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Abstract

This paper is a sequel to Representation growth of maximal class

groups: non-exceptional primes [6]. We use a constructive method to
calculate some exceptional cases of p-local representation zeta functions
of a family of finitely generated nilpotent groups Mn with maximal nilpo-
tency class. Using the machinery of the constructive method from the
prequel paper we construct all irreducible representations of degree pN for
all N ∈ N for the group Mp+1 for a fixed prime p. We also construct all
irreducible representations of degree 2N for the group M4. Together with
the main result from the prequel, this gives us a complete understanding
of the irreducible representations of the groups M3 and M4, along with
their global representation zeta functions.
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1 Introduction

Representation growth is a burgeoning area within group theory where one
studies (usually infinite) groups by considering the sequence of the number of
(sometimes equivalence classes of) irreducible complex representations of degree
n for all n ∈ N. More formally, for a group G and for all n ∈ N let rn(G) be
the number of irreducible representations of degree n. If all rn(G) are finite, we
can study this sequence by embedding them as coefficients in a zeta function.

Throughout this paper, all representations are complex representations. Two
representations of a group G, say ρ1 and ρ2, are said to be twist-equivalent if
ρ1 = χ⊗ ρ2 where χ is a representation of G of degree 1. It is easy to see that
there is only one twist isoclass of degree 1. For a finitely generated torsion-free
nilpotent group G all rn(G) are infinite. However, Lubotzky and Magid [12]
show that if we redefine rn(G) to be the equivalence classes of representations
of G of degree n up to twist equivalence and isomorphism then all rn(G) are
finite. These are the objects we count in this paper. Additionally, they show
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that each irreducible representation of G is twist equivalent to one that factors
through a finite quotient of G. See, for example, [6, Introduction] for more
information about representation growth of T -groups.

Let G be a T -group and let the complex series

ζirrG (s) =
∞
∑

n=1

rn(G)n−s. (1)

We call ζirrG (s) the (global) representation zeta function of G. Additionally, let

ζirrG,p(s) =

∞
∑

n=0

rpn(G)p−ns. (2)

We call this the p-local representation zeta function of G. Since all irreducible
representations factor through a finite quotient and finite nilpotent groups are
direct products of their Sylow p-subgoups, it follows that

ζirrG (s) =
∏

p

ζirrG,p(s). (3)

In [16, Theorem D], Voll shows that for almost all primes, p-local representa-
tion zeta functions of a T -group G satisfy a functional equation in the variable
p, depending only on the Hirsch length of the derived subgroup of G. This func-
tional equation has been refined in [15, Theorem A] to include number theoretic
information for groups that arise as, for a given number field, integer points of
unipotent group schemes.

Let Mn := 〈a1, . . . , an, b | [ai, b] = ai+1〉, where all commutators that do
not appear in (or follow from) the group relations are trivial. This paper is a
continuation of [6] in which we construct both the irreducible representations
and the p-local zeta functions of the family of groups Mn for almost all primes
p. While in the previous paper we calculated the p-local zeta functions when p
was non-exceptional (see [6, Section 8] for definition), in this paper we study
some cases when p is indeed exceptional. For the rest of the paper, and with a
slight abuse of notation, we denote the subgroup 〈an−k+1, an−k+2, . . . , an, b〉 as
Mk.

The techniques of representation growth have been used to study various
types of groups, including T -groups [9, 16, 15], compact Lie groups [17], arith-
metic and p-adic analytic groups [13, 10, 2, 3, 1], wreath products of finite groups
[4], and profinite and pro-p groups [5]. For more details, see [7, Introduction]
and [11].

1.1 Main Result

Let q be an arbitrary prime. The main result of this paper is the calculation of
the q-local representation zeta function for Mq+1, and the 2-local zeta function
forM4. Combining these results with the non-exceptional p- local representation
zeta functions in [6], this gives us the global representation zeta functions for
M3 and M4. Note the uniformity in all of the p-local zeta functions for both
groups. It is striking that the exceptional prime-local zeta functions are of
the same form as the non-exceptional prime-local zeta functions. We have the
following theorem:
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Theorem 1.1. Let p be a prime. Then the p-local representation zeta function
of the group Mp+1 is

ζirrMp+1,p
(s) =

(1 − p−s)2

(1− p((p+1)−2)−s)(1 − p1−s)
.

Theorem 1.2. The 2-local representation zeta function of the group M4 is

ζirrM4,2(s) =
(1 − 2−s)2

(1− 21−s)(1− 22−s)
.

Combining the previous two theorems with the main result from [6] and [14,
Theorem 5] we have the following corollary.

Corollary 1.3. Let n ∈ {2, 3, 4}. Then the global representation zeta function
of Mn is

ζirrMn
(s) =

ζ(s− 1)ζ(s− (n− 2))

(ζ(s))2
.

1.2 Kirillov Orbit Method vs. Constructive Method

There are two methods currently in use to study T -groups using the tools of
representation growth. These are the constructive method, which appears in
[7], [6], and this paper (and trivially in [14]), and the Kirillov orbit method,
first used in [16] and later employed in [15]. We use the constructive method
particularly to study the behaviour of some exceptional p-local zeta functions
of Mn. In this section we compare and contrast these two different methods of
calculating representation zeta functions of T -groups.

The constructive method is quite general. Other than the choice of group,
nothing else is assumed. The general technique could theoretically be used to
calculate the representation zeta function of any T -group. However, as the com-
plexity of the eigenspace structure of the irreducible representations increases,
the complexity of the calculation may increase as well. We do note that this
method relies on less mathematical machinery than the Kirillov orbit method
and thus can be appreciated with minimal technical background. This method
explicitly constructs all twist isoclasses of dimension pN for a chosen prime p
and N ∈ N, allowing one to easily read off the coefficients rpN (G) of the repre-
sentation zeta function.

