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Abstract

For non-negative integers r, s, let (r,s)Xt be the Lévy process Xt with the r

largest positive jumps and the s smallest negative jumps up till time t deleted,

and let (r)X̃t be Xt with the r largest jumps in modulus up till time t deleted.

Let at ∈ R and bt > 0 be non-stochastic functions in t. We show that the

tightness of ((r,s)Xt − at)/bt or ((r)X̃t − at)/bt as t ↓ 0 implies the tightness

of all normed ordered jumps, hence the tightness of the untrimmed process

(Xt−at)/bt at 0. We use this to deduce that the trimmed process ((r,s)Xt−at)/bt
or ((r)X̃t − at)/bt converges to N(0, 1) or to a degenerate distribution as t ↓ 0

if and only if (Xt − at)/bt converges to N(0, 1) or to the same degenerate

distribution, as t ↓ 0.

2010 Mathematics Subject Classification: 60G05, 60G07, 60G51.

1 Introduction

Lévy processes can be seen as continuous time analogues of random walks. Histor-

ically motivated by robust statistics, the concept of trimming has been thoroughly

explored in the random walks setting to assess the effect of outliers. Here we con-

struct an analogous process by removing a finite number of largest jumps from a

Lévy process. For large time behaviour, i.e. as t → ∞, the trimmed Lévy process

exhibits a similar structure to the trimmed sums of independent and identically

distributed random variables. In this paper, however, we are concerned with small

time convergence properties. As t→ ∞, an increasing number of jumps with bigger

magnitude come into consideration for being removed, but as t ↓ 0, jumps of bigger
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size are gradually excluded from being deleted. This makes trimming at small times

a non-trivial effort with no exact random walk analogy.

The idea of removing jumps from a Lévy process is not at all new. Rosiński

[28] made use of “thinning” to generate one Lévy process from another by removing

jumps stochastically. In comparison, the processes introduced by Buchmann, Fan

and Maller [6] have a more deterministic flavour; jumps are removed according to

their sizes. The resulting trimmed processes no longer have independent stationary

increments, hence are not Lévy processes. But their distributions can be written

as mixtures of a truncated infinitely divisible distribution with a gamma random

variable. This was done in [6], where representation formulae for the distribution

of trimmed processes joint with their order statistics and quadratic variation were

derived. These representations permit techniques for Lévy processes to be carried

over to the trimmed processes. In Section 3, as preparatory material for the proofs of

the main results, we revisit and extend the results in [6] to asymmetrical trimming.

The focus of the present paper is the small time domain of attraction problem

for Lévy processes, which has recently received much attention. Maller and Mason

[25] gave necessary and sufficient conditions on the canonical measure of a Lévy

process for it to converge, after appropriate centering and norming, to a stable law

as t ↓ 0. (See also Maller and Mason [25] and [24], and de Weert [12].) The question

then arises as to the effect of removing large jumps of the process on this kind of

convergence. Fan [14] investigated this for the case of attraction to a non-normal

stable law as t ↓ 0, and gave a complete characterisation. There it was shown that

“lightly trimmed” Lévy processes, i.e., after trimming off a finite number of large

jumps, converge at small times with appropriate centering and norming to a non-

degenerate non-normal law if and only if the original Lévy process converges to an

almost surely finite, non-degenerate, non-normal, limit random variable.

The purpose of the present paper is to extend this result to the case of a normal

limit, where again a complete characterisation can be given: light trimming produces

a normal limiting distribution if and only if the process is in the domain of attraction

of the normal, as t ↓ 0. Taken together with the results of [14], this provides a

complete solution to the domain of attraction problem for trimmed Lévy processes.

Our findings can be seen as a continuation of the classical precedent in random

walks, and we borrow from a rich repertoire of ideas in the random walk literature.

It has been shown there that the convergence of normed, centered random walk

to a finite, non-degenerate random variable implies the convergence of the lightly

trimmed sum (see for example Darling [10], Hall [19] and Mori [26]). However, the

converse is known to be a much harder problem. Maller [23] first gave a partial

converse by showing that when the trimmed sum converges to normality, under the
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assumption of a continuous and symmetrically distributed increment, the untrimmed

sum also converges to normality. Mori [26] completed the proof for the general

case without extra assumptions for asymptotic normality, only, and admitted the

difficulties in proving a similar result for a non-normal limit.

In 1993, Kesten [22] proved the most general case by showing that the con-

vergence in distribution of normed and centered lightly trimmed and untrimmed

random walks Sn are equivalent as n → ∞. In Fan [14] we extended the Kesten

analysis to the small time Lévy domain, thus characterising the trimmed domain

of attraction for non-normal laws. Although motivated by Kesten’s method, some

quite different techniques had to be developed to deal with the small time conver-

gences. These results apply to a wide class of processes of practical interest which

have non-trivial domains of attraction, for example, the tempered stable processes,

Lamperti stable processes and the normal variance-mean mixture processes. We

refer to [2], [3], [7] and Fan [15] for further details.

The present paper completes the picture with the non-normal limits. Our main

results are in Theorems 2.1 and 2.2 below. They analyse the effect of light trimming

on the tightness as well as the asymptotic normality at 0 of a normed and centered

Lévy process.

2 Main Results

Our setup is as follows. Let (Xt)t≥0 be a real valued Lévy process with canonical

triplet (γ, σ2,Π), thus having characteristic function EeiθXt = etΨ(θ), t ≥ 0, θ ∈ R,

with characteristic exponent

Ψ(θ) := iθγ − 1

2
σ2θ2 +

∫

R

(
eiθx − 1− iθx1{|x|≤1}

)
Π(dx),

where γ ∈ R, σ2 ≥ 0. Here Π is a Borel measure on R∗ := R \ {0} with
∫
R∗

1 ∧
x2Π(dx) <∞ and Π((−x, x)c) <∞ for all x > 0.

Denote the jump process of X by (∆Xt)t≥0, where ∆Xt = Xt−Xt−, t > 0, with

∆X0 ≡ 0. In particular, denote the positive jumps by ∆X+
t = ∆Xt ∨ 0 and the

magnitudes of the negative jumps by ∆X−t = (−∆Xt) ∨ 0. Note that (∆X+
t )t≥0

and (∆X−t )t≥0 are non-negative independent processes. For any integers r, s > 0, let

∆X
(r)
t be the rth largest positive jump, and let ∆X

(s),−
t be the sth largest jump in

{∆X−s , 0 < s ≤ t}, which corresponds to the magnitude of the sth smallest negative

jump. We further write ∆̃X
(r)

t to denote the rth largest jump in modulus up to time

t. In what follows, ∆X
(r),+
t and ∆X

(r)
t are written interchangeably. For a formal

definition of the ordered jumps, allowing tied values, we refer to Buchmann et al.
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[6] Section 2.1. The trimmed versions of X are defined as

(r,s)Xt := Xt −
r∑

i=1

∆X
(i)
t +

s∑

j=1

∆X
(j),−
t and (r)X̃t := Xt −

r∑

i=1

∆̃X
(i)

t , (1)

which are termed asymmetrical trimming and modulus trimming respectively. By

letting r = 0 or s = 0 in asymmetrical trimming, we obtain one-sided trimmed

processes,

(r)Xt := Xt −
r∑

i=1

∆X
(i)
t , and (s,−)Xt := Xt +

s∑

i=1

∆X
(i),−
t . (2)

Set
(0,0)Xt =

(0)X̃t =
(0)Xt =

(0,−)Xt = Xt.

