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Abstract

This paper is a sequel to Representation growth of mazximal class
groups: non-exceptional primes [6]. We use a constructive method to
calculate some exceptional cases of p-local representation zeta functions
of a family of finitely generated nilpotent groups M,, with maximal nilpo-
tency class. Using the machinery of the constructive method from the
prequel paper we construct all irreducible representations of degree p™¥ for
all N € N for the group Mp4+1 for a fixed prime p. We also construct all
irreducible representations of degree 2V for the group M. Together with
the main result from the prequel, this gives us a complete understanding
of the irreducible representations of the groups M3 and Ma, along with
their global representation zeta functions.
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1 Introduction

Representation growth is a burgeoning area within group theory where one
studies (usually infinite) groups by considering the sequence of the number of
(sometimes equivalence classes of) irreducible complex representations of degree
n for all n € N. More formally, for a group G and for all n € N let r,(G) be
the number of irreducible representations of degree n. If all r,(G) are finite, we
can study this sequence by embedding them as coefficients in a zeta function.
Throughout this paper, all representations are complex representations. Two
representations of a group G, say p; and ps, are said to be twist-equivalent if
p1 = X ® p2 where x is a representation of G of degree 1. It is easy to see that
there is only one twist isoclass of degree 1. For a finitely generated torsion-free
nilpotent group G all r,,(G) are infinite. However, Lubotzky and Magid [12]
show that if we redefine r,(G) to be the equivalence classes of representations
of G of degree n up to twist equivalence and isomorphism then all r,(G) are
finite. These are the objects we count in this paper. Additionally, they show
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that each irreducible representation of G is twist equivalent to one that factors
through a finite quotient of G. See, for example, [0, Introduction] for more
information about representation growth of 7-groups.

Let G be a T-group and let the complex series

&(s) =D ral@Gn”". (1)

We call (" (s) the (global) representation zeta function of G. Additionally, let

Canls) =Y rp(Gp ™. (2)
n=0

We call this the p-local representation zeta function of G. Since all irreducible
representations factor through a finite quotient and finite nilpotent groups are
direct products of their Sylow p-subgoups, it follows that

§7(s) = [T ¢&n(s)- (3)

In [T6, Theorem D], Voll shows that for almost all primes, p-local representa-
tion zeta functions of a T-group G satisfy a functional equation in the variable
p, depending only on the Hirsch length of the derived subgroup of G. This func-
tional equation has been refined in [I5, Theorem A] to include number theoretic
information for groups that arise as, for a given number field, integer points of
unipotent group schemes.

Let M, := {(a1,...,an,b | [a;,b] = ai+1), where all commutators that do
not appear in (or follow from) the group relations are trivial. This paper is a
continuation of [6] in which we construct both the irreducible representations
and the p-local zeta functions of the family of groups M,, for almost all primes
p. While in the previous paper we calculated the p-local zeta functions when p
was non-exceptional (see [6l Section 8] for definition), in this paper we study
some cases when p is indeed exceptional. For the rest of the paper, and with a
slight abuse of notation, we denote the subgroup (an_j+1,@n—k+42,-..,an,b) as
Mj,.

The techniques of representation growth have been used to study various
types of groups, including 7-groups [9, [16] [I5], compact Lie groups [I7], arith-
metic and p-adic analytic groups [13}[10} 2 3] [1], wreath products of finite groups
[4], and profinite and pro-p groups [5]. For more details, see [T} Introduction]
and [I1].

1.1 Main Result

Let ¢ be an arbitrary prime. The main result of this paper is the calculation of
the g-local representation zeta function for Mgy, and the 2-local zeta function
for My. Combining these results with the non-exceptional p- local representation
zeta functions in [6], this gives us the global representation zeta functions for
Ms and My. Note the uniformity in all of the p-local zeta functions for both
groups. It is striking that the exceptional prime-local zeta functions are of
the same form as the non-exceptional prime-local zeta functions. We have the
following theorem:



Theorem 1.1. Let p be a prime. Then the p-local representation zeta function
of the group M4 is

i (s) = (1- p*S)z
Mpy1,p (1 _ p((p+1)—2)—s)(1 _ pl—s) .

Theorem 1.2. The 2-local representation zeta function of the group My is

(1—27%)2
(1—21-5)(1—22%)

G\Z,z(s) =

Combining the previous two theorems with the main result from [6] and [I4]
Theorem 5] we have the following corollary.

Corollary 1.3. Let n € {2,3,4}. Then the global representation zeta function

of M, is
(s =1)¢(s = (n—2))
(¢(s))? '

1.2 Kirillov Orbit Method vs. Constructive Method

M () =

There are two methods currently in use to study 7-groups using the tools of
representation growth. These are the constructive method, which appears in
[, [6], and this paper (and trivially in [14]), and the Kirillov orbit method,
first used in [I6] and later employed in [I5]. We use the constructive method
particularly to study the behaviour of some exceptional p-local zeta functions
of M,. In this section we compare and contrast these two different methods of
calculating representation zeta functions of T-groups.