Unlike the Kirillov orbit method, the main benefit of the constructive method
is that primes are not excluded by the method itself. While there may be special
cases that occur in the calculation for certain primes, the p-local representation
zeta function of these primes are still able to be calculated. We call primes of this
nature constructive-exceptional primes. Provided one can do the calculation, one
can understand the entire representation theory of irreducibles of a T -group by
the constructive method. We are able to calculate all irreducible representations
of maximal class groupsM3 andM4 and thus their representation zeta functions.
This is not possible using the Kirillov orbit method.

The main idea of the Kirillov orbit method applied to T -groups is to count ir-
reducible representations by exploiting the 1-to-1 correspondence, up to twisting
and isomorphism, between the irreducible characters of a T -group G of degree
pN for N ∈ N and the co-adjoint orbits of its associated Lie algebra. This
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method, including the use of p-adic integration to aid in counting, is outlined in
[16]. However, this correspondence holds for all but finitely many primes and by
disregarding these primes we are unable to construct the p-local representation
zeta function for finitely many primes p and, by extension, the global represen-
tation zeta function. We say we lose a prime p∗ if the hypotheses of the Kirillov
orbit method do not apply for p∗. We call such primes Kirillov-exceptional.

If we pass to an appropriate finite index subgroup of our T -group G, say
H , then, by [16, Section 3.4], we lose all p∗ such that p∗ | |G : H |. Secondly,
by Howe’s parametrization [8, Theorem 1.a] we lose all primes p∗ such that
p∗ | 2|G′

s : G′| where Hs is the isolator of H ≤ G and G′ is the commutator
subgroup of G. Next, by [16, Corollary 3.1], for all but finitely many primes
we have index conditions on subgroups of G and subalgebras of L, the Lie
algebra associated to G. These conditions are |G : Gψ | = |L : Radψ| and
|G : Gψ,2| = |L : Lψ,2|, where Gψ ,Radψ, Gψ,2, and Lψ,2 are defined in [16,
Section 3.4]. Thus, we lose all primes p∗ where these equalities do not hold. Also,
by assuming that L has the appropriate basis structure to apply the hypotheses
of the Kirillov orbit method we lose finitely many primes p∗. Finally, by [16,
Section 2.2], we lose primes p∗ such that the antisymmetric matrix R encoding
the commutator structure of L is a zero matrix mod p∗.

While it is true that there are only finitely many of these Kirillov-exceptional
primes, comparing the p-local representation zeta functions of non-exceptional
primes may not be sufficient to distinguish two T -groups from each other. The
constructive method allows for the calculation of all p-local representation zeta
functions, and thus one has a finer invariant of T -groups.

Compared to the constructive method, the comparatively mathematically
deeper Kirillov orbit method allows for easier computations in many cases since
one counts representations without constructing them explicitly. The machinery
that appears in [16] allows one to calculate p-local representation zeta functions
by, essentially, linear algebra. The Howe correspondence [8, Theorem 1.a] allows
one, for almost all primes, to linearize the computation of calculating the number
of pN -dimensional irreducible representations. However, Voll’s method does
not explicitly (without using a linear recurrence relation) give the coefficients
rpN (G), for some non-exceptional p and someN. This is because it parameterizes
representations in a different way than to dimension of twist isoclass.

A strength of the Kirillov orbit method is its use in studying p-local rep-
resentation zeta functions in more generality than the constructive method is
currently able to. Indeed, the functional equation given in [16], and its general-
ization in [15], is proved via the Kirillov orbit method. As it presently stands,
the constructive method seems unable to prove such a result. In fact, using the
Kirillov orbit method, one can understand much about p-local representation
zeta functions by understanding antisymmetric matrices over the ring Z/pNZ
for each N. This translates the problem of counting representations to linear
algebra over the ring of p-adic integers.

Also, as shown in [15], the Kirillov orbit method is able to use number-
theoretic information about a T -group to help construct the p-local represen-
tation zeta functions. Indeed, the representation zeta function of the group
H√

d
studied in [7] can be fully calculated by the Kirillov orbit method that

appears in [15]. The constructive method, in its current form, “forgets” any
number-theoretic structure and thus treats all T -groups the same way.
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2 Important Results from Prequel

In order to keep this paper relatively self-contained, we give a list of results and
definitions that appear in [6] that are used in this paper. For the proofs of the
following results, see the aforementioned paper.

Definition 2.1. Let S∞
p be the all complex pℓth roots of unity for all ℓ ∈ N

and Skp be the pkth roots of unity (and note that Skp\Sk−1
p are the primitive

pkth roots of unity). Define s : S∞
p → N such that s(λ) = k if and only if

λ ∈ Skp\Sk−1
p . If s(λ) = k we say that λ has depth k.

Let T0(0) = 1, T0(j) = 1, and Tj(0) = 0 for j ∈ N and recursively define

Tk(j) =
∑j

l=1 Tk−1(l) = Tk(j − 1) + Tk−1(j) for k ∈ N. The next lemma lists
some properties of these numbers that are needed for this paper. We state these
without proof.

Lemma 2.2. Let i, j, k, b ∈ N and Tk(j) be defined as above.

i. Tk(i) =
(

i+k−1
k

)

= i(i+1)...(i+k−1)
k! .

ii. Let p > k. Then for any b ∈ N and α such that 1 ≤ α ≤ p − 1 we have
Tk(αp

b + j) = Tk(j) mod pb.

iii. If p > k then Tk(p
N − 1) = 0 mod pN .

As a corollary of (ii) we have the following.

Corollary 2.3. Let p be a prime, let k < p, let N ≥ 1, let 1 ≤ m ≤ N, let
α ∈ N such that p ∤ α, and, for j ≥ 0, let

Γ(k, j) = αpmTk(j − 1). (4)

Then we have that Γ(k, βpN−m + j + 1) = Γ(k, j + 1) mod pN for all β such
that 1 ≤ β < pm and all j such that 0 ≤ j ≤ pN−m − 1.

