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Strong law of large number for
branching Hunt processes 1

Li Wang2

Abstract

In this paper we prove that, under certain conditions, a strong law of large
number holds for a class of branching particle systems X corresponding to the
parameters (Y, β, ψ), where Y is a Hunt process and ψ is the generating function
for the offspring. The main tool of this paper is the spine decomposition and we
only need a L logL condition.
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1 Introduction

1.1 Motivation

In recent years, many people (see [1, 2, 3, 4, 5, 6, 7] and the reference therein) have studied limit
theorems for branching Markov processes or superprocesses using the principal eigenvalue and
ground state of the linear part of the characteristic equations. For superprocesses, the second
moment condition on the branching mechnisms can be weaken, see [1, 7]. However, for branching
Markov processes, all the papers in the literature assumed that the branching mechanisms satisfy
a second moment condition or (and), they assume that the underlying process is symmetric.

In [8], Asmussen and Hering established a Kesten-Stigum LlogL type theorem for a class of
branching diffusion processes under a condition which is later called a positive regular property
in [9]. In [10, 11], Liu, Ren and Song established Kesten-Stigum LlogL type theorem for super-
diffusions and branching Hunt processes respectively. As a natural continuation of [10], Liu, Ren
and Song give a strong law of large number for super-diffusions, see [7]. This paper concerns
with the case of branching Markov processes. We establish a strong law of large numbers for a
class of branching Hunt processes. The main tool is the spine decomposition. We only assume
that the branching mechanisms satisfy a L logL condition and the underlying process need not
to be symmetric.

We first introduce the setup in this paper. Let E be a locally compact separable metric
space. Denote by E∆ := E ∪ {∆} the one point compactification of E. Let B(E) denote both
the Borel σ-fields on E and the space of functions measurable with respect to itself. Write Bb(E)
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(respectively, B+(E)) for the space of bounded (respectively, non-negative) B(E)-measurable
functions on E. Let Mp(E) be the space of finite point measures on E, that is,

Mp(E) =

{ n∑

i=1

δxi
: n ∈ N and xi ∈ E, i = 1, 2, . . . , n

}
.

As usual, 〈f, µ〉 :=
∫
E
f(x)µ(dx) for any function f on E and any measure µ ∈Mp(E).

As a continuation of [11], the model in this paper is the same as in that paper, we will state
it in the next subsection for reader’s convenience.

1.2 Model

Let Y = {Yt,Πx, ζ} be a Hunt process on E, where ζ = inf{t > 0 : Yt = ∆} is the lifetime of Y .
Let {Pt, t ≥ 0} be the transition semigroup of Y :

Ptf(x) = Πx[f(Yt)] for f ∈ B+(E).

Let m be a positive Radon measure on E with full support. {Pt, t ≥ 0} can be extended to a
strongly continuous semigroup on L2(E,m). Let {P̂t, t ≥ 0} be the dual semigroup of {Pt, t ≥ 0}
on L2(E,m) satisfy

∫

E

f(x)Ptg(x)m(dx) =

∫

E

g(x)P̂tf(x)m(dx), f, g ∈ L2(E,m).

Throught this paper we assume that

Assumption 1.1 (i) There exists a family of continuous strictly positive functions {p(t, ·, ·); t >
0} on E × E such that for any (t, x) ∈ (0,∞) × E, we have

Ptf(x) =

∫

E

p(t, x, y)f(y)m(dy), P̂tf(x) =

∫

E

p(t, y, x)f(y)m(dy).

(ii)The semigroups {Pt, t ≥ 0} and {P̂t, t ≥ 0} are ultracontractive, that is, for any t > 0, there
exists a constant ct > 0 such that

p(t, x, y) ≤ ct for any (x, y) ∈ E ×E.

Suppose that ψ ∈ B(E × [−1, 1]) and ψ is the generating function for each x ∈ E, that is

ψ(x, z) =

∞∑

n=0

pn(x)z
n, |z| ≤ 1,

where pn(x) ≥ 0 and
∑∞

n=0 pn(x) = 1. The branching system we are going to study determined
by the following properties:

1. The particles in E move independently according to the law of Y , and each particle has a
random birth and a random death time.

2. Given the path Y of a particle and given that the particle is alive at time t, its probability
of dying in the interval [t, t+ dt) is β(Yt)dt+ o(dt).
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3. When a particle dies at x ∈ E, it splits into n particles at x with probability pn(x). The
point ∆ is a cemetery. When a particle reaches ∆, it stays at ∆ for ever and there is no
branching at ∆.

We assume that the functions β(x) and A(x) := ψ′(x, 1) =
∑∞

n=0 npn(x) are bounded B(E)-
measurable and that p0(x) + p1(x) = 0 on E. The last condition implies A(x) ≥ 2 on E. The
assumption p0(x) = 0 on E is essential for the probabilistic proof of this paper since we need
the spine to be defined for all t ≥ 0. The assumption p1(x) = 0 on E is just for convenience as
the case p1(x) > 0 can be reduced to the case p1(x) = 0 by changing the parameters β and ψ of
the branching Hunt process.

Let Xt(B) be the number of particles located in B ∈ B(E) at time t. Then X = {Xt, t ≥ 0}
is a Markov process in Mp(E) which is called a (Y, β, ψ)-branching process. The process X has
probabilities {Pµ : µ ∈Mp(E)}, and Eµ is expectation with respect to Pµ. Then we have

Eµ[〈f,Xt〉] = Πµ[e(1−A)β(t)f(Yt)], f ∈ B+
b (E),

where ec(t) = exp(−
∫ t

0 c(Ys)ds) for any c ∈ Bb(E). We use {P
(1−A)β
t , t ≥ 0} to denote the

following Feynman-Kac semigroup

P
(1−A)β
t f(x) := Πx[e(1−A)β(t)f(Yt)], f ∈ B(E).