The positive, negative and two-sided tails of Lévy measure Π are

Π
+
(x) := Π{(x,∞)}, Π−(x) := Π{(−∞,−x)}, and Π(x) := Π

+
(x)+Π

−
(x), x > 0.

The restriction of Π on (0,∞) is Π+. Let Π−(·) = Π(−·) and Π|·| = Π+ + Π−. For

each x > 0, denote the truncated mean and second moment functions by

ν(x) = γ −
∫

x<|y|≤1
yΠ(dy), and V (x) = σ2 +

∫

|y|≤x
y2Π(dy).

Throughout the paper, we assume Π(0+) = ∞ when dealing with modulus

trimming and Π
+
(0+) = ∞ or Π

−
(0+) = ∞ (or both when appropriate) when

dealing with one-sided trimming. In particular, these mean V (x) > 0 for all x > 0,

and they ensure there are infinitely many jumps ∆Xt, ∆X
±
t , a.s., in any bounded

interval of time.

Analytical conditions for a Lévy process to be in the domain of attraction of a

normal law as t ↓ 0 or t → ∞ were studied in Doney and Maller [13]. Xt is said to

be in the domain of attraction of the normal law at 0 if there exist some centering

and norming functions at ∈ R and bt > 0 such that

Xt − at
bt

→ N(0, 1) as t ↓ 0, equivalently, if
x2Π(x)

V (x)
→ 0 as x ↓ 0. (3)

Here N(0, 1) denotes a standard normal random variable.

When (3) holds, the norming function bt is regularly varying with index 1/2 at

0 and the truncated second moment function V (x) is slowly varying at 0. For the

definition and properties of regular variation, we refer to [5]. At small times, the

centering function at can be chosen to be 0, i.e. Xt in the domain of attraction

of the normal law (Xt ∈ D(N)) at 0 is equivalent to Xt in the centered domain of

attraction of the normal law (Xt ∈ D0(N)) at 0 (see Maller and Mason [25]).
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For given non-stochastic functions at ∈ R and bt > 0, abbreviate the various

centered and normed processes as

St :=
Xt − at
bt

, (r,s)St :=
(r,s)Xt − at

bt
and (r)S̃t :=

(r)X̃t − at
bt

.

Also denote the one-sided versions (refer to (2)) as

(r)St :=
(r)Xt − at

bt
and (s,−)St :=

(s,−)Xt − at
bt

.

We pursue a compactness argument by first proving that (St) is relatively com-

pact as t ↓ 0 if (r,s)St or (r)S̃t is. This will imply that each subsequence of (St)

has a further subsequence convergent in distribution. Then we establish that each

convergent subsequence has to converge to the same limit when (r,s)St or
(r)S̃t has

a normal or degenerate limit as t ↓ 0.

The idea of the proof is inspired by Mori [26] in the random walks literature,

but we apply it to the continuous setting in the small time framework where some

notable differences occur. Before proving the asymptotic normality result, we estab-

lish equivalent conditions for a sequence of normed and centered Lévy processes to

be relatively compact. Since we are dealing with Xt on the real line, we can instead

prove that, if (r,s)St or
(r)S̃t is tight at 0, then St is tight at 0, i.e.

lim
x→∞

lim sup
t↓0

P (|St| > x) = 0.

Henceforth we state theorems for both asymmetrical and modulus trimmed pro-

cesses but only give detailed proofs for one type of trimming. All statements are also

true for one-sided trimmed processes, as special cases of the asymmetrical trimmed

process by taking either r = 0 or s = 0. Theorem 2.1 gives a thorough characteri-

sation of the tightness of trimmed processes, the ordered jumps and the untrimmed

process.

Theorem 2.1. (a) Fix r = 0, 1, 2, . . . and s = 0, 1, 2, . . .. Suppose that ((r,s)St) is

tight as t ↓ 0 for some at ∈ R and bt > 0. Then the following hold.

(i) (∆X
(j)
t /bt) is tight at 0 for all j ∈ N, equivalently,

lim
x→∞

lim sup
t↓0

tΠ
+
(xbt) = 0.

(ii) (∆X
(k),−
t /bt) is tight at 0 for all k ∈ N, equivalently,

lim
x→∞

lim sup
t↓0

tΠ
−
(xbt) = 0.
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(iii) ((j)St) is tight at 0 for all j = 1, 2, . . ..

(iv) ((k,−)St) is tight at 0 for all k = 1, 2, . . ..

(v) (St) is tight at 0.

(b) Suppose ((r)S̃t) is tight at 0 for some at ∈ R and bt > 0. Then (St) is tight at

0, (∆̃X
(j)

t /bt) is tight at 0 for some (hence all) j ∈ N and limx→∞ lim supt↓0 tΠ(xbt) =

0.

With the help of Theorem 2.1 we can prove our main result in Theorem 2.2.

Theorem 2.2. Suppose Π(0+) = ∞. There exist non-stochastic functions at and

bt > 0 such that, as t ↓ 0, for any r, s ∈ N,

Xt − at
bt

D−→ N(0, 1) or a degenerate distribution, (4)

if and only if

(r,s)Xt − at
bt

D−→ N(0, 1) or a degenerate distribution, (5)

or equivalently,

(r)X̃t − at
bt

D−→ N(0, 1) or a degenerate distribution.

Outline of the Proof

To show tightness in Theorem 2.1, we make use of a key inequality (Prop. 4.3)

in Section 4 that gives an upper bound to the distribution of the trimmed process.

Before that, in Section 3, we investigate the limit of a truncated Lévy process as t ↓ 0,

allowing a Poisson number of possible tied values in the jumps. In Section 5, by an

important estimate on the tail probability of a Lévy process in Sato ([29]), we prove

Theorem 2.2 by showing that each convergent subsequence has the same normal

or degenerate limit at 0. Some auxiliary results concerning the quadratic variation

process of X and the domain of partial attraction of the normal distribution are in

Section 6.

3 The Truncated Process

Here we outline the notation and representation needed from [6] and extend them to

the asymmetrically trimmed case. By the Lévy-Itô decomposition (Theorem 19.2,

p.120 in [29]), we can write

Xt = γt+ σBt +XJ
t ,
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where (Bt) is a standard Brownian motion and the compensated jump process is

XJ
t = a.s. lim

ε↓0


 ∑

0<s≤t
∆Xs1{|∆Xs|>ε} − t

∫

ε<|x|≤1
xΠ(dx)


 .

Define the right-continuous inverse of a nonincreasing monotone function f : (0,∞) 7→
[0,∞) as

f←(x) = inf{y > 0 : f(y) ≤ x}, x > 0.

