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Abstract

In this paper, we present a novel solution for optimal beamiiog in a two-way relay (TWR) systems with perfect channel
state information. The solution makes use of propertiesuafieatic surfaces to simplify the solution space of the jembto R?,

and enables the formulation of a differential equation ttaat be solved numerically to obtain the optimal beamfornmmagrix.

I. INTRODUCTION

Two-way relay (TWR) systems that employ beamforming teghas enable information exchange with greatly reduced
spectral resource requirements compared to one-way ngldfi. In this paper, we consider two-way relays with muéip
antennas that communicate with two source nodes, each withaatenna. We also assume that the channel vectors that
determine signal transfer between the relay and the twoceawndes is known to the system. Existing optimal beamfogmin
algorithms for this system (such as that [in [2]) have high porational complexity. In this paper, we present a numérica
solution to the optimal beamforming problem which has dyee¢duced complexity over previous known solutions. The
solution makes use of properties of quadratic surfacesatwstorm the problem into a differential equation, which taen
be expeditiously solved using numerical methods.

The rest of the paper is organized as follows. In Sedtibn #,present the system model and formulate the mathematical
optimization problem which specifies the beamforming matm Sectior1l], we show that the problem can be transformed
to an optimization problem with real coefficients, whoseusioh is a2 x 2 matrix. In Sectiofi IV, we show that this simplified
optimization problem has a solution which is a real matrix Sectior ¥, we show how the optimization problem can again

be transformed into a vector differential equation®if, which may be solved numerically using standard methods.

Il. SYSTEM MODEL AND FORMULATION OF THE OPTIMIZATION PROBLEM

We consider a two-way relay system similar to the one intceduin [2], which consists of the relay node and two
terminal nodesS1 and S2, as shown on Fid.11.
The relay is equipped with/ antennas and the terminal nodes are each equipped with i sintenna. Based on the

principle of analog network coding][1], the two terminal ®sdexchange information in two consecutive time slots v th
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Fig. 1. System model

help of R. In the first time slot, terminal nodé&sl and.S2 send messages and ss with power levelsp; andps respectively

to R, and the received signal & is given as

Yr = h1y/p151 + hay/D252 + 2R, (1)

where hy, hy € CM*1 are complex channel gains from the terminal nodésand S2 to the relay respectively;  is the
circularly symmetric complex Gaussian (CSCG) noise witllacianceo% I, and E[s;] = 1, i = 1, 2. In the second time slot,
the relay R multiplies a beamforming matrixd with the received signay, and transmits the resulting vector signdd ,, to

the two terminal nodes. Based on the assumption of chanaigiregity [3], the received signals &1 and S2 are given as

y1 = h{ Ahy\/p1si + h] Ahgy\/pass + hi Azp + 21, 2)
ys = hi Ahy\/pasy + hi Ahy\/prsi + hl Azp + 2, ()

wherez; andz, are the CSCG noises &tl and S2 with variancess? and o3, respectively. In the ideal CSI case aslin [2],
S1 and S2 can cancel out the self-interference tern%Ahl V/P1s1 and hQTAhg\/p_QSQ from y; andys, respectively. The

corresponding transmit power at the relRyis given by
G(A) = | Ah1|*p1 + || Az |*p2 + T A" Ao, 4)

and the SINRs at nod§; are given by {=1,2; k=3 —1)

T 2

= - (5)
I1hi Al20%, + o7

Based on these definitions, the nonrobust optimizationlprotio minimize the relay power under SINR constraints can be

formulated as follows: find (i=1, 2)
A, —arguin[G(A)] st fi(A) =y, ()
where~; is the SINR target af; and
fi(A) = |hi Ahy i — ||l AlPoTyi,, (k=3 —1). (7)

We note that the problem ifl(6) is not convex in general, beedhe constraints are not convex functions.



IIl. REDUCTION TO RANK 2 PROBLEM WITH REAL COEFFICIENTS

In this section we show hovi](9) can be transformed into a miraplsr problem with real coefficients.
It has been shown previously inl[2] that, is of complex rank 2. Specificallyd,. can be expressed as

2
A* = Z (a*)uﬁlhf = [ﬁl, Bg]a*[h{[ y héi], (8)

i,j=1
wherea, is a complex2 x 2 matrix. The objective function condition and constraimts{@) can be rewritten in terms of the
matrix a.. Note that the coefficients which appear in this simplifiecsian of [8) will be complex in general; but it is possible

to further simplify the expressions so that all coefficieats real. After simplification, the optimization problemcbenes:

o, = argmin [G(a)] st fila) >1,, (i=1,2), 9
where
G(a) = qillari|? + g||amr|* + Trlaf a); file) = ci|tlamp|? — di||mFall?, (i=1,2;k=3—1), (10)
where ¢;, c;, and d; are constantsi(= 1,2); andr; = [I + r]7 wherer is a positive real number. First we define
(i=1,2k=3—1)
Ti =TT m = qi1711 + GaTo2 + 1. (11)

