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Embeddings of maximal tori in classical groups and

explicit Brauer–Manin obstruction

E. Bayer-Fluckiger, T-Y. Lee, R. Parimala

Introduction

Embeddings of maximal tori into classical groups over global fields of
characteristic 6= 2 are the subject matter of several recent papers (see for
instance Prasad and Rapinchuk [PR 10], [F 12], [Lee 14], [B 12], [B 13]),
with special attention to the Hasse principle. In particular, it is shown in
[Lee 14] that the Brauer–Manin obstruction is the only one.

The present paper gives necessary and sufficient conditions for the em-
bedding of maximal tori in classical groups. As in [PR 10], the embedding
problem will be described in terms of embeddings of étale algebras with in-
volution into central simple algebras with involution. Let (E, σ) be an étale
algebra with involution defined over a global field, satisfying certain dimen-
sion conditions (cf. §1). In §4, we define a group X(E, σ) which plays an
important role in the embedding problem.

Let (A, τ) be a central simple algebra with involution defined over the
same global field, and assume that everywhere locally there exists an (orien-
ted) embedding of (E, σ) in (A, τ). Then we define a map f : X(E, σ) →
Z/2Z such that (E, σ) can be embedded in (A, τ) globally if and only if f = 0
(cf. Theorem 5.5.1.).

By [Lee 14] we know that the Brauer–Manin obstruction is the only one,
hence we obtain an explicit description of this obstruction.

In addition to the Hasse principle, one also needs to know when an em-
bedding exists over local fields. This is done in [Lee 14] in terms of Tits
indices, and in §3 of the present paper (see also 6.3. and 8.2.) in terms of
classical invariants. Finally, §9 contains some applications and examples. In
particular, we recover Theorem A of Prasad and Rapinchuk (see [PR 10],
Introduction, page 584).

The paper has two appendices. The first one outlines the relationship of
the point of view and results of [Lee 14] and those of the present paper, and
the second one contains a new proof of Theorem B of Prasad and Rapinchuk
(see [PR 10], Introduction, page 586).

We thank Gopal Prasad for his interest in our results, and for encouraging
us to include an alternative proof of Theorem B of [PR 10] in our paper.
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§1. Definitions, notation and basic facts

1.1. Embeddings of algebras with involution

Let L be a field, and let A be a central simple algebra over L. Let τ be an
involution of A, and let K be the fixed field of τ in L. Recall that τ is said
to be of the first kind if K = L and of the second kind if K 6= L ; in this case,
L is a quadratic extension of K. Let dimL(A) = n2. Let E be a commutative
étale algebra of rank n over L, and let σ : E → E be a K–linear involution.
such that σ|L = τ |L. Set F = {e ∈ E|σ(e) = e}. Assume that the following
dimension condition holds :

dimK F =

{

n if L 6= K ;
[n+1

2
] if L = K.

An embedding of (E, σ) in (A, τ) is by definition an injective homomor-
phism f : E → A such that τ(f(e)) = f(σ(e)) for all e ∈ E. It is well–known
that embeddings of maximal tori into classical groups can be described in
terms of embeddings of étale algebras with involution into central simple
algebras with involution satisfying the above dimension hypothesis (see for
instance [PR 10], Proposition 2.3).

We say that a separable field extension E ′/L is a factor of E if E = E ′×E ′′

for some étale L–algebra E ′′. It is well–known that E can be embedded in
the algebra A if and only if each of the factors of E splits A :

Proposition 1.1.1. The étale algebra E can be embedded in the central
simple algebra A if and only if for every factor E ′ of E, the algebra A⊗L E ′

is a matrix algebra over E ′.

Proof. See for instance [PR 10], Proposition 2.6.

Let ǫ : E → A be an L–embedding which may not respect the given
involutions. The following properties are well–known :

Proposition 1.1.2. There exists a τ–symmetric element α ∈ A× such that
for

θ = τ ◦ Int(α)
we have

ǫ(σ(e)) = θ(ǫ(e)) for all e ∈ E,

in other words ǫ : (E, σ) → (A, θ) is an L—embedding of algebras with
involution.

Proof. See [K 69], §2.5. or [PR 10], Proposition 3.1.
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Note that θ and τ are of the same type (orthogonal, symplectic or uni-
tary), since α is τ–symmetric.

For all a ∈ F×, let θa : A → A be the involution given by θa = θ◦Int(ǫ(a)).
Note that ǫ : (E, σ) → (A, θa) is an embedding of algebras with involution.

Proposition 1.1.3. The following conditions are equivalent :

(a) There exists an L–embedding ι : (E, σ) → (A, τ) of algebras with
involution.

(b) There exists an a ∈ F× such that (A, θa) ≃ (A, τ) as algebras with
involution.

Proof. See [PR 10], Theorem 3.2.

If ι : (E, σ) → (A, τ) is an embedding of algebras with involution, and if
a ∈ F×, α ∈ A× are such that Int(α) : (A, θa) → (A, τ) is an isomorphism
of algebras with involution satisfying Int(α) ◦ ǫ = ι, then (ι, a, α) are called
parameters of the embedding.

Lemma 1.1.4. Let a, b ∈ F× and let α ∈ A×. Then we have :

(i) Int(α) : (A, θa) → (A, θb) is an isomorphism of algebras with involution
if and only if there exists λ ∈ L× such that θ(α)ǫ(b)α = λǫ(a).

(ii) Moreover, we have Int(α) ◦ ǫ = ǫ if and only if there exists y ∈ E×

and λ ∈ L× such that α = ǫ(y) and NE/F (y) = λab−1.

Proof. The proof of (i) follows from a direct computation. Let us prove (ii).
If Int(α) ◦ ǫ = ǫ, then we have αǫ(x)α−1 = ǫ(x) for all x ∈ E. Since E is
a maximal commutative subalgebra of A, this implies that α ∈ ǫ(E). Let
α = ǫ(y) for some y ∈ E. Then we have θ(ǫ(y))ǫ(b)ǫ(y) = λǫ(a). This implies
that bσ(y)y = λa, hence NE/F (y) = λab−1. The converse is clear.

In particular, there exists an isomorphism of algebras with involution
(A, θa) → (A, θb) commuting with ǫ if and only if we have ab−1 ∈ L×NE/F (E

×).

Definition 1.1.5. We say that (E, σ) is split if there exists an idempotent
e ∈ E such that e + σ(e) = 1.

Equivalently, (E, σ) is split if E ≃ E1 × E2 with σ(E1) = E2.

Definition 1.1.6. We say that (A, τ) is hyperbolic if there exists an idem-
potent a ∈ A such that a + τ(a) = 1.

Equivalently, (A, τ) is hyperbolic if A ≃ Mr(D) for some division algebra
D, and τ is induced by a hyperbolic hermitian form over D (cf. [KMRT 98],
Chapter II, (6.7) and (6.8)).
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Proposition 1.1.7. Suppose that (E, σ) is split. Then the following are equi-
valent :

(a) The étale algebra with involution (E, σ) can be embedded in the central
simple algebra with involution (A, τ).

(b) All the factors of E split A, and the involution (A, τ) is hyperbolic.

Proof. Assume that (a) holds. Then by Proposition 1.1.1. all the factors of
E split A. Let ι : (E, σ) → (A, τ) be an embedding, and let e ∈ E be an
idempotent such that e+σ(e) = 1. Set a = ι(e). Then a ∈ A is an idempotent,
and we have a+τ(a) = 1, hence (A, τ) is hyperbolic. Conversely, assume that
(b) holds. Since E can be embedded in A, by Proposition 1.1.2. there exists
an involution θ : A → A such that (E, σ) embeds into (A, θ). Hence (A, θ) is
hyperbolic, and therefore (A, τ) ≃ (A, θ). By Proposition 1.1.3. this implies
that (E, σ) embeds into (A, τ), hence (a) holds.