We introduce three families of processes, indexed by v > 0, truncating jumps

from sample paths of XJ
t . Let v, t > 0. When Π(0+) = ∞, set

X+,v
t := XJ

t −
∑

0<s≤t
∆Xs 1{∆Xs≥Π+,←

(v)}, X−,vt := XJ
t −

∑

0<s≤t
∆Xs1{∆Xs≤−Π−,←

(v)},

and for the modulus case,

X̃v
t := Xt −

∑

0<s≤t
∆Xs 1{|∆Xs|≥Π←(v)}. (6)

Under the assumption Π(0+) = ∞, (X±,vt )t≥0 and (X̃v
t )t≥0 are well defined Lévy

processes with canonical triplets, respectively,
(
∓1{Π±,←

(v)≤1}

∫

Π
±,←

(v)≤x≤1
xΠ±(dx), 0, Π±(dx)1

0<x<Π
±,←

(v)

)
,

and (
γ − 1{Π←(v)≤1}

∫

Π
←
(v)≤|x|≤1

xΠ(dx), σ2, Π(dx)1{|x|<Π
←
(v)}

)
. (7)

Theorem 2.1 of [6] uses a pathwise construction method to derive representations

for the distributions of (r)Xt and
(r)X̃t jointly with their corresponding largest jumps,

∆X
(r)
t and ∆̃X

(r)

t . We extend these expressions to the asymmetrically trimmed pro-

cess (r,s)Xt joint with both positive and negative ordered jumps ∆X
(r)
t and ∆X

(s),−
t .

Note XJ
t = X+

t −X−t where X±t are the compensated sums of positive and negative

jumps respectively. We can trim these to get (r,s)Xt = γt + σZt +
(r)X+

t − (s)X−t ,

where (r)X+
t and (s)X−t are defined analogously as in (2). These processes are non-

negative and independent of each other. Therefore the positive and negative jump

processes can be treated independently.

For each r, s ∈ N, let Γr and Γ̃s be independent standard Gamma random

variables with parameters r and s, independent of (Xt)t≥0. Let (Yt)t≥0, (Y
±
t )t≥0

be independent Poisson processes with unit mean, independent from X, Γ, Γ̃. On

the assumption that Π
+
(0+) = Π

−
(0+) = ∞, by Theorem 2.1 in [6], for each t > 0,

(
(r,s)Xt, ∆X

(r)
t , ∆X

(s),−
t

)

D
=
(
Xu,v

t +G+,v
t −G−,ut , Π

+,←
(v) ,Π

−,←
(u)
) ∣∣∣∣

v=Γr/t,u=Γ̃s/t

, (8)
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where for w > 0,

G±,wt = Π
±,←

(w)Ytρ±(w) and ρ±(w) = Π
±
(Π
±,←

(w)−)− w

and for each u > 0, v > 0,

Xu,v
t := γt+ σZt +X+,v

t −X−,ut

is infinitely divisible with characteristic triplet
(
γu,v, σ

2, Π(dx)1{−Π−,←
(u)<x<Π

+,←
(v)}

)
.

Here

γu,v = γ − 1{Π+,←
(v)≤1}

∫

Π
+,←

(v)≤x≤1
xΠ(dx) + 1{Π−,←

(u)≤1}

∫

Π
−,←

(u)≤x≤1
xΠ−(dx).

The processes G±,wt and G̃v
t (in (10)) are Poisson processes resulting from possible

tied values in the ordered jumps. For completeness, we quote next the representation

of the modulus trimmed process from [6] before proceeding to the proofs.

For each v > 0, recall the modulus truncated process (X̃v
t )t≥0 in (6) with canon-

ical triplet (
γ̃v, σ

2, Π(dx)1{|x|<Π
←
(v)}

)
, (9)

where γ̃v = γ − 1{Π←(v)≤1}
∫
Π
←
(v)≤|x|≤1 xΠ(dx) as defined in (7). Then, for each

t > 0 and r ∈ N,
(

(r)X̃t, |∆̃X
(r)

t |
)

D
=
(
X̃v

t + G̃v
t , Π

←
(v)
) ∣∣∣∣

v=Γr/t

, (10)

where G̃v
t = Π

←
(v)(Y +

tκ+(v) − Y −tκ−(v)) and

κ±(v) = (Π(Π
←
(v)−)− v)

Π{±Π
←
(v)}

Π|·|{Π←(v)}1Π|·|{Π
←
(v)}6=0. (11)

From the above analysis, we can write down the characteristic functions of the

trimmed processes. For each θ ∈ R and v > 0, define

Φ̃(θ, v) := iθγ̃v −
1

2
σ2θ2 +

∫

|x|<Π
←
(v)

(
eiθx − 1− iθx1|x|≤1

)
Π(dx)

+ κ+(v)(e
iθΠ
←
(v) − 1) + κ−(v)(e

−iθΠ←(v) − 1). (12)

This is the characteristic exponent of X̃v
1 + G̃v

1. Similarly for r, s-asymmetrical

trimming, define, for each u, v > 0 and θ ∈ R,

Φ(θ, u, v) := iθγu,v −
1

2
σ2θ2 +

∫

(−Π−,←
(u),Π

+,←
(v))∗

(
eiθx − 1− iθx1|x|≤1

)
Π(dx)

+ ρ+(v)(e
iθΠ

+,←
(v) − 1) + ρ−(u)(e

−iθΠ−,←
(u) − 1),

8



which is the characteristic exponent of Xu,v
1 +G+,v

1 −G−,u1 .

Then the characteristic functions of the trimmed processes are

E
(
eiθ

(r)X̃t

)
=

∫

(0,∞)
exp(tΦ̃(θ, v))P (Γr ∈ tdv) (13)

and E
(
eiθ

(r,s)Xt

)
=

∫ ∞

0

∫ ∞

0
exp(tΦ(θ, u, v))P (Γ̃s ∈ tdu)P (Γr ∈ tdv).

3.1 Normed and Centered Truncation

Suppose for some non-stochastic functions at ∈ R and bt > 0 and a sequence tn ↓ 0,

a Lévy process Xt has a limit in distribution, i.e.

Xtn − atn
btn

D−→ Y, as t ↓ 0, (14)

for some a.s. finite nondegenerate random variable Y . By Lemma 4.1 in Maller

and Mason [24], Y has to be infinitely divisible, say with triplet (β, τ2,Λ). In this

section, we investigate the convergence of the truncated processes X
u/t,v/t
t and X̃

v/t
t

with the same centering and norming, for appropriate u, v > 0 through the sequence

tn. However, in order to relate to the trimmed process, we need to consider not just

the truncated processes but also the Poisson number of ties at each truncation level.

With this restriction, we only get convergence through a subsequence in general.

Nonetheless, this suffices for our purposes.

For each t > 0, u, v > 0, and at ∈ R, bt > 0 non-stochastic functions, abbreviate

the normed, centred, truncated processes including the Poisson number of ties by

Zu,v
t :=

X
u/t,v/t
t +G

+,v/t
t −G

−,u/t
t − at

bt
and Z̃v

t :=
X̃

v/t
t + G̃

v/t
t − at

bt
. (15)

If (Xtn −atn)/btn converges as in (14), we show that Zu,v
t and Z̃v

t also have infinitely

divisible limits at least through a subsequence of tn. Let Λ and Λ
±
denote the tails

of the Lévy measure Λ of Y .

Lemma 3.1. Suppose Π(0+) = ∞ and for some non-stochastic functions at and

bt > 0, and sequence tn ↓ 0,

Xtn − atn
btn

D−→ Y, as n→ ∞

for some a.s. finite infinitely divisible distribution Y with characteristic triplet

(β, τ2,Λ). Suppose further that Λ 6= 0 so there exists l > 0 such that m := Λ(l) > 0.

Then the following hold.