Lemma 2.4. For 1 ≤ i ≤ n − 1 we have that λi,j =
∏n

k=i λ
Tk−i(j−1)
k and thus

the matrix xi has the structure

xi =













λi
∏n

k=i λ
Tk−i(1)
k

. . .
∏n
k=i λ

Tk−i(p
N−1)

k













. (5)

Moreover we have that

λp
N

i

n
∏

k=i+1

λ
Tk−i(p

N−1)
k = 1. (6)

Definition 2.5. The matrices x1, . . . , xn, y are in standard form if the xi are
in the form of Lemma 2.4 and y is in the form

y =













0 1

1
. . .

. . .
. . .

1 0













. (7)
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We say ρ is in standard form if, under a chosen basis, the matrices x1, . . . , xn, y
are in standard form.

Let λi,j be the jth diagonal entry of xi and let λi = λi,1. Let Vpk be the
subspace spanned by 〈y〉 · (e1+ epk+1+ . . .+ e(pN−k−1)pk+1). Also, we define the

n-tuple Λn(k) := (λ1,k, . . . , λn,k) where k is considered mod pN .

Lemma 2.6. For any k1, k2 if Λn(k1) = Λn(k2) then Λn(k1 +1) = Λn(k2 +1).

Corollary 2.7. Let β such that 0 ≤ β ≤ pN−j − 1, and let j be the minimal
power such that Λn(k) = Λn(βp

j + k). Then Vpj is a stable subspace of ρ and
Vpj−1 is not stable.

We define notation to this effect. Let H ≤ Mn and let V(ρ|H) be the the
minimal stable subspace Vpj , as in Corollary 2.7, of ρ|H . We say that V(ρ) =
V
(

ρ(Mn)
)

.

Corollary 2.8. The following are equivalent:

1. The number j is minimal such that Λn(1) = Λn(p
j + 1)

2. V(ρ) = Vpj .

Corollary 2.9. Let ρ : Mn → GLpN (C) be a representation. Then, for k < n
if V(ρ|Mk

) = Vpj then V(ρ) = Vpℓ for some ℓ such that ℓ ≥ k.

We know that if Vpk is ρ-stable then so is Vpj for j ≥ k. Thus, we obtain the
following corollary:

Corollary 2.10. Let ρ be a representation of Mn. The representation ρ is
irreducible if and only if VpN−1 is not ρ-stable.

Throughout this paper we use Corollary 2.10 to check if a representation
ρ is irreducible. We use Corollary 2.8 to determine the number of isomorphic
representations in standard form in one twist isoclass.

Lemma 2.11. Let Sρ be the twist isoclass represented by ρ and let V(ρ|Mn−1) =
Vpm . Then there are pm representations in standard form in Sρ that are twist-
and-shout equivalent to ρ.

Definition 2.12. Let ρ be irreducible and let xi, y, for i such that 1 ≤ i ≤ n,
be in standard form as defined earlier in the section. A shout is a matrix P such
that, up to twisting, PyP−1 and PxiP

−1 for i = 1 . . . n are in standard form.
The representations ρ and PρP−1 (note that Px1P

−1 may not be in standard
form) are said to be equivalent under shouting.

We use the following proposition and lemma to help count twist-and-shout
equivalent representations in each isoclass.

Proposition 2.13. Let p ≥ n and ρ be a pN -dimensional representation of Mn

with corresponding matrices in standard form. Then ρ is irreducible if and only
if there exists a λi such that s(λi) = N, where 2 ≤ i ≤ n.

We slightly change the form of this lemma from its version in [6].

Lemma 2.14. For p ≥ n−1 let ρ be an irreducible pN -dimensional representa-
tion of Mn and let k = max{s(λ3), . . . s(λn)}. Then there are pk representations
in standard form equivalent to ρ under twisting and shouting.
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3 The p-local Representation Zeta Function for

Mp+1

For a prime p, we study the p-local representations of Mn when n = p+ 1. We
calculate the exceptional prime representation growth zeta function ζirrMp+1,p

(s).

Note that, unlike the non-exceptional calculation in [6], p is fixed by our choice
of group for this calculation.

Let ρ be a pN -dimensional representation. We will determine the choices of
λi for which ρ is irreducible. We can choose a basis of the form in Lemma 2.4.

We divide this calculation into two cases: when s(λp+1) = N and when
s(λp+1) ≤ N − 1. Furthermore, we break the second case into two sub-cases:
when there is a λi with 3 ≤ i ≤ p such that s(λi) = N and when there is no
such λi. Call these cases Case 1, and Case 2, respectively. We call Case 2’s
respective subcases Case 2.1 and Case 2.2. Note that, since p is not exceptional
when considering ρ|Mp

(and we remind the reader that Mp = 〈y, x2, . . . , xn〉),
we can apply Lemma 2.14 when determining the number of representations
twist-and-shout equivalent to some irreducible ρ.

Case 1 Assume that s(λp+1) = N.
By [14], we have that ρ|M2 is an irreducible representation and thus ρ is irre-
ducible. We now must determine for which choices of λi the representation is
well defined.

By Lemma 2.2(iii), it is clear that we can use Equation 6 in Lemma 2.4 to
show that s(λi) ≤ N for i 6= 2 and

λp
N

2

p+1
∏

k=3

λ
Tk−1(p

N−1)
k = 1. (8)

Since s(λi) ≤ N for 3 ≤ i ≤ p by Lemma 2.2(iii) the preceding equation
simplifies to

λp
N

2 λ
Tp(p

N−1)
p+1 = 1. (9)

Cancelling out the p from the denominator of Tp(p
N − 1), we have that

Tp(p
N − 1) = αpN−1 (10)

for some α coprime to p. Thus s(λαp
N−1

p+1 ) = 1 and by Equation 9 we have

that s(λ2) = N + 1. There are pN choices for λ2 so that Equation 9 holds.
Thus, there are (1− p−1)pN choices for λp+1 and pN choices for each λi where
2 ≤ i ≤ p. By Lemma 2.14 we must divide by pN to take shouting into account.
Therefore in this case there are

(1− p−1)pNp(p−1)Np−N = (1− p−1)p(p−1)N (11)

twist isoclasses. Note that the right hand side of Equation 11 is also the con-
tribution to rpN in the non-exceptional case in [6] for when s(λp+1) = N.

