. Actually, the new term serves the sole purpose of emphasizing (via the

two R’s) the new relativity idea introduced by Everett in his seminal work.

The outlined interpretation of distant measurement by relative-state theory was

not published by the present author before.

As it was pointed out in Remark 19, any non-selective or selective measurement on

the nearby subsystem B gives rise to distant state decomposition or distant state prepa-

ration respectively on the distant subsystem A. One can easily see that two choices of

distinct non-selective direct measurements on subsystem B can induce state decompo-

sitions on subsystem A that do not have a common continuation (finer decomposition),

and hence are actually incompatible. This might be viewed as a kind of a generalized

EPR phenomenon.

Realizations of EPR states in thought and real experiments are pointed out in the

second and third passage of the Concluding remarks (section 7) below.

6.3. Schrödinger’s steering

Relation (12) introduces explicitly the correlation operator into investigations of the

effects on the distant subsystem A caused by measurement performed on the nearby

subsystem B . This enabled the Belgrade school to have an original angle and elaborate

Schrödinger’s approach to distant correlations.

The role of the correlation operator in studying distant nearby-subsystem measure-

ment effects has thus led to the articles [22], [23], and [1]. But they were written partly

in the antlinear Hilbert-Schmidt operators approach, which has been abandoned in this

review.

For the reader’s convenience we rewrite (and renumerate) relation (12):

|Ψ〉AB =
∑

n′

(

Uaρ
1/2
B |n′〉B

)

A
⊗ |n′〉B. (33a)

Inserting U−1
a UaQB

(

= QB

)

between ρ
1/2
B and |n′〉B in (33a), which can be

done because ρ
1/2
B QB = ρ

1/2
B , one obtains the equivalent formula

|Ψ〉AB =
∑

n′

ρ
1/2
A

(

UaQB |n′〉B
)

A
⊗ |n′〉B (33b)
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due to Uaρ
1/2
B U−1

a QA = ρ
1/2
A (cf (14a) etc).

If a nearby-subsystem observable OB ≡
∑

n′ bn′ | n′〉B〈n
′ |B, n

′′ 6= n′′′ ⇒ bn′′ 6=

bn′′′ , is measured ideally and selectively having, e. g., the result bn̄ in mind, then

|Ψ〉AB is hereby converted into the uncorrelated bipartite state
(

Uaρ
1/2
B |n̄〉B

)

A
⊗ |n̄〉B .

This implies the fact that the distant subsystem A is brought into the state (cf

(1f))

| n̄〉A =
(

Uaρ
1/2
B | n̄〉B

)

A

/

||
(

Uaρ
1/2
B | n̄〉B

)

A
|| =

(

Uaρ
1/2
B (QB | n̄〉B/||QB | n̄〉B||)

)

A

/

||
(

Uaρ
1/2
B (QB | n̄〉B)/||QB | n̄〉B||)

)

A
||. (34)

(The fact that ρ
1/2
B = ρ

1/2
B QB is always valid was utilized - cf Corollary 4.)

The nearby-subsystem measurement that leads to (34) was called steering by

Schrödinger [20], [21], and ’distant steering’ in previous work of the present author [22]

and [23]. It is also called ’distant preparation’ of a state. It is part of a distant state

decomposition (cf Remark 19 above) that is brought about by the ideal non-selective

measurement of the nearby observable OB mentioned above.

Schrodinger pointed out [20], [21] the paradoxical fact that a skilful experimenter

can steer, without any interaction, a distant particle (that is correlated with a nearby

one on account of past interactions) into any of a wide set of states.

The basic steering formula (34) makes clear what the physical meaning of the

correlation operator Ua is. It plays an essential role in determining into which

state the distant subsystem is steered. Since this determination takes place jointly with

ρB , the physical meaning of Ua is much more clear when then action of ρB is

simplified. This is the case when |n̄〉B =|i〉B (cf (15), i. e., when ρB |n̄〉B = ri |n̄〉B .