(i) For each continuity point v of Λ
←

such that v ∈ (0,m), (X̃
v/tn
tn − atn)/btn

converges in distribution to an infinitely divisible random variable Ỹ v as n → ∞,

9



where Ỹ v is the value at time 1 of a Lévy process with canonical triplet (β̃v , τ̃
2
v , Λ̃v)

given by

β̃v = β − 1{Λ←(v)≤1}

∫

Λ
←
(v)≤|y|≤1

yΛ(dy), τ̃2v = τ2, Λ̃v(dx) = Λ(dx)1{|x|<Λ
←
(v)}.

Similarly, for each continuity point u > 0 of Λ
−,←

(·) and each continuity point

v > 0 of Λ
+,←

(·), such that u, v ∈ (0,m), we have

X
u/tn,v/tn
tn − atn

btn

D−→ Y u,v as n→ ∞

where Y u,v has canonical triplet (βu,v, τ
2
u,v,Λu,v) given by

βu,v = β − 1{Λ+,←
(v)≤1}

∫

Λ
+,←

(v)≤y≤1
yΛ(dy) + 1{Λ−,←

(u)≤1}

∫

Λ
−,←

(u)≤y≤1
yΛ−(dy),

τ2u,v = τ2, and Λu,v(dx) = Λ(dx)1{−Λ−,←
(u)<x<Λ

+,←
(v)}∗ .

(ii) There exists a subsequence {tnk
↓ 0} and some infinitely divisible random

variables Y u,v and Ỹ v which may depend on the choice of subsequence such that

Zu,v
tnk

D−→ Y u,v and Z̃v
tnk

D−→ Ỹ v as k → ∞,

for each u, v ∈ (0,m) that are continuity points of Λ
−,←

and Λ
+,←

respectively,

In both (i) and (ii), the supports of the Lévy measures of Y u,v and Ỹ v include

the sets (−Λ
−,←

(u),Λ
+,←

(v))∗ and (−Λ
←
(v),Λ

←
(v))∗ respectively.

Proof. Assume Π(0+) = ∞. We prove the case with modulus truncation and to ease

the notation we will write t for tn. We thus assume (Xt − at)/bt converges as t ↓ 0

but make no assumption regarding the limit distribution other than that it is a.s.

finite. By Kallenberg’s conditions (Theorem 15.14, Kallenberg [21]), the following

limits hold for each continuity point x > 0 of Λ
±
(·):

lim
t↓0

tΠ
±
(xbt) = Λ

±
(x), lim

t↓0
tV (xbt)

b2t
= τ2 +

∫

|y|≤x
y2Λ(dx), lim

t↓0
tν(bt)− at

bt
= β.

(16)

By properties of inverse monotone functions (Proposition 0.1 in Resnick p.5 [27]),

the first relation in (16) implies that Π
←
(v/t)/bt → Λ

←
(v) for each continuity point

10



v > 0 of Λ
←
. By (12) and (13), we have

E
(
exp(iθZ̃v

t )
)
= exp

{
iθ

(
tγ̃v/t − at

bt
− t

∫

bt≤|x|≤1,|x|<Π
←
(v/t)

x

bt
Π(dx)

)

− 1

2

tσ2θ2

b2t
+ t

∫

|x|<Π
←
(v/t)

(
eiθx/bt − 1− iθx/bt1|x|≤bt

)
Π(dx)

+ tκ+(v/t)
(
eiθΠ

←
(v/t)/bt − 1

)
+ tκ−(v/t)

(
e−iθΠ

←
(v/t)/bt − 1

)}
.

(17)

By (9), the resulting centering, i.e. the first line on the RHS of (17), equals
(
tγ − at
bt

− 1{Π←(v/t)≤1}t
∫

Π
←
(v/t)≤|x|≤1

x

bt
Π(dx)− t

∫

bt<|x|≤1,|x|<Π
←
(v/t)

x

bt
Π(dx)

)

=

(
tγ − at
bt

− 1{Π←(v/t)≤bt}t
∫

Π
←
(v/t)≤|x|≤bt

x

bt
Π(dx)− t

∫

bt<|x|≤1

x

bt
Π(dx)

)

=
tν(bt)− at

bt
− 1{Π←(v/t)/bt≤1}

∫

Π
←
(v/t)/bt≤|x|≤1

x tΠ(btdx)

t↓0−→ β − 1{Λ←(v)≤1}

∫

Λ
←
(v)≤|x|≤1

xΛ(dx) := β̃v. (18)

In the last line of (18), note that Λ
←
(v) > 0 for v ∈ (0,m) which is a continuity

point of Λ, hence making use of (16) and dominated convergence, we arrive at the

limit β̃v .

By assuming Λ 6= 0, for each v ∈ (0,m) a continuity point of Λ, where m =

Λ(l) > 0 for some l > 0, we have Π
←
(v/t)/bt → Λ

←
(v) ≥ Λ

←
(m) ≥ l > 0. So

εbt < Π
←
(v/t) for all 0 < ε < min(l, 1), v ∈ (0,m) and all sufficiently small t. Hence

we can break up the second line in (17) into two parts. First consider the integral

on {|x| ≤ εbt}:

− tσ2θ2

2b2t
+ t

∫

|x|≤εbt

(
eiθx/bt − 1− iθx/bt

)
Π(dx)

= − tσ
2θ2

2b2t
+ t

∫

|x|≤εbt

(
(iθx)2

2b2t
+O

( |x3|
b3t

))
Π(dx)

= − tθ
2

2b2t

(
σ2 +

∫

|x|≤εbt
x2Π(dx)

)
+ t

∫

|x|≤εbt
O

( |x|3
b3t

)
Π(dx)

= − tθ
2V (εbt)

2b2t
+O

(
εtV (εbt)

b2t

)
. (19)

By (16),

lim
ε↓0

lim
t↓0

tV (εbt)

b2t
= τ2.

11



The second term in (19) is O(ε) as t ↓ 0 hence arbitrarily small. So the expression

in (19) tends to −θ2τ2/2 as t ↓ 0 then ε ↓ 0.

Next consider the component of the integral in the second line of (17) on {εbt <
|x| < Π

←
(v/t)}:

t

∫

εbt<|x|<Π
←
(v/t)

(
eiθx/bt − 1− iθx/bt1|x|≤bt

)
Π(dx)

= t

∫

ε<|x|<Π
←
(v/t)/bt

(
eiθx − 1− iθx1|x|≤1

)
Π(btdx)

→
∫

|x|<Λ
←
(v)

(
eiθx − 1− iθx1|x|≤1

)
Λ(dx) as t ↓ 0 and then ε→ 0.

Therefore the overall limit as t ↓ 0 for the second line in (17) is

− 1

2
θ2τ2 +

∫

|x|<Λ
←
(v)

(
eiθx − 1− iθx1|x|≤1

)
Λ(dx). (20)

From here we can see that the support of the limit Lévy measure is {|x| < Λ
←
(v)}∗

without considering the ties component. The ties component, if present, will only

enlarge the support by including one or both boundary points. This proves Part (i),

for the convergence of (X̃
v/tn
tn − atn)/btn .

For Part (ii), the Poisson number of ties are added to Z̃v
t in (15). This cor-

responds to the last line of (17) in the characteristic function. As before, we fix

v ∈ (0,m) to be a continuity point of Λ
←
. By (11), the ties disappear if Π

←
(v/t) is

not an atom of Π|·|. Let {tn} ↓ 0 be the given sequence. If there exists a subsequence

{tnk
} ↓ 0 such that Π

←
(v/tnk

) is a continuity point of Π for all {tnk
} for sufficiently

large k, then the ties components converge to 0 as k → ∞, and Part (ii) of the

Lemma is true for this subsequence.