Case 2 Now assume s(λp+1) ≤ N − 1.
It is clear, since Ti(p

N − 1) = 0 mod pN for i < p by Lemma 2.2(iii) and since

λ
Tp(p

N−1)
p+1 = 1 by Equation 10, that we can say that s(λi) ≤ N for 2 ≤ i ≤ p+1.

We now break this case into subcases.

7



Case 2.1 For i such that 3 ≤ i ≤ p, assume one of s(λi) = N, say λk. Then,
since p ≥ k, by Proposition 2.13 we have that ρ|Mp+1−k+2

is an irreducible rep-

resentation and thus ρ is irreducible. In this case there are (1−p−(p−2))p(p−2)N

choices for λi, p
N choices for λ2, and pN−1 choices for λp+1. By Lemma 2.14 we

must divide by pN to take shouting into account. Thus there are

(1 − p−(p−2))p(p−2)NpN−1pNp−N = (1− p−(p−2))p(p−1)N−1 (12)

twist isoclasses in this case. We note that the contribution to rpN in this case
is the same contribution to rpN for non-exceptional primes [6, Section 9].

Case 2.2 Assume s(λi) ≤ N − 1 where 3 ≤ i ≤ p.
Note that in this case ρ|Mp

has VpN−1 as a proper stable subspace so by Lemma
2.10 it is not irreducible. If s(λp+1) = 0 then Mp+1 is isomorphic to Mp and by
Proposition 2.13 the representation ρ is irreducible if and only if s(λ2) = N .

Now let s(λp+1) ≥ 1. We choose λ∗ such that s(λ∗) = N and write each λi in

terms of it; that is, let λi = λαip
mi

∗ , p ∤ αi, m2 ≥ 0, and mi ≥ 1 for 3 ≤ i ≤ p+1.
We appeal to Lemma 2.8 and determine when 〈y, x1〉 does not have VpN−1

as a proper stable subspace. This is the case exactly when λ1,1 6= λ1,pN−1+1.
Consider λ1,pN−1+1. If N = 1, then in order for ρ not to be trivial we

have that s(λ2) = 1 and it is easily verified that x1 is not scalar and thus ρ is
irreducible. Now, for N ≥ 2, we have that

Λ := logλ∗

(λ1,pN−1+1) (13)

= α2p
m2(pN−1) + α3p

m3
(pN−1)(βpN−1 + 1)

2
+ . . .

+ αp+1p
mp+1

(pN−1) . . . (βpN−1 + p− 1)

p!
mod pN .

By Corollary 2.3 and keeping in mind that mi ≥ 1 for 3 ≤ i ≤ p + 1 this
simplifies to the following:

Λ = α2p
m2pN−1 + αp+1p

mp+1−1 p
N−1 . . . (pN−1 + p− 1)

(p− 1)!
mod pN (14)

= pN−1
(

α2p
m2 + αp+1p

mp+1−1 (p
N−1 + 1) . . . (pN−1 + p− 1)

(p− 1)!

)

mod pN

Note that the last term has a denominator of (p− 1)! since the factor of p was
subtracted from mp+1.

We want ρ to be irreducible. Thus, by Wilson’s Theorem it must be that

α2p
m2 + αp+1p

mp+1−1 6= 0 mod p. (15)

We now enumerate the cases when we do not have a factor of p, and thus an
irreducible representation. By Equation 15 this is precisely when mp+1 = 1 or
m2 = 0 except when mp+1 = 1,m2 = 0, and α2 6= −αp+1 mod p.

We still need to take shouting into account. Therefore, by Lemma 2.14,
we must divide our count, if we enumerated the representations in this case at
this stage, by pm∗ where m∗ = max{s(λ3), . . . , s(λp+1)}. Note that, since p is
non-exceptional when considering ρ|Mp

, the shouting behaviour is the same as

8



in the non-exceptional case. We will count these later.

This ends the case distinctions.

We note that the only difference between the rpN for this exceptional prime
and the rpN for non-exceptional primes is the situation when we can choose λ2

and λp+1 such that (still thinking of all λi written as powers of λ∗) mp+1 = 1
and m2 ≥ 1, which gives us additional irreducible representations, and when
mp+1 = 1,m2 = 0, and α2 6= −αp+1 mod p, which gives us representations
that are no longer irreducible. Therefore, starting with rpN calculated for non-
exceptional primes, we can add the cases where our choices of λi give us addi-
tional representations and subtract the cases where we lose representations.

Let C be rpN for non-exceptional primes, that is the sum in [6, Find Equa-
tion!!!!] The situation where mp+1 = 1 and m2 ≥ 1 does not correspond to
irreducible representations for non-exceptional primes, but does for exceptional
primes. There are (1 − p−1)pN−1 choices for λp+1 and pN−1 choices for λ2 in
this case. Remembering that we assumed that s(λi) ≤ N − 1 for 3 ≤ i ≤ p then
there are p(p−2)(N−1) choices for these λi. By Lemma 2.14 we must divide by
pN−1 to take shouting into account. Therefore we must add

(1 − p−1)pN−1pN−1p(p−2)(N−1)p−(N−1) = (1− p−1)p(p−1)(N−1) (16)

to C.
The situation where mp+1 = 1, m2 = 0, and α2 = −αp+1 mod p does

correspond to irreducible representations for non-exceptional primes, but does
not for exceptional primes. There are (1− p−1)pN choices for λ2 and, given our
choice for λ2, there are pN−2 choices for λp+1 in this case. Remembering that
we assumed that s(λi) ≤ N − 1 for 3 ≤ i ≤ p there are p(p−2)(N−1) choices for
these λi. By Lemma 2.14 we must divide by pN−1 to take shouting into account.
Therefore we must subtract

(1− p−1)pNpN−2p(p−2)(N−1)p−(N−1) = (1 − p−1)p(p−1)(N−1) (17)

from C. Notice that (16) = (17). Therefore

rpN = C (18)

and

ζirrMp+1,p
(s) =

(1− p−s)2

(1− p((p+1)−2)−s)(1− p1−s)
(19)

by [6, Equation 31].

