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Strong law of large number for
branching Hunt processes

Li Wang?

Abstract

In this paper we prove that, under certain conditions, a strong law of large
number holds for a class of branching particle systems X corresponding to the
parameters (Y, 8,1), where Y is a Hunt process and v is the generating function
for the offspring. The main tool of this paper is the spine decomposition and we
only need a Llog L condition.
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1 Introduction

1.1 Motivation

In recent years, many people (see [I}, 2], [3], [4, [5] [6l [7] and the reference therein) have studied limit
theorems for branching Markov processes or superprocesses using the principal eigenvalue and
ground state of the linear part of the characteristic equations. For superprocesses, the second
moment condition on the branching mechnisms can be weaken, see [1],[7]. However, for branching
Markov processes, all the papers in the literature assumed that the branching mechanisms satisfy
a second moment condition or (and), they assume that the underlying process is symmetric.

In [8], Asmussen and Hering established a Kesten-Stigum LlogL type theorem for a class of
branching diffusion processes under a condition which is later called a positive regular property
in [9]. In [10, 11, Liu, Ren and Song established Kesten-Stigum LlogL type theorem for super-
diffusions and branching Hunt processes respectively. As a natural continuation of [10], Liu, Ren
and Song give a strong law of large number for super-diffusions, see [7]. This paper concerns
with the case of branching Markov processes. We establish a strong law of large numbers for a
class of branching Hunt processes. The main tool is the spine decomposition. We only assume
that the branching mechanisms satisfy a Llog L condition and the underlying process need not
to be symmetric.

We first introduce the setup in this paper. Let E be a locally compact separable metric
space. Denote by Ea := E U {A} the one point compactification of E. Let B(E) denote both
the Borel o-fields on E and the space of functions measurable with respect to itself. Write By(E)
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(respectively, BT(F)) for the space of bounded (respectively, non-negative) B(F)-measurable
functions on E. Let M,(E) be the space of finite point measures on E, that is,

n
:{Z&m:nENandxi6E,i=1,2,...,n}.
i=1

As usual, =[.f B p(dx) for any function f on E and any measure p € M,(E).
Asa contlnuatlon of [11] the model in this paper is the same as in that paper, we will state
it in the next subsection for reader’s convenience.

1.2 Model

Let Y = {Y},11,,(} be a Hunt process on E, where ¢ = inf{t > 0:Y; = A} is the lifetime of Y.
Let {P;,t > 0} be the transition semigroup of Y

Pf(x) = ILIf(Yy)] for f € B*(E).

Let m be a positive Radon measure on F with fu/l\l support. {P;,t > 0} can be extended to a
strongly continuous semigroup on L2(E,m). Let {P;,t > 0} be the dual semigroup of {P;,t > 0}
on L?(E,m) satisfy

/f(x)Ptg(x)m(dx):/g(x)ﬁtf(x)m(dx), f,gGLQ(E,m).
E E

Throught this paper we assume that

Assumption 1.1 (i) There exists a family of continuous strictly positive functions {p(t, -, -);t >
0} on E x E such that for any (¢,2) € (0,00) x E, we have

1#@=LW%WMWMA1%@=AW%WMWW)

(ii)The semigroups {P;,t > 0} and {ﬁt,t > 0} are ultracontractive, that is, for any ¢ > 0, there
exists a constant ¢; > 0 such that

p(t,z,y) < ¢ for any (z,y) € E X E.

Suppose that 1) € B(E x [—1,1]) and v is the generating function for each x € F, that is

o0
z) = an(x)z", |z] <1,
n=0

where pp(x) > 0 and Y 2 pp(x) = 1. The branching system we are going to study determined
by the following properties:

1. The particles in £ move independently according to the law of Y, and each particle has a
random birth and a random death time.

2. Given the path Y of a particle and given that the particle is alive at time ¢, its probability
of dying in the interval [t,t + dt) is S(Y;)dt + o(dt).



3. When a particle dies at = € E, it splits into n particles at x with probability p,(z). The
point A is a cemetery. When a particle reaches A, it stays at A for ever and there is no
branching at A.