1.2. Scaled trace forms

Let us keep the notation introduced in 1.1. In particular, (E, σ) is an étale
algebra with involution. Let a ∈ F×, and let us consider the form

Ta : E ×E → L

given by
Ta(x, y) = TrE/L(axσ(y)).

Then Ta is a quadratic form if L = K, and a hermitian form if L/K is a
quadratic extension. For a = 1, we use the notation T = T1.

Proposition 1.2.1. Let a ∈ F×. Then we have

det(Ta) = NE/L(a)det(T ),

in K×/K×2 if L = K, and in K×/NL/K(L
×) if L/K is a quadratic extension.

Proof. Let E♯ be the L–vector space of σ-semilinear homomorphisms f :
E → L (i.e. f(λx) = σ(λ)f(x) for all x ∈ E and λ ∈ L). For any quadratic
or hermitian form b : E × E → L, let us denote by ad(b) : E → E♯ the L–
linear map defined by ad(b)(x)(y) = b(x, y) for all x, y ∈ E. Let (e1, . . . , en)
be an L–basis of E, and let (e♯1, . . . , e

♯
n) be the dual basis. Then det(b) is the

determinant of ad(b) in the bases (e1, . . . , en) and (e♯1, . . . , e
♯
n).

Let ma : E → E be the multiplication by a. By definition, we have
NE/L(a) = det(ma). Note that we have ad(Ta) = ad(T ) ◦ ma. This implies
that det(Ta) = NE/L(a)det(T ).

Corollary 1.2.2. Let a ∈ F×. Then we have
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(a) If L = K and n is even, then det(Ta) = det(T ).

(b) If L is a quadratic extension of K, then det(Ta) = NF/K(a)det(T ).

Proof. Let us assume that L = K. By Proposition 1.2.1. we have det(Ta) =
NE/K(a)det(T ) ∈ K×/K×2. Since a ∈ F×, we have NE/K(a) = NF/K(a)

2,
which is an element of K×2, hence we have det(Ta) = det(T ) ∈ K×/K×2.
This proves (a).

Suppose now that L is a quadratic extension ofK. Then Proposition 1.2.1.
implies that det(Ta) = NE/L(a)det(T ) ∈ K×/NL/K(L

×). Since a ∈ F×, we
have NE/L(a) = NF/K(a), and this implies (b).

1.3. The discriminant of an étale algebra with involution

Recall that T : E × E → L is defined by T (x, y) = TrE/L(xσ(y)).

Definition 1.3.1. Set disc(E, σ) = det(T ), considered as an element of
K×/K×2 if L = K, and as an element of K×/NL/K(L

×) if L/K is a quadratic
extension. This element is called the discriminant of the étale algebra with
involution (E, σ).

Lemma 1.3.2. Suppose that L = K, and that n = 2r. Then

(i) disc(E, σ) = (−1)rdisc(E).

(ii) For all a ∈ F× we have disc(Ta) = disc(E).

Proof. Let us denote by TE/K : E×E → K, given by (x, y) 7→ TrE/K(xy), the

usual trace form. We have rank(E) = 2rank(F ) = 2r. Writing E = F (
√
d)

for some d ∈ F×, a computation shows that det(T ) = (−1)rdet(TE/K). By
definition, we have disc(E) = det(TE/K), hence disc(E, σ) = (−1)rdisc(E).

Since disc(T ) = (−1)rdet(T ), by (i) we have disc(T ) = disc(E). By Co-
rollary 1.2.2. we have disc(Ta) = disc(T ), hence disc(Ta) = disc(E).

1.4. An embedding criterion

Assume that A = Mn(L) and that τ is an orthogonal or unitary involu-
tion. Then τ : A → A is given by an n–dimensional form b : V × V → L,
which is quadratic if L = K and hermitian if L 6= K. We have an embedding
criterion, in terms of the forms introduced in 1.2 :

Proposition 1.4.1. There exists an embedding of algebras with involution
(E, σ) → (A, τ) if and only if there exists a ∈ F× such that b ≃ Ta.

Proof. If L = K, then this is well–known (see for instance [PR], 7.1.). The
proof is similar in the case when L 6= K. However, we give a proof for the
convenience of the reader.
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Note that A = End(V ). Since τ is induced by b : V × V → L, we have
b(ex, y) = b(x, τ(e)y) for all e ∈ End(V ) and all x, y ∈ V .

Suppose first that there exists a ∈ F× such that b ≃ Ta. Let us identify
V to E and b to Ta, and note that sending e ∈ E to the multiplication by e
gives rise to an embedding E → End(E). Identifying b to Ta, we have, for all
e, x, y ∈ E,

b(ex, y) = TrE/L(aexσ(y)) = TrE/L(axσ(σ(e)y)) = b(x, σ(e)y).

Since this holds for all x ∈ E, and that b(ex, y) = b(x, τ(e)y) for all x ∈ E,
we have σ(e) = τ(e) for all e ∈ E. Hence the natural embedding of E in
A ≃ End(E) is an embedding of algebras with involution.

Suppose now that there exists an embedding of algebras with involution
ι : (E, σ) → (A, τ). Then for all e ∈ E, we have

b(ι(e)x, y) = b(x, τ(ι(e))y) = b(x, ι(σ(e))y).

Let us show that there exists a hermitian form h : V × V → E such
that b(x, y) = TrE/L(h(x, y)) for all x, y ∈ V . Let us fix x, y ∈ V , and let
us consider the linear form E → L such that e 7→ f(e) = b(ι(e)x, y). Since
E is a separable L–algebra, there exists e′ ∈ E such that TrE/L(ee

′) = f(e)
for all e ∈ E. Set h(x, y) = e′. Let us check that h is a hermitian form. It is
easy to see that h is linear in the first variable, so it remains to check that
σ(h(x, y)) = h(y, x) for all x, y ∈ V . We have

TrE/L(eσ(h(x, y))) = σ [TrE/L(σ(e)h(x, y))] = σ[b(ι(σ(e))x, y))] =

= σ[b(x, ι(e)y)] = σ[σ[b(ι(e)y, x)]] = b(ι(e)y, x) = TrE/L(eh(y, x)).

Since this holds for all e ∈ E, we have h(y, x) = σ(h(x, y)), as claimed.
Therefore h : V ×V → E is a one dimensional hermitian form. Let us identify
the 1–dimensional E–vector space V with E. Then there exists a ∈ F× such
that h(x, y) = axσ(y). Hence we have b ≃ Ta, and this completes the proof
of the Proposition.

Note that if (A, θ) is the involution induced by T and if a ∈ F×, then Ta

induces the involution (A, θa).

1.5. Invariants of central simple algebras with involution

If (A, τ) is of orthogonal type and n is even, we denote by disc(A, τ)
its discriminant (cf. [KMRT 98], Chap II. (7.2), and by C(A, τ) its Clifford
algebra (cf. [KMRT 98], Chap II. (8.7)). We denote by Z(A, τ) the center
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of the algebra C(A, τ). Then Z(A, τ) is a quadratic étale algebra over K.
If (A, τ) is unitary, then we denote by D(A, τ) its discriminant algebra (cf.
[KMRT 98], Chap II, (10.28)). The signature of (A, τ) is defined in [KMRT
98], Chap II. (11.10) and (11.25).