Then ρ
1/2
B amounts in (34) to multiplication with r

1/2
i , and this has no effect on

steering; it affects only the probability (see below). Then | n̄〉B is steered into the

state
(

Ua | i〉B
)

A
=| i〉A . If the eigenvalue ri is degenerate, i. e., if R(Qj

B)

for rj = ri is at least two dimensional, then the action of Ua in mapping R(Qj
B)

onto R(UaQ
j
BU

−1
a )

(

= R(Qj
A)

)

(cf the correlated subsystem picture ((14a)-(14d)

and (15a-(15f)), is non-trivial. Otherwise, it determines the phase factor of | i〉A .

Viewing all this in analogy with classical probability theory, one can say that the

occurrence of | n̄〉B〈n̄ |B is the condition in the conditional probability, which is the

state vector given by the LHS of (34).

Remark 21. It is obvious from (34) that all choices of | n̄〉B that have the same

projection in R(ρB) give the same distant state, and if two choices of nearby state

vectors differ only by a phase factor, so do the corresponding distant states.

Proposition 5. A) All states |φ〉A that belong to R(ρ
1/2
A ) and no other states

can be brought about by distant steering.
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B) A given state |φ〉A ∈ R(ρ
1/2
A ) can be steered into, i. e., it can be given rise to

by selective direct measurement of | n̄〉B〈n̄ |B in |Ψ〉AB (cf passage below (33a)), if

and only if

0 6= QB | n̄〉B
/

||QB | n̄〉B|| = ρ
−1/2
B U−1

a |φ〉A
/

||ρ
−1/2
B U−1

a |φ〉A||.

Proof. A) follows immediately from relation (33b) and B).

B) Relation (33a) is seen to imply the claim if one has in mind the fact that in

R̄(ρB) ρ
1/2
B is non-singular and it maps R̄(ρB) onto R(ρ

1/2
B ) in a one-to-one way

(cf (38) below). ✷

Proposition 5B) implies the lemma of Hadjisavvas [?]: For any given density

operator ρ a state vector | φ〉 can appear in a decomposition ρ = w | φ〉〈φ |

+
∑

k wkρk ( W +
∑

k wk = 1 , each ρk a density operator, the sum is finite or

countably infinite) if and only if |φ〉 ∈ ρ1/2 (let us call it suitability).

That every suitable state vector can appear in a decomposition follows from

Proposition 5B) by performing purification transforming by isomorphism ρ into

ρA ≡ trB
(

| Ψ 〉AB〈Ψ |AB | in any way (cf Theorem 2 above), and then taking a

basis in HB that contains the final state vector in the relation in Proposition 5B).

Clearly, this will give a pure-state decomposition of ρA in which |φ〉〈φ | will appear.

That no state vector outside ρ1/2 can appear in a decomposition can be seen

by writing down such a decomposition, then by using it for purification (cf Theorem 2

above), and be getting into contradiction with Proposition 5.

Remark 22. A well-known special case of steering is erasure [24]. For instance,

the well-known two-slit interference disappears when linear polarizers, a vertical and

a horizontal one, are put on the respective slits [25] because entanglement with the

polarization (internal degree of freedom) suppresses the coherence. But a 450 polar-

ization analyzer can restore (or revive) the interference. (The suppressing entanglement

is erased.) Here choice of the analyzer is actually choice of the state | n̄〉B in Proposi-

tion 5B).

One should note that steering is not a deterministic operation. As it follows from

(33a), the state (34) comes about with the probability p(bn̄) = ||ρ
1/2
B | n̄〉B||

2 (because

a unitary operator does not change the norm). As easily seen, one actually has

p(bn̄) = ||QB | n̄〉B||
2 × ||ρ

1/2
B

(

QB | n̄〉B
/

||QB | n̄〉B||
)

||2. (35a)

Relation (35a) implies that all choices of | n̄〉B the projections in R(ρB) of

which differ only by a phase factor have the same probability.