We assume that the functions (z) and A(z) :=¢/(z,1) = > -7 npy(z) are bounded B(E)-
measurable and that po(z) + p1(z) = 0 on E. The last condition implies A(xz) > 2 on E. The
assumption po(x) = 0 on E is essential for the probabilistic proof of this paper since we need
the spine to be defined for all ¢ > 0. The assumption pi(z) = 0 on E is just for convenience as
the case p1(z) > 0 can be reduced to the case pi(xz) = 0 by changing the parameters § and v of
the branching Hunt process.

Let X;(B) be the number of particles located in B € B(E) at time ¢. Then X = {X;,¢t > 0}
is a Markov process in M,(E) which is called a (Y, 3, ¢)-branching process. The process X has
probabilities {P, : p € M,(E)}, and E,, is expectation with respect to P,. Then we have

Eu[(f, Xo)] = Muleq—ap ) f (Y], f € By (E),

where e.(t) = exp(— fo s)ds) for any ¢ € By(E). We use {Pt(l_A)B,t > 0} to denote the
following Feynman-Kac Semlgroup

PP f() = Taeqays (0 F (YD), f € B(E).

Under Assumption 1.1, we can show that {Pt(l_A)B } is strongly continuous on L?(E,m) and for
any t > 0, P(1 AP admits a density pgl_A)ﬁ(t, x,y) which is jointly continuous in (x,y).

Let {Pt(1 AP > 0} be the dual semigroup of {Pt(l_A)B,t > 0} defined by
@) = [ o) fmidy). f € B (E)

write A and A for the generators of {P;} and {P;}. Then the generators of {Pt(lfA)ﬁ } and
{ﬁt(lfA)ﬁ} can be formally written as A 4+ (A — 1)3 and A + (A — 1) respectively.

Let 0(A + (A —1)8) and o(A + (A — 1)3) be the spectrum of {Pt(lfA)B} and {]/St(lfA)ﬁ},
respectively. It follow from Jentzch’s Theorem (Theorem V.6.6 on p.333 of [12]) and the strong
continuity of {Pt(l_A)B} and {ﬁt(l_A)ﬁ} that the common value A := sup Re(c(A+(A—1)B)) =
sup Re(o(A+(A—1)p)) is an eigenvalue of multiplicity 1 for both A4(A—1)3 and A+(A—1)3.
Let ¢ be an eigenfunction of A + (A — 1)/ associated with A; and ¢ be an eigenfunction of
A + (A —1)8 associated with \;. By (Proposition 2.3 in [13]) we know that ¢ and ¢ are strictly
positive and continuous on E. We choose ¢ and ¢ so that [ B ¢¢m (dz) = 1. Then

o(z) = e_/\ltPtl_A)ﬁqﬁ(x), o(x) = e_/\ltﬁtl_AW(z(x), reE.

Throughout this paper we also assume that
Assumption 1.2 \; > 0 and [} ¢*(y)é(y)m(dy) < oc.
The assumption A; > 0 is the condition for supercriticality of the branching Hunt process.

Assumption 1.3 The semigroups {Pt(lfA)ﬁ} and {ﬁt(lfA)B } are intrinsic ultracontrative, that
is, for any ¢ > 0 there exists a constant ¢; such that

p(liA)ﬁ(t,CU,y) S ths(x)g(y)’ T,y € E.

We refer to [11] for examples satisfy the above assumptions.



1.3 Spine Decomposition

For the convenience of state our main result, we shortly recall the spine decomposition in [11].
First we extend the probability measure P5, to a probability measure Ps, under which:

1. a single particle, Y = {f/t}tzoa referred to as the spine, initially starts at  moves according
to the measure II,.

2. Given the trajectoryN?., the fission time (;, of node u on the spine is distributed according
to LAY) where LP(Y) is the law of the Poisson random measure with intensity 8(Y;)dt.

3. At the fission time ¢, of node u in the spine, the single spine particle is replaced by a
random number 7, of offspring with r, being distributed according to the law P(Y¢,) =

(Pr(Ye,)iz1-

4. The spine is chosen uniformly from the r, particles at the fission time of w.

5. Each of the remaining r, — 1 particles gives rise to independent copys of a P-branching
Hunt process started at its space-time point of creation.