This result, and the result from [6], gives us the entire irreducible represen-
tation theory, as well as the representation zeta function, of M3. In fact, we can
say that

ζirrM3
(s) =

(

ζ(s− 1)

ζ(s)

)2

. (20)
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4 The 2-local Representation Zeta Function for

M4

We now have a complete understanding of the irreducible representations ofM3.
The aim of this section is to do the same for M4. Our previous work leaves us
with only one p-local zeta function to calculate; the previous section calculates
the 3-local zeta function and 2 and 3 are the only exceptional primes. Therefore
once we calculate the 2-local representation zeta function we have ζirrM4

(s) in its
entirety.

The complexity of this calculation lies partly in the inability to use Lemma
2.14 in many cases. Thus, some work is to be done to calculate the correct
factor by which we are overcounting.

For ease of computation, we calculate r2(M4) separately later in this section.
Until noted otherwise we assume the condition that N ≥ 2. In keeping with the
style of the general cases earlier, and for elucidation if one wishes to generalize
this calculation, we do not simplify the expressions (1 − 2−1) to 2−1 as far in
the calculation as possible.

Let ρ : M4 → GL2N (C) be a representation. By Equation 6 in Lemma 2.4
we have that

λ2N

4 = 1, (21)

λ2N

3 λ
T2(2

N−1)
4 = 1, (22)

and
λ2N

2 λ
T2(2

N−1)
3 λ

T3(2
N−1)

4 = 1. (23)

Therefore, by Equation 21, we have that s(λ4) ≤ N.
Before we begin counting twist isoclasses we must determine the possible

depths of λ2 and λ3. We remind the reader of Equation 10. Assume s(λ4) ≤
N−1. Then λ

T2(2
N−1)

4 = λ
T3(2

N−1)
4 = 1 and by Equation 22 we have that λ2N

3 =

1 and thus s(λ3) ≤ N. If s(λ3) ≤ N − 1 then λ
T2(2

N−1)
3 = 1 and by Equation

23 we have that λ2N

2 = 1 so s(λ2) ≤ N. If s(λ3) = N then λ
T2(2

N−1)
3 = λ−2N−1

3

and thus s(λ−2N−1

3 ) = 1. By Equation 23 we have that λ2N

2 = λ2N−1

3 and thus

λ2N

2 must satisfy this equation. So λ2N

2 = −1 and s(λ2) = N + 1.

Now assume s(λ4) = N. Then λ
T2(2

N−1)
4 = λ

T3(2
N−1)

4 = λ−2N−1

4 and thus

s(λ−2N−1

4 ) = 1. By Equation 22 we have that

λ2N

3 = λ2N−1

4 (24)

and thus λ2N

3 must satisfy this equation. So λ2N

3 = −1 and s(λ3) = N + 1.

We have that λ
T2(2

N−1)
3 = λ−2N−1

3 and by Equations 23 and 24 we have that

λ2N

2 = λ2N−1

3 λ2N−1

4 = λ2N+2N−1

3 = λ
(1+2)2N−1

3 . Note that we leave (1+2) in this

form since we wish to keep the form (1 + p). Thus s(λ
(1+2)2N−1

3 ) = 2 and λ2N

2

must satisfy Equation 23. So λ2N

2 = ±
√
−1 and s(λ2) = N + 2.

We break our computation into eight cases, with Cases 6 and 7 being further
broken down into subcases. Tables 1,2, and 3 show, repsectively, the number
of twist isoclasses in each case, for the subcases of Case 6, and for the subcases
of Case 7. We leave the computation of Cases 1,3, and 4 to the reader; these
follow almost immediately from previous computations.
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Table I: Table of Cases for M4
Case s(λ4) s(λ3) s(λ2) Other Conditions No. of twist isoclasses,

N ≥ 2
1 = N = N + 1 = N + 2 (1 − 2−1)422N+3

2 = N − 1 = N = N + 1 α3 = 3 mod 4 (1 − 2−1)322N

3 = N − 1 ≤ N − 1 ≤ N (1 − 2−1)22N−2

4 ≤ N − 2 = N = N + 1 (1 − 2−1)222N−1

5 ≤ N − 2 = N − 1 = N 0
6 ≤ N − 2 ≤ N − 2 = N See Table II on page 11
7 ≤ N − 2 = N − 1 ≤ N − 1 See Table III on page

11
8 ≤ N − 2 ≤ N − 2 ≤ N − 1 0

Table II: Case 6 of Table I
N Case Relationship of s(λ3) and s(λ4) No. of twist isoclasses
= 2 6.4 s(λ3) = s(λ4) = 0 2

=3
6.2 s(λ3) ≤ 1, s(λ4) = 1 (1 − 2−1)223

6.4 s(λ4) = 0 (1 − 2−1)23(1 + (1− 2−1))

≥ 4

6.1 s(λ3) > s(λ4) + 1, s(λ3) ≥ 2, s(λ4) 6= 0
[

(1 − 2−1)2N
(

(2N−4 − 1)

− (1 − 2−1)(N − 4)
)]