Suppose this is not the case. In this situation we have to choose a further

subsequence. Henceforth without loss of generality, we assume additionally that

Π|·|{Π←(v/tn)} 6= 0 for all n ∈ N. Observe from (15) that

Z̃v
tn =

X̃
v/tn
tn − atn
btn

+
G̃

v/tn
tn

btn
. (21)

Since it is shown in Part (i) that the first term in (21) converges to an infinitely

divisible random variable with characteristic triplet (β̃v, τ̃
2
v , Λ̃v), we only need to

show that G̃
v/tn
tn /btn has a limit through a subsequence. Recall from (10)-(11),

G̃
v/tn
tn

btn
=

Π
←
(v/tn)

btn

(
Y +
tnκ+(v/tn)

− Y −tnκ−(v/tn)

)

12



where Y ± are Poisson processes with unit mean, independent of X̃
v/tn
tn . By (11),

tκ±(v/t) = t
(
Π(Π

←
(v/t)−) − v

t

) Π{±Π
←
(v/t)}

Π|·|{Π←(v/t)} =

∫ tΠ(Π
←
(v/t)−)

v
g±(Π

←
(v/t))du,

(22)

where g± = dΠ±/dΠ|·| are the Radon-Nikodym derivatives of Π± with respect to

Π|·|. Since Π
←
(v/t) is an atom of Π|·|,

g±(Π
←
(v/t)) =

Π{±Π
←
(v/t)}

Π|·|{Π←(v/t)} .

For each w > 0, t > 0, define

λ±t (w) =
∫ w

0
g±(Π

←
(u/t))du.

Note that Π
←
(z/t) = Π

←
(v/t) for each z ∈ (v, tΠ(Π

←
(v/t)−)). Hence, (22) equals

tκ±(v/t) = λ±t (tΠ(Π
←
(v/t)−)) − λ±t (v).

Observe that λ±t (tΠ(Π
←
(v/t)−)) and λ±t (v) are nondecreasing in v. Therefore by

Helly’s selection theorem, there exists a subsequence {tnk
↓ 0} of {tn} and nonde-

creasing functions h±(·) and l±(·) such that

λ±tnk
(tnk

Π(Π
←
(v/tnk

)−)) → h±(v) and λ±tnk
(v) → l±(v) as k → ∞.

(23)

Therefore 0 < tnk
κ±(v/tnk

) → h±(v) − l±(v) =: λ±(v). We claim that these quan-

tities are finite for each v ∈ (0,m). To see this, note that for each v ∈ (0,m),

Λ
←
(v) ≥ l > 0. Hence there exists a δ > 0 such that cv := Λ

←
(v) − δ > 0. Since

Π
←
(v/t)/bt → Λ

←
(v), thus Π

←
(v/t) ≥ btcv, for all sufficiently small t. Hence

tΠ(Π
←
(v/t)−) ≤ tΠ(btcv) → Λ(cv) <∞.

This shows that for each v ∈ (0,m), tκ±(v/t) < ∞ for all sufficiently small t > 0.

To summarise, by (18), (20) and (23), E
(
exp(iθZ̃v

tnk
)
)
tends, as k → ∞, to

exp

{
iθβ̃v −

1

2
θ2τ2 +

∫

|x|<Λ
←
(v)

(
eiθx − 1− iθx1|x|≤1

)
Π(dx)

+ λ+(v)
(
eiθΛ

←
(v) − 1

)
+ λ−(v)

(
e−iθΛ

←
(v) − 1

)}
:= ψ̃v(θ).

(24)

Note that (24) is the characteristic function of the limit random variable, say Ỹ v,

which is a convolution of an infinitely divisible random variable with canonical triplet

(β̃v , τ
2, Λ̃v) and two independent Poisson numbers at ±Λ

←
(v) respectively.

This completes the proof of the modulus truncation. Asymmetrical truncation

can be computed analogously.
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4 Inequalities

In this section, we derive inequalities that relate the tails of trimmed processes with

their largest jumps. First let us write out the marginal distribution of the (r + 1)st

ordered jump from the representation formulae in (8) and (10).

Lemma 4.1. Let y > 0. Then

P (|∆̃X(r+1)

t | > y) =

∫ tΠ(y)

0
P (Γr+1 ∈ dv)

=

∫ tΠ(y)

0
P (Γr ∈ dv)− e−tΠ(y) (tΠ(y))

r

r!
. (25)

Similarly,

P (∆X
(r+1),±
t > y) =

∫ tΠ
±
(y)

0
P (Γr+1 ∈ dv)

=

∫ tΠ
±
(y)

0
P (Γr ∈ dv)− e−tΠ

±
(y) (tΠ

±
(y))r

r!
. (26)

Hence,

e−tΠ(y) (tΠ(y))r+1

(r + 1)!
≤ P (|∆̃X(r+1)

t | > y) ≤ (tΠ(y))r+1

(r + 1)!
, (27)

and

e−tΠ
±
(y) (tΠ

±
(y))r+1

(r + 1)!
≤ P (∆X

(r+1),±
t > y) ≤ (tΠ

±
(y))r+1

(r + 1)!
. (28)

Proof. From the representation in (10),

P (|∆̃X(r+1)

t | > y) = P (Π
←
(Γr+1/t) > y) = P (Γr+1 < tΠ(y)).

This gives the first identity in (25). Integrate by parts to get

∫ tΠ(y)

0

1

r!
xre−xdx =

1

r!

(
−(tΠ(y))re−tΠ(y) +

∫ tΠ(y)

0
rxr−1e−xdx

)
.

Then we can read off the second identity in (25). (26) can be proved similarly. The

inequality in (27) is straightforward by observing that

e−tΠ(y)

∫ tΠ(y)

0

xr

r!
dx ≤

∫ tΠ(y)

0
e−x

xr

r!
dx ≤

∫ tΠ(y)

0

xr

r!
dx.

(28) can be proved similarly.
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Remark 4.2. The tail of the cumulative distribution function (cdf) of the modulus

ordered jumps satisfies

P (|∆̃X(r)

t | > y) = P (Γr < tΠ(y)) and P (|∆̃X(r)

t | ≥ y) = P (Γr < tΠ(y−)).

Therefore the discontinuity points of the distribution of ordered jumps coincide with

the atoms of its Lévy measure Π|·|, which are at most countable.

We state our main inequality relating the cdf of trimmed processes with that of

the normed ordered jumps. A version of the following inequality appeared in Buch-

mann et al. [6] in which only the one-sided maximal trimmed process is considered.

Proposition 4.3. Assume Π(0+) = ∞. For each t, x > 0, r, s ∈ N, let at ∈ R be

any non-stochastic function. We have

4P (|(r,s)Xt − at| > x) ≥ max
(
P (∆X

(r+1)
t > 4x), P (∆X

(s+1),−
t > 4x)

)
. (29)

By letting r = 0 or s = 0, we get

4P (|(r)Xt − at| > x) ≥ P (∆X
(r+1)
t > 4x)

and

4P (|(s,−)Xt − at| > x) ≥ P (∆X
(s+1),−
t > 4x).