Let & = {&o = ¢,&1,&2, ...} be the selected line of decent in the spine, let N = (N, : t > 0)
to denote the counting process of fission times along the spine. Write node;(§) for the node in
the spine that is alive at time ¢. It is clear that node;(§) = &n,. Define the natural filtration of
the motion and the birth process along the spine by

G = 0((Ye, 5 < t), (nodes(€) : 5 < 1), (Custt < En,), (7 = 1 < En,)),

and define G = (J;5( G- Let Fii=0((Xs,s < 1), (nodeg(€) : s < t)) and F = U0 F:. From the

spine construction, we know that

Prob(u € §) = —.

It is easy to see that

> 11 ri =1. (1.1)

ueLs v<u v

where L; is the set of particles that are alive at time ¢. For the definition of IF(;I and the relations
of P, with Ps,, see [11] for details.

Next we define a probability measure @51 on the branching Hunt process with a spine. Before
that, we need to give some facts concerning change of measures.
Girsanov change of measure Let G; = o(Ys;s < t). Note that

is a martingale under II,, and so we can define a martingale change of measure by

dig| oY)
i, |g, ~ o)

e(1—a)p(t).



Then {Y, Hg} is a conservative Markov process, and ¢E£ is a unique invariant probability measure
for the semigroup {Pt(lfA)B :t > 0}, that is, for any f € BT (F),

[ @) paym(da) = [ f(@)ola)d(opm(da).
E E

Let p®(t, z,y) be the transition density of Y in E under I12. Then

e*)\lt

Wp(l_A)ﬁ (ta €T, y)gb(y)

It follows from Theorem 2.8 in [I3] that, if Assumption 1.3 holds, there exist constants ¢ > 0
and v > 0 such that

PP (t,z,y) =

e Mip=DB(¢ g y)

= - 1‘ <ce ™, x€E. (1.2)
o(z)o(y)
which is equivalent to
@
sup w - 1‘ < ce vt (1.3)
weE | ¢(y)o(y)

Change of measure for Possion process Suppose that given a nonnegative measurable
function B(Y;), t > 0, the Possion process (n, L?) where n = {{o; :i =1,2,...,ns} : t > 0} has
instantaneous rate 3(Y;). Further, assume that n is adapted to {£; : ¢ > 0}. Then under the
change of measure

dLAP
dLb

- L0 e (- [ (- Dpyras)

Lr  i<n,

the process (n, L4?) is also a Possion process with rate Aj3. See, Chapter 3 in [I4].

The spine construction Let {F; : ¢ > 0} be the natural filtration generated by X. For any
x € E, we define
<Xt7 ¢>

= e Mt D

Then {M;(¢),t > 0} is a nonnegative martingale with respect to {F; : ¢ > 0}. Define the change
of measure

dQs
dPs, |7, t(9)

Then, under @596, X can be constructed as follows:

1. a single particle, Y = {f/t}tzoa referred to as the spine, initially starts at  moves according
to the measure Il ;

2. The spine undergoes fission into particles at an accelerated intensity (A3)(Y;)dt;

3. At the fission time (, of node u in the spine, it give birth to r, particles with size-biased

offspring distribution P(Y,) := (Py(Ye,))k>1, where B(y) = kfl’zg)/), k=1,2,...,y€E.




4. The spine is chosen uniformly from the r, particles at the fission time of w.

5. Each of the remaining r, — 1 particles gives rise to independent copys of a P-branching
Hunt process started at its space-time point of creation.

Theorem 1.1 ([I1], Theorem 2.9) (Spine decomposition) We have the following spine decom-
position for the martingale My(¢)

o(2)Qs, [My(9)|G] = e H(V) + Y (ru — D(Ye, )e ¢

u<én,

Denote by My (¢) the almost sure limit of M;(¢) as t — oo. In [11], the author studied the
relationship between the degeneracy property of My (¢) and the function I:

Zkgb )logt (k¢(z))pr(z), = € E. (1.4)

Theorem 1.2 ([11], Theorem 1.6) Suppose that {X; : t > 0} is a (Y, 3,v¢)-branching Hunt
process and the Assumptions 1.1-1.3 are satisfied. Then My (¢) is a non-degenerate under P,
for any nonzero measure p € My(FE) if and only if

/ e m(dz) <

where [ is defined by (L.4).

1.4 Main Result

Define
Wi(¢) := €7A1t<Xt, b).

The main goal of this paper is to establish the following almost sure convergence result.