6.2 s(λ3) < s(λ4) + 1, s(λ4) 6= 0 (1 − 2−1)2N (2N−3 − 2−1)
6.3 s(λ3) = s(λ4) + 1, s(λ4) 6= 0 (1 − 2−1)22N(2N−2 − 2)
6.4 s(λ4) = 0 (1−2−1)22N(1+(1−2−1)(N−2))

Table III: Case 7 of Table I
N Case No. of twist isoclasses
= 2 1

≥ 3
7.1 (1 − 2−1)22N−4

7.2 (1 − 2−1)222N−2

11



Case 2: By Case 2.2 of Section 4 we have that ρ|M3 is reducible. Appealing
to Lemma 2.10 we must check whether V2N−1 is a stable subspace of 〈y, x1〉. We
write each root of unity in terms of a primitive 2N+1th one. Let λ∗ = λ2, λi =
λαi2

mi

∗ for some αi such that 2 ∤ αi,m4 = 2, m3 = 1, and i ∈ {3, 4}.
Using Corollary Corollary 2.8 and noting that 2 · (2N−1)2 = 0 mod 2N+1

for N = 2, consider λ1,2N−1+1:

logλ∗

(λ1,2N−1+1) (25)

= (2N−1) + 21−1α3(2
N−1)(2N−1 + 1)

+ α42
2−1 (2

N−1)(2N−1 + 1)(2N−1 + 2)

3
mod 2N+1

= 2N−1

(

1 + α3 + α42
1 2

3

)

mod 2N+1

= logλ∗

(λ1) + 2N−1 [1 + α3] mod 2N+1

So the expression in the square brackets above is a multiple of 4 if and only
if V2N−1 is a 〈y, x1〉-stable subspace. Let Q be the aforementioned expression. It
is clear that Q = 0 mod 4 precisely when α3 = 3 mod 4. This means that we
are only free to choose half of the elements of SN2 /SN−1

2 for λ3. Thus, there are
(1− 2−1)2N−1 choices for λ3, (1− 2−1)2N+1 choices for λ2, and (1− 2−1)2N−1

choices for λ4. Since ρ|M3 is not irreducible it has at least V2N−1 as a stable
subspace. But since s(λ4) = N − 1, by Corollary 2.9 we have that V(ρ|M3) =
V2N−1 . Thus, by Lemma 2.11 we must divide by 2N−1 to take shouting into
account. So in this case we have

(1 − 2−1)2N−1(1− 2−1)2N+1(1− 2−1)2N−12−(N−1) (26)

= (1 − 2−1)322N

twist isoclasses.
Cases 5 and 6: We note s(λ2) = N and s(λ4) ≤ N − 2 for both cases. We

have, by Case 2.2 of Section 4, that ρ|M3 has V2N−1 as a proper stable subspace.
Appealing to Lemma 2.10, we check whether V2N−1 is a stable subspace of
〈y, x1〉. We let λ∗ = λ2 and write each λi as a power of λ∗; that is, let λ4 =
λα42

m4

∗ and λ3 = λα32
m3

∗ such that 2 ∤ αi m3 ≥ 1, m4 ≥ 2, and i ∈ {3, 4}. If
m4 = N then by Case 2.2 of Section 4 we have that ρ is irreducible if and only
if m3 6= 1. If m3 = N it is easy to show that logλ∗

(λ1,2N−1+1) 6= 1. We leave
this to the reader. Assume that m3,m4 6= N.

Appealing to Corollary 2.8, consider λ1,2N−1+1, noting that 22N−2 = 0
mod 2N :

Λ := logλ∗

(λ1,2N−1+1) (27)

= (2N−1) + α32
m3−1(2N−1)(2N−1 + 1)

+ α42
m4−1 2

N−1(2N−1 + 1)(2N−1 + 2)

3
mod 2N

= logλ∗

(λ1) + 2N−1
[

1 + α32
m3−1

]

mod 2N .

So when the term in the square brackets above, say Q, is not 0 mod 2 then
λ1 6= λ1,2N−1+1. It follows that V2N−1 is not a stable subspace of ρ and therefore

12



ρ is irreducible. Thus Q is 0 mod 2 when m3 = 1; that is when s(λ3) = N − 1.
So in Case 5 there are no irreducible representations.

If m3 ≥ 2 it is clear that Q 6= 0 mod 2. Thus, in Case 6 there are 2N−2

choices for λ4, 2
N−2 choices for λ3, and (1− 2−1)2N choices for λ2.

We now need to analyze the shouting behaviour for this case. It is clear,
since V(ρ|M2) = V2s(λ4) by Lemma 2.14 and Corollary 2.9, that there are at
least 2s(λ4) = 2N−m4 representations twist and shout-equivalent to ρ. We now
determine V(ρ|M3) for each possible choice of m3 and m4. Let m4 6= N. We deal
with the case m4 = N in the next lemma. Also, note that we use the power of
Corollary 2.8 for this computation.

Consider, for some k such that 1 ≤ k ≤ m4,

logλ∗

(λ2,2N−k+1)− logλ∗

(λ2,1) (28)

= α32
m32N−k + α42

m4−12N−k(2N−k + 1) mod 2N

= 2N−k
[

α32
m3 + α42

m4−1(2N−k + 1)
]

mod 2N .

For the following lemma let Q be the sum in the square brackets above. By
Lemma 2.8, if Q = 0 mod 2k then λ2,1 = λ2,2N−k+1 and Vpk is a proper stable
subspace of ρ|M3 .

Lemma 4.1. Let m4 6= N and let m∗ = min{m3,m4− 1}. If m3 6= m4− 1 then
V(ρ|M3) = V2N−m∗ . If m3 = m4 − 1 then V(ρ|M3) = V2N−m4 .

If m4 = N then V(ρ|M3) = V2N−m3 .