Since, on account of the positive-eigenvalue eigen-subspaces R(Qj
B) of ρB , one

has QB =
∑

j Q
j
B , and (35a) can be further rewritten as

p(bn̄) = ||QB | n̄〉B||
2 ×

∑

j

(

rj × ||
(

Qj
B | n̄〉B

/

||QB | n̄〉B||
)

||2
)

. (35b)
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Remark 23. One can see in (35b) that the probability of successful steering (oc-

currence of |n̄〉B〈n̄ |B ) is the larger (i) if |n̄〉B has a larger projection in the range

R(ρB) (if it is ’more’ in the range than in the null space), and (ii) if the projection is

more favorably positioned in the range (if it ’grabs’ larger eigenvalues rj ).

On account of Remark 23(i), it is practical to restrict oneself to state vectors from

the range

|n〉B = QB |n〉B. (36)

Choice (36) implies

p(bn) = ||ρ
1/2
B |n〉B||

2 =
∑

j

rj × ||Qj
B |n〉B||

2 (37)

(cf (15b)).

In a previous article of the present author [23] Lemmata 1-3 give a detailed

mathematical account of the fine structure of R(ρB) concerning the action of ρ
1/2
B .

Neither the approach of writing bipartite state vectors in terms of antilinear Hilbert-

Schmidt operators that is adopted in the article nor the results of Lemmata 1-3 do I

consider physically sufficiently important (at the time of writing this review). Hence it

is not reproduced here. All that should be pointed out is that one always has

R(ρ) ⊆ R(ρ1/2) ⊆ R̄(ρ), (38)

and if dim(R(ρ) <∞ , then one has equality throughout in (38), and if dim(R(ρ) =

∞ , then both inclusion relations are proper. (It is also worth pointing out that the

mentioned Lemmata 1-3, unlike the rest of the article, are stated and proved in terms

of standard quantum-mechanical arguments.)

Remark 24. In case of infinite-dimensional range R(ρB) , the distant states in

R̄(ρA) ⊖ R(ρ
1/2
A ) , where ⊖ denotes set-theoretical substraction (of a subset), are a

kind of irrationals concerning steering: one cannot steer the distant subsystem into

these states exactly, but one can achieve this arbitrarily closely (because R(ρ
1/2
A ) is

dense in R̄(ρA) , cf (38)).

Remark 25. As it was pointed out in Remark 19, one can perform measurement

of an incomplete observable OB , i. e., one that has degenerate eigenvalues, on the

nearby subsystem and obtain distant state decomposition in the non-selective version,

or state preparation in the selective version. In the latter case one has generalized

steering, which results, in general, in a mixed state of the distant subsystem.

Schrödinger’s steering has recently drawn much attention. For example, steering

was generalized to mixed states in [26]. Asymmetric steering was studied in [27]. (See

also the review article in [28].)
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7. Concluding remarks

Under the title ”On bipartite pure-state entanglement structure in terms of disentan-

glement” in [1] Schrödinger’s disentanglement, i.e., distant state decomposition, as a

physical way to study entanglement, is carried one step further with respect to previous

work in investigating the qualitative side of entanglement in any bipartite state vec-

tor. Distant measurement or, equivalently, distant orthogonal state decomposition from

previous work (cf Remark 17 and Remark 18 above) is generalized to distant linearly

independent complete state decomposition both in the non-selective and the selective

versions (cf Remark 19 above). The results are displayed in terms of commutative square

diagrams, which show the power and beauty of the physical meaning of the antiunitary

correlation operator Ua inherent in any given bipartite state vector | Ψ〉AB . It is

shown that linearly independent distant pure-state preparation, which is caused by se-

lective measurement of an observable OB on the nearby system that does not commute

with its state operator ρB (cf Theorem 6 above), carries the highest probability

of occurrence among distant preparations that are not obtained by selective distant

measurement.