The constructive method is quite general. Other than the choice of group,
nothing else is assumed. The general technique could theoretically be used to
calculate the representation zeta function of any 7-group. However, as the com-
plexity of the eigenspace structure of the irreducible representations increases,
the complexity of the calculation may increase as well. We do note that this
method relies on less mathematical machinery than the Kirillov orbit method
and thus can be appreciated with minimal technical background. This method
explicitly constructs all twist isoclasses of dimension p” for a chosen prime p
and N € N, allowing one to easily read off the coefficients r,~ (G) of the repre-
sentation zeta function.

Unlike the Kirillov orbit method, the main benefit of the constructive method
is that primes are not excluded by the method itself. While there may be special
cases that occur in the calculation for certain primes, the p-local representation
zeta function of these primes are still able to be calculated. We call primes of this
nature constructive-exceptional primes. Provided one can do the calculation, one
can understand the entire representation theory of irreducibles of a T-group by
the constructive method. We are able to calculate all irreducible representations
of maximal class groups M3 and M, and thus their representation zeta functions.
This is not possible using the Kirillov orbit method.

The main idea of the Kirillov orbit method applied to T-groups is to count ir-
reducible representations by exploiting the 1-to-1 correspondence, up to twisting
and isomorphism, between the irreducible characters of a T-group G of degree
p™ for N € N and the co-adjoint orbits of its associated Lie algebra. This



method, including the use of p-adic integration to aid in counting, is outlined in
[16]. However, this correspondence holds for all but finitely many primes and by
disregarding these primes we are unable to construct the p-local representation
zeta function for finitely many primes p and, by extension, the global represen-
tation zeta function. We say we lose a prime p, if the hypotheses of the Kirillov
orbit method do not apply for p.. We call such primes Kirillov-exceptional.

If we pass to an appropriate finite index subgroup of our T-group G, say
H, then, by [16, Section 3.4], we lose all p, such that p. | |G : H|. Secondly,
by Howe’s parametrization [8, Theorem 1.a] we lose all primes p, such that
P« | 2|GY : G'| where H, is the isolator of H < G and G’ is the commutator
subgroup of G. Next, by [16, Corollary 3.1], for all but finitely many primes
we have index conditions on subgroups of G and subalgebras of L, the Lie
algebra associated to G. These conditions are |G : Gy| = |L : Rady| and
|G : Gyl = |L : Lyo|, where Gy, Rady, Gy 2, and Ly o are defined in [16]
Section 3.4]. Thus, we lose all primes p, where these equalities do not hold. Also,
by assuming that L has the appropriate basis structure to apply the hypotheses
of the Kirillov orbit method we lose finitely many primes p.. Finally, by [16,
Section 2.2], we lose primes p, such that the antisymmetric matrix R encoding
the commutator structure of L is a zero matrix mod p..

While it is true that there are only finitely many of these Kirillov-exceptional
primes, comparing the p-local representation zeta functions of non-exceptional
primes may not be sufficient to distinguish two T-groups from each other. The
constructive method allows for the calculation of all p-local representation zeta
functions, and thus one has a finer invariant of 7-groups.

Compared to the constructive method, the comparatively mathematically
deeper Kirillov orbit method allows for easier computations in many cases since
one counts representations without constructing them explicitly. The machinery
that appears in [I6] allows one to calculate p-local representation zeta functions
by, essentially, linear algebra. The Howe correspondence [§, Theorem 1.a] allows
one, for almost all primes, to linearize the computation of calculating the number
of pN-dimensional irreducible representations. However, Voll’s method does
not explicitly (without using a linear recurrence relation) give the coefficients
rp~ (G), for some non-exceptional p and some N. This is because it parameterizes
representations in a different way than to dimension of twist isoclass.

A strength of the Kirillov orbit method is its use in studying p-local rep-
resentation zeta functions in more generality than the constructive method is
currently able to. Indeed, the functional equation given in [16], and its general-
ization in [I5], is proved via the Kirillov orbit method. As it presently stands,
the constructive method seems unable to prove such a result. In fact, using the
Kirillov orbit method, one can understand much about p-local representation
zeta functions by understanding antisymmetric matrices over the ring Z/pNZ
for each N. This translates the problem of counting representations to linear
algebra over the ring of p-adic integers.

Also, as shown in [I5], the Kirillov orbit method is able to use number-
theoretic information about a 7-group to help construct the p-local represen-
tation zeta functions. Indeed, the representation zeta function of the group
H s studied in [7] can be fully calculated by the Kirillov orbit method that
appears in [I5]. The constructive method, in its current form, “forgets” any
number-theoretic structure and thus treats all T-groups the same way.



2 Important Results from Prequel

In order to keep this paper relatively self-contained, we give a list of results and
definitions that appear in [6] that are used in this paper. For the proofs of the
following results, see the aforementioned paper.

Definition 2.1. Let S;° be the all complex pth roots of unity for all £ € N
and S’}’; be the p*th roots of unity (and note that 55\55_1 are the primitive
p"th roots of unity). Define s : 55° — N such that s(\) = k if and only if
A€ SI\SF=1 If s(\) = k we say that A has depth k.