Under Assumption 1.1, we can show that {P
(1−A)β
t } is strongly continuous on L2(E,m) and for

any t > 0, P
(1−A)β
t admits a density p

(1−A)β
t (t, x, y) which is jointly continuous in (x, y).

Let {P̂
(1−A)β
t , t ≥ 0} be the dual semigroup of {P

(1−A)β
t , t ≥ 0} defined by

P̂
(1−A)β
t f(x) =

∫

E

p
(1−A)β
t (t, y, x)f(y)m(dy), f ∈ B+(E).

write A and Â for the generators of {Pt} and {P̂t}. Then the generators of {P
(1−A)β
t } and

{P̂
(1−A)β
t } can be formally written as A+ (A− 1)β and Â+ (A− 1)β respectively.

Let σ(A + (A − 1)β) and σ(Â + (A − 1)β) be the spectrum of {P
(1−A)β
t } and {P̂

(1−A)β
t },

respectively. It follow from Jentzch’s Theorem (Theorem V.6.6 on p.333 of [12]) and the strong

continuity of {P
(1−A)β
t } and {P̂

(1−A)β
t } that the common value λ1 := supRe(σ(A+(A−1)β)) =

supRe(σ(Â+(A−1)β)) is an eigenvalue of multiplicity 1 for both A+(A−1)β and Â+(A−1)β.
Let φ be an eigenfunction of A + (A − 1)β associated with λ1 and φ̃ be an eigenfunction of
Â+(A− 1)β associated with λ1. By (Proposition 2.3 in [13]) we know that φ and φ̃ are strictly
positive and continuous on E. We choose φ and φ̃ so that

∫
E
φφ̃m(dx) = 1. Then

φ(x) = e−λ1tP
(1−A)β
t φ(x), φ̃(x) = e−λ1tP̂

(1−A)β
t φ̃(x), x ∈ E.

Throughout this paper we also assume that
Assumption 1.2 λ1 > 0 and

∫
E
φ2(y)φ̃(y)m(dy) <∞.

The assumption λ1 > 0 is the condition for supercriticality of the branching Hunt process.

Assumption 1.3 The semigroups {P
(1−A)β
t } and {P̂

(1−A)β
t } are intrinsic ultracontrative, that

is, for any t > 0 there exists a constant ct such that

p(1−A)β(t, x, y) ≤ ctφ(x)φ̃(y), x, y ∈ E.

We refer to [11] for examples satisfy the above assumptions.
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1.3 Spine Decomposition

For the convenience of state our main result, we shortly recall the spine decomposition in [11].
First we extend the probability measure Pδx to a probability measure P̃δx under which:

1. a single particle, Ỹ = {Ỹt}t≥0, referred to as the spine, initially starts at x moves according
to the measure Πx.

2. Given the trajectory Ỹ·, the fission time ζu of node u on the spine is distributed according

to Lβ(Ỹ ), where Lβ(Ỹ ) is the law of the Poisson random measure with intensity β(Ỹt)dt.

3. At the fission time ζu of node u in the spine, the single spine particle is replaced by a
random number ru of offspring with ru being distributed according to the law P (Ỹζu) =

(pk(Ỹζu))k≥1.

4. The spine is chosen uniformly from the ru particles at the fission time of u.

5. Each of the remaining ru − 1 particles gives rise to independent copys of a P -branching
Hunt process started at its space-time point of creation.

Let ξ = {ξ0 = φ, ξ1, ξ2, . . .} be the selected line of decent in the spine, let N = (Nt : t ≥ 0)
to denote the counting process of fission times along the spine. Write nodet(ξ) for the node in
the spine that is alive at time t. It is clear that nodet(ξ) = ξNt. Define the natural filtration of
the motion and the birth process along the spine by

Gt := σ((Ỹs, s ≤ t), (nodes(ξ) : s ≤ t), (ζu, u < ξNt), (ru : u < ξNt)),

and define G =
⋃

t≥0 Gt. Let F̃t := σ((Xs, s ≤ t), (nodes(ξ) : s ≤ t)) and F̃ =
⋃

t≥0 F̃t. From the
spine construction, we know that

Prob(u ∈ ξ) =
∏

ν<u

1

rν
.

It is easy to see that

∑

u∈Lt

∏

ν<u

1

rν
= 1. (1.1)

where Lt is the set of particles that are alive at time t. For the definition of P̃δx and the relations
of Pδx with P̃δx , see [11] for details.

Next we define a probability measure Q̃δx on the branching Hunt process with a spine. Before
that, we need to give some facts concerning change of measures.
Girsanov change of measure Let Gt = σ(Ys; s ≤ t). Note that

φ(Yt)

φ(x)
e−λ1te(1−A)β(t)

is a martingale under Πx, and so we can define a martingale change of measure by

dΠφ
x

dΠx

∣∣∣∣
Gt

=
φ(Yt)

φ(x)
e−λ1te(1−A)β(t).

4



Then {Y,Πφ
x} is a conservative Markov process, and φφ̃ is a unique invariant probability measure

for the semigroup {P
(1−A)β
t : t ≥ 0}, that is, for any f ∈ B+(E),

∫

E

φ(x)φ̃(x)P
(1−A)β
t f(x)m(dx) =

∫

E

f(x)φ(x)φ̃(x)m(dx).