Proof. Assume m4 6= N. If m3 6= m4 − 1 the maximum value of k such that
Q = 0 mod 2k is min{m3,m4− 1}. If m3 = m4− 1 then, since both terms in Q
are of the same 2-adic valuation, the maximal value of k is at least m4. However,
since V(ρ|M2) = V2s(λ4) , by Corollary 2.9 it follows that V(ρ|M3) = V2s(λ4) .

Now let m4 = N. Then,

logλ∗

(λ2,2N−k+1)− logλ∗

(λ2,1) (29)

= α32
m32N−k = 0 mod 2N

when k ≤ m3. Thus k is maximal when k = m3 and V(ρ|M3) = V2s(λ3) when
m4 = N.

We now count the number of twist isoclasses. To do this we break the
computation into four subcases. Note that, in all subcases, there are (1−2−1)2N

choices for λ2. For the first three subcases we assume that s(λ4) 6= 0.
Case 6.1 For some M such that 2 ≤ M ≤ N−2, let s(λ3) = M > s(λ4)+1.

We have that there are (1− 2−1)2M choices for λ3 and 2M−2 − 1 choices for λ4.
Since s(λ3) = M > s(λ4)+ 1 by Lemmas 2.11 and 4.1 we must divide by 2M to
take shouting into account. Thus, in this subcase there are

(1− 2−1)2N
N−2
∑

M=2

(1− 2−1)2M (2M−2 − 1)2−M (30)

= (1− 2−1)2N
(

(2N−4 − 1)− (1− 2−1)(N − 4)
)

twist isoclasses. Note that when M = 2 we have that (2M−2 − 1) = 0.
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Case 6.2 For some M such that 1 ≤ M ≤ N − 2, let s(λ4) = M and
s(λ3) < s(λ4)+1 = M+1. There are (1−2−1)2M choices for λ4 and 2M choices
for λ3. By Lemmas 2.11 and 4.1 we must divide by 2M+1 to take shouting into
account. Thus in this subcase there are

(1− 2−1)2N
N−2
∑

M=1

(1− 2−1)2M2M2−(M+1) (31)

= (1− 2−1)2N (2N−3 − 2−1)

twist isoclasses.
Case 6.3 For some M such that 2 ≤ M ≤ N−2, let s(λ3) = M = s(λ4)+1.

We have that there are (1 − 2−1)2M choices for λ3 and (1 − 2−1)2M−1 choices
for λ4. Since s(λ3) = M = s(λ4) + 1 by Lemmas 2.11 and 4.1 we must divide
by 2M−1 to take shouting into account. Thus, in this subcase there are

(1− 2−1)2N
N−2
∑

M=2

(1− 2−1)22M2M−12−(M−1) (32)

= (1− 2−1)22N(2N−2 − 2)

twist isoclasses.
Case 6.4 Assume s(λ4) = 0. Let s(λ3) = M for 0 ≤ M ≤ N − 2. If M > 0

there are (1−2−1)2M choices for λ3 and there is 1 choice for λ3 if M = 0. There
is only 1 choice for λ4. By Lemmas 2.11 and 4.1 we must divide by 2M to take
shouting into account. Thus in this subcase there are

(1 − 2−1)2N

(

1 +

N−2
∑

M=1

(1 − 2−1)2M2−M

)

(33)

= (1 − 2−1)2N
(

1 + (1− 2−1)(N − 2)
)

twist isoclasses.
This ends the subcase distinctions.

Thus, summing together all subcases we have that there are

(1 − 2−1)2N
(

(2N−4 − 1)− (1− 2−1)(N − 4)
)

+ (1− 2−1)2N(2N−3 − 2−1)
(34)

+ (1− 2−1)22N (2N−2 − 2) + (1 − 2−1)2N
(

1 + (1− 2−1)(N − 2)
)

= (1 − 2−1)2N (2N−2 + 2N−4 − 2−1)

twist isoclasses in Case 6 when N ≥ 4. When N = 3 we sum together Cases 6.2
and 6.4. Thus there are

(1− 2−1)23
(

(1− 2−1) + 1 + (1− 2−1)
)

(35)

= 8

twist isoclasses in Case 6. When N = 2 we only include Case 6.4 and thus there
are

(1− 2−1)22(1) = 2 (36)
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twist isoclasses in Case 6.
Cases 7 and 8: We note for both cases s(λ2) ≤ N−1 and s(λ4) ≤ N−2. By

Case 2.2 of Section 4, we have that ρ|M3 has V2N−1 as a proper stable subspace,
as with the previous two cases. We check whether V2N−1 is a stable subspace
of 〈y, x1〉. As usual, we choose a λ∗ ∈ SN2 /SN−1

2 and write each λi as a power
of λ∗; that is λ4 = λαi2

mi

∗ such that 2 ∤ αi, m2 ≥ 1, m3 ≥ 1, m4 ≥ 2, and
i ∈ {2, 3, 4}.

Appealing to Corollary 2.8, consider λ1,2N−1+1, noting that 22N−2 = 0
mod 2N :

Λ := logλ∗

(λ1,2N−1+1) (37)

= α22
m22N−1 + α32

m3−12N−1(2N−1 + 1)

+ α42
m4−1 2

N−1(2N−1 + 1)(2N−1 + 2)

3
mod 2N

= logλ∗

(λ1) + 2N−1[α22
m2 + α32

m3−1] mod 2N .

Clearly if m3 ≥ 2 then the expression in the square brackets above, say Q, is
0 mod 2 and V2N−1 is indeed a stable subspace of ρ. If m3 = 1 then Q is not
0 mod 2 and V2N−1 is not a stable subspace of ρ. Therefore ρ is irreducible. So
we have that in Case 8 there are no twist isoclasses. In Case 7 there are 2N−2

choices for λ4, (1− 2−1)2N−1 choices for λ3, and 2N−1 choices for λ2.
We now determine the behaviour of shouting in this case. It is easy to see

that V(ρ|M2) = V2s(λ4) and thus V(ρ|M3) is no smaller than V2s(λ4) .
Let N ≥ 3; we calculate the case when N = 2 separately later in the section.