Next, for any2 x 2 matrix A we define the operations:

. - A 0 ~ Al Anl
A= (A1 A Ay Apls A= ; A= (12)
A Aol Apl
Finally we define
M = m; Thi = TrkTiis Qi = ciTy; — diTi, (13)
where M, Ty;, and@; are all real symmetric matrices. Using this notation, weehav
G(a) =@ Ma; file) =@ Qia, (14)
where M and (@ are reald x 4 matrices. With the additional notation
Fa=ReAl;  ija = Im[4], (15)
we may rewrite as
Gor) = TLMEq + i Mija; fila) = FLQiTa + 8 Qila- (16)

In the following section, we will show that there always ¢sian optimal solutiomv,. for (@) that is also real (so th&g.,, ). = 0).



IV. EXISTENCE OF REAL OPTIMAL SOLUTIONS

In this section we show that given a locally-optimal compfeasible solution to[{9,16), there also existseal feasible
solution that achieves th&ame power. Since any global optimum is also a local optimum, lofes that there always exists
a globally optimalreal feasible solution.

Let us writeX = ¥, andy = ¥,. Then we have
G(Z,9) =& M+ §" My,  fi(Z,9) =T Q¥ +§ Qif, (i=1,2). 17)
The following Karush-Kuhn-Tucker (KKT) conditions are iséied:

Va(G(Z,9) = M - Va(f1(Z,9) + Ao - Va(fo (T, 7)) (A1, A2 > 0);

(18)
Vi(G(Z,9) = M - Vg(/1(Z, ) + Az - Vg(fa (T, 1))
where
Using [IT) we find the explicit KKT conditions are:
M7 = \MQ1T + X2QaT; My = Q17+ A2Q27, (A1,X2 >0). (20)
Substituting [(2D) into[{17), we find that the power achievetha locally-optimal complex feasible solution is
Power= G(z,y) = M (Z7 Q17 + 7 Q1) + A2 (Z7 Q27 + 57 Q27) . (21)
Consider first the case where the constrajfiter) > 1 are both satisfied with equality:
1= fi(oa) =2"Qid+ " Qiy,  i=12 (22)
It follows from (21) that
Power= \; + \o. (23)

From [20) we find that theeal beamforming matrixy, Z + v,y also satisfies the KKT conditions, fany choice ofy, and

Yy
M (727 + 7, 9) =M Q1(72T + 1Y) + A2Q2(VaT + vy Y). (24)
Suppose we can fingl, and~, so that the SNR constraints are satisfied with equality:
1= (@4 %)) Qi(vaZ +vd) =72 - &7 QiT + 7] - § Qiff + 2y ¥a - §QiT, (1 =1,2). (25)

Then the resulting power for this beamforming matrix is alse+ A2, as above. Thus this real beamforming matrix is feasible,



and achieves the same power as the complex solution. Hetige domplex solution is a global optimum, it follows that the
real solution is a global optimum as well.
It remains to show that it is indeed possible to fingd ~, that satisfy both constraints il_{(25). It follows from thectfa

T Q:# + ¢y Q. = 1 for i = 1,2, that there are essentially three cases to consider:

(A)a 0< fTQlfa g’Tng< 17 0< fTQQfH g’TQ2g< 17
(B)7 0< fTQlfv ?jTng< 17 fTQQf Z 177 ?jTQQES 07

(C)7 fTQl:f > 11 gTngS 07 fTQQf < 071 gTQQgZ 1.

All other cases can be reduced to one of these cases by axgltie symmetry betweed and i, and between; and ¢,.
Notice that the casg” Q,, 7 Q. > 1 is impossible, since then we would hay€Q, 7, 7 Q-7 < 0 so thatd = ¥ satisfies
both constraints and is a feasible solution with lower pothan& = 7 + j4.

In case (A), [(24) yields ellipses in they,,~,) plane fori = 1,2. The positivey,-intercepts for the two constraints are
(#7Q,7)~1/? and (#7Q.&)~'/? respectively; while the positive, -intercepts for the two constraints afg¢’ Q%) '/? and
(77 Q27)~1/? respectively. However, froni.(22) we hayé Q,7 = 1 — #7'Q,#. Hence the order of positive,-intercepts for
the two constraints is the reverse of the order for posiiyéntercepts. It follows that the two constraint ellipsessnaross
somewhere in the first quadrant. At the crossing point, botistaints are satisfied with equality.