Let pφ(t, x, y) be the transition density of Y in E under Πφ
x. Then

pφ(t, x, y) =
e−λ1t

φ(x)
p(1−A)β(t, x, y)φ(y).

It follows from Theorem 2.8 in [13] that, if Assumption 1.3 holds, there exist constants c > 0
and ν > 0 such that

∣∣∣∣
e−λ1tp(1−A)β(t, x, y)

φ(x)φ̃(y)
− 1

∣∣∣∣ ≤ ce−νt, x ∈ E. (1.2)

which is equivalent to

sup
x∈E

∣∣∣∣
pφ(t, x, y)

φ(y)φ̃(y)
− 1

∣∣∣∣ ≤ ce−νt. (1.3)

Change of measure for Possion process Suppose that given a nonnegative measurable
function β(Yt), t ≥ 0, the Possion process (n,Lβ) where n = {{σi : i = 1, 2, . . . , nt} : t ≥ 0} has
instantaneous rate β(Yt). Further, assume that n is adapted to {Lt : t ≥ 0}. Then under the
change of measure

dLAβ

dLβ

∣∣∣∣
Lt

=
∏

i≤nt

A(Yt) · exp

(
−

∫ t

0
((A− 1)β)(Ys)ds

)

the process (n,LAβ) is also a Possion process with rate Aβ. See, Chapter 3 in [14].

The spine construction Let {Ft : t ≥ 0} be the natural filtration generated by X. For any
x ∈ E, we define

Mt(φ) = e−λ1t
〈Xt, φ〉

φ(x)
.

Then {Mt(φ), t ≥ 0} is a nonnegative martingale with respect to {Ft : t ≥ 0}. Define the change
of measure

dQ̃δx

dP̃δx

∣∣∣∣
Ft

=Mt(φ).

Then, under Q̃δx , X can be constructed as follows:

1. a single particle, Ỹ = {Ỹt}t≥0, referred to as the spine, initially starts at x moves according

to the measure Πφ
x;

2. The spine undergoes fission into particles at an accelerated intensity (Aβ)(Ỹt)dt;

3. At the fission time ζu of node u in the spine, it give birth to ru particles with size-biased
offspring distribution P̂ (Ỹζu) := (P̂k(Ỹζu))k≥1, where P̂k(y) :=

kpk(y)
A(y) , k = 1, 2, . . ., y ∈ E.
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4. The spine is chosen uniformly from the ru particles at the fission time of u.

5. Each of the remaining ru − 1 particles gives rise to independent copys of a P -branching
Hunt process started at its space-time point of creation.

Theorem 1.1 ([11], Theorem 2.9) (Spine decomposition) We have the following spine decom-
position for the martingale Mt(φ)

φ(x)Q̃δx [Mt(φ)|G] = e−λ1tφ(Ỹt) +
∑

u<ξNt

(ru − 1)φ(Ỹζu)e
−λ1ζu

Denote by M∞(φ) the almost sure limit of Mt(φ) as t→ ∞. In [11], the author studied the
relationship between the degeneracy property of M∞(φ) and the function l:

l(x) =
∞∑

k=2

kφ(x) log+(kφ(x))pk(x), x ∈ E. (1.4)

Theorem 1.2 ([11], Theorem 1.6) Suppose that {Xt : t ≥ 0} is a (Y, β, ψ)-branching Hunt
process and the Assumptions 1.1-1.3 are satisfied. Then M∞(φ) is a non-degenerate under Pµ

for any nonzero measure µ ∈Mp(E) if and only if
∫

E

φ̃(x)β(x)l(x)m(dx) <∞,

where l is defined by (1.4).

1.4 Main Result

Define
Wt(φ) := e−λ1t〈Xt, φ〉.

The main goal of this paper is to establish the following almost sure convergence result.

Theorem 1.3 Suppose that {Xt : t ≥ 0} is a (Y, β, ψ)-branching Hunt process and the As-
sumptions 1.1-1.3 are satisfied. If

∫
E
φ̃(x)β(x)l(x)m(dx) < ∞, then there exists Ω0 ⊂ Ω with

full probability (that is, Pδx(Ω0) = 1 for every x ∈ E) such that, for every ω ∈ Ω0 and for every
bounded Borel measurable function f on E with compact support whose set of discontinuous
points has zero m-measure, we have

lim
t→∞

e−λ1t〈Xt, f〉 =W∞(φ)

∫

E

φ̃(x)f(x)m(dx), (1.5)

where W∞(φ) is the Pδx-almost sure limit of e−λ1t〈Xt, φ〉.

As a consequence of this theorem we immediately get the following

Corollary 1.1 (Strong law of large numbers) Suppose that {Xt : t ≥ 0} is a (Y, β, ψ)-branching
Hunt process and the Assumptions 1.1-1.3 are satisfied. If

∫
E
φ̃(x)β(x)l(x)m(dx) < ∞, then

there exists Ω0 ⊂ Ω with full probability such that, for every ω ∈ Ω0 and for every relatively
compact Borel subset B in E having m(B) > 0 and m(∂B) = 0, we have Pδx-almost surely,

lim
t→∞

Xt(B)(ω)

Pδx [Xt(B)]
=
W∞(φ)(ω)

φ(x)
.
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2 Proof of Theorem 1.3

We will prove the theorem by the following steps.

Proposition 2.1 If
∫
E
φ̃(x)β(x)l(x)m(dx) <∞, then for any m ∈ N, σ > 0,

lim
n→∞

|U(m+n)σ(φf)− Eδx(U(m+n)σ(φf)|Fnσ)| = 0, Pδx-a.s.

where Ut(fφ) := e−λ1t〈Xt, fφ〉 for f ∈ B+
b (E).