Under the titles ”On EPR-Type Entanglement in the Experiments of Scully et

al. I. The Micromaser Case and Delayed-Choice Quantum Erasure” and ”On EPR-

type Entanglement in the Experiments of Scully et al. II. Insight in the Real Random

Delayed-choice Erasure Experiment” in [17] and [29] respectively intricate realizations

of EPR states in a thought experiment and a real experiment respectively are discussed.

In the yet unpublished preprint under the title ”Quantum Correlations in Multi-

partite States. Study Based on the Wootters-Mermin Theorem” [30] a nice example of

an EPR state is given in relation (15) in section 7 there.

In the article [31] under the title ”The role of coherence entropy of physical twin ob-

servables in entanglement” the concept of twin observables for bipartite quantum states

is simplified. The relation of observable and state is studied in detail from the point of

view of coherence entropy.

In the article [32] under the title ”Irrelevance of the Pauli principle in distant corre-

lations between identical fermions” it was shown that the Pauli non-local correlations do

not contribute to distant correlations between identical fermions. In distant correlations

a central role is played by distant measurement (cf subsection 6.1 above). A negentropy

measure of distant correlations is introduced and discussed. It is demonstrated that

distant correlations are necessarily of dynamical origion.

In the short article [33] under the title ”How to define systematically all possible

two-particle state vectors in terms of conditional probabilities” all bipartite state vec-
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tors of given subsystems were systematically generated using the state operator ρB
of the nearby subsystem and the correlation operator Ua (cf sections 3. and 4. above).

Under the title ”Complete Borns rule from environment-assisted invariance in terms

of pure-state twin unitaries” in [34] the concept of twin observables was extended to twin

unitaries. It was shown that the latter are the other face of Zurek’s envariance concept.

Under the title ”Mixed-state twin observables” in [35] the twin-observables no-

tion was extended to bipartite mixed states (density operators) ρAB . It was shown

that commutation of the twin observables with the corresponding state operators

[OA, ρA] = 0 and [OB, ρB] = 0 are necessary conditions also for mixed states, but

these relations are no longer sufficient.

Under the title ”Hermitian Schmidt decomposition and twin observables of bipartite

mixed states” in [36] It was shown that every mixed bipartite state (density operator)

ρAB has a Schmidt decomposition in terms of Hermitian subsystem operators. This

result is due to the fact that ρAB is an element in the Hilbert space of all linear

Hilbert-Schmidt operators in HA ⊗HB .

In the article under the title ”On statistical and deterministic quantum teleporta-

tion” in [37] it was shown that use of correlation operators gives insight in teleportation

(cf Figure 2 in section 6 there).

In the preprint under the title ”Delayed Twin Observables Are They a Fundamental

Concept in Quantum Mechanics?” in [38] the twin-observables concept is generalized to

the case when unitary time evolution takes place.

Finally, it is worth reemphasizing that all results presented in sections 2-6 apply to

every bipartite state vector. For instance, in |Ψ〉AB subsystem A can be the orbital,

and subsystem B the spin degree of freedom of one electron, but it can also describe

a many-particle system in which A contains some of the particles and B contains the rest.

The correlation operator provides us with a way to comprehend entanglement in

a bipartite pure state. It primarily serves to give insight. For most practical purposes

the canonical Schmidt decomposition or its stronger form, a twin-adapted canonical

Schmidt decomposition, suffice. The correlation operator is implicit in it.

The elaborated systematic and comprehensive analysis presented should, hopefully,

enable researchers to utilize Schmidt decomposition as a scalpel in surgery to derive

new results. At least I was myself enabled by it to work out a detailed theory of exact

quantum-mechanical measurement, which will be presented elsewhere.
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Appendix A. Partial scalar product

It will be shown that partial scalar product can be defined in three and a ’half’

ways, i. e., in three equivalent ways and incompletely in a fourth way.