Let To(0) = 1, Tp(j) = 1, and T;(0) = 0 for j € N and recursively define
Ti(j) = S Tho1(l) = Ti(j — 1) 4+ T—1(j) for k € N. The next lemma lists
some properties of these numbers that are needed for this paper. We state these
without proof.

Lemma 2.2. Let i,j,k,b € N and Ty(j) be defined as above.
i, Th(i) = (i-HZ—l) _ i(i+1)..].€(!i+k—1)_
it. Let p > k. Then for any b € N and a such that 1 < a < p—1 we have
Ti(ap® + j) = Ti(j) mod p.
i, If p >k then Tp(pN —1) =0 mod p¥.
As a corollary of (ii) we have the following.

Corollary 2.3. Let p be a prime, let k < p, let N > 1, let 1 < m < N, let
a € N such that pt «, and, for j >0, let

L(k,j) = ap™Ti(j — 1). (4)

Then we have that T'(k, BpN =™ + j 4+ 1) = I'(k,j + 1) mod p" for all B such
that 1 < B < p™ and all j such that 0 < j < pN=m — 1.

Lemma 2.4. For 1 <i<n —1 we have that \; ; = HZ:Z. /\g’“’i(jfl) and thus
the matriz x; has the structure

i

RV

. N_
[T A Y

Moreover we have that

N T AT _i(pN -1
AT At =1 (6)
k=i+1
Definition 2.5. The matrices z1,...,x,,y are in standard form if the z; are
in the form of Lemma 24 and y is in the form
0 1
1
y= (7)
1 0



We say p is in standard form if, under a chosen basis, the matrices x1,...,2p,,y
are in standard form.

Let A;; be the jth diagonal entry of z; and let A\; = A;1. Let Vx be the
subspace spanned by (y) - (€1 +e€yryq + ...+ €N —k_1),r41). Also, we define the
n-tuple Ay, (k) := (M, -, Ank) Where k is considered mod p” .

Lemma 2.6. For any ki, ks if Ap(k1) = Ap(ke) then Ay (k1 +1) = Ap(ke +1).

Corollary 2.7. Let 3 such that 0 < 8 < pN=7 — 1, and let j be the minimal
power such that Ay (k) = An(Bp” + k). Then V,; is a stable subspace of p and

Vpi-1 is not stable.

We define notation to this effect. Let H < M, and let V(p|p) be the the
minimal stable subspace V,,;, as in Corollary 27, of p|r. We say that V(p) =

V(p(M,)).

Corollary 2.8. The following are equivalent:
1. The number j is minimal such that A, (1) = Ap(p? +1)
2. V(p) = ij.

Corollary 2.9. Let p: M,, = GL,~(C) be a representation. Then, for k <n
if V(plag,) = Vi then V(p) = Ve for some £ such that £ > k.

We know that if V,,x is p-stable then so is V},; for j > k. Thus, we obtain the
following corollary:

Corollary 2.10. Let p be a representation of M,. The representation p is
irreducible if and only if V,n—1 is not p-stable.

Throughout this paper we use Corollary 2-I0 to check if a representation
p is irreducible. We use Corollary 2.8 to determine the number of isomorphic
representations in standard form in one twist isoclass.

Lemma 2.11. Let S, be the twist isoclass represented by p and let V(p|a, _,) =
Vpm. Then there are p™ representations in standard form in S, that are twist-
and-shout equivalent to p.

Definition 2.12. Let p be irreducible and let z;,y, for ¢ such that 1 <: < n,
be in standard form as defined earlier in the section. A shout is a matrix P such
that, up to twisting, PyP~' and Px;P~! for i = 1...n are in standard form.
The representations p and PpP~! (note that Pz;P~! may not be in standard
form) are said to be equivalent under shouting.

We use the following proposition and lemma to help count twist-and-shout
equivalent representations in each isoclass.

Proposition 2.13. Let p > n and p be a p" -dimensional representation of M,
with corresponding matrices in standard form. Then p is irreducible if and only
if there exists a \; such that s(\;) = N, where 2 <i <n.

We slightly change the form of this lemma from its version in [6].

Lemma 2.14. Forp > n—1 let p be an irreducible p~ -dimensional representa-
tion of M,, and let k = max{s(\3),...5(\,)}. Then there are p* representations
in standard form equivalent to p under twisting and shouting.



3 The p-local Representation Zeta Function for
Mp+1

For a prime p, we study the p-local representations of M,, when n =p+ 1. We
calculate the exceptional prime representation growth zeta function C}'\};hp(s).
Note that, unlike the non-exceptional calculation in [6], p is fixed by our choice
of group for this calculation.

Let p be a pY-dimensional representation. We will determine the choices of
A; for which p is irreducible. We can choose a basis of the form in Lemma 2.4

We divide this calculation into two cases: when s(Ap41) = N and when
$(Ap+1) < N — 1. Furthermore, we break the second case into two sub-cases:
when there is a A; with 3 < ¢ < p such that s()\;) = N and when there is no
such \;. Call these cases Case 1, and Case 2, respectively. We call Case 2’s
respective subcases Case 2.1 and Case 2.2. Note that, since p is not exceptional
when considering p|y, (and we remind the reader that M, = (y,z2,...,,)),
we can apply Lemma 214 when determining the number of representations
twist-and-shout equivalent to some irreducible p.