We will prove this result later. According to the spine construction, if a particle u ∈ ξ, then
at the fission time ζu, it give birth to ru offspring, one of which continues the spine while the
other ru−1 individuals go off to create subtrees which are copies of the original branching Hunt
process, we write them by (τ,M)uj , j = 1, . . . , ru − 1. Put

X
j
t−ζu

=
∑

ν∈Lt,ν∈(τ,M)uj

δYν(t)(·), t ≥ ζu,

where {Yν : ν ∈ (τ,M)uj } are independent copies of Y . (Xj
t−ζu

, t ≥ ζu) is a (Y, β, ψ)-branching

Hunt process with birth time ζu and starting point Ỹζu . Then we can write

Ut(fφ) = e−λ1t(fφ)(Ỹt) + e−λ1t
∑

u<ξNt

ru−1∑

j=1

〈fφ,Xj
t−ζu

〉.

Define

Ũt(fφ) = e−λ1t(fφ)(Ỹt) + e−λ1t
∑

u<ξNt

ru−1∑

j=1

〈fφ,Xj
t−ζu

〉I{ruφ(Ỹζu )≤eλ1ζu}.

and

M
u,j
t (φ) := e−λ1(t−ζu)

〈φ,Xj
t−ζu

〉

φ(Ỹζu)
, t ≥ ζu.

Then {Mu,j
t (φ), t ≥ ζu} is, conditional on G, a nonnegative P̃δx-martingale on the subtree

(τ,M)uj , and therefore

Q̃δx [M
u,j
t (φ)|G] = P̃δx [M

u,j
t (φ)|G] = 1. (2.1)

Suppose that {Yi : i = 1, . . . , Lnσ} describes the path of particles alive at time nσ. Note
that we may always write

U(m+n)σ(fφ) =

Lnσ∑

i=1

e−λ1nσU (i)
mσ(fφ)

where given Fnσ, the collection {U
(i)
mσ(fφ) : i = 1, . . . , Lnσ} are mutually independent and equal

in distribution to Umσ(fφ) under PδYi
. Then we can write

U(m+n)σ(fφ) =

Lnσ∑

i=1

e−λ1nσŨ (i)
mσ(fφ) +

Lnσ∑

i=1

e−λ1nσ
(
U (i)
mσ(fφ)− Ũ (i)

mσ(fφ)
)

:= U
[1]
(m+n)σ(fφ) + U

[2]
(m+n)σ(fφ), (2.2)
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where U
[1]
(m+n)σ(fφ) and U

[2]
(m+n)σ(fφ) stand for the first term and the second term on the right

hand respectively.

Lemma 2.1 If
∫
E
φ̃(x)β(x)l(x)m(dx) <∞ and

∫
E
φ2(y)φ̃(y)m(dy) <∞. Then, for f ∈ B+

b (E)
and x ∈ E,

Ẽδx [Ũt(φf)]
2 <∞

Proof. First, we rewrite Ũt(fφ) into a new form and take the conditional expectation,

Ẽδx[Ũt(φf)|Ft]

=
∑

u∈Lt


e−λ1t(fφ)(Ỹu(t)) + e−λ1t

∑

ν<u

rν−1∑

j=1

〈fφ,Xj
t−ζν

〉I{rνφ(Ỹζν )≤eλ1ζν }


 Ẽδx(I{u∈ξ}|Ft)

=
∑

u∈Lt


e−λ1t(fφ)(Ỹu(t)) + e−λ1t

∑

ν<u

rν−1∑

j=1

〈fφ,Xj
t−ζν

〉I{rνφ(Ỹζν )≤eλ1ζν }


∏

ν<u

1

rν

d
= e−λ1t(fφ)(Ỹt) + e−λ1t

∑

ν<ξNt

rν−1∑

j=1

〈fφ,Xj
t−ζν

〉I{rνφ(Ỹζν )≤eλ1ζν }
,

where in the last equation, in order not to introduce another symbol, we still use ξNt to denote

one of the particles alive at time t, “
d
=” means equal in distribution under Pδx and the equality

(1.1) was used. Using (2.1) and Ũt(φf) ≤ ‖f‖∞ ·Wt(φ), we have

φ(x)−1Ẽδx [Ũt(φf)]
2

≤ ‖f‖∞ · φ(x)−1Ẽδx [Wt(φ)Ũt(φf)]

= ‖f‖∞ · φ(x)−1Ẽδx

[
Wt(φ)Ẽδx [Ũt(φf)|Ft]

]

= ‖f‖∞ · Q̃δx


e−λ1t(fφ)(Ỹt) + e−λ1t

∑

ν<ξNt

rν−1∑

j=1

〈fφ,Xj
t−ζν

〉I{rνφ(Ỹζν )≤eλ1ζν }




≤ ‖f‖2∞ · Q̃δx

[
e−λ1tφ(Ỹt) +

∑

ν<ξNt

(rν − 1)φ(Ỹζν )e
−λ1ζνI{rνφ(Ỹζν )≤eλ1ζν }

]

≤ ‖f‖2∞

(
Πφ

x[e
−λ1tφ(Ỹt)] + Πφ

x

∫ t

0
e−λ1sφ(Ỹs)β(Ỹs)A(Ỹs)

∞∑

k=2

kp̂k(Ỹs)I{kφ(Ỹs)≤eλ1s}ds

)
.

where ‖ · ‖∞ means the supremum norm here and in the paper. Call the two expressions in
bracket on the right hand side the spine term A(x, t) and the sum term B(x, t) respectively.
Note that (1.3) implies that

∣∣∣∣
∫

E

pφ(t, x, y)φ(y)m(dy) −

∫

E

φ2(y)φ̃(y)m(dy)

∣∣∣∣ ≤ ce−νt

∫

E

φ2(y)φ̃(y)m(dy).