Theorem 1.3 Suppose that {X; : t > 0} is a (Y, 8,1)-branching Hunt process and the As-
sumptions 1.1-1.3 are satisfied. If [, o(x)B(z)l(z)m(dx) < oo, then there exists Qg C Q with
full probability (that is, Ps, (£9) = 1 for every x € E) such that, for every w € Qg and for every
bounded Borel measurable function f on E with compact support whose set of discontinuous
points has zero m-measure, we have

hm e MUX, f /gb dzx), (1.5)

where Wy (¢) is the Ps_-almost sure limit of e ™ (X;, ¢).
As a consequence of this theorem we immediately get the following

Corollary 1.1 (Strong law of large numbers) Suppose that {X; : t > 0} is a (Y, 8,v)-branching
Hunt process and the Assumptions 1.1-1.3 are satisfied. If [, ¢(x)B(x)l(x)m(dx) < oo, then
there exists g C Q with full probability such that, for every w € €y and for every relatively
compact Borel subset B in E having m(B) > 0 and m(0B) = 0, we have Ps_-almost surely,

X(B)w) _ Waeld)(w)

500 Py, [ X (B)] ¢(x)




2 Proof of Theorem 1.3

We will prove the theorem by the following steps.

Proposition 2.1 If [, d(2)B(x)l(x)m(dz) < oo, then for any m € N,o > 0,
1 (U o (6) — Es, Uianinya (61) o) = 0, By,

where Uy (f¢) := e MU(Xy, fo) for f € B (E).

We will prove this result later. According to the spine construction, if a particle u € &, then
at the fission time (,, it give birth to r, offspring, one of which continues the spine while the
other r, — 1 individuals go off to create subtrees which are copies of the original branching Hunt
process, we write them by (7, M)“, j=1,...,ry — 1. Put

Xg Cu — Z 6Y,,(t)(')a t> Cu,

vELy ,VE(T,M);.‘

where {Y, : v € (1, M)%} are independent copies of Y. (X7 t>¢,) is a (Y, B,¢)-branching

I i
Hunt process with birth time ¢, and starting point Y,. Then we can write
ru—1
U(fo) = e M (f) (Vo) +e ™M > > (fo, X] ).
u<én, j=1
Define
ru—1
-\ o
(f¢) =e 1t(f¢ 1t Z Z (fo, X t Cu {ruqb Ve, )<eticu}:
u<én, j=1
and

, (6, X] )
MU () 1= e MG 2l by s
9)=e (V)

Then { Mt“J (¢),t > Cu} is, conditional on G, a nonnegative Ps -martingale on the subtree
(7, M)}, and therefore

Qs, [M;"(9)[G] = Ps, [M[" (¢)|G] = 1. (2.1)

Suppose that {Y; : i = 1,..., L,s} describes the path of particles alive at time no. Note
that we may always write

Lno‘
m+n O’(fgb) Z e_AanU#;)a(qu)
i=1

where given JF,,, the collection {U,(ﬁ)a( fo):i=1,...,L,,} are mutually independent and equal
in distribution to Up,(f¢) under Ps, . Then we can write

Lno‘ Lno‘
Uirime (9 = 3 e 0 (F0) + 3 e (TS (fo) = TS (19)
1= 1 i
= Ul (F) + UL, (F9), (2:2)

7



where U( ( fo) and U([ ] ( f¢) stand for the first term and the second term on the right
hand respectlvely

Lemma 2.1 If |, o(2)B(z)l(z)m(dz) < co and I 2 (y)d(y)m(dy) < oo. Then, for f € B (E)
and x € E,

Es, [Ui(of))?

Proof. First, we rewrite (7}( f¢) into a new form and take the conditional expectation,

Es, [U:(6f)Fi]

ry,—1
= Z ( 7)\1t(f¢)( 7>\ltz Z f@, t ¢ {TV¢(§~/CV)<6/\1<V}) E(Sx(I{ueﬁ}U:t)
u€Ly v<u j=1
ry,—1
= Z _Alt(fgb)( _Altz Z f@b, t Cu {TU¢(YCV)<6>\1<U H T_
ucLy v<u j=1 v
ry—1
d _
S MW + e YD Y (6 X )45, <eminys
v<én, j=1

where in the last equation, in order not to introduce another symbol, we still use £y, to denote

one of the particles alive at time ¢, «Lr pneans equal in distribution under Ps, and the equality
(L) was used. Using (Z1) and Ui(¢f) < ||flloo - Wi(¢), we have

$(x) ' Es, [U:(6f)]?