Case 1 Assume that s(A,11) = N.
By [14], we have that p|as, is an irreducible representation and thus p is irre-
ducible. We now must determine for which choices of \; the representation is
well defined.

By Lemma [22((iii), it is clear that we can use Equation [l in Lemma 2.4 to
show that s(\;) < N for i # 2 and

AT Y =1 (8)
k=3

Since s(A;) < N for 3 < i < p by Lemma 22(iii) the preceding equation
simplifies to

N\ Tp(pN -1
)\}2’ )‘er(lp ): L. (9)

Cancelling out the p from the denominator of T}, (p" — 1), we have that
T,(" —1) = ap™~! (10)

for some « coprime to p. Thus s()\;ﬁf%) = 1 and by Equation [@ we have
that s(A2) = N + 1. There are p"¥ choices for Az so that Equation [ holds.
Thus, there are (1 — p~!)p" choices for A\,41 and pV choices for each ); where
2 < i < p. By Lemma 214 we must divide by p" to take shouting into account.
Therefore in this case there are

(1 —p~ HpNpP=DNp=N = (1 — p=1)pr=DN (11)

twist isoclasses. Note that the right hand side of Equation [[1]is also the con-

tribution to r,~ in the non-exceptional case in [6] for when s(A,11) = N.
Case 2 Now assume s(Apy1) < N — 1.

It is clear, since T;(p™ — 1) = 0 mod p¥ for i < p by Lemma [Z2(iii) and since

N
)\Zi(lp D by Equation [T that we can say that s(A;) < N for2 <i <p+1.

We now break this case into subcases.



Case 2.1 For i such that 3 < i < p, assume one of s(\;) = N, say \x. Then,
since p > k, by Proposition we have that p|a,,,_,,, is an irreducible rep-
resentation and thus p is irreducible. In this case there are (1 —p~P=2))pp=2N
choices for \;, pV choices for Ay, and p?¥~! choices for \,+1. By Lemma 214 we

must divide by pV to take shouting into account. Thus there are
(1= p~ =2 )ple=2INpN =N =N — (1 — p=(P=2)p(r=DN=1 (12

twist isoclasses in this case. We note that the contribution to r,~ in this case
is the same contribution to r,~ for non-exceptional primes [6], Section 9].

Case 2.2 Assume s(\;) < N — 1 where 3 <i < p.
Note that in this case p|ys, has V,n-1 as a proper stable subspace so by Lemma
2101t is not irreducible. If s(Ap41) = 0 then M,44 is isomorphic to M, and by
Proposition [ZT3] the representation p is irreducible if and only if s(A2) = N.
Now let s(Ap+1) > 1. We choose A, such that s(A.) = N and write each \; in
terms of it; that is, let \; = )\fipmi,p{ai, mg > 0,and m; > 1for3 <i<p+1.
We appeal to Lemma 2.8 and determine when (y, 1) does not have Vjn-1
as a proper stable subspace. This is the case exactly when A1 1 # Ay pv-141.
Consider A; ,v-147. If N = 1, then in order for p not to be trivial we
have that s(A2) = 1 and it is easily verified that x; is not scalar and thus p is
irreducible. Now, for N > 2, we have that

A:=logy, (A1 pv-141) (13)
N-1 N-1
- m +1
— CY2p7ng(pN 1) +063p 3 (p )(65 ) 4.
N=y o (BpN T -1
T ape . B -1 o

p!

By Corollary 23] and keeping in mind that m; > 1 for 3 < i < p+ 1 this
simplifies to the following:

mpﬂ—le’l (PN Ep—1)
(p—1)!
mp+1—1 (pN_l + 1) st (pN_l +p B 1)
(p—1)!
Note that the last term has a denominator of (p — 1)! since the factor of p was

subtracted from myp1.
We want p to be irreducible. Thus, by Wilson’s Theorem it must be that

mod p” (14)

A = asp™p" " + apap

=pN! (azp”“ + apip ) mod p™

Qop™? + appp™ T £ 0 mod p. (15)

We now enumerate the cases when we do not have a factor of p, and thus an
irreducible representation. By Equation [13] this is precisely when my,11 =1 or
mg = 0 except when mp41 =1,ma =0, and s # —ap41 mod p.

We still need to take shouting into account. Therefore, by Lemma [2.14]
we must divide our count, if we enumerated the representations in this case at
this stage, by p™+ where m. = max{s(X3),...,s(Ap+1)}. Note that, since p is
non-exceptional when considering p|az,, the shouting behaviour is the same as



in the non-exceptional case. We will count these later.
This ends the case distinctions.

We note that the only difference between the r,~ for this exceptional prime
and the 7,~ for non-exceptional primes is the situation when we can choose As
and Ap11 such that (still thinking of all A; written as powers of Ay) mpy1 =1
and mo > 1, which gives us additional irreducible representations, and when
Mpr1 = 1,mg = 0, and ap # —ayp+1 mod p, which gives us representations
that are no longer irreducible. Therefore, starting with r,~ calculated for non-
exceptional primes, we can add the cases where our choices of \; give us addi-
tional representations and subtract the cases where we lose representations.