If moreover A ≃ Mn(L), then τ is induced by a symmetric, skew–symmetric
or hermitian form, according as τ is of orthogonal, symplectic or unitary
type. In this case, we have some additional invariants, such as the Hasse
invariant (in the orthogonal case), as well as the determinant (in the uni-
tary case). In particular, if τ is unitary and induced by a hermitian form h
over L/K, then we set det(A, τ) = det(h) ∈ K×/NL/K(L

×). Let us write

L = K(
√
δ), and let us denote by Br(K) the Brauer group of K. Then we

have D(A, τ) = (disc(h), δ) ∈ Br(K), where disc(h) = (−1)n(n−1)/2det(h) (cf.
[KMRT 98], Chap II. (10.35)). If τ is orthogonal and induced by a quadratic
form q over K, then we denote by w(q) ∈ Br2(K) its Hasse invariant.

Let d ∈ F× be such that E = F (
√
d). The following result is due to

Brusamarello, Chuard–Koulmann and Morales (cf. [BCM 03], Theorem 4.3.) :

Lemma 1.5.1. Let (A, θ) be an orthogonal involution. Assume that n is even,
and let a ∈ F×. Then we have w(Ta) = w(T ) + corF/K(a, d).

Lemma 1.5.2. Let (A, θ) be a unitary involution, and let a ∈ F×. Then
D(A, θa) = D(A, θ) + corF/K(a, d).

Proof. By [KMRT 98], Chap. II, (10.36), we have D(A, θa) = D(A, θ) +
(NF/K(a), L/K). We have (NF/K(a), L/K) = corF/K(a, E/F ) = corF/K(a, d),
hence the lemma is proved.

1.6. Some necessary embedding conditions

The existence of an embedding of algebras with involution (E, σ) → (A, τ)
implies the following relationship between the discriminants of E and (A, τ) :

Proposition 1.6.1. Suppose that the degree of A is even, and that (A, τ) is
of the orthogonal type. If there exists an embedding of algebras with involution
(E, σ) → (A, τ), then we have disc(E) = disc(A, τ) ∈ K×/K×2.

Proof. LetM be the function field of the Severi–Brauer variety of the algebra
A. Then we have A ⊗K M ≃ Mn(M), and the involution τ is induced by a
quadratic form q over M . By Proposition 1.4.1. and Lemma 1.3.2. (ii) (see
also [B 12], Lemma 1.4.1.) we have disc(E ⊗K M) = disc(q) ∈ M×/M×2.
Since the natural map K×/K×2 → M×/M×2 is injective, we have disc(E) =
disc(A, τ) ∈ K×/K×2.

Proposition 1.6.2. Suppose that A ≃ Mn(L), and that (A, τ) is of the
unitary type. If there exists an embedding of algebras with involution (E, σ) →
(A, τ), then we have det(A, τ)disc(E, σ)−1 ∈ NF/K(F

×)NL/K(L
×).

7



Proof. Since A ≃ Mn(L), the involution τ is induced by a hermitian form
h. By Proposition 1.4.1. there exists a ∈ F× such that h ≃ Ta. By Corollary
1.2.2. (b) we have det(Ta) = NF/K(a)det(T ). Recall that disc(E, σ) is by
definition equal to det(T ) ∈ K×/NL/K(L

×). We have det(A, τ) = det(h) =
det(Ta). This implies that det(A, τ) = NF/K(a)disc(E, σ) ∈ K×/NL/K(L

×),
hence we have det(A, τ)disc(E, σ)−1 ∈ NF/K(F

×)NL/K(L
×).

§2. Orientation

In order to treat the non–split orthogonal case, we need an additional
tool, namely the notion of orientation. Assume that (A, τ) is an orthogonal
involution, and that the degree of A is even. Let us set deg(A) = 2r.

We have seen that the existence of an embedding of algebras with in-
volution (E, σ) → (A, τ) implies that disc(E) = disc(A, τ) ∈ K×/K×2 (see
Proposition 1.6.1.). Therefore the discriminant algebra of E (see below) is
isomorphic to the K–algebra Z(A, τ). However, such an isomorphism is not
unique. This leads to the notions of orientation, and of oriented embedding,
needed for the analysis of the Hasse principle (see 6.1.).

2.1. Discriminant algebra

We have E ≃ F [X ]/(X2 − d) for some d ∈ F×. Let us consider the
F–linear involution σ′ : F [X ]/(X2 − d) → F [X ]/(X2 − d) determined by
σ′(X) = −X . Then we have an isomorphism of algebras with involution
(E, σ) ≃ (F [X ]/(X2 − d), σ′). Let x be the image of X in E, and note that
we have σ(x) = −x. Let ∆(E) be the discriminant algebra of E (cf. [KMRT
98], Chapter V, §18, p. 290).
Lemma 2.1.1. We have an isomorphism of K–algebras

∆(E) ≃ K[Y ]/(Y 2 − (−1)rNE/K(x)).

Proof. Recall that TE/K : E ×E → K, defined by TE/K(e, f) = TrE/K(ef),
is the trace form of E. Then by [KMRT 98], Proposition (18.2) we have

∆(E) ≃ K[Y ]/(Y 2 − det(TE/K)).

Note that TrE/K = TrF/K◦TrE/F , and that the trace form TE/F : E×E → F ,
defined by TE/F (e, f) = TrE/F (ef), is isomorphic to < 2, 2d >. Further, we
have d = −NE/F (x) and hence NF/K(d) = (−1)rNE/K(x). Therefore we have
det(TE/K) = (−1)rNE/K(x) ∈ K×/K×2, and this concludes the proof of the
lemma.

Let us denote by y the image of Y in ∆(E). The elements x and y will
be fixed in the sequel. Let ρ : ∆(E) → ∆(E) be the automorphism of ∆(E)
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induced by σ. Note that we have ρ(y) = (−1)r, and that hence ρ is the iden-
tity if r is even and the non–trivial automorphism of the quadratic algebra
∆(E) if r is odd.

2.2. Generalized Pfaffian

For any central simple algebra A over K of degree 2r with an orthogonal
involution θ, let us denote by Skew(A, θ) the set {a ∈ A | θ(a) = −a} of
skew elements of A with respect to the involution τ . Recall that C(A, θ)
is the Clifford algebra of (A, θ), and that Z(A, θ) is the center of C(A, θ).
Recall that Z(A, θ) is a quadratic étale algebra over K. Let us denote by γ
the non–trivial automorphism of Z(A, θ) over K.

The generalized Pfaffian (cf. [KMRT 98], Chapter II, §8) of (A, θ) is a
homogeneous polynomial map of degree r, denoted by

πθ : Skew(A, θ) → Z(A, θ)

such that for all a ∈ Skew(A, θ), we have γ(πθ(a)) = −πθ(a), and πθ(a)
2 =

(−1)rNrd(a) ; for all x ∈ A and a ∈ Skew(A, θ), we have (πθ(xaθ(x)) =
NrdA(x)πθ(a) (cf. [KMRT 98], Proposition (8.24)).

2.3. Orientation

For any orthogonal involution (A, τ), an isomorphism of K–algebras

∆(E) → Z(A, τ)

will be called an orientation.

Let us assume that the étale algebra E can be embedded in the central
simple algebra A, and let us fix an embedding ǫ : E → A. By Proposition
1.1.2. there exists an involution θ : A → A of orthogonal type such that
ǫ : (E, σ) → (A, θ) is an embedding of algebras with involution.