Therefore,

eλ1tA(x, t) = Πφ
x(φ(Ỹt)) ≤ (c+ 1)

∫

E

φ2(y)φ̃(y)m(dy) <∞. (2.3)
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For the sum term, using the assumption that A and β are bounded, we get

B(x, t) = Πφ
x

∫ t

0
e−λ1sφ(Ỹs)β(Ỹs)A(Ỹs)

∞∑

k=2

kp̂k(Ỹs)I{kφ(Ỹs)≤eλ1s}
ds

= Πφ
x

∫ t

0
e−λ1sφ(Ỹs)β(Ỹs)A(Ỹs)

∞∑

k=2

k
k

A(Ỹs)
pk(Ỹs)I{kφ(Ỹs)≤eλ1s}

ds

≤ Πφ
x

∫ t

0
e−(λ1−λ1)sβ(Ỹs)

∞∑

k=2

kpk(Ỹs)I{kφ(Ỹs)≤eλ1s}
ds

≤ ‖βA‖∞ · t <∞, (2.4)

for all x ∈ E, then the conclusion follows. �

Lemma 2.2 If
∫
E
φ̃(x)β(x)l(x)m(dx) <∞, then for any m ∈ N, σ > 0,

∞∑

n=1

P̃δx{U(n+m)σ(fφ) 6= U
[1]
(n+m)σ(fφ)} <∞,

∞∑

n=1

Ẽδx

[
U

[1]
(m+n)σ(φf)− Ẽδx(U

[1]
(m+n)σ(φf)|F̃nσ)

]2
<∞.

where U
[1]
(m+n)σ(fφ) was defined in (2.2). In particular

lim
n→∞

∣∣∣U [1]
(m+n)σ(φf)− Ẽδx(U

[1]
(m+n)σ(φf)|F̃nσ)

∣∣∣ = 0, P̃δx-a.s.

Proof. Note that (1.2) implies that for any s ∈ [0,mσ], there is a constant Cmσ such that

p(1−A)β(s, x, y) ≤ Cmσφ(x)φ̃(y), x, y ∈ E.

Then by the spine construction and Fubini theorem, we get

∞∑

n=1

P̃δx{U(n+m)σ(fφ) 6= U
[1]
(n+m)σ(fφ)}

≤
∞∑

n=1

Ẽδx

[
Lnσ∑

i=1

P̃δx

(
U (i)
mσ(fφ) 6= Ũ (i)

mσ(fφ)|F̃nσ

)]

≤

∞∑

n=1

Ẽδx

(
Lnσ∑

i=1

∫ mσ

0
ds

∫

E

p(1−A)β(s, Yi, y)β(y)

∞∑

k=2

pk(y)I{kφ(y)>eλ1(s+nσ)}m(dy)

)

≤ Cmσ

∞∑

n=1

Ẽδx

(
Lnσ∑

i=1

∫ mσ

0
ds

∫

E

φ(Yi)φ̃(y)β(y)

∞∑

k=2

pk(y)I{kφ(y)>eλ1(s+nσ)}m(dy)

)

= Cmσ

∞∑

n=1

eλ1nσφ(x)

(∫ mσ

0
ds

∫

E

φ̃(y)β(y)
∞∑

k=2

pk(y)I{kφ(y)>eλ1(s+nσ)}m(dy)

)

= Cmσφ(x)

(∫ mσ

0
ds

∫

E

φ̃(y)β(y)

∞∑

n=1

eλ1nσ
∞∑

k=2

pk(y)I{kφ(y)>eλ1(s+nσ)}m(dy)

)
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≤ Cmσφ(x)



∫ mσ

0
ds

∫

E

φ̃(y)β(y)

∞∑

k=2

1
λ1σ

log+[kφ(y)]∑

n=1

eλ1nσpk(y)I{kφ(y)>eλ1(s+nσ)}m(dy)




≤
Cmσ

λ1σ
φ(x)

(∫ mσ

0
ds

∫

E

φ̃(y)β(y)
∞∑

k=2

log+[kφ(y)]kφ(y)pk(y)m(dy)

)

=
Cmσm

λ1
φ(x)

∫

E

φ̃(y)β(y)l(y)m(dy) <∞.

For the second inequality, recall that, if Xi are independent random variables with E(Xi) = 0
or they are martingale difference, then

E

∣∣∣∣
n∑

i=1

Xi

∣∣∣∣
p

≤ 2p
n∑

i=1

E|Xi|
p.

Jensen’s inequality also implies that |u+ v|p ≤ 2p−1(|u|p + |v|p) for p ∈ (1, 2]. Then we have

E(|Us+t − E(Us+t|Ft)|
p|Ft))

≤ 2pe−λ1pt
Lt∑

i=1

E

(
|U (i)

s − E(U (i)
s |Ft)|

p

∣∣∣∣Ft

)

≤ 2pe−λ1pt
Lt∑

i=1

E

(
2p−1(|U (i)

s |p + |E(U (i)
s |Ft)|

p)

∣∣∣∣Ft

)

≤ 2pe−λ1pt
Lt∑

i=1

2p−1E

(
|U (i)

s |p + |E(U (i)
s |Ft)|

p)

∣∣∣∣Ft

)

≤ 22pe−λ1pt
Lt∑

i=1

E(|U (i)
s |p|Ft).