Let C be r,~ for non-exceptional primes, that is the sum in [6] Find Equa-
tion!!!!] The situation where mpy1 = 1 and ma > 1 does not correspond to
irreducible representations for non-exceptional primes, but does for exceptional
primes. There are (1 — p~1)p™~! choices for A\p+1 and pV =1 choices for Ay in
this case. Remembering that we assumed that s()\;) < N —1 for 3 <14 < p then
there are p®=2(N=1) choices for these );. By Lemma [ZI14] we must divide by
p™V 1 to take shouting into account. Therefore we must add

(1 7pfl)pr1pN71p(p72)(N71)p7(N71) _ (1 7p71)p(p71)(N71) (16)

to C.

The situation where m,41 = 1, my = 0, and o = —apy1 mod p does
correspond to irreducible representations for non-exceptional primes, but does
not for exceptional primes. There are (1 —p~1)p" choices for A2 and, given our
choice for Ao, there are pN ~2 choices for Ap+1 in this case. Remembering that
we assumed that s(A\;) < N —1 for 3 <4 < p there are p(p_Q)(N_l) choices for
these \;. By Lemma [Z14 we must divide by p™ ~! to take shouting into account.
Therefore we must subtract

(1—p " pNpN 7 2plr= N ==V — (1 — p=l)p(P=DIN=D (17
from C. Notice that (I6) = (7). Therefore

oy =C (18)
and

i (s) = (1 *p*S)Q
Mpy1,p (1 _ p((p+1)—2)—s)(1 _ pl—s)

(19)
by [6, Equation 31].

This result, and the result from [6], gives us the entire irreducible represen-
tation theory, as well as the representation zeta function, of Mj3. In fact, we can
say that

i = (420) (20)



4 The 2-local Representation Zeta Function for
M,

We now have a complete understanding of the irreducible representations of Ms.
The aim of this section is to do the same for M,. Our previous work leaves us
with only one p-local zeta function to calculate; the previous section calculates
the 3-local zeta function and 2 and 3 are the only exceptional primes. Therefore
once we calculate the 2-local representation zeta function we have (}\Z (s) in its
entirety.

The complexity of this calculation lies partly in the inability to use Lemma
2.14] in many cases. Thus, some work is to be done to calculate the correct
factor by which we are overcounting.

For ease of computation, we calculate ro(My) separately later in this section.
Until noted otherwise we assume the condition that N > 2. In keeping with the
style of the general cases earlier, and for elucidation if one wishes to generalize
this calculation, we do not simplify the expressions (1 —271) to 271 as far in
the calculation as possible.

Let p: My — GLyn(C) be a representation. By Equation [l in Lemma 24
we have that

A =1, (21)
PE AP VA (22)

and Y N N
AZNDRETDNT R (23)

Therefore, by Equation 21 we have that s(Ag4) < N.
Before we begin counting twist isoclasses we must determine the possible
depths of A2 and A3. We remind the reader of Equation [0l Assume s(\y) <

N —1. Then /\4TZ(2N_1) = /\4T3(2N_1) = 1 and by EquationZZ we have that 2" =
1 and thus s(A3) < N. If s(A3) < N —1 then A§2(2N71) = 1 and by Equation
we have that A" =1 s0 s(\2) < N. If s(A\3) = N then AI2®" D = \72""
and thus S(A§2N71) = 1. By Equation 23 we have that A2" = A2" " and thus
22" must satisfy this equation. So A2 = —1 and s(As) = N + 1.

Now assume s(Ay) = N. Then )\4TZ(2N71) = )\4T3(2N71) = A;QN?1 and thus

s()\Z2N71) = 1. By Equation 22 we have that

= (24)

and thus A2 must satisfy this equation. So AZ' = —1 and s(A3) = N + 1.
N —1

We have that A2 =Y = A\;2""" and by Equations 23 and B4l we have that

A2V = a2 = A%NHN?I = )\él+2)2N ", Note that we leave (1+2) in this
form since we wish to keep the form (1 + p). Thus s()\g1+2)2N l) = 2 and A%N
must satisfy Equation 23 So A2 = +v/—1 and s(A\s) = N + 2.

We break our computation into eight cases, with Cases 6 and 7 being further
broken down into subcases. Tables 1,2, and 3 show, repsectively, the number
of twist isoclasses in each case, for the subcases of Case 6, and for the subcases
of Case 7. We leave the computation of Cases 1,3, and 4 to the reader; these
follow almost immediately from previous computations.
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Table I: Table of Cases for My