Let us fix such an involution (A, θ). We now define an orientation u :
∆(E) → Z(A, θ) that will be fixed in the sequel. Fix a generalized Pfaffian
map πθ : Skew(A, θ) → Z(A, θ) as above. Recall that E ≃ F [X ]/(X2 − d),
that ∆(E) ≃ K[Y ]/(Y 2− (−1)rNE/K(x)), and that we have fixed the images
x of X in E and y of Y in ∆(E). Let

u : ∆(E) → Z(A, θ)

be defined by
y 7→ πθ(ǫ(x)).

Lemma 2.3.1. The map u is an isomorphism of K–algebras.
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Proof. We have γ(ǫ(x)) = −ǫ(x). Further, (πθ(ǫ(x))
2 = (−1)rNrdA(ǫ(x)) =

(−1)rNE/K(x) = y2. This implies that u is an isomorphism of K–algebras.

2.4. Similitudes

Let α ∈ A×. Following [KMRT], Definition (12.14), page 158, we say that
α is a similitude of (A, τ) if ατ(α) ∈ K×. For a similitude α ∈ A×, the
scalar ατ(α) is called the multiplier of the similitude. We say that α is a
proper similitude if Nrd(α) = (ατ(α))r ; otherwise, α is called an improper
similitude. Note that α is a similitude if and only if Int(α) : (A, τ) → (A, τ) is
an isomorphism of algebras with involution. If A is split, then (A, τ) admits
improper similitudes (indeed, any reflection is an improper similitude).

Any isomorphism of algebras with involution Int(α) : (A, τ) → (A, τ ′)
induces an isomorphism of the Clifford algebras C(A, τ) → C(A, τ ′). Let us
denote by

c(α) : Z(A, τ) → Z(A, τ ′)

the restriction of this isomorphism to the centers of the Clifford algebras.
The following property will be important in the sequel.

Lemma 2.4.1. Let (A, τ) be an orthogonal involution, and let α ∈ A× be a
similitude. Then α is a proper similitude if and only if c(α) is the identity.

Proof. See for instance [KMRT 98], Proposition (13.2), page 173.

2.5. Compatible orientations

Recall that ǫ : E → A is an embedding of algebras, that θ : A → A is
an orthogonal involution such that ǫ : (E, σ) → (A, θ) is an embedding of
algebras with involution, and that we are fixing an orientation u : ∆(E) →
Z(A, θ). We now define a notion of compatibility of orientations.

Lemma 2.5.1. Let (A, τ) be a central simple algebra with an orthogonal invo-
lution, and let ι : (E, σ) → (A, τ) be a embedding of algebras with involution.
Let α ∈ A× be such that Int(α) : (A, τ) → (A, τ) is an automorphism of
algebras with involution, and Int(α) ◦ ι = ι. Then

(a) There exists x ∈ E× such that α = ι(x), and NE/F (x) ∈ K×.

(b) The map c(α) is the identity.

Proof. Since Int(α) ◦ ι = ι, the restriction of Int(α) to ι(E) is the identity.
Note that ι(E) is a maximal commutative subalgebra of A. Hence we have
α = ι(x) for some x ∈ E×. As Int(α) : (A, τ) → (A, τ) is an automorphism
of algebras with involution, we have ατ(α) = λ for some λ ∈ K×. Hence we
have (ιx)τ(ιx) = λ. Since ι : (E, σ) → (A, τ) is an embedding of algebras
with involution, we have ι(xσ(x)) = λ. This completes the proof of (a).
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Let us prove (b). By part (a), we have ατα = ι(xσ(x)) = ι(λ) = λ.
This implies that α is a similitude. Moreover, we have Nrd(α) = NE/K(x) =
NF/K(λ) = λr. Hence α is a proper similitude, and by lemma 1.7.1. this
implies that c(α) is the identity.

Definition 2.5.2. Let θ′ : A → A be an orthogonal involution such that
ǫ : (E, σ) → (A, θ′) is an embedding of algebras with involution, and let
u′ : ∆(E) → Z(A, θ′) be an orientation. We say that the orientations u
and u′ are compatible if for every isomorphism of algebras with involution
Int(α) : (A, θ) → (A, θ′) such that Int(α) ◦ ǫ = ǫ, we have u′ = c(α) ◦ u.

Recall that for all a ∈ F×, we define an involution θa : A → A by
θa = θ ◦ Int(ǫ(a)). Note that the embedding ǫ : (E, σ) → (A, θ) induces an
embedding of algebras with involution ǫ : (E, σ) → (A, θa). Our next aim is
to define an orientation of (A, θa) compatible with the orientation u of (A, θ).
Let Ks be a separable closure of K, and set As = A⊗K Ks.

Proposition 2.5.3. Let a ∈ F×. Then there exists a unique isomorphism
φa : Z(A, θ) → Z(A, θa) such that for all α ∈ A×

s which gives an isomorphism
of algebras with involution Int(α) : (As, θ) → (As, θa) with Int(α) ◦ ǫ = ǫ, we
have c(α) = φa.

Proof. Let d ∈ K× represent the square class of disc(A, θ), and let us write
Z(A, θ) = K ⊕Kz with z2 = d. Note that d also represents the square class
of disc(A, θa), since a ∈ F×. Let us write Z(A, θa) = K ⊕Kza with z2a = d.

Let b ∈ (E ⊗K Ks)
× be such that bσ(b) = a−1. Then Int(ǫ(b)) : (As, θ) →

(As, θa) is an isomorphism of algebras with involution commuting with ǫ, and
it induces an isomorphism of the Clifford algebras C(As, θ) → C(As, θa).

We have As = M2r(Ks), and θ : As → As is induced by a quadratic
form q : V × V → Ks. Let (e1, . . . , e2r) be an orthogonal basis for q. Since
Z(A, θ) = K ⊕K(e1 . . . e2r), we have z = µ(e1 . . . e2r) for some µ ∈ K×

s . Let
us replace e1 by µ−1e1. Then we have z = e1 . . . e2r.

Set q = ǫ(b)tqaǫ(b). Since a−1 = bσ(b) and a is θ–symmetric, the in-
volution induced by qa is θa. Let us consider the isometry ǫ(b) : (V, q) →
(V, qa). Then ǫ(b) induces a map c(ǫ(b)) : C(V, q) → C(V, qa) which sends
e1 . . . e2r to (ǫ(b)e1) . . . (ǫ(b)e2r). Therefore we have (ǫ(b)e1) . . . (ǫ(b)e2r)

2 =
qa(ǫ(b)e1) . . . qa(ǫ(b)e2r) = q(e1) . . . q(e2r) = (e1 . . . e2r)

2 = d. This implies
that ǫ(b)(e1) . . . ǫ(b)(e2r) = ±za and c(ǫ(b))(z) = ±za. Hence the restriction
of the map c(ǫ(b)) to Z(As, θ) is defined over K.

Set φa = c(ǫ(b)), and note that φa : Z(A, θ) → Z(A, θa) is an isomor-
phism.
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Let us show that φa is independent of the choice of b. Let b
′ ∈ As such that

b′σ(b′) = a. Then we have c(Int(ǫ(b′))) = c(Int(ǫ(b))). We have an isomor-
phism of algebras with involution Int(ǫ(b−1b′)) : (A, θ) → (A, θ) satisfying
Int(ǫ(b−1b′)) ◦ ǫ = ǫ. Hence by Lemma 2.4.1. the map

c(Int(ǫ(b−1b′))) : Z(A, θ) → Z(A, θ)

is the identity. Therefore c(ǫ(b)) = c(ǫ(b′)), hence c(ǫ(b)) is independent of
the choice of b.