Note that for any f ∈ B+
b (E), Ut(fφ) ≤ ‖f‖∞ ·Wt(φ), we have that

∑

n≥1

Ẽδx

(∣∣∣∣U
[1]
(m+n)σ − E

(
Ũ

[1]
(m+n)σ

∣∣∣∣F̃nσ

)∣∣∣∣
2
)

≤ 24
∑

n≥1

e−2λ1nσẼδx

( Lnσ∑

i=1

ẼδYi
[Ũ (i)

mσ(φf)]
2

)

≤ 24
∑

n≥1

Eδx

( Lnσ∑

i=1

e−2λ1nσφ(Yi)(A(Yi,mσ) +B(Yi,mσ))

)

= 24
∑

n≥1

e−λ1nσφ(x)Πφ
x[A(Ynσ,mσ) +B(Ynσ,mσ)]

where A(x, t) and B(x, t) were defined in Lemma 2.1. Then as a consequence of the previous
estimates (2.3) and (2.4), we conclude that the last sum remains finite. �
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Lemma 2.3 If
∫
E
φ̃(x)β(x)l(x)m(dx) <∞, then for any m ∈ N, σ > 0,

∞∑

n=0

Ẽδx

[(
U(m+n)σ(φf)− U

[1]
(m+n)σ(φf)

) ∣∣∣∣F̃nσ

]
converges P̃δx-a.s.

Proof. Take f = 1 in Lemma 2.2, then {Ut(φ) : t ≥ 0} is a nonnegative martingale. By Lemma
2.2 we have

∞∑

n=0

P̃δx

{
U(n+m)σ(φ) 6= U

[1]
(n+m)σ(φ)

}
<∞, (2.5)

∞∑

n=0

Ẽδx

[
U

[1]
(m+n)σ(φ) − Ẽδx

(
U

[1]
(m+n)σ(φ)

∣∣∣∣F̃nσ

)]2
<∞. (2.6)

Note that

Ẽδx

[
U

[1]
(m+n)σ(φ)

∣∣∣∣F̃nσ

]
= Ẽδx

[(
U(m+n)σ(φ)− U

[2]
(m+n)σ(φ)

) ∣∣∣∣F̃nσ

]

= Unσ(φ) − Ẽδx

[
U

[2]
(m+n)σ(φ)

∣∣∣∣F̃nσ

]

By (2.5) and (2.6), we have

∞∑

n=0

(
U(m+n)σ(φ)− Unσ(φ) + Ẽδx

[
U

[2]
(m+n)σ(φ)

∣∣∣∣F̃nσ

])
converges P̃δx-a.s.

since Ut(φ) converges almost surely as t→ ∞, we have

∞∑

n=0

Ẽδx

[
U

[2]
(m+n)σ(φ)

∣∣∣∣F̃nσ

]
converges P̃δx-a.s.

So we have

∞∑

n=0

Ẽδx

[(
U(m+n)σ(φf)− U

[1]
(m+n)σ(φf)

) ∣∣∣∣F̃nσ

]
≤ ‖f‖∞

∞∑

n=0

Ẽδx

[
U

[2]
(m+n)σ(φ)

∣∣∣∣F̃nσ)

]

converges P̃δx-a.s. �

Proof of Porposition 2.1. From the decomposition (2.2), we have

U(m+n)σ(φf)− Eδx(U(m+n)σ(φf)|Fnσ)

= U(m+n)σ(φf)− Ẽδx(U(m+n)σ(φf)|F̃nσ)

= U(m+n)σ(φf)− U
[1]
(m+n)σ(φf) + U

[1]
(m+n)σ(φf)− Ẽδx

(
U

[1]
(m+n)σ(φf)

∣∣∣∣F̃nσ

)

− Ẽδx

[(
U(m+n)σ(φf)− U

[1]
(m+n)σ(φf)

) ∣∣∣∣F̃nσ

]

Now the conclusion of this proposition follows immediately form Lemma 2.1, Lemma2.2 and
Lemma 2.3. �
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Theorem 2.1 If
∫
E
φ̃(x)β(x)l(x)m(dx) <∞, then for any σ > 0 and f ∈ B+

b (E),

lim
n→∞

e−λ1nσ〈φf,Xnσ〉 =W∞(φ)

∫

E

φ̃(x)φ(x)f(x)m(dx), Pδx-a.s.

Proof. By Markov property of branching processes we have

Eµ[e
−λ1(m+n)σ〈φf,X(m+n)σ〉|Fnσ] = e−λ1nσ〈e−λ1mσP (1−A)β

mσ (φf),Xnσ〉.

Note that (1.2) implies that, for any f ∈ B+
b (E),

∣∣∣∣
e−λ1mσP

(1−A)β
mσ (φf)(x)

φ(x)
−

∫

E

φ(y)φ̃(y)f(y)m(dy)

∣∣∣∣ ≤ ce−νmσ

∫

E

φ(y)φ̃(y)f(y)m(dy),

which is equivalent to

∣∣∣∣
e−λ1mσP

(1−A)β
mσ (φf)(x)

φ(x)
∫
E
φ(y)φ̃(y)f(y)m(dy)

− 1

∣∣∣∣ ≤ ce−νmσ.

Thus there exist positive constants cm ≤ 1 and Cm ≥ 1 such that

cmφ(x)

∫

E

φ(y)φ̃(y)f(y)m(dy) ≤ e−λ1mσP (1−A)β
mσ (φf)(x) ≤ Cmφ(x)

∫

E

φ(y)φ̃(y)f(y)m(dy),

and that limm→∞ cm = limm→∞Cm = 1. Hence,

e−λ1nσ〈e−λ1mσP (1−A)β
mσ (φf),Xnσ〉 ≥ cme

−λ1nσ〈φ,Xnσ〉

∫

E

φ(y)φ̃(y)f(y)m(dy)

= cmWnσ(φ)

∫

E

φ(y)φ̃(y)f(y)m(dy),

and

e−λ1nσ〈e−λ1mσP (1−A)β
mσ (φf),Xnσ〉 ≤ Cme

−λ1nσ〈φ,Xnσ〉

∫

E

φ(y)φ̃(y)f(y)m(dy)

= CmWnσ(φ)

∫

E

φ(y)φ̃(y)f(y)m(dy).