< 1 flloe - $o) ™ Ea, [Wa(0)Ur(61)]
= [flloo - 6(2) " Es, |Wil0)Es, [Tu(6)1Fi)|
ry—1

= fllo - Qs, [ NN e DD 0 XY 0w, )<eA1<v}]

v<én, j=1
< NI - @, [e—mm Y - 1>¢<ff<y>e”1<"fm<mexlcu}}

v<EN,
< Il (Hﬁ[e%(m + 117 /O e MG(Y.) kak M ko) <eriey 4 ) :
where || - [0 means the supremum norm here and in the paper. Call the two expressions in

bracket on the right hand side the spine term A(x,t) and the sum term B(x,t) respectively.
Note that (L3) implies that

/E P9t 7, 1) (y)midy) — / () dy)m(dy) ‘ < et / 2 (4)d(y)m(dy).

Therefore,

MA(z,t) = TI2(H(V})) < (c+1) / #*(y) dy) < oo. (2.3)

8



For the sum term, using the assumption that A and S are bounded, we get

B(&U,t) = Hg/(; *Als(ﬁ( kak {k¢ ) Als}ds
—A18
= H?/ ol Zk Miko(s)<omsy 48
0 A
—(A1—XA1)s
S HﬁA ( " 1 B kak }/; {k¢y)<e>\ls}
< BAfloo -t < o0, (2.4)
for all x € E, then the conclusion follows. O

Lemma 2.2 If [}, ¢(2)B(x)l(z)m(dz) < oo, then for any m € N,o > 0,
Z]@&z{U(n—I—m)a(f(ﬁ) 7é n+m (f¢)} < o0,
ZE% [0, 00 ~ B, (U (01 Fu)] < co.

where U([ (fgb) was defined in (22). In particular

= 0, ﬁ(;x -a.s.

n—oo

lim (UL (0F) = Es, (U}, (011 Foc)

Proof. Note that (L2) implies that for any s € [0, mo], there is a constant Cp,, such that

P13 (s5,2,y) < Codl(@)3(y), 2.y € .

Then by the spine construction and Fubini theorem, we get

Zm Ut smyo (F8) # Uppy o (F6)}

Lo ~
< Zm > P (Ui (76 0 <f¢>rfm,)]
Lno
< ZEzs (Z/ ds/ (s, Y ) B Zpk W) ko >>eh<s+m>}m(dy)>
Lno
<

Cina ZE‘S (Z/ ds/ st > el )I{k¢(y>>eh<S+W)}m(dy)>

=2

= Cmo' ZeA1n0¢ </ dS/ ¢ Zpk {kd) >e>‘1(5+"‘7)}m(dy)>
= Croo(z (/ / dWBWY) DM prW) gy >6A1<s+m>}m(dy)>
k=

n=1 2

9



o s logt k()]

Crnod(x mo ds ¢ eMno (y) I y)>er (s+no m(d )
/ / y kZ:2 nzl Pr\y {ko(y) ( )} Y
)\10 </m" ds/ oy y)kZQ109+[k¢(y)]k¢(y)pk(y)m(dy)>

mam

= x/¢ m(dy) < oo.

IN

IN

For the second inequality, recall that, if X; are independent random variables with E(X;) = 0
or they are martingale difference, then

P n
<27 " E|X,P.
i=1
Jensen’s inequality also implies that |u 4 v|P < 2P~1(|u|? + |v[P) for p € (1,2]. Then we have

E(|Us+t — E(Ust4|F2) P 7))

Ly
< wern S (Ul - BOPIFP|F )
=1
Ly ' A
< we S B (2 UOP + ECPIFIP)|F)
i=1
Lt . .
< v S w (U + EOPIF)P)| 7 )

i=1

Ly
< 2P PN CR(UDPIF).
i=1

Note that for any f € By (E), Us(f¢) < [|flloo - Wi(¢), we have that

2
(1] T
Z E5ac (' (m4n)o E (U(m-l—n)a Fn > )

n>1
Lno

< Py e, (YR, [ﬁ,ssz,wn?)

n>1 =1

Lno

< 24ZE5 <Ze 2m0 (Vi) (A(Y;, mo) +B(Yi,m0))>

n>1
= 24 Z (& A1n0¢ [ (Yn07 mU) + B(Yn07 ma)]

n>1

where A(z,t) and B(z,t) were defined in Lemma 2] Then as a consequence of the previous
estimates (2.3]) and (24]), we conclude that the last sum remains finite. O

10



Lemma 2.3 If [, ¢(z)B(x)l(z)m(dz) < oo, then for any m € N,o > 0,

M} converges Ps_-a.s.