Let α ∈ A×

s be such that Int(α) : (As, θ) → (As, θa) is an isomorphism
of algebras with involution with Int(α) ◦ ǫ = ǫ. Then by Lemma 2.4.1. there
exists x ∈ (E ⊗K Ks)

× such that α = ǫ(x). This implies that c(Int(ǫ(x))) =
c(ǫ(b)) = φa. Hence c(α) = φa, as required. This also shows the uniqueness
of φa, and completes the proof of the proposition.

Recall that we have fixed an isomorphism u : ∆(E) → Z(A, θ). For all
a ∈ F×, let us define an orientation by ua = φa ◦ u : ∆(E) → Z(A, θa). Then
ua is compatible with u. Note that φ1 is the identity, hence u1 = u.

For all a ∈ F×, let us identify ∆(E) with Z(A, θa) via the orientation ua.
This endows the Clifford algebra C(A, θa) with a structure of ∆(E)–algebra.
We have the following

Lemma 2.5.4. For all a ∈ F× we have

C(A, θa) = C(A, θ) + res∆(E)/KcorF/K(a, d)

in Br(∆(E)).

Proof. This follows from [BCM 03], Proposition 5.3.

2.6. Oriented embeddings

Recall that the existence of an embedding of algebras with involution
(E, σ) → (A, τ) is equivalent with the existence of an element a ∈ F× such
that the algebras with involution (A, θa) and (A, τ) are isomorphic. We need
the stronger notion of oriented embedding, defined as follows :

Definition 2.6.1. Let (A, τ) be an orthogonal involution, and let ν : ∆(E) →
Z(A, τ) be an orientation. An embedding ι : (E, σ) → (A, τ) is called an
oriented embedding with respect to ν if there exist a ∈ F× and α ∈ A×

satisfying the following conditions :

(a) Int(α) : (A, θa) → (A, τ) is an isomorphism of algebras with involution
such that Int(α) ◦ ǫ = ι.
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(b) The induced automorphism c(α) : Z(A, θa) → Z(A, τ) satisfies

c(α) ◦ ua = ν.

We say that there exists an oriented embedding of algebras with involution
with respect to ν if there exists (ι, a, α) as above. The elements (ι, a, α, ν)
are called parameters of the oriented embedding.

2.7. Changing the orientation – improper similitudes

Let ν : ∆(E) → Z(A, τ) be an orientation. We have

Proposition 2.7.1. Suppose that (A, τ) admits an improper similitude. As-
sume that there exists an embedding of algebras with involution (E, σ) →
(A, τ). Then there exists an oriented embedding (E, σ) → (A, τ) with respect
to ν. Moreover, if (ι, a, α) are parameters of an embedding of (E, σ) in (A, τ),
then there exist ι′ and β such that (ι′, a, β, ν) are parameters of an oriented
embedding.

Proof. If c(α) ◦ ua = ν, then (Int(α) ◦ ǫ, a, α) are parameters of an oriented
embedding (E, σ) → (A, τ). Suppose that c(α) ◦ ua 6= ν. Let γ ∈ A× be
an improper similitude. Then c(γ) is not the identity, and hence we have
c(γα) ◦ ua = ν. Set β = γα. Then (Int(β) ◦ ǫ, a, β) are parameters of an
oriented embedding, as claimed.

Lemma 2.7.2. Let Suppose that K is a local field or the field of real numbers,
and let (A, τ) be an orthogonal involution. Assume that if A is non–split, then
disc(A, τ) 6= 1 ∈ K×/K×2. Then (A, τ) admits improper similitudes.

Proof. If A is split, then any reflection is an improper similitude. Suppose
now that A is not split. Then we have A ≃ Mr(H), where H is a quaternion
division algebra. Let Z = Z(A, τ). Set D = disc(A, τ), and note that Z ≃
K(

√
D). Then Z is a quadratic extension of K, since D 6∈ K×2. Hence H

is split by Z. The involution τ is induced by an r–dimensional hermitian
form h over H . If r > 3, then the hermitian form h is isotropic (see [T
61], Theorem 3, if K is a local field, and [Sch 85], Theorem 10.3.7. if K
is the field of real numbers). Therefore h ≃ h′ ⊕ h′′, where h′ and h′′ are
hermitian forms overH with dim(h′) ≤ 3 and h′′ hyperbolic. Let r′ = dim(h′),
and let B = Mr′(H). Let τ ′ be the involution of B induced by h′, and
note that disc(B, τ ′) = disc(A, τ) = D. Since H is split by Z, we have
H = (λ,D) ∈ Br(K) for some λ ∈ K×.

We claim that λ is a multiplier of a similitude of (B, τ ′). Indeed, since
r′ ≤ 3, we may apply the criterion of [PT 04], Theorem 4. Let γ(B, τ ′) ∈
Br(K) such that γZ = C(B′, τ ′) in Br(Z) (cf. [PT 04], Theorem 2). Then by
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[PT 04], Theorem 4, the element λ is the multiplier of a similitude of (B, τ ′) if
and only if λ.γ = 0 in H3(K)/(K×.A). If K is a local field, then H3(K) = 0,
hence the condition is fulfilled. Assume that K is the field of real numbers.
Then either γ = 0, or γ = H in Br(K). Since A is non-split, we have A = H
in Br(K). Therefore we have λ.γ = 0 n H3(K)/(K×.A) in both cases.

Therefore by [PT 04], Theorem 4, the element λ is the multiplier of a
similitude of (B, τ ′), therefore also of the hermitian form h′. The hermitian
form h′′ is hyperbolic, therefore h′′ has a similitude of multiplier λ. Thus the
hermitian form h has a similitude of multiplier λ as well, and hence (A, τ)
has a similitude of multiplier λ. By [PT 04], Theorem 1, using the fact that
A = H = (λ,D) ∈ Br2(K), we see that λ is the multiplier of an improper
similitude.

Corollary 2.7.3. Suppose that there exists an embedding of algebras with
involution (E, σ) → (A, τ), and that one of the following holds :

(i) A is split.

(ii) K is a local field, or the field of real numbers, and disc(A, τ) 6= 1 in
K×/K×2.

Then there exists an oriented embedding (E, σ) → (A, τ) with respect to
ν. Moreover, if (ι, a, α) are parameters of an embedding of (E, σ) in (A, τ)
and if then there exist ι′ and β such that (ι′, a, β, ν) are parameters of an
oriented embedding.

Proof. In both cases, (A, τ) admits an improper similitude. If A is split,
then any reflection in U(A, τ) is an improper similitude. If K is local or the
field of real numbers, then Lemma 2.7.2. implies that (A, τ) has an improper
similitude. Hence the Corollary follows from Proposition 2.7.1.

2.8. Changing the orientation – r odd

Recall that E ≃ F [X ]/(X2−d), that ∆(E) ≃ K[Y ]/(Y 2−(−1)rNE/K(x)),
and that we have fixed the images x of X in E and y of Y in ∆(E). Recall
that ρ : ∆(E) → ∆(E) is the automorphism of ∆(E) induced by σ : E → E,
and that ρ is the identity if r is even, and the non–trivial automorphism of
∆(E) over K if r is odd.

Recall also that u : ∆(E) → Z(A, θ) is defined by y 7→ πθ(ǫ(x)).

Lemma 2.8.1. Let Int(γ) : (A, θ) → (A, θ) be an isomorphism of algebras
with involution safisfying Int(γ) ◦ ǫ ◦ σ = ǫ. Then we have c(γ) ◦ u ◦ ρ = u.