In case (B), the first constraint corresponds to an ellipsetha second to a hyperbola in tie,,~,) plane.. The positive
7. intercept for the elliptical constraint ige” Q,7)~'/? > 1, while the positivey, intercept for the hyperbolic constraint is
(#TQ,#)~1/? < 1. Since the ellipse encloses at least one point on the hyfedmmstraint and the hyperbolic constraint is
unbounded, it follows that the elliptical and hyperbolimstraints must intersect, so there must be at least one pbiate
both constraints are satisfied with equality.

Case (C) can actually be reduced to Case (A) or Case (B). Natdfta is a solution, then ) = e d is also a solution.
We have:

f(e)zcose-f—sine-:[j; g(e)zsino.f+cose.g_ (26)
It follows that

fz(e)Qlfa(g) = (cos®-Z —sinh - )T Q1(cosf - & — sin @ - 7))

=cos?0- Q17+ (1 — cos®0) - 4L Q17 + sin 20 - TQ1 7. (27)

Clearly :E‘E(Q)Qlfa(e) is a continuous function of. Whend = 0, in case (C) we have” , Q17,0 = 27 Q1% > 1 However,
whend = x/2 we havefg(,,lefa(ﬂ/z) = (1 — #7Q.%) < 0. By continuity, there must be a value 6fsuch that0 <
:Eg(e)Qlfa(e) < 1:and case (A) or (B) applies in this situation. This compdates argument in the case where both constraints

in (25) are satisfied with equality.



It is also possible that only one of the constraint condiiam (9) is satisfied with equality. In this case, then similar
arguments can be used in cases (A) and (B). (The above argdorecase (C) also holds if only one of the constraints
holds with equality.) In case (A) we may suppose thatihe 1 constraint holds with equality, while the= 2 constraint
holds with strict inequality. It follows that eithet” Q.7 < 77 Q.7 or 47 Q15 < ¥ Q-y. Without loss of generality, we may
suppose that?' Q7 < 7 Q.7. In this case, then using, = (77'Q:1%)~1/? and~, = 0 yields a real solution that also
satisfies thel = 1 constraint with equality and thé = 2 constraint with strict inequality, and has the same poweiseC
(B) must be divided into two cases. In the case where thetiellgpnstraint (which we may assume corresponds o 1)
holds with equality and the hyperbolic constraint (coregfing toi = 2) holds with strict inequality, then similar arguments
show thaty, = (Z7Q.#)~'/? and vy = 0 yields a real solution with the same power that satisfies lsotistraints. If the
hyperbolic constraint holds with equality and the ellipticonstraint with strict inequality, then since the hymditconstraint
is unbounded it is always possible to firgd and~, such that the elliptic constraint is satisfied.

It is not possible for both constraint conditions to holdtwitrict inequality, since theh (IL9) gives = X\ = 0, so [18)
implies thatﬁfG(f, i) = ﬁgG(:a y) = 0, which in turn implies that = § = 0 sinceG(Z, y) is positive definite.

In summary, we have shown that there always exists a reahaptisolution. This reduces the complexity of the problem
by a factor of more than 2, since a complex addition requiresa? additions, while a complex multiplication requirese&lr

multiplications.
V. NUMERICAL SOLUTION TO THE REDUCED PROBLEM

A. Exact solution for case d; = 0

An exact solution to[{9) is possible in the case whére= 0, (i = 1,2). According to the results of the previous section,

we may assume that the solutienis real. The constraint inequalitig(«) > 1 become (from[{10)):
IT amg|? > 1/¢, (i=1,2; k=3—1).

Writing out these constraints in terms of matrix compondatsl replacing inequality with equality) gives:

2 —1/2, 2 _ 412
a1 + (g —a12) —rfa =c¢ 7 o1 + (a2 —ag1) — rfag = tey 7,

where without loss of generality we have chosen the posdige in the first equation since the optimal beamforming iwatr
is arbitrary up to an overall minus sign. In vector notatiting becomes
’]

-1/2.
S

1, —r, r, —rfld= ; 1, r, —mr —rz]d':cglm. (28)

These constraints correspond to a pair of parallel hypegglanR*, which intersect in four two-dimensional planes as long
as all hyperplanes are not parallel (which can only occurif= hs). The sets ifR* that correspond to constant power are a

concentric family of ellipsoids centered at the origin. Thaimum-power solution corresponds to the smallest aliighghat



touches at least one of these planes. This geometrical amgushows that the optimal solution will satisfy both coastts
with equality.
The set inR* which satisfies these constraints with equality is a planiehvis given parametrically byz(, z; are arbitrary

real parameters)
—1/2 —1/2 —1/2 —1/2
+
ar — |& . 2 4 ;rc? , 0, 0| +21[r2, 0, 0, 1]+ 20, 1, 1, 0]. (29)
r

Power is minimized when the derivatives 61a@) = a7 M a with respect toz; and z; are equal to zero. This gives the two
conditions

[+, 0, 0, 1]Ma =0, 1, 1, 0]Ma = 0. (30)

These equations gives two different solutions f@rz, corresponding to the two different sign choices :ﬁﬁf;l/Q.