We still write arbitrary ket or bra vectors with a bar; those without a bar are

norm-one vectors (as it is in the text). In each of the definitions below, we define the

partial scalar product only for norm-one elements of the Hilbert spaces. If the norm of

any (or both) of the factors in the product is not one, the final element is, by part of

the definition, multiplied by this norm (or by both norms).

A) Definition in terms of subsystem-basis expansion. We define partial scalar

product by essentially equating RHS(1g) and RHS(1b). More precisely, for any norm-

one element |n〉B
(

∈ HB

)

and any norm-one element |Ψ〉AB

(

∈ (HA ⊗HB)
)

we

write:
(

〈n |B|Ψ〉AB

)

A
≡

∑

m

(〈m |A 〈n |B|Ψ〉AB)× |m〉A. (A.1)

(Note that the resulting element in HA is expanded in an arbitrary basis {|m〉A :

∀m} .)

Next, we derive two basic properties of partial scalar product from the definition.

Property (i). If the bipartite element is uncorrelated |Ψ〉AB =|ψ〉A⊗ |φ〉B , then

partial scalar product reduces to ordinary scalar product:
(

〈n |B (|ψ〉A⊗ |φ〉B)
)

A
= (〈n |B|φ〉B)× |ψ〉A. (A.2)

This obviously follows from (A.1).

Property (ii). If the bipartite element is expanded in an absolutely convergent

orthogonal series | Ψ 〉AB =
∑

k |Ψ〉
k

AB (it can be a double etc. series), then the

partial scalar product has the property of extended linearity:
(

〈n |B (
∑

k

|Ψ〉
k

AB)
)

A
=

∑

k

(

〈n |B |Ψ〉
k

AB

)

A
. (A.3)

Also (A.3) follows evidently from (A.1) if one takes into account the fact that two ab-

solutely converging series (or double series etc.) can exchange order.

One can evaluate the form of the partial scalar product in the representation of

arbitrary bases {|m〉A : ∀m} in HA and {|q〉B : ∀q} in HB :
(

〈n|B|Ψ〉AB

)

A
≡

∑

m

(〈m|A 〈n|B|Ψ〉AB)× |m〉A =
∑

m

[

〈m|A 〈n|B
(

∑

q

|q〉B〈q|B
)

|Ψ〉AB

]

× |m〉A =

∑

m

∑

q

(〈n|B|q〉B)×(〈m|A 〈q|B|Ψ〉AB)× |m〉A =
∑

m

(

∑

q

(〈n|B|q〉B)×〈m|A 〈q|B|Ψ〉AB

)

× |m〉A.

Thus, partial scalar product in the representation in the basis {| q〉B : ∀q} (the

q-representation) is

〈m |A
(

〈n |B|Ψ〉AB

)

A
=

∑

q

[(〈q |B|n〉B)∗ × (〈m |A 〈q |B|Ψ〉AB)], (A.4)
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where the asterisk denotes complex conjugation.

The q-representation can be also purely continuous (as the coordinate or linear

momentum representations). Then (A.4) has the form

〈m |A
(

〈n |B|Ψ〉AB

)

A
=

∫

q
[(〈q |B|n〉B)∗ × (〈m |A 〈q |B|Ψ〉AB)]. (A.5)

B) Definition in terms of properties (i) and (ii). If we assume the validity of the

two basic properties from above, then, substituting the suitable general expansion (1e)

for |Ψ〉AB in
(

〈n |B|Ψ〉AB

)

A
one recovers (1b), and one is back to the subsystem-

basis-expansion definition (A) above. Therefore, definitions (A) and (B) are equivalent.

C) Definition of the partial scalar product in representation. We define the partial

scalar product by (A.4). Reading the above derivation of (A.4) backwards, we recover

the sub-system-basis-expansion definition (A). Hence, definitions (A) and (C) are equiv-

alent.

D) Definition of the partial scalar product in terms of the partial trace up to a phase

factor is given in Proposition C.1 in Appendix C below.