We write λ3, λ4 in terms of some λ∗ ∈ SN2 \SN−1
2 in the usual way, with m3 = 1

and m4 such that 2 ≤ m4 ≤ N . If m4 = N then it is easy to show that
V(ρ|M3) = V2N−1 . Now assume m4 6= N. As in Case 6, we use the power of
Corollary 2.8. Consider Λ := logλ∗

(λ2,2N−k+1) − logλ∗

(λ2,1) for k such that
1 ≤ k ≤ m4. Then

Λ = α32 · 2N−k + α42
m4−12N−k(2N−k + 1) mod 2N (38)

= 2N−k[α32 + α42
m4−1(2N−k + 1)]

Let Q be the terms in the square brackets above. We have that Q = 0 mod 2k

if and only if λ2,1 = λ2,2N−k+1 and thus V2N−k is a proper stable subspace of
〈y, x2〉. We break this computation into two subcases.

Case 7.1 Assume m4 > 2.
It is clear that if m4 > 2 then, since m3 = 1, by Equation 38 the maximal k
such that Λ = 0 mod 2N is when k = 1. Thus V(ρ|M3) = V2N−1 . Note that
V2N−1 is also minimal when m4 = N. Let s(λ4) = M where M ≤ N − 3. In this
subcase there are 2N−1 choices for λ2, (1 − 2−1)2N−1 choices for λ3 and 2N−3

choices for λ4. By Lemma 2.11 we must divide by 2N−1 to take shouting into
account. Thus, in this subcase, there are

2N−1(1− 2−1)2N−12N−32−(N−1) = (1− 2−1)22N−4 (39)

twist isoclasses.
Case 7.2 Assume m4 = 2

If m4 = 2 then we have that Q = 0 mod 22 and, since V(ρ|M2) = V2N−2 , then
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by Corollary 2.9 V(ρ|M3) = V2N−2 . There are 2N−1 choices for λ2, (1−2−1)2N−1

choices for λ3, and (1−2−1)2N−2 choices for λ4. By Lemma 2.11 we must divide
by 2N−2 to take shouting into account. Thus, in this subcase there are

(1 − 2−1)22N−12N−12N−22−(N−2) = (1− 2−1)222N−2 (40)

twist isoclasses.
This ends the subcase distinctions.

Summing together these two subcases there are, for N ≥ 3,

(1− 2−1)22N−4 + (1 − 2−1)222N−2 = (1− 2−1)22N−4(1 + 22(1− 2−1)) (41)

twist isoclasses.
Now assume N = 2. Then we have that s(λ4) = 0. A short calculation

shows that λ2,1 = λ2,3 and by Corollary 2.8 we have that V2 is a minimal stable
subspace. By Lemma 2.11 we must divide by 2 to take shouting into account.
There are 21 choices for λ2, (1 − 2−1)21 = 1 choice for λ3, and 1 choice for λ4.
Thus, in this subcase there is

2 · 1 · 1 · 2−1 = 1 (42)

twist isoclass.

This ends the case distinctions.

We now consider the case whenN = 1. Note that, for clarity, we will call ι the
square root of −1. By Equation 21 we have that s(λ4) ≤ 1; that is, λ4 ∈ {1,−1}.
If λ4 = −1, then by Equation 22 we have that λ3 ∈ {ι,−ι} and by Equation 23
we have that λ2 ∈ {±√

ι,±√
ι} such that λ2

2 = −λ3.
If λ4 = 1 then by Equation 22 we have that λ3 ∈ {1,−1}. If λ3 = 1 then

by Equation 23 and, since ρ is not the identity representation, we have that
λ2 = −1. If λ3 = −1 then by Equation 23 we have that λ2 ∈ {ι,−ι}.

A set of choices of the λi gives us an irreducible representation if and only if
λi,1 6= λi,2 holds for at least one 1 ≤ i ≤ 3; that is, one of the following is true:

λ4 6= 1 (43)

λ3λ4 6= 1 (44)

λ2λ3λ4 6= 1. (45)

It is easy to see that all of our choices of sets of λi give us irreducible representa-
tions. For triples (λ4, λ3, λ2) it is easy to check that the pairs
[

(−1, ι,
√
ι), (−1,−ι,−

√
−ι)
]

,
[

(−1, ι,−√
ι), (−1,−ι,

√
−ι)
]

, [(1,−1, ι), (1,−1,−ι)]
are twist-and-shout equivalent. Therefore we can say that

r2(M4) = 4. (46)

We count the number of twist isoclasses for N = 2, 3 separately as well.
Summing Cases 1 through 8 for N = 2, 3 we have r4(M4) = 17 and r8(M4) = 70.
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We can now compute the 2-local representation growth zeta function of M4

by summing together the number of twist isoclasses from Cases 1 through 8:

ζirrM4,2(s) = 1 + 4 · 2−s + 17 · 2−2s + 70 · 2−3s (47)

+

∞
∑

N=4

[

(1− 2−1)422N+3 + (1− 2−1)322N

+ (1 − 2−1)22N−2 + (1 − 2−1)222N−1

+ (1 − 2−1)2N (2N−2 + 2N−4 − 2−1)

+ (1− 2−1)22N−4(1 + 22(1− 2−1))
]

2−Ns.

Simplifying the expression above, we obtain

ζirrM4,2(s) =
(1 − 2−s)2

(1− 21−s)(1− 22−s)
. (48)

Note that this result is the same as the zeta function for non-exceptional primes
in [6]. It is then easy to check that this does satisfy the functional equation in
[].

Now that we have the p-local representation zeta functions of M4 we can
now state the global representation zeta function:

ζirrM4
(s) =

ζ(s− 1)ζ(s− 2)

(ζ(s))2
. (49)
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