Case s(Aa) s(A3) s(A2) Other Conditions No. of twist isoclasses,
N>2
1 =N |=N+1|=N+2 (1 —271)122NV+3
2 =N-1 =N =N+1 | az3=3 mod4 (1—271)322
3 [[=N-1 <N-1| <N 1—2 1222
1 [[sN_2| = —N+1 (12 17T
5 <N-2|=N-1 =N 0
6 <N-2|<N-2 =N See Table [l on page
7 <N-2|=N-1|<N-1 See Table [ on page
[
8 <N-2|<N-2|<N-1 0
Table IT: Case 6 of Table[ll
N || Case | Relationship of s(A3) and s(A\4) No. of twist isoclasses
=2 6.4 ()\3) = S(/\4) =0 2
_s || 62 s(A3) <1 s(Ag) =1 (1- 2 1293
= 64 | sOw) = (1-27)2%0 4 (1= 271)
6.1 | s(\3) >s(/\4)+1 s(A3) >2,5(\4) #0 [(1 — 2 2N (V-1 - 1)
e —1))]
>4 6.2 | s(A3) <s(A)+1,s(\)#0 (1-2- 1)2N(2N‘3 -271)
6.3 | s(A3) =s(Ag) +1,5(Ag) #0 (1—2"1)22N(2N-2 _9)
64 | s(\)=0 (1-271)22N (14 (1-2"1) (N —2))

Table III: Case 7 of Table[l

N Case | No. of twist isoclasses
=2 1

7.1 (1 —27T)22N—1
231 72 | 1o een
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Case 2: By Case 2.2 of Section [ we have that p|as, is reducible. Appealing
to Lemma [2.10] we must check whether Von -1 is a stable subspace of (y, z1). We
write each root of unity in terms of a primitive 2V *1th one. Let Ay = Xo, \; =
)\fﬂmi for some «; such that 2+t a;,mqy =2, m3 =1, and i € {3,4}.

Using Corollary Corollary 2.8 and noting that 2 - (2¥=1)2 = 0 mod 2V +!
for N = 2, consider A\j onv-147:

logy, (A12v-141) (25)
_ (2N71) + 2171(13(2]\]71)(2]\[71 + 1)
(2N—1)(2N—1 + 1)(2N—1 +2)
3

2
=oN-1 (1 + as + a421§) mod 2V

+ 227t mod 2N +1

=log, (M) +2V"'[1+a;3] mod 2V

So the expression in the square brackets above is a multiple of 4 if and only
if Von—1 is a (y, 21)-stable subspace. Let @) be the aforementioned expression. It
is clear that @ = 0 mod 4 precisely when a3 = 3 mod 4. This means that we
are only free to choose half of the elements of S5 /S ™! for A3. Thus, there are
(1 —271)2¥=1 choices for Az, (1 —271)2N*! choices for \g, and (1 —271)2V -1
choices for A4. Since p|pz is not irreducible it has at least Von-1 as a stable
subspace. But since s(A\y) = N — 1, by Corollary 2.9 we have that V(p|as,) =
Von—1. Thus, by Lemma 11 we must divide by 2¥~! to take shouting into
account. So in this case we have

(1 - 271)2]\[71(1 o 271)2]\[4’1(1 o 271)2]\77127(]\[71) (26)
— (1 _ 2—1)322]\/

twist isoclasses.

Cases 5 and 6: We note s(A\3) = N and s(Ay) < N — 2 for both cases. We
have, by Case 2.2 of Section [l that p|as, has Von-1 as a proper stable subspace.
Appealing to Lemma 210, we check whether Von-1 is a stable subspace of
(y,x1). We let A\, = Ay and write each \; as a power of \; that is, let Ay =
A$42m4 and \3 = AfstS such that 2 f a; mg > 1, my > 2, and ¢ € {3,4}. If
my = N then by Case 2.2 of Section [ we have that p is irreducible if and only
if mg # 1. If mg = N it is easy to show that log, (A o~v-141) # 1. We leave
this to the reader. Assume that ms, my # N.

Appealing to Corollary 28 consider Aj ov-14;, noting that 22N=2 — ¢
mod 2V :

A:=logy (A1 2v-141) (27)
— (2N—1) +a32m3—1(2N—1)(2N—1 4 1)
2N71(2N71 + 1)(2N71 +2)

3
=logy (A1) +2V ' [14+ @32 7']  mod 2.

+ q2mal mod 2%

So when the term in the square brackets above, say @, is not 0 mod 2 then
A1 # Apov—141. It follows that Von-1 is not a stable subspace of p and therefore

12



p is irreducible. Thus @ is 0 mod 2 when m3 = 1; that is when s(A3) = N — 1.
So in Case 5 there are no irreducible representations.

If mz > 2 it is clear that @ # 0 mod 2. Thus, in Case 6 there are 2V—2
choices for A4, 2V =2 choices for A3, and (1- 2_1)2N choices for \s.

We now need to analyze the shouting behaviour for this case. It is clear,
since V(p|a,) = Vasy by Lemma T4 and Corollary (20 that there are at
least 2°(M) = 2N="4 representations twist and shout-equivalent to p. We now
determine V(p|az,) for each possible choice of ms and my4. Let my # N. We deal
with the case m4 = N in the next lemma. Also, note that we use the power of
Corollary for this computation.

Consider, for some k such that 1 < k < my,

IOg/\* ()\2,2N*k+1) - 1og)\* ()‘2,1) (28)
= 32m32N 7k o q 2ma 19N =k (9N=k L 1) mod 2V

=2V7F [32™ + 2™ 2V R + 1)) mod 27,

For the following lemma let @) be the sum in the square brackets above. By
Lemma 28 if @ =0 mod 2* then Ao; = Ay ov—ry; and V. is a proper stable
subspace of p|z-

Lemma 4.1. Let my # N and let m, = min{ms, mq —1}. If mg # my—1 then
V(plas) = Von—ma. If mg = myg — 1 then V(plar,) = Von—my.
If mqy = N then V(p|nr,) = Van-ms.