Remark A.1 As easily seen, the partial scalar product 〈φ |B|Ψ〉AB ca be evalu-

ated also by expressing |Ψ〉AB as any (finite) linear combination of tensor products

of tensor-factor vectors.

Appendix B. The partial-trace and its rules.

The partial trace

〈m |A trBOAB |m′〉A ≡
∑

n

〈m |A 〈n |B ρAB |m′〉A |n〉 (B.1)

was explained in von Neumann’s book [2] (p. 425) as far as OAB ≡ ρAB , a composite-

system density operator was concerned. The so-called ’reduced’ entity (on the LHS)

is defined by (B.1) in bases in an apparently basis-dependent way. But the resulting

positive operator ρA
(

≡ trBρAB

)

of finite trace is basis independent.

The very concept of a partial trace comes from the fact that one can have a state

operator (density operator; generalization of state vector) describing a subsystem as

follows. For every first-subsystem observable OA ⊗ IB one obtains
〈

OA, ρAB

〉

= tr
(

ρAB(OA ⊗ IB)
)

= trA
[(

trBρAB

)

OA

]

= trA
(

ρAOA

)

. (B.2)

The second partial-trace rule (cf below) has been used. (Note that the in full trace

”tr = trAtrB” the indices are usually omitted as superfluous.)
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FIRST RULE (The ’commutation-under-the-partial-trace’ rule.) If HA ⊗ HB

is a two-subsystem (complex and separable) composite Hilbert space, if, further, OA

is an operator that acts non-trivially only in HA and OAB is any operator in the

composite Hilbert space, then the following partial-trace rule is valid

trA
(

OAOAB

)

= trA
(

OABOA

)

. (B.3)

(Naturally, OA is actually OA ⊗ IB when acting in HA ⊗HB .)

Symmetrically,

trB
(

OBOAB

)

= trB
(

OABOB

)

. (B.4)

Rules (B.3) and (B.4) are analogous to commutation under a full trace.

Proof. Let {| r〉A : ∀r} and {| s〉B : ∀s} be any complete ON bases in the

factor spaces. Then, in view of 〈s |B IB |s′〉B = δs.s′ , one can write

〈s|B LHS(B.3) | s̄〉B =
∑

r′r′′s′
〈r′ |A 〈s|B (OA ⊗ IB) |r′′〉A |s′〉B〈r

′′ |A 〈s′ |B OAB |r′〉A | s̄〉B =

∑

r′r′′
〈r′ |A OA |r′′〉A〈r

′′ |A 〈s |B OAB |r′〉A | s̄〉B. (B.5)

On the other hand,

〈s|B RHS(B.3) | s̄〉B =
∑

r′r′′s′
〈r′ |A 〈s|B OAB |r′′〉A |s′〉B〈r

′′ |A 〈s′ |B (OA⊗ IB) |r′〉A | s̄〉B =

∑

r′r′′
〈r′ |A 〈s |B OAB |r′′〉A | s̄〉B〈r

′′ |A OA |r′〉A. (B.6)

If one exchanges the order of the two (number) factors and also exchanges the two

mute indices r′ and r′′ in each term on the RHS of (B.6), then the RHS’s of (B.5)

and (B.6) are seen to be equal. Hence, so are the LHS’s. Rule (B.4) is proved analo-

gously. ✷

SECOND RULE (The ’out-of-the-partial-trace’ rule.) Under the assumptions of

the first rule, the following relations are always valid:

trB
(

OAOAB) = OAtrBOAB. (B.7)

trB
(

OABOA) = (trBOAB)OA. (B.8)

trA
(

OBOAB) = OBtrAOAB. (B.9)

trA
(

OABOB) = (trBOAB)OB. (B.10)

An operator that acts non-trivially only in the tensor-factor space that is opposite to

the one over which the partial trace is taken behaves analogously as a constant under

a full trace: it can be taken outside the partial trace. But one must observe the order
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(important for operators, not for numbers).