Similarly the modulus trimmed process satisfies

4P (|(r)X̃t − at| > x) ≥ P
(∣∣∆̃X(r+1)

t

∣∣ > 4x
)
. (30)

Proof. We first prove (29). Assume Π(0+) = ∞. By the representation in (8),

P
(∣∣∣(r,s)Xt − at

∣∣∣ > x
)

=

∫

u,v
P
(∣∣∣Xu,v

t +G+,v
t −G−,ut − at

∣∣∣ > x
)
P (Γr ∈ tdv, Γ̃s ∈ tdu). (31)

DefineW u,v
t := Xu,v

t +G+,v
t −G−,ut . Recall that ρ±(w) = Π

±
(Π
±,←

(w)−)−w. Then
the aggregate Lévy measure of (W u,v

t ) is

Θ(dx) := Π(dx)1−Π+,←
(u)<x<Π

+,←
(v)

+ ρ+(v)δ{Π+,←
(v)} + ρ−(u)δ{−Π+,←

(u)}.

Denote the tails of Lévy measure Θ(·) by Θ
±
. Then for 0 < x < Π

+,←
(v),

Θ
+
(x) = Π

+
(x)−Π

+
(Π

+,←
(v)−) + ρ+(v) = Π

+
(x)− v.

Similarly, for 0 < x < Π
−,←

(u), we have

Θ
−
(x) = Π

−
(x)− u.
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Let (X̄u,v
t ), (Ḡ±,wt ) be processes independent of (Xu,v

t ) and (G±,wt ) respectively but

with the same law. Define the symmetrised process

Ŵ u,v
t := Xu,v

t +G+,v
t −G−,ut −

(
X̄u,v

t + Ḡ+,v
t − Ḡ−,ut

)
.

Then the symmetrised process Ŵ u,v
t has Lévy measure W (dx) = Θ(dx) + Θ(−dx).

By the symmetrisation inequality (Lemma 1 in Feller [16] p.147) and Lévy’s

maximal inequality (Lemma 2 in Feller [16] p.147, also see Lemma 1.1 in Fan [15]),

P
(∣∣∣Xu,v

t +G+,v
t −G−,ut − at

∣∣∣ > x
)
≥ 1

2
P (|Ŵ u,v

t | > 2x)

≥ 1

4
P ( sup

0<s≤t
|∆Ŵ u,v

s | > 4x) (32)

where (∆Ŵ u,v
s )0<s≤t is the jump process of Ŵ u,v

t . Denote the positive and negative

jump processes of Ŵ u,v
t by (∆Ŵ+,u,v

s )0<s≤t and (∆Ŵ−,u,vs )0<s≤t respectively. Note

that they are independent Lévy processes with the same law. Each of (∆Ŵ+,u,v
s )0<s≤t

and (∆Ŵ−,u,vs )0<s≤t has Lévy tails W
±
(·) = Θ

+
(·) + Θ

−
(·) = Θ(·). Hence,

P

(
sup

0<s≤t
∆Ŵ+,u,v

s > 4x

)
= P

(
sup
0<s≤t

∆Ŵ−,u,vs > 4x

)

= 1− e−tΘ(4x)

≥ (1− e−tΘ
+
(4x)) ∨ (1− e−tΘ

−
(4x))

= P

(
sup
0<s≤t

∆W+,v
s > 4x

)
∨ P

(
sup
0<s≤t

∆W−,us > 4x

)
,

(33)

where (∆W+,v
s )0<s≤t and (∆W−,us )0<s≤t are positive and negative jump processes

of W u,v
t and they are independent of each other. By (32) and (33),

P ( sup
0<s≤t

|∆Ŵ u,v
s | > 4x) ≥ P

(
sup

0<s≤t
∆Ŵ+,u,v

s > 4x

)

≥ P ( sup
0<s≤t

∆W+,v
s > 4x) ∨ P ( sup

0<s≤t
∆W−,us > 4x).

On the set {v < Π
+
(4x)} = {4x < Π

+,←
(v)}, by (31) and (32),

4P (|(r,s)Xt − at| > x)

≥
∫ Π

+
(4x)

0

∫

u∈(0,∞)
P ( sup

0≤s≤t
∆W+,v

s > 4x)P (Γr ∈ tdv, Γ̃s ∈ tdu)

=

∫ tΠ
+
(4x)

0

∫

u∈(0,∞)

(
1− e−t(Π

+
(4x)−v/t)

)
P (Γr ∈ dv, Γ̃s ∈ du)

≥
∫ tΠ

+
(4x)

0

(
1− e−tΠ

+
(4x)+v

)
P (Γr ∈ dv). (34)
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The last line of (34) is, by (26),

∫ tΠ
+
(4x)

0
P (Γr ∈ dv)− e−tΠ

+
(4x)

∫ tΠ
+
(4x)

0

vr−1

(r − 1)!
dv = P (∆X

(r+1)
t > 4x).

Similarly, if we consider the set {u < Π
−
(4x)} = {4x < Π

−,←
(u)} and replace the

integrand in the second line of (34) by P (sup0≤s≤t∆W
−,u
s > 4x). The exponent in

the third line of (34) becomes −t(Π−(4x)−u/t). This leads to P (∆X
(s+1),−
t > 4x).

Hence we complete the proof for (29). (30) is proved similarly.

5 Proof of Theorems

Proof of Theorem 2.1 (a): Take r, s ∈ N. Let ((r,s)St) be tight. For each x > 0 and

t > 0, by (29) in Proposition 4.3,

4P
(∣∣∣(r,s)Xt − at

∣∣∣ > xbt

)
≥ max

(
P
(
∆X

(r+1)
t > 4xbt

)
, P
(
∆X

(s+1),−
t > 4xbt

))
.

Take lim supt↓0 and then limx→∞ to obtain

0 = lim
x→∞

lim sup
t↓0

4P
(∣∣∣(r,s)St

∣∣∣ > x
)

≥ lim
x→∞

lim sup
t↓0

max
(
P
(
∆X

(r+1)
t /bt > 4x

)
, P
(
∆X

(s+1),−
t /bt > 4x

))
.

This implies that
(
∆X

(r+1)
t /bt

)
and

(
∆X

(s+1),−
t /bt

)
are tight families as t ↓ 0.

Hence there exists x0 > 0 such that

lim sup
t↓0

P (∆X
(r+1)
t /bt > x) ≤ 1/2 for all x > x0. (35)

For an x > x0, suppose there exists a sequence {tk} ↓ 0 such that tkΠ
+
(btkx) → ∞

as k → ∞. Then by (26),

P (∆X
(r+1)
tk

> btkx) =

∫ tkΠ
+
(btkx)

0
P (Γr+1 ∈ dv) → 1 as k → ∞, (36)

which contradicts (35). Therefore lim supt↓0 tΠ
+
(btx) < ∞ for each x > x0. By

(28),

0 = lim
x→∞

lim sup
t↓0

P
(
∆X

(r+1)
t > btx

)
≥ lim

x→∞
lim sup

t↓0
e−tΠ

+
(btx) (tΠ

+
(btx))

r+1

r + 1!
. (37)

So we must have that limx→∞ lim supt↓0 tΠ
+
(btx) = 0. By the same reasoning we

also have limx→∞ lim supt↓0 tΠ
−
(btx) = 0.
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Conversely, assume limx→∞ lim supt↓0 tΠ
+
(btx) = 0. By (28), for each r ∈ N,

x > 0,

lim
x→∞

lim sup
t↓0

P (∆X
(r)
t > xbt) ≤ lim

x→∞
lim sup

t↓0

(tΠ
+
(btx))

r

r!
= 0

This proves statements (i) and (ii).