Proof. It suffices to prove that this is true over a separable closure. Therefore
we may assume that A = M2r(K) and that θ : A → A is the transposition.
We have γθ(γ) = γγt = λ for some λ ∈ K×. Recall that Nrd(γ) = ηλr, where
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η = 1 if γ is a proper similitude, and η = −1 if γ is an improper similitude.
We have ǫ(x) = Int(γ) ◦ ǫ ◦ σ(x) = γǫ(σ(x))γ−1 = λ−1γǫ(σ(x))γt.

On the other hand, we have πt(λ
−1γ(ǫ(σ(x))γt) = λ−rNrd(γ)πt(ǫ(σ(x)) =

ηπt(−ǫ(x)) = (−1)rηπt(ǫ(x)). Hence we have (−1)rηπt(ǫ(x)) = πt(ǫ(x)), thus
η = (−1)r. This implies that γ is a proper similitude if r is even, and an
improper similitude if r is odd. By Lemma 2.4.1. this implies that c(γ) is the
identity if r is even, and the non–trivial automorphism of Z(A, θ) if r is odd.
Therefore we have c(γ) ◦ u ◦ ρ(y) = u(y), and hence c(γ) ◦ u ◦ ρ = u.

Proposition 2.8.2. Let a, b ∈ F×, and let Int(α) : (A, θa) → (A, τ) and
Int(β) : (A, θb) → (A, τ) be isomorphisms of algebras with involution such
that Int(α) ◦ ǫ ◦ σ = Int(β) ◦ ǫ. Then we have c(α) ◦ ua ◦ ρ = c(β) ◦ ub.

Proof. Let Ks be a separable closure of K, and let γa, γb ∈ K×

s be such that
Int(γa) : (A, θ) → (A, θa) and Int(γb) : (A, θ) → (A, θb) are isomorphisms of
algebras with involution commuting with ǫ. Then we have ua = c(γa) ◦u and
ub = c(γb)◦u. We have Int(γ−1

b β−1αγa)◦ǫ◦σ = Int(γ−1
b β−1α)◦(Int(γa))◦ǫ◦σ =

Int(γ−1
b β−1) ◦ Int(α) ◦ ǫ ◦ σ = Int(γ−1

b β−1) ◦ Int(β) ◦ ǫ = Int(γ−1
b ) ◦ ǫ = ǫ.

By Lemma 2.8.1. this implies that c(γ−1
b β−1αγa) ◦ u ◦ ρ = u, hence we have

c(α) ◦ ua ◦ ρ = c(β) ◦ ub.

Let ν : ∆(E) → Z(A, τ) be an orientation.

Corollary 2.8.3. Suppose that r is odd, and that there exists an embedding
of algebras with involution (E, σ) → (A, τ). Then there exists an oriented
embedding (E, σ) → (A, τ) with respect to ν. Moreover, if (ι, a, α) are para-
meters of an embedding of (E, σ) in (A, τ), then there exist ι′, b and β such
that (ι′, b, β, ν) are parameters of an oriented embedding.

Proof. Let (ι, a, α) be parameters of an embedding of (E, σ) in (A, τ). If
c(α) ◦ ua = ν, then (ι, a, α, ν) are parameters of an oriented embedding with
respect to ν. Otherwise, we have c(α) ◦ ua ◦ ρ = ν. Set ι′ = ι ◦ σ. Then there
exist b ∈ F× and β ∈ A× such that ι′ = Int(β) ◦ ǫ. By Proposition 2.8.2. we
have c(β) ◦ ub = c(α) ◦ ua ◦ ρ = ν, and hence (ι′, b, β, ν) are parameters of an
oriented embedding.

§3. Local conditions

The aim of this section is to give necessary and sufficient conditions for an
embedding of (E, σ) in (A, τ) to exist when K is a local field of characteristic
6= 2 or the field of real numbers. This is done in [Lee14] in terms of Tits indices
- however, the results of [Lee 14] are not used here. We assume that all the
factors of E split A. Hence there exists an embedding of algebras ǫ : E → A,
and an involution θ of A of the same type as τ such that ǫ : (E, σ) → (A, θ)
is an embedding of algebras with involution (cf. Proposition 1.1.2).
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Let E = Es × En where Es and En are étale K–algebras stable under σ
with (Es, σ) split and of maximal rank for this property. Let 2ρ be the rank
of Es.

3.1. Orthogonal involutions – the even dimensional case

Assume that (A, τ) is an orthogonal involution.

Proposition 3.1.1. Assume that n is even, and that K is a local field. Then
there exists an embedding of algebras with involution of (E, σ) into (A, τ) if
and only if one of the following conditions holds :

(i) (E, σ) is split and (A, τ) is hyperbolic.

(ii) (E, σ) is not split, and disc(A, τ) = disc(E) ∈ K×/K×2.

Proof. (i) Suppose that (E, σ) is split. Then (E, σ) embeds into (A, τ) if and
only if (A, τ) is hyperbolic (cf. Proposition 1.1.7.).

(ii) Suppose that (E, σ) is not split. By Proposition 1.6.1. if (E, σ) can
be embedded into (A, τ), then we have disc(A, τ) = disc(E) ∈ K×/K×2.
Conversely, assume that disc(A, τ) = disc(E) ∈ K×/K×2.

Suppose first that A is split, in other words that A ≃ Mn(K). Then
τ is induced by an n–dimensional quadratic form q over K, and we have
disc(q) = disc(A, τ) = disc(E) ∈ K×/K×2. By [B 12], Proposition 2.2.1.
there exists a ∈ F× such that w(Ta) = w(q) ∈ Br2(K). We have disc(Ta) =
disc(E) ∈ K×/K×2 (cf. [B 12], Lemma 1.3.2.) Therefore the quadratic forms
q and Ta have the same dimension, discriminant and Hasse invariant, hence
they are isomorphic. Thus (E, σ) embeds into (A, τ) (cf. Proposition 1.4.1.).

Suppose now that A is not split. Since K is a local field, we have A =
Mr(H) with H a quaternion division algebra. By Proposition 1.6.1. we have
disc(A, θ) = disc(E) ∈ K×/K×2. Therefore disc(A, τ) = disc(A, θ). By [T
61], Theorem 3, this implies that (A, τ) ≃ (A, θ). Therefore (E, σ) embeds
into (A, τ). This completes the proof of the Proposition.

Proposition 3.1.2. Suppose that K = R and that n is even. Then there
exists an embedding of (E, σ) in (A, τ) if and only one of the following condi-
tions hold :

(i) A ≃ Mn(R), the involution τ is induced by the quadratic form q, and
the signature of q is of the shape (2r + ρ, 2s + ρ) for some non–negative
integers r and s.

(ii) A ≃ Mr(H), where H is a quaternion division algebra.

Proof. If A ≃ Mn(R), then the result follows from [B 12], Proposition
2.3.2. Assume that A ≃ Mr(H). Then by [Sch 85], Theorem 10.3.7. we have
(A, τ) ≃ (A, θ). Therefore (E, σ) can be embedded in (A, τ).
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3.2. Orthogonal involutions – the odd dimensional case

Assume that (A, τ) is an orthogonal involution, and that n is odd. Then
we have A ≃ Mn(K), and τ is induced by an n–dimensional quadratic form
q. We have E = E ′ ×K, where E ′ is a rank n− 1 étale K–algebra invariant
by σ. If n = 1, then E = K and σ is the identity. In this case, it is clear that
there exists an embedding of (E, σ) into (A, τ). Suppose that n ≥ 3, and let
F ′ = (E ′)σ be the subalgebra of E ′ composed of the elements fixed by the
restriction of σ to E ′. We have the following :

Proposition 3.2.1. Assume that n is odd and n ≥ 3, and that K is a local
field. Then there exists an embedding of (E, σ) in (A, τ) if and only if one of
the following holds :

(i) (E ′, σ) is split, and q ≃ q′⊕ q′′ with dim(q′) = n− 1 and q′ hyperbolic.