Proof. Let {| r〉A : ∀r} and {| s〉B : ∀s} be any complete ON bases in the

factor spaces. Then

〈r |A LHS(B.7) |r′〉A =
∑

r′′ss′
〈r |A 〈s |B (OA × IB) |r′′〉A |s′〉B〈r

′′ |A 〈s′ |B OAB |r′〉A |s〉B =

∑

r′′s

〈r |A OA |r′′〉A〈r
′′ |A 〈s |B OAB |r′〉A |s〉B. (B.11)

On the other hand,

〈r |A RHS(B.7) |r′〉A =
∑

r′′s

〈r |A OA |r′′〉A〈r
′′ |A 〈s |B OAB |r′〉A |s〉B. (B.12)

The RHS’s of (B.11) and (B.12) are seen to be equal. Hence, so are the LHS’s. Relations

(B.8), (B.9) and (B.10) are proved analogously. ✷

Appendix C. Equivalence of the partial scalar product and a certain partial

trace.

The auxiliary relations that follow stand in certain analogies with the known basic

relation

tr(|Ψ〉AB〈Ψ |AB OAB) = 〈Ψ |AB OAB |Ψ〉AB (C.1)

(obvious if one evaluates the trace in a basis in which |Ψ〉AB is one of the elements).

Lemma C.1

trB
(

(|φ〉B〈φ |B)(|Ψ〉AB〈Ψ |AB)
)

= 〈φ |B|Ψ〉AB 〈Ψ |AB) |φ〉B.

Proof. Utilizing definition (B.1), taking into account that 〈m|A IA |m̄〉A = δm,m̄ ,

and eventually making use of (1b),one obtains

〈m |A LHS |m′〉A =
∑

n

〈m |A 〈n |B
(

(|φ〉B〈φ |B)(|Ψ〉AB〈Ψ |AB)
)

|m′〉A |n〉B =

∑

n,m̄,n̄

〈m |A 〈n |B (IA⊗ |φ〉B〈φ |B) |m̄〉A | n̄〉B〈m̄ |A 〈n̄ |B (|Ψ〉AB〈Ψ |AB) |m′〉A |n〉B =

∑

n,n̄

〈n |B|φ〉B × 〈φ |B) | n̄〉B × 〈m |A 〈n̄ |B|Ψ〉AB × 〈Ψ |AB) |m′〉A |n〉B =

(

∑

n̄

〈φ |B| n̄〉B × 〈m |A 〈n̄ |B|Ψ〉AB

)

×
(

∑

n

〈Ψ |AB|m
′〉A |n〉B〈n |B|φ〉B

)

=

〈m |A 〈φ |B|Ψ〉AB × 〈Ψ |AB|m
′〉A |φ〉B =

〈m |A RHS |m′〉A.
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✷

Lemma C.2

tr
(

(|φ〉B〈φ |B)(|Ψ〉AB〈Ψ |AB)
)

= ||〈φ |B|Ψ〉AB||
2

Proof. According to Lemma C.1

LHS = tr
(

〈φ |B|Ψ〉AB 〈Ψ |AB) |φ〉B
)

=

||〈φ |B|Ψ〉AB|| ×
{

tr
[(

〈φ |B|Ψ〉AB

/

||〈φ |B|Ψ〉AB||
)(

〈Ψ |AB) |φ〉B
/

||〈Ψ |AB) |φ〉B||
]}

×

||〈Ψ |AB) |φ〉B|| = RHS

✷

Finally, the two lemmata obviously imply the claim:

Proposition C.1 The following bridge relation is valid between partial trace and

partial scalar product:

trB
(

|φ〉B〈φ |B)(|Ψ〉AB〈Ψ |AB)
)/[

tr
(

|φ〉B〈φ |B)(|Ψ〉AB〈Ψ |AB)
)]

=

(

〈φ |B|Ψ〉AB

/

||〈φ |B|Ψ〉AB||
) (

〈Ψ |AB) |φ〉B
/

||〈Ψ |AB) |φ〉B||
)

.
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