Recall that the sum of tight families is again a tight family. Since (s,−)St =
(r,s)St +

∑r
i=1∆X

(i)
t /bt,

(s,−)St is also tight at 0. Similarly, since (r)St =
(r,s)St −∑s

i=1 ∆X
(i),−
t , we conclude that (r)St is tight at 0. Note that St = (s,−)St −∑s

i=1 ∆X
(i),−
t /bt, thus St is tight at 0. This completes the proof of Part (a) and

Part (b) is proved similarly.

Before proving the main theorem, we write down a useful lemma to eliminate

the easy direction.

Lemma 5.1. If there exists a subsequence tk ↓ 0 such that (Xtk − atk)/btk
P−→ 0

as k → ∞ or (Xtk − atk)/btk
D−→ N(0, 1) as k → ∞, then ∆̃X

(i)

tk
/btk

P−→ 0 and

∆X
(i),±
tk

/btk
P−→ 0 for i = 1, 2, 3, . . . as k → ∞.

Proof. Either convergence implies, by (16), that tkΠ(btkx) → 0 for all x > 0, and

this implies

P (|∆̃X(1)

tk
|/btk > ε) = 1− e−tkΠ(btkε) → 0

for any ε > 0. Hence |∆̃X(1)

tk
|/btk

P−→ 0. Thus ∆X
(i),±
tk

/btk
P−→ 0 for i = 1, 2, . . . as

k → ∞.

Proof of Theorem 2.2: Necessity follows from Lemma 5.1. We shall prove the suffi-

ciency. Assume (5). If σ2 > 0, the truncated second moment function V (x) ≥ σ2 >

0, thus
x2Π(x)

V (x)
→ 0.

By (3), this implies Xt is in the domain of attraction of a normal distribution at 0,

in which case (4) holds with N(0, σ2) on the RHS. But then σ2 = 1 since the limit

distribution is N(0, 1). So we can suppose σ2 = 0 in what follows.

First we deal with the degenerate limit. Suppose, without loss of generality, the

limit distribution is degenerate at 0. Then the LHS of (29), with x replaced by xbt,

tends to 0 as t ↓ 0, so

∆X
(r+1)
t

bt

P−→ 0 and
∆X

(s+1),−
t

bt

P−→ 0.

By (28), this implies, for each x > 0,

0 = lim
t↓0

P (∆X
(r+1),±
t > xbt) ≥ lim

t↓0
e−tΠ

±
(xbt) (tΠ

±
(xbt))

r+1

(r + 1)!
.
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By a similar argument as in (36)–(37), the degeneracy of (r,s)St implies

lim sup
t↓0

tΠ
±
(xbt) <∞ for x > 0.

Therefore as t ↓ 0, limt↓0 tΠ
±
(4xbt) = 0 for all x > 0. As in Lemma 5.1, ∆X

(i),±
t /bt →

0, i = 1, 2, . . .. Thus the original normed and centered process also converges, that

is

St =
(r,s)St +

r∑

i=1

∆X
(i)
t

bt
−

s∑

j=1

∆X
(j),−
t

bt

P−→ 0.

This completes the proof for the case with a degenerate limit.

Now we concentrate on the non-trivial case where the limit distribution of (r,s)St

is N(0, 1). Since (r,s)St is tight at 0, by Theorem 2.1, St is also tight at 0, which is

equivalent to St being relatively compact. Therefore every sequence has a further

subsequence convergent in distribution. In fact, St is stochastically compact, i.e. no

subsequence could have a degenerate limit in distribution. If this were not so, there

would be a subsequence, say {tk}, through which (r,s)Stk converged to a degenerate

distribution. By Lemma 5.1, ∆X
(1),±
tk

/btk would tend to 0 in probability, and so

the trimmed process ((r,s)Xtk − atk)/btk would converge to the same degenerate

distribution. But this contradicts the assumption that (r,s)St → N(0, 1) as t ↓ 0.

Therefore, for each sequence {tk}, there exists a further subsequence (also de-

noted {tk}) such that (Xtk −atk)/btk
D−→ Z as k → ∞ for some a.s. finite nondegen-

erate infinitely divisible random variable Z with canonical triplet (αz, τ
2
z ,Πz), say.

For each continuity point x > 0 of Πz, by (16),

lim
k→∞

tkΠ(btkx) = Πz(x) and lim
k→∞

tkV (btkx)

b2tk
= τ2z +

∫

|y|≤x
y2Πz(dy).

We will show that Πz(·) ≡ 0. Suppose not. Then the set

A := {x : Πz(x) > 0} 6= ∅.

Let the infimum of A be l > 0 and m = Π
+
z (l) ∧ Π

−
z (l) > 0. By the representation

in (8), for any x > 0 and t > 0,

P ((r,s)Stk > x) =

∫

u,v∈(0,∞)
P (Zu,v

tk
> x)P (Γr ∈ dv, Γ̃s ∈ du)

≥
∫

u,v∈(0,m)
P (Zu,v

tk
> x)P (Γr ∈ dv, Γ̃s ∈ du), (38)

where

Zu,v
t :=

X
v/t,u/t
t +G+,v/t −G−,u/t − at

bt
, defined in (15).
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By Lemma 3.1, along a further subsequence of {tk} (still denoted {tk}), we have

Zu,v
tk

D−→ Y u,v for each u, v ∈ (0,m) as k → ∞ where Y u,v is an infinitely divisible

distribution with support including the set (−Π
−,←
z (u),Π

+,←
z (v))∗. Take k → ∞ on

both sides of (38) and apply Fatou’s lemma to get

lim
k→∞

P ((r,s)Stk > x) ≥
∫

u,v∈(0,m)
lim inf
k→∞

P (Zu,v
tk

> x)P (Γr ∈ dv, Γ̃s ∈ du)

=

∫

u,v∈(0,m)
P (Y u,v > x)P (Γr ∈ dv, Γ̃s ∈ du). (39)

Let Ut be any Lévy process with Lévy measure ΠU . Define the support of ΠU

by SΠU
and let c = inf{a > 0 : SΠU

⊂ {x : |x| ≤ a}}. By Sato [29] (Theorem 26.1,

p.168), for any δ > 1/c and any t > 0, the tail probability of Ut behaves as

eδx log xP (|Ut| > x) → ∞ as x→ ∞. (40)

For u, v ∈ (0,m), l = Π
+,←
z (v) ∧ Π

−,←
(u). Thus l is in the support of the Lévy

measure of Y u,v and 1/l ≥ 1/Π
←
z (u) ∨ 1/Π

←
z (v). We can apply the tail estimate in

(40) to Y u,v to get

lim
x→∞

ex log x/lP (|Y u,v| > x) = ∞. (41)

It follows from Egorov’s theorem that there exists a subset E of the interval (0,m)

with positive Lebesgue measure such that (41) holds uniformly on E. Multiply

ex log x/l on both sides of (39). Then the modified RHS of (39) tends to infinity as

x→ ∞, while the modified LHS of (39) converges to zero as a result of the estimate

ex log x/l(2π)
1
2

∫ ∞

x
e−y

2/2dy ≤ ex log x/lO(e−x
2/2) → 0 as x→ ∞.