(ii) (E ′, σ) is not split.

Proof. Suppose that (E, σ) embeds into (A, τ). Then by Proposition 1.4.1.
there exists a ∈ F× such that q ≃ Ta. We have F = F ′ ×K, and a = (a′, a′′)
with a′ ∈ (F ′)× and a′′ ∈ K×. Note that we have Ta ≃ Ta′ ⊕ Ta′′ . Let
A′ = Mn−1(K), and let τ ′ be the involution of A′ induced by Ta′ . Then
(E ′, σ) embeds into (A′, τ ′). If (E ′, σ) is split, then by Proposition 3.1.1. (i),
the quadratic form Ta′ is hyperbolic. Set q

′ = Ta′ and q′′ = Ta′′ ; then we have
q ≃ q′ ⊕ q′′ with dim(q′) = n− 1 and q′ hyperbolic, as claimed.

Conversely, suppose that if (E ′, σ) is split, then q ≃ q′⊕q′′ with dim(q′) =
n− 1 and q′ hyperbolic, and let us prove that embeds (E, σ) into (A, τ). Let
us show that we have q ≃ Ta′ ⊕ Ta′′ with a′ ∈ (F ′)× and a′′ ∈ K×. Suppose
first that (E ′, σ) is split. Then we have q ≃ q′ ⊕ q′′ with dim(q′) = n − 1
and q′ hyperbolic. Let A′ = Mn−1(K) and let τ ′ be the involution induced
by q′. Then Proposition 3.1.1. (i) implies that (E ′, σ) embeds into (A′, τ ′).
Therefore by Proposition 1.4.1. there exists a′ ∈ (F ′)× such that q′ ≃ Ta′ .
Note that as dim(q′′) = 1, there exists a′′ ∈ K× such that q′′ ≃ Ta′′ , hence the
statement is proved in this case. Suppose now that (E ′, σ) is not split, and set

a′′ = (−1)
n−1

2 det(q)disc(E ′) ∈ K×/K×2. Since K is a local field, there exist
quadratic forms q′ and q′′ with q ≃ q′⊕q′′, dim(q′) = n−1, dim(q′′) = 1, and
det(q′′) = a′′. This is clear if n ≥ 5, since a non–degenerate quadratic form
of dimension ≥ 5 over a local field represents all non–zero elements. Assume
that n = 3. Then a′′ = −det(q)disc(E ′). Since (E ′, σ) is not split, we have
disc(E ′) 6∈ K×2. The quadratic form q⊕ < det(q)disc(E ′) > has dimension
4 and non–square discriminant, hence it is isotropic (see for instance [Sch
85], Theorem 6.4.2. page 217). Hence q represents a′′ = −det(q)disc(E ′), as
claimed. This implies that disc(q′) = disc(E ′). Set A′ = Mn−1(K), and let
τ ′ be the involution of A′ induced by q′. Then Proposition 3.1.1. (ii) implies
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that (E ′, σ) embeds into (A′, τ ′). By Proposition 1.4.1. we have q′ ≃ Ta′ for
some a′ ∈ (F ′)×. Note that as dim(q′′) = 1, we have q′′ ≃ Ta′′ .

Therefore in both cases we have q ≃ Ta′ ⊕ Ta′′ with a′ ∈ (F ′)× and
a′′ ∈ K×. Set a = (a′, a′′). Then q ≃ qa, and by Proposition 1.4.1. there
exists an embedding of (E, σ) in (A, τ). This completes the proof of the
Proposition.

Proposition 3.2.2. Suppose that K = R and that n is odd. Then there
exists an embedding of (E, σ) in (A, τ) if and only if the signature of q is of
the shape (r + ρ, s+ ρ) for some non–negative integers r and s.

Proof. We have E = E ′ × R, where E ′ is a rank n − 1 étale R–algebra
invariant by σ. Let F ′ be the subalgebra of E ′ of the elements fixed by σ.
Assume that there exists an embedding of (E, σ) in (A, τ). Then by Propo-
sition 1.4.1. there exists a ∈ F× such that q ≃ Ta. We have F = F ′×R, and
a = (a′, a′′) with a′ ∈ (F ′)× and a′′ ∈ R×. Let A′ = Mn−1(K), and let τ ′ be
the involution of A′ induced by Ta′ . Then by Proposition 1.4.1. there exists
an embedding of (E ′, σ) in (A′, τ ′). By Proposition 3.1.2. this implies that
the signature of Ta′ is of the shape (2r′ + ρ, 2s′ + ρ) for some non–negative
integers r′ and s′. Therefore the signature of q is (2r′ + 1 + ρ, 2s′ + ρ) or
(2r′ + ρ, 2s′ + 1 + ρ).

Conversely, assume that the signature of q is of the shape (r + ρ, s + ρ)
for some non–negative integers r and s. Then r + s + 2ρ = n, hence one of
r or s is odd and the other is even. Let q′ be a quadratic form of signature
(r−1+ρ, s+ρ) if r is odd, and (r+ρ, s−1+ρ) if s is odd. Then the dimension
of q′ is even, and hence by Proposition 2.1.3. there exists an embedding of
(E ′, σ) in (A′, τ ′), where A′ = Mn−1(K), and where τ ′ is the involution of
A′ induced by q′. Therefore by Proposition 1.4.1. there exists a′ ∈ (F ′)×

such that q′ ≃ Ta′ . Set a′′ = 1 if r is odd and a′′ = −1 if s is odd, and
let a = (a′, a′′). Then q and Ta have the same signature, hence they are
isomorphic. By Proposition 3.1.2.. this implies that there exists an embedding
of (E, σ) in (A, τ).

3.3. The symplectic case

Assume that (A, τ) is a symplectic involution. If A ≃ Mr(D) for some
quaternion division algebra D, let h be a hermitian form with respect to the
canonical involution of D which induces τ . The signature of h is defined as
in [Sch 85], 10.1.8. (i). Let E = Es × En, where Es and En are stable under
σ such that (Es, σ) is split and (En, σ) is non-split. Let 4ρ be the rank of Es.

Theorem 3.3.1. Suppose that K is a local field, or K = R. Then (E, σ) can
be embedded in (A, τ) if and only if one of the following holds :
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(i) K is a local field, or A is split.

(ii) K = R, A is non–split, and sign(h) is of the shape (s + ρ, s′ + ρ),
where s and s′ are non–negative integers.

Proof.(i) If A is split, then the involutions are given by skew–symmetric ma-
trices with coefficients in K. All non–degenerate skew–symmetric matrices
of the same dimension are isomorphic. Hence the algebras with involution
(A, τ) and (A, θ) are isomorphic, therefore (E, σ) can be embedded in (A, τ).
Suppose that A = Mr(D), where D is the unique quaternion division algebra
over K, and that K is a local field. By [Sch 85], 10.1.7. the algebras with in-
volution (A, τ) and (A, θ) are isomorphic. Therefore (E, σ) can be embedded
in (A, τ).