S s, (Vonma0f) = U, (09)
n=0

Proof. Take f =1 in Lemma 22] then {U;(¢) : t > 0} is a nonnegative martingale. By Lemma
we have

OB, {Uiatmgo(9) # Upleo ()} < o0 (25)

fm>r < 0. (2.6)

58 i (ot

Note that

B U0 (@)

fm] = &, [(U<m+n)o<¢>—U£il+n)a<¢>)

f}

By (23] and (2.6)), we have

o0

Z <U(m+n)g(¢) - Uno(¢) + Efsx |:U([7271+n)a(¢)

n=0

‘7::”0:|> converges I@(;x—a.s.

since Uy(¢) converges almost surely as ¢t — oo, we have

2
ZE‘Sw [U(m+n)0 )

}"M} converges Ps_-a.s.

So we have

S B (U (Uoninmel0f) = U, 160) |7
n=0

] < ufuoo}jms V20| For)

converges ]T”(;z—a.s. g
Proof of Porposition [21]. From the decomposition (2.2]), we have

U(m+n)o(¢f) - E5 ( (m+4n)o (¢f)‘fna)
= U(m+n)a(¢f) - E(Sgg( (m+n) U(¢f)|‘7:n0)

= U(m+n)a(¢f) - Um+n (¢f) + U([;Jrn (¢f) ( (m+n)o (¢f)

g

Now the conclusion of this proposition follows immediately form Lemma 2., Lemma2.2] and

Lemma [2.3] O

— Ey, [(U(m+n)a(¢f) - m+n a(¢f)>

11



Theorem 2.1 If [, ¢(2)B(z)l(z)m(dz) < oo, then for any o > 0 and f € B} (E),

nlingo e MG f, Xpg) = WOO(QS)/Eg(x)gb(x)f(x)m(dx), Ps,-a.s.
Proof. By Markov property of branching processes we have
Eple MG, X pmyo) | Fno] = €1 (e PUTVP (G ), Xng).

Note that ([2) implies that, for any f € B, (E),

_Wpa w9 - [ swdnswmian| < e [ o)imia)

which is equivalent to

| e o P (0f) (@)
@) [ 6(y)o(y) f (y)m(dy)

Thus there exist positive constants ¢,, < 1 and C,, > 1 such that

— 1' < ce VM9,

emd() /E o)D) f (y)mldy) < e PU=DB(4f) (2) < Crai(a) /E 6(0)3(v) F()m(dy),

and that lim,, o ¢, = lim,,,_soo Cy, = 1. Hence,

N NI G) Xon) 2 e (6, Xo) [ o)D) ()l

— W (®) /E 6(0)3(v) F(w)m(dy),

e (T PN (GF) Xpg) < Cne ™" (6, X /E S(y)d(y)f (y)m(dy)

and

W (6) /E o(1)B(u) f (y)m(dy).

Those two inequalities and Proposition 2.1l imply that

lim sup e M (6f, Xop) = limsupe M (G X )
n—o00 n—oo
= limsupe M (e Mmo PU=A)B (4 1) X, )
n—oo
< limsup Cp, Wy (¢ /¢ o f(y)m(dy)
n—oo
— /¢ m(dy), Ps, -a.s.

and that

hmlnfe MG KXo ) > W /gb m(dy), Ps, -a.s.



Letting m — oo, we get

lim =7 (6 f, Xu) = / oy m(dy), Ps-as.

n—oo

The proof is now complete. O

Lemma 2.4 If [, o(x)B(x)l(z)m(dx) < oo, then for any open subset U in E and x € E, we
have

hmlnfe MUGTT, X)) > Wi /¢ (y)m(dy), Ps, -a.s.