This contradiction proves that Πz(·) ≡ 0 and therefore Z is Gaussian. This means

that Z is N(0, τ ′2) for some τ ′2 > 0 (else Z would be degenerate, which case we

eliminated earlier). Here we use ′ to indicate that τ ′ depends on the chosen subse-

quence. We have shown that for each sequence, there exists a subsequence t′ such

that St′ → N(0, τ ′2). By the assumption in (5), we have through this subsequence

that ((r,s)Xt′ − at′)/bt′ → N(0, 1). This forces τ ′2 = 1. Since this is true for all

subsequences, we have completed the proof for the case when the limit distribution

is normal. The proof for (r)X̃t follows similarly.

6 Related Results

Recall that the quadratic variation process ofXt is defined as Vt := σ2t+
∑

s≤t(∆Xs)
2,

and let the trimmed versions of Vt be

(r,s)Vt := Vt −
r∑

i=1

(∆X
(i)
t )2 −

s∑

j=1

(∆X
(j),−
t )2 and (r)Ṽt := Vt −

r∑

i=1

(∆̃X
(i)

t )2,
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respectively corresponding to asymmetrical and modulus trimming. We can de-

duce from Theorem 2.2 the following relationships between the trimmed quadratic

variation processes and the untrimmed version.

Corollary 6.1. Under the assumptions of Theorem 2.2, for any r, s ∈ N, bt > 0

and τ2 > 0, as t ↓ 0,

(r,s)Vt
b2t

P−→ τ2 or
(r)Ṽt
b2t

P−→ τ2 if and only if
Vt
b2t

P−→ τ2. (42)

Furthermore, (42) is equivalent to the existence of at ∈ R, bt > 0 such that

Xt − at
bt

D−→ N(0, τ2), as t ↓ 0. (43)

The bt in (42) and (43) can be chosen to be the same functions.

Proof of Corollary 6.1: The quadratic variation process of Xt with triplet (γ, σ2,Π)

is a Lévy subordinator with drift σ2 and Lévy measure Πq where Πq(x) = Π(
√
x) for

each x > 0. Apply Theorem 2.2 to Vt with centering function 0 and norming function

b2t to get necessity. Sufficiency is a consequence of Lemma 5.1. This completes the

proof of (42).

The second statement comes from applying the Kallenberg convergence criterion

(16) for subordinators, which gives that (43) holds if and only if for each x > 0, as

t ↓ 0,

tΠ(xbt) → 0 and
tV (xbt)

b2t
→ τ2; (44)

also that Vt/b
2
t

P−→ τ2 holds if and only if for each x > 0, as t ↓ 0,

tΠq(xb
2
t ) → 0 and

t

b2t

∫

0≤|y|≤xb2t
yΠq(dy) → τ2. (45)

Observe that tΠq(xb
2
t ) = tΠ(

√
xbt) and

t

b2t

∫

0≤y≤xb2t
yΠq(dy) =

t

b2t

∫

0≤|y|≤√xbt
y2Π(dy) =

tV (
√
xbt)

b2t
.

Hence the two conditions in (44) and (45) are equivalent. This completes the proof.

The next corollary gives a subsequential version of Theorem 2.2. We say that

Xt is in the domain of partial attraction of the normal distribution if there exist

sequences tk ↓ 0, ak ∈ R and bk > 0 such that

Xtk − ak
bk

→ N(0, 1). (46)
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A necessary and sufficient condition for (46) is that

lim inf
t↓0

x2Π(x)

V (x)
= 0.

Corollary 6.2. Assume Π(0+) = ∞. (46) holds if and only if, for any r, s ∈ N,

there exist sequences t′k ↓ 0, a′k and b′k > 0 such that

(r,s)Xt′
k
− a′k

b′k
→ N(0, 1), as k → ∞, (47)

or, equivalently,
(r)X̃t′

k
− a′k

b′k
→ N(0, 1), as k → ∞. (48)

Proof. That (46) implies (47) or (48) is obvious by Lemma 5.1. In this case we can

choose the same sequences, i.e., (t′k) = (tk), (a
′
k) = (ak) and (b′k) = (bk). For the

converse, write (r,s)St′
k
= ((r,s)Xt′

k
− a′k)/b

′
k. The convergence of (r,s)St′

k

D−→ N(0, 1)

as k → ∞ implies the convergence of St′
k

D−→ N(0, 1) as k → ∞ can be proved

similarly as that of Theorem 2.2 by restricting to a particular subsequence. The

same norming and centering sequence can be used. (48) implies (46) can be proved

similarly.

Next, we will give two easy corollaries with degenerate limit distributions.

Corollary 6.3. (Weak Derivative at 0) Suppose Π(0+) = ∞ and r, s ∈ N. As t ↓ 0,

we have
Xt

t
→ δ if and only if

(r,s)Xt

t
→ δ or

(r)X̃t

t
→ δ, (49)

or equivalently as x→ 0,

σ2 = 0, xΠ(x) → 0, and ν(x) → δ. (50)

If X is a subordinator, δ = dX is the drift coefficient.

Corollary 6.4. (Relative Stability) Suppose Π(0+) = ∞ and r, s ∈ N. As t ↓ 0,

there exists a norming function bt ↓ 0 such that

Xt

bt
→ 1 if and only if

(r,s)Xt

bt
→ 1 or

(r)X̃t

bt
→ 1, (51)

or equivalently as x→ 0,

σ2 = 0, and
ν(x)

xΠ(x)
→ ∞. (52)

Furthermore, bt is regularly varying with index 1.
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Proof of Corollaries 6.3 and 6.4 : These are simple consequences of Theorem 2.2

with degenerate limits. That the untrimmed version of (49) is equivalent to (50) is

proved in Theorem 2.1 of Doney and Maller [13]. The equivalence of the untrimmed

version of (51) and (52) is proved in Theorem 2.2 of Doney and Maller [13].

Concluding Remarks Besides trimming of a bounded number of jumps, there

is also theoretical interest in more general trimming where the number of jumps

taken away goes to infinity. The theory of intermediate and heavy trimming is more

complex and requires, in general, quite different techniques. The proofs in this paper

will not extend immediately to intermediate or heavy trimming cases. In order to

tackle those problems, we need arguments along the lines of, for example, Griffin

and Pruitt [18], Griffin and Mason [17], Csörgő, Haeusler and Mason ([8], [9]). Note

that in the asymptotic normality case, by Griffin and Pruitt [18], it is essential to

restrict to a symmetric marginal distribution. Also see Berkes and Horváth [4] for

more recent developments on trimmed sums.

In the small time paradigm, we zoom in to focus on the hierarchy of the very

small jumps. This promises a fresh perspective in seeking out potential applications.

There is an increasing volume of papers from other fields such as physics, chemistry

and modern finance, with focal points on instantaneous behaviours of a process. For

example, Harris et al. [20] inspect the molecular movement in the blood stream of

a certain protein; Zheng et al. [30] study the small time movement of self-propelled

Janus particles in a fluid; Aı̈t-Sahalia and Jacod (e.g.[1]) compute the activity index

for highly frequently traded financial data. In particular, and in many other ap-

plication areas, “Lévy flights” (processes with heavy tailed increment distributions)

are found to accurately describe many physical processes, see for example Davis and

Marshak [11] on scattering of photons. With increasing power in measurement pre-

cision and better data analysis tools, the need for local investigation could become

more substantial.
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[7] M. Caballero, J. Pardo, and J. Pérez. On Lamperti stable processes. Probab.

Math. Statist., 30(1):1–28, 2010.
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