Those two inequalities and Proposition 2.1 imply that

lim sup
n→∞

e−λ1nσ〈φf,Xnσ〉 = lim sup
n→∞

e−λ1(m+n)σ〈φf,X(m+n)σ〉

= lim sup
n→∞

e−λ1nσ〈e−λ1mσP (1−A)β
mσ (φf),Xnσ〉

≤ lim sup
n→∞

CmWnσ(φ)

∫

E

φ(y)φ̃(y)f(y)m(dy)

= CmW∞(φ)

∫

E

φ(y)φ̃(y)f(y)m(dy), Pδx-a.s.

and that

lim inf
n→∞

e−λ1nσ〈φf,Xnσ〉 ≥ cmW∞(φ)

∫

E

φ(y)φ̃(y)f(y)m(dy), Pδx-a.s.
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Letting m → ∞, we get

lim
n→∞

e−λ1nσ〈φf,Xnσ〉 =W∞(φ)

∫

E

φ(y)φ̃(y)f(y)m(dy), Pδx-a.s.

The proof is now complete. �

Lemma 2.4 If
∫
E
φ̃(x)β(x)l(x)m(dx) < ∞, then for any open subset U in E and x ∈ E, we

have

lim inf
t→∞

e−λ1t〈φIU ,Xt〉 ≥W∞(φ)

∫

E

φ(y)φ̃(y)IU (y)m(dy), Pδx-a.s.

Proof. For x ∈ E and ε > 0, let

U ε(x) :=

{
y ∈ U : φ(y) ≥

1

1 + ε
φ(x)

}
.

Define

Zσ,ε
n,ν =

1

1 + ε
φ(Yν(nσ))1{Yν (t)∈Uε(Yν(nσ)) for every t∈[nσ,(n+1)σ)}

where each Yν describes the motion of particle ν in the branching particle system. Let

Sσ,ε
n = e−λ1nσ

∑

u<ξNnσ

ru−1∑

j=1

∑

ν∈(τ,M)uj

Zσ,ε
n,ν

where the subtrees {(τ,M)uj } were defined below Proposition 2.1. For t ∈ [nσ, (n + 1)σ), we
have

e−λ1t〈φIU ,Xt〉 = e−λ1t(φIU )(Ỹt) + e−λ1t
∑

u<ξNt

ru−1∑

j=1

∑

ν∈(τ,M)uj

φ(Yν(t))1{Yν (t)∈U}

≥ e−λ1t(φIU )(Ỹt) +
e−λ1nσ

1 + ε

∑

u<ξNnσ

ru−1∑

j=1

∑

ν∈(τ,M)uj

e−λ1σφ(Yν(nσ))1{Yν (t)∈Uε(Yν(nσ))}.

Applying Proposition 2.1 with 〈fφ,Xj
(m+n)σ−ζu

〉
(
=
∑

ν∈(τ,M)uj
(fφ)(Yν((n+m)σ))

)
replaced by

∑

ν∈(τ,M)uj

e−λ1σφ(Yν(nσ))1{Yν (t)∈Uε(Yν(nσ)), for every t∈[nσ,(n+1)σ)},

similar estimates to those found in Proposition 2.1 show us that

lim
n→∞

|Sσ,ε
n − E(Sσ,ε

n |Fnσ)| = 0, Pδx-a.s.

Then we have

lim inf
t→∞

e−λ1t〈φIU ,Xt〉 ≥ e−λ1σ lim inf
n→∞

Sσ,ε
n

= e−λ1σ lim inf
n→∞

e−λ1nσ
Lnσ∑

i=1

EY i
nσ
[Sσ,ε

0 ]

= e−λ1σW∞(φ)

∫

E

φ̃(y)ξσ,εU (y)m(dy),
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where we have used Theorem 2.1 in the last equality and

ξ
σ,ε
U (Y i

nσ) = EY i
nσ

[Sσ,ε
0 ] =

φ(Y i
nσ)

1 + ε
PY i

nσ

(
Y (t) ∈ U ε(Y i

nσ) for all t ∈ [0, σ)

)
.

Taking σ ↓ 0, we get that
∫
E
φ̃(y)ξσ,εU (y)m(dy) → 1

1+ε

∫
E
φ(y)φ̃(y)1U (y)m(dy); hence subse-

quently taking ε ↓ 0 gives us

lim inf
t→∞

e−λ1t〈φIU ,Xt〉 ≥W∞(φ)

∫

E

φ(y)φ̃(y)1U (y)m(dy). (2.7)

�

Proof of Theorem 1.3 Since E is a locally compact separable metric space, there exists a
countable base U of open set {Uk, k ≥ 1} that is closed under finite union. By Lemma 2.4, there
exists Ω0 ⊂ Ω of full probability so that for every ω ∈ Ω0,

lim inf
t→∞

e−λ1t〈φIUk
,Xt〉 ≥W∞(φ)

∫

Uk

φ(y)φ̃(y)m(dy).