Proof. For x € E and € > 0, let

Define

ffji T 1+c ¢(Yy(n0))1{Yu(t)eUE(Y,,(na)) for every te[no,(n+1)0)}

where each Y, describes the motion of particle v in the branching particle system. Let

ru—1

o __ _—Alno ,&
SR D DED DD DR i

U<ENpy J=1 vE(TM)Y

where the subtrees {(7,M)}} were defined below Proposition 21l For ¢ € [no, (n + 1)o), we
have

ru—1

NPy, Xe) = MO (V) +e ™ YT Y > (D) weny

u<én, Jj=1 ve TM)

—Alna ru—1

Yoo > M)y, vt (vi(no))y-

u<§1\rmr J=1 ve(r,M)Y¥

> e M(GIy)(Ye) +

Applying Proposition 2l with (f¢, Xgm+n)07<u> (: ZVE(TM (fo)Y,((n+m)o ))> replaced by
—A10o
Z e ! ¢(YV(na))l{Yu(t)eUE(Yy(no)), for every te[no,(n+1)0)}’
VE(T,M)}”
similar estimates to those found in Proposition 2.1l show us that

lim |S7° — E(S;¢|Fus)| =0, Ps,-a.s.
oo

n—

Then we have

liminf e MYpIy, X;) > e M liminf S9°

t—o0 n—00
Lno
= ¢ M%liminfe M0 E By [Sg°]
n—o0

_ e (0) /E Q?(y)sge(y)m(dy),
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where we have used Theorem 2Tin the last equality and

€77V = By, 157 = 2 py (Vi e U)o all 1 0,0))

Taking o | 0, we get that [, ¢(y)& (y)m(dy) — = Jr d()d(y) 1y (y)m(dy); hence subse-
quently taking € | 0 gives us

— 00

litminfe YWoly, Xi) > W /(;5 (y)m(dy). (2.7)

0

Proof of Theorem [1.3] Since F is a locally compact separable metric space, there exists a
countable base U of open set {Uy, k > 1} that is closed under finite union. By Lemma [2.4], there
exists (g C € of full probability so that for every w € €,

1igi£fe—m<¢lyk,Xt> > Woo(9) . S(y)d(y)m(dy).

For any open set U, there exists a sequence of increasing open sets {Up, ,k > 1} in U so that
Ur; Uy, = U. We have for every w € Q,

liminf e MY oIy, X;) > liminfe_)‘lt(qSIUn , Xt)
t—o0 k

> / oy m(dy) for every k > 1.
Passing k — oo yields that
liminf e~ Alt((ﬁIU X)) > W /¢ dy).
t—o0

We consider (ILH]) on {Wx,(¢) > 0}. For each fixed w € QoN{W(¢) > 0}, define the probability

measure u; and p on F respectively, by

e M pla, Xy)
Wi(¢)(w)

for every t > 0. Note that the measure u; is well defined for every ¢t > 0. The inequality (2.7
tell us that u; converges weakly to u. Since ¢ is strictly positive and continuous on F, for every
function f on E with compact support whose discontinuity set has zero m-measure (equivalently
zero p-measure), h 1= I is a bounded function having compact support with the same set of
discontinuity with f. We thus have

(A)(w) = and u(4) = [ oa)ale)m(da), A€ B(E)

lim hdut:/ hdp
E

t—o00 E

which is equivalent to say that

lim e MYX,, f)(w) = / o(x m(dx)  for every w € Qo N {Wx(¢) > 0}.

—00
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Since, for every function f on E such that |f| is bounded by c¢ for some ¢ > 0,
e M(Xo, )] < MUK, |f]) < Wy

(CH) holds automatically on {W(¢) = 0}. This complete the proof of the theorem. O
Proof of corollary [I.1] It is enough if we can prove that

—Ait +
tlgn e "R, (X, f) / o(x m(dzx), fe B, (E).

Note that, (3] implies that Hd’(f (Y)) — (fo, ¢> for every measurable function f satisfying
(f,9) < 0o. Then we have

e ME (X, f) = e NPT p(a)

- A/ PV (4w, ) £ y)midy)
FE

= x O(t, x Mm
o /E vl (e, )5 ()

S () /E 3() f (x)ym(dz).

Combining with Theorem [L.3], we get the desired result. O
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