Proof. Assume my # N. If m3g # my4 — 1 the maximum value of k such that

Q =0 mod 2% is min{ms, m4 — 1}. If m3 = my — 1 then, since both terms in Q

are of the same 2-adic valuation, the maximal value of k is at least m4. However,

since V(p|ar,) = Vasrp), by Corollary 2291 it follows that V(p|p,) = Vastaa) -
Now let my = N. Then,

logy, (A on—k41) —logy, (A2,1) (29)

= a32™32N "k — (0 mod 2V

when k& < mg. Thus k is maximal when & = ms and V(p|a,) = Visrs) when
my = N. O

We now count the number of twist isoclasses. To do this we break the
computation into four subcases. Note that, in all subcases, there are (1—271)2¥
choices for A2. For the first three subcases we assume that s(A4) # 0.

Case 6.1 For some M such that 2 < M < N—2,let s(\3) = M > s(A\q)+1.
We have that there are (1 —271)2M choices for A3 and 2/~2 — 1 choices for 4.
Since s(\3) = M > s(A\4) + 1 by Lemmas [Z.I1] and E.1l we must divide by 2™ to
take shouting into account. Thus, in this subcase there are

N-—-2
(1—2712N > (1 —271)2M (@M =2 —1)27M (30)
=1 —-2712V(@V 1 —1) - (1-27)(N —4))

twist isoclasses. Note that when M = 2 we have that (22 — 1) = 0.
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Case 6.2 For some M such that 1 < M < N — 2, let s(\y) = M and
5(A3) < 5(Ag)+1= M +1. There are (1—271)2M choices for A4 and 2™ choices
for A\3. By Lemmas 2.11] and 1] we must divide by 2M*! to take shouting into
account. Thus in this subcase there are

N-2
(1—271)2N Z (1 —271)2MoMo=(M+1) (31)
M=1
— (1 _ 2—1)2N(2N—3 _ 2—1)

twist isoclasses.

Case 6.3 For some M such that 2 < M < N—2,let s(A\3) = M = s(\y)+1.
We have that there are (1 —271)2M choices for A3 and (1 —271)2M~1 choices
for A4. Since s(A3) = M = s(\4) + 1 by Lemmas 2.TT] and 1] we must divide
by 2M~1 to take shouting into account. Thus, in this subcase there are

N-2
(1—272Y > (1 )2oMoM—1g—(M-1) (32)
M=2
=(1—2"H22N@N=2 _9)
twist isoclasses.
Case 6.4 Assume s(Ag) =0. Let s(A3) =M for O<S M <N -2.If M >0
there are (1 —271)2M choices for A3 and there is 1 choice for A3 if M = 0. There

is only 1 choice for A\s. By Lemmas 211l and E.1] we must divide by 2™ to take
shouting into account. Thus in this subcase there are

(1—2"1)2N (1+Z HoMo- ) (33)
=(1-2""2V(1+(1-2""(N-2)

twist isoclasses.
This ends the subcase distinctions.

Thus, summing together all subcases we have that there are
(T—2712M(@¥ " —1) - (1-2""Y(N —4)) + (1 —27H)2V (2N 3 —271)
(34)
+@—27H2NeN 2 —2) 4 (1—2712N (14 (1-27")(V —2))
— (1 _ 2—1)2N(2N—2 + 2N—4 _ 2—1)
twist isoclasses in Case 6 when N > 4. When N = 3 we sum together Cases 6.2
and 6.4. Thus there are
(1-27h2°(1-2"H4+1+(1-27") (35)
=38
twist isoclasses in Case 6. When N = 2 we only include Case 6.4 and thus there

are (1-2712%1) =2 (36)
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twist isoclasses in Case 6.

Cases 7 and 8: We note for both cases s(A2) < N—1and s(A\y) < N—2. By
Case 2.2 of Section [ we have that p|ps, has Von—1 as a proper stable subspace,
as with the previous two cases. We check whether V,~-1 is a stable subspace
of (y,x1). As usual, we choose a A\, € S3'/SY~! and write each )\; as a power
of A; that is Ay = A%2™" such that 2 oz, my > 1, mg > 1, my > 2, and
1 €{2,3,4}.

Appealing to Corollary 28 consider A; ov-14;, noting that 22N-2 — ¢
mod 2%:

A:=logy (A 2v-141) (37)

= 222Nt 4 qyomeTIgN TN )

2N—1(2N—1 + 1)(2N—1 +2)
3

=logy. (A1) + 2V Haw2™ + @32™7] mod 27,

+ @ 2me! mod 2%

Clearly if mg > 2 then the expression in the square brackets above, say @, is
0 mod 2 and V,~-1 is indeed a stable subspace of p. If m3 = 1 then @ is not
0 mod 2 and Von-1 is not a stable subspace of p. Therefore p is irreducible. So
we have that in Case 8 there are no twist isoclasses. In Case 7 there are 2V =2
choices for A4, (1 —271)2¥=1 choices for A3, and 2V ! choices for \s.