In summary, we have computed two real candidate optimatisoli for the casel; = 0. The overall optimal solution will

be the candidate which has the lowest power.

B. Numerical solution for d; # 0

In order to obtain solutions fat; # 0, we assume that the equatiohs (9) have been solved for teendwsed; is replaced
by wd;, wherew is a parameter between 0 and 1. We may then use the solutiandfoto find the solution for(w + 0)d;,
whered is an incremental change in the valuewf In this way, we may obtain a differential equation for théuson with
arbitrarywd;, using one of the solutions fas = 0 as initial conditions. Plugging im = 1, we obtain a solution corresponding
to the givend;. We may use as initial conditions either of the two solutioogesponding ta; = 0 described in the preceding
section.

This process of increasing from 0 to 1 has a geometrical interpretation. Consideas an element oR*. Then when
w = 0, each constrainf;(d) = 1 (i = 1,2) corresponds to a pair of parallel 3-dimensional hyperga&ach hyperplane for
f1(@) = 1 intersects each hyperplane fés(@) = 1 in a 2-dimensional plane lying iik*. There are thus four 2-dimensional
planes inR* where both constraints are satisfied with equality. Two ekthplanes are the negatives of the other two, so we
need only consider two of these planes. At the same time, dhstant-power surfaces correspond to a family of conazntri
disjoint ellipsoids inR* centered at the origin. The smallest of these ellipsoids ititarsects at least one of the two 2-
dimensional planes will be tangent at a single point becafighe strict convexity of the ellipsoids.This single poistthe
optimal beamforming matrix in the case whare= 0. If we now letw increase, each constraint hyperplanes “bends” and
become one sheet of a hyperboloid. the intersection of ehebtdori = 1 with eachi = 2 sheet is either empty or a
2-dimensional hyperboloidal surface. Thus the set of gsetions consists of at most 4 2-dimensional hyperbolaidehces.
Since the negative of each surface of intersection is alaarface of intersection, there are at most two surfaces taadl to
be considered. Because of convexity properties of thesen2rsional surfaces, the smallest ellipse that interssdisast one
of these surfaces will intersect at a single point, whichhis optimal beamforming solution.

Let & be the optimal beamforming matrix fesd;, and letd + € be the perturbed solution correspondingte+ §)d;. We



now derive a first-order expression férwhich will lead to a differential equation fa¥ as a function ofw on the interval

0 < w < 1. For ease of notation, we define
Q") = ¢, Thi — wdiyy, (i =1,2). (31)

ThusQ); in the preceding discussion correspondQﬁé), while thed; =0, (i = 1,2) case corresponds t@§°>.

The constraint equations corresponding @+ §)d; become:
(@+a"Q"M@+a =1, (i=12)

where we have presented the constraints with equality Isecaur above argument establishes that both constraintbevil

met with equality. The equation is satisfied to zeroth ordeassumption, and to first order we have
2aTQ\We = d;aas,  (i=1,2). (32)
The maximization (KKT) condition is
VeG(a+e€) = N Vefila+e) + MVefala+e),

which written out more explicitly is

2
Ve @+ M@+ =Y NVa+7Q" @+ (k=3-i). (33)
i=1

In order to write this perturbatively, we define

Then to first order,[(33) becomes (note all zeroeth-ordengecancel)

2

Me=>"XQMe— dimas + Q" an;, (34)
i=1
which can be rearranged to give
2
S -~ M) E+ QM an; = diTuds (35)
=1

We may now replacé/d with % andn; /6 with % in equations[(32) and (85) to obtain a system of six ordindlfer@ntial

equations for the four entries af plus the two Lagrange multipliers;, As.



2 -
STAQM - M) 25y Qg _ gz, (36)
P dw dw
ar'Q\™ — = Za"7,a. (37)

We may rewrite this in more conventional form as a vector OD&ting &’ and \; denote% and % respectively, we may

rewrite the system as:

YL -M Qa ofa | | a 2 Nidi (7 )
Q" a)r 0 0 Mol = La(ma) (38)
(o 0 0 Ay aT (Td)

We may use the Runge-Kutta method to solve this on the iftérvaw < 1. The initial conditions are obtained from the

w = 0 solution obtained above.
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