For any open set U , there exists a sequence of increasing open sets {Unk
, k ≥ 1} in U so that⋃∞

k=1 Unk
= U . We have for every ω ∈ Ω0,

lim inf
t→∞

e−λ1t〈φIU ,Xt〉 ≥ lim inf
t→∞

e−λ1t〈φIUnk
,Xt〉

≥ W∞(φ)

∫

Unk

φ(y)φ̃(y)m(dy) for every k ≥ 1.

Passing k → ∞ yields that

lim inf
t→∞

e−λ1t〈φIU ,Xt〉 ≥W∞(φ)

∫

U

φ(y)φ̃(y)m(dy).

We consider (1.5) on {W∞(φ) > 0}. For each fixed ω ∈ Ω0∩{W∞(φ) > 0}, define the probability
measure µt and µ on E respectively, by

µt(A)(ω) =
e−λ1t〈φIA,Xt〉

Wt(φ)(ω)
and µ(A) =

∫

A

φ(x)φ̃(x)m(dx), A ∈ B(E)

for every t ≥ 0. Note that the measure µt is well defined for every t ≥ 0. The inequality (2.7)
tell us that µt converges weakly to µ. Since φ is strictly positive and continuous on E, for every
function f on E with compact support whose discontinuity set has zero m-measure (equivalently
zero µ-measure), h := f

φ
is a bounded function having compact support with the same set of

discontinuity with f . We thus have

lim
t→∞

∫

E

hdµt =

∫

E

hdµ

which is equivalent to say that

lim
t→∞

e−λ1t〈Xt, f〉(ω) =W∞(φ)(ω)

∫

E

φ̃(x)f(x)m(dx) for every ω ∈ Ω0 ∩ {W∞(φ) > 0}.
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Since, for every function f on E such that |f | is bounded by cφ for some c > 0,

e−λ1t|〈Xt, f〉| ≤ e−λ1t〈Xt, |f |〉 ≤ cWt,

(1.5) holds automatically on {W∞(φ) = 0}. This complete the proof of the theorem. �

Proof of corollary 1.1 It is enough if we can prove that

lim
t→∞

e−λ1tEδx〈Xt, f〉 = φ(x)

∫

E

φ̃(x)f(x)m(dx), f ∈ B+
b (E).

Note that, (1.3) implies that Πφ
x(f(Yt)) → 〈fφ, φ̃〉 for every measurable function f satisfying

〈fφ, φ̃〉 <∞. Then we have

e−λ1tEδx〈Xt, f〉 = e−λ1tP
(1−A)β
t f(x)

= e−λ1t

∫

E

p
(1−A)β
t (t, x, y)f(y)m(dy)

= φ(x)

∫

E

p
φ
t (t, x, y)

f(y)

φ(y)
m(dy)

→ φ(x)

∫

E

φ̃(x)f(x)m(dx).

Combining with Theorem 1.3, we get the desired result. �

Acknowledgement. I would like to give my sincere thanks to my supervisor Professor
Zenghu Li for his encouragement and helpful discussions. Thanks are also given to the referee
for her or his valuable comments and suggestions.

References

[1] Engländer, J. and Turaev, D.: A scaling limit theorem for a class of superdiffusions. Ann.
Probab., 30(2), 683-722 (2002).

[2] Engländer, J. and Winter, A.: Law of large numbers for a class of superdiffusions. Ann.
Inst. H. Poincare Probab. Statist., 42(2), 171-185 (2006).

[3] Engländer, J.: Law of large numbers for superdiffusions: the non-ergodic case. Ann. Inst.
H. Poincare Probab. Statist., 45, 1-6 (2009).

[4] Engländer, J., Harris, S.C. and Kyprianou, A. E.: Strong law of large numbers for branching
diffusions. Ann. Inst. H. Poincare, 46, 279-298 (2010).

[5] Chen, Z.Q. and Shiozawa, Y.: Limit theorems for Branching Markov processes. J. Funct.
Anal., 250, 374-399 (2007).

[6] Chen, Z.Q., Ren, Y.X. and Wang, H.: An almost sure limit theorem for Dawson-Watanabe
superprocesses. J. Funct. Anal., 254, 1988-2019 (2008).

15



[7] Liu, R.-L. Ren, Y.-X. and Song, R.: Strong law of large number of a class of super-diffusions.
Acta Applicanda Mathematicae, 123(1), 73-97 (2013).

[8] Asmussen, S. and Hering, H.: Stong limit theorem for general supercritical branching pro-
cesses with applications to branching diffusions. Z.Wahrsch. verw. Gebiete, 36, 195-212
(1976).

[9] Asmussen, S. and Hering, H.: Strong limit theorems for supercritical immigration-branching
processes. Math. Scand., 39, 327-342 (1976).

[10] Liu, R.-L. Ren, Y.-X. and Song, R.: LlogL criteria for a class of superdiffusons. J. Appl.
Probab., 46, 479-496 (2009).

[11] Liu, R.-L. Ren, Y.-X. and Song, R.: LlogL condition for supercritical branching Hunt
processes. J. Theoret. Probab., 24, 170-193 (2011).

[12] Schaeffer, H.H.: Banach Lattices and Positive Operators. Springer, New York, 1974.

[13] Kim, P. and Song, R.: Intrinsic ultracontractivity of non-symmetric diffusion semigroups
in bounded domains. Tohoku Math. J., 60, 527-547 (2008).

[14] Jacod, J. and Shiryaev, A. N.: Limit theorems for stochastic processes. Second edition.
Grundlehren der Mathematischen Wissenschaften, 288. Springer-Verlag, 2003.

16


	1 Introduction
	1.1 Motivation
	1.2 Model
	1.3 Spine Decomposition
	1.4 Main Result

	2 Proof of Theorem 1.3