We now determine the behaviour of shouting in this case. It is easy to see
that V(p|ar,) = Vasowy and thus V(plas) is no smaller than Vasoay).

Let N > 3; we calculate the case when N = 2 separately later in the section.
We write Az, A4 in terms of some A\, € SN\ SN~ in the usual way, with mz = 1
and my such that 2 < my < N. If my = N then it is easy to show that
V(plas) = Von-1. Now assume my # N. As in Case 6, we use the power of
Corollary 2.8 Consider A := logy (A ov-x41) —logy (A2,1) for k& such that
1 <k <my. Then

A =a32-2N7F g omam1oN=k(N=F 1 1) mod 2V (38)
=2V Fas2 + a2 (2N TR 4 1)

Let Q be the terms in the square brackets above. We have that Q = 0 mod 2*
if and only if A1 = Agon-ky; and thus Vov-k is a proper stable subspace of
(y,x2). We break this computation into two subcases.
Case 7.1 Assume my > 2.

It is clear that if my4 > 2 then, since mg = 1, by Equation B8 the maximal %
such that A = 0 mod 2V is when k& = 1. Thus V(p|ps,) = Vo~v-1. Note that
Von—1 is also minimal when m4 = N. Let s(A\y) = M where M < N — 3. In this
subcase there are 2V =1 choices for g, (1 —271)2¥ =1 choices for A3 and 2V =3
choices for \;. By Lemma .11 we must divide by 2V~ to take shouting into
account. Thus, in this subcase, there are

2N71(1 _ 271)2N712N7327(N71) — (1 _ 271)22]\[74 (39)

twist isoclasses.
Case 7.2 Assume my = 2
If my = 2 then we have that @ = 0 mod 2? and, since V(p|ar,) = Von-2, then
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by CorollaryZAV(p|as;) = Von—2. There are 2V =1 choices for A, (1—271)2N -1
choices for A3, and (1 —271)2¥=2 choices for 4. By Lemma 2T we must divide
by 2¥=2 to take shouting into account. Thus, in this subcase there are

(1 o 271)22N712N712N7227(N72) — (1 - 271)222]\772 (40)

twist isoclasses.
This ends the subcase distinctions.

Summing together these two subcases there are, for N > 3,
(1—271H)22N=4 1 (1 —271)292N=2 — (1 _ 27122V =41 £ 22(1 —271)) (41)

twist isoclasses.

Now assume N = 2. Then we have that s(As) = 0. A short calculation
shows that A2; = Ag,3 and by Corollary 28 we have that V3 is a minimal stable
subspace. By Lemma .11l we must divide by 2 to take shouting into account.
There are 2' choices for Ay, (1 —271)2! = 1 choice for A3, and 1 choice for \4.
Thus, in this subcase there is

2-1-1-27t =1 (42)
twist isoclass.

This ends the case distinctions.

We now consider the case when N = 1. Note that, for clarity, we will call ¢ the
square root of —1. By Equation 2Tl we have that s(Ay) < 1; that is, Ay € {1,—1}.
If Ay = —1, then by Equation 22 we have that A3 € {¢, —¢} and by Equation 23]
we have that Ay € {£+/1, +1/t} such that A3 = — ;3.

If Ay = 1 then by Equation 22 we have that A3 € {1,—1}. If A3 = 1 then
by Equation and, since p is not the identity representation, we have that
A2 = —1. If A3 = —1 then by Equation 23] we have that A2 € {¢, —¢}.

A set of choices of the A; gives us an irreducible representation if and only if
Ai,1 7 Ai2 holds for at least one 1 < ¢ < 3; that is, one of the following is true:

M #1 (43)
Ashy # 1 (44)
Modghs # 1. (45)

It is easy to see that all of our choices of sets of \; give us irreducible representa-
tions. For triples (Mg, A3,A2) it is easy to check that the pairs

[(_17 Ly \/Z)v (_17 -l =V _L)] ) [(_17 Ly _\/Z)a (_17 —LV _L)] ’ [(17 _17 L)a (17 _17 _L)]
are twist-and-shout equivalent. Therefore we can say that

ra(My) = 4. (46)

We count the number of twist isoclasses for N = 2,3 separately as well.
Summing Cases 1 through 8 for N = 2,3 we have r4(M4) = 17 and rs(M4) = 70.
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We can now compute the 2-local representation growth zeta function of My
by summing together the number of twist isoclasses from Cases 1 through 8:

11&22(5) =144-275417-2725 1 70.2738 (47)
+ > [ =27 2PN g (1 - 27132
N=4

Simplifying the expression above, we obtain

irr _ (1 - 2_8)2
Cary 2(8) = (1—21%)(1—22%)

(48)

Note that this result is the same as the zeta function for non-exceptional primes
in [6). It is then easy to check that this does satisfy the functional equation in

[
Now that we have the p-local representation zeta functions of M, we can
now state the global representation zeta function:

C(s = D5 —2)

G =T

(49)
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