(ii) Suppose that K is the field of real numbers and that A = Mr(D),
where D is the unique quaternion division algebra over K. Since all the
factors of E split A, the étale algebra E is isomorphic to the direct product
of r copies of C. Hence we have Es = (C×C)ρ, and σ acts on each copy of
C×C by exchanging the two factors, and we have En = Cr−2ρ, and σ acts
on each copy of C by complex conjugation. Set Fs = Eσ

s and Fn = Eσ
n . Then

we have Fs ≃ Cρ and Fn ≃ Rr−2ρ.

Let us consider the following hermitian forms with respect to the cano-
nical involution of D : let h1 be the 2ρ–dimensional hyperbolic form, and let
h2 be the r− 2ρ–dimensional unit form. Let h0 be the orthogonal sum of h1

and h2, and let θ : A → A be the involution induced by h0.

Let us denote by x 7→ x the canonical involution of D, and let ǫ : Es ×
En → A be the map defined by

α(x1, y1, . . . , xρ, yρ, z1, . . . , xr−2ρ) = diag(x1, y1, . . . , xρ, yρ, z1, . . . , zr−2ρ).

It is easy to check that ǫ is an embedding of algebras with involution (E, σ) →
(A, θ).

If c1, . . . , cr−2ρ ∈ R, let us denote by hc the r − 2ρ–dimensional diago-
nal hermitian form < c1, . . . , cr−2ρ >. Let Hc be the orthogonal sum of the
2ρ–dimensional hyperbolic hermitian form with hc. For a = (b1, . . . , bρ) ×
(c1, . . . , cr−2ρ) ∈ Fs

× × Fn
×, we see that the involution θa : A → A is in-

duced by the hermitian form Hc. Note that the signature of Hc is equal to
(ρ + s, ρ + s′), where s is the number of positive ci’s, and s′ the number of
negative ci’s. By Proposition 1.1.3. there exists an embedding of algebras
with involution (E, σ) → (A, τ) if and only if there exists a ∈ F× such that
(A, θa) ≃ (A, τ). By [Sch 85], 10.1.7. and 10.1.8. (i), this is equivalent with the
existence of a ∈ F× such that sign(ha) = sign(h). Therefore there exists an
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embedding of algebras with involution (E, σ) → (A, τ) if and only if sign(h)
is of the shape (s+ ρ, s′ + ρ), where s and s′ are non–negative integers.

3.4. The unitary case

Assume that L is a quadratic extension of K, and suppose that (A, τ) is
an L/K unitary involution. Assume that A = Mn(L), and that τ is induced
by an n–dimensional hermitian form h over L/K (note that when K is a
local field or K = R, then this hypothesis is always fulfilled).

Proposition 3.4.1. Suppose that K is a local field. Then there exists an
embedding of algebras with involution of (E, σ) into (A, τ) if and only if one
of the following conditions holds :

(i) (E, σ) is split and (A, τ) is hyperbolic.

(ii) (E, σ) is not split, and det(A, τ)disc(E, σ)−1 ∈ NF/K(F
×)NL/K(L

×).

Proof. (i) follows from Proposition 1.1.7. Suppose that (E, σ) is not split,
and that (E, σ) embeds into (A, τ). Then by Proposition 1.6.2. we have

det(A, τ)disc(E, σ)−1 ∈ NF/K(F
×)NL/K(L

×).

Conversely, assume that det(A, τ)disc(E, σ)−1 ∈ NF/K(F
×)NL/K(L

×). Then
there exists a ∈ F× such that det(A, τ) = NF/K(a)disc(E, σ) ∈ K×/NL/K(L

×).
We have det(Ta) = det(A, τ), hence h and Ta have equal dimension and de-
terminant. Since K is a local field, this implies that Ta ≃ h. By Proposition
1.4.1. there exists an embedding of (E, σ) into (A, τ). This completes the
proof of the proposition.

Recall that E = Es × En where Es and En are étale K–algebras stable
under σ with (Es, σ) split and of maximal rank for this property, and that
we denote by 2ρ the rank of Es.

Proposition 3.4.2. Suppose that K = R. Then there exists an embedding
of algebras with involution of (E, σ) into (A, τ) if and only if the signature
of h is of the shape (r + ρ, s+ ρ) for some non–negative integers r and s.

Proof. Indeed, since L/K is a quadratic field extension, we have L = C.
Therefore E is isomorphic to the direct product of n copies of C. Let us
denote by σ0 : C → C the complex conjugation, and by σ1 : C×C → C×C

the map defined by σ1(a, b) = (σ0(b), σ0(a)). Then we have Es = (C ×C)ρ,
and the restriction of σ : Es → Es to each copy of C×C is equal to σ1 ; we
have En = Cn−2ρ, and the restriction of σ : En → En to each copy of C is
equal to σ0.

Set Fs = Eσ
s and Fn = Eσ

n . Note that F = Fs × Fn, and that Fs = Cρ

and Fn = Rn−ρ. Let a = (as, an) ∈ F×

s × F×

n . Then the restriction of Ta :
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E × E → K to Es is hyperbolic with signature (ρ, ρ), and its restriction to
En has signature (ra, sa), where ra (respectively sa) is the number of positive
(respectively negative) coefficients of an ∈ Rn−2ρ. Hence the signature of Ta is
(ρ+ra, ρ+sa). By Proposition 1.4.1. there exists an embedding of (E, σ) into
(A, τ) if and only if h ≃ Ta for some a ∈ F×. Hence (E, σ) can be embedded
into (A, τ) if and only if the signature of h is of the shape (ρ + r, ρ + s) for
some non-negative integers r and s.

§4. The Tate–Shafarevich group

We keep the notation of the previous sections, and suppose that K is a
global field. Recall that either L = K, or L is a quadratic extension of K.
The aim of this section is to define a group that measures the failure of the
Hasse principle.

Let us denote by ΩK the set of places of K. For all v ∈ ΩK , we denote
by Kv the completion of K at v. For all K–algebras B, set Bv = B ⊗K Kv.

The commutative étale algebra E is by definition a product of separable
field extensions of L. Let us write E = E1 × · · · × Em, with σ(Ei) = Ei for
all i = 1, . . . , m, and such that Ei is either a field stable by σ or a product
of two fields exchanged by σ. Recall that F = Eσ.

Set I = {1, . . . , m}. We have F = F1 × · · · × Fm, where Fi is the fixed
field of σ in Ei for all i ∈ I. Note that either Ei = Fi = K, Ei = Fi × Fi or
Ei is a quadratic field extension of Fi. For all i ∈ I, let di ∈ F×

i such that
Ei = Fi(

√
di) if Ei/Fi is a quadratic extension, and di = 1 otherwise. Set

d = (d1, . . . , dm).

If i ∈ I is such that Ei is a quadratic extension of Fi, let Σi be the set of
places v ∈ ΩK such that all the places of Fi over v split in Ei. If Ei = Fi×Fi

or if Ei = K, set Σi = ΩK .

If L 6= K, let Σ(L/K) be the set of places of K that split in L. If L = K,
then we set Σ(L/K) = ∅.

Given an m-tuple x = (x1, ..., xm) ∈ (Z/2Z)m, set

I0 = I0(x) = {i | xi = 0},

I1 = I1(x) = {i | xi = 1}.
Note that (I0, I1) is a partition of I. Let S ′ be the set

S ′ = {(x1, ..., xm) ∈ (Z/2Z)m |Σ(L/K) ∪ ( ∩
i∈I0

Σi) ∪ ( ∩
j∈I1

Σj) = ΩK},
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and set
S = S ′ ∪ (0, ..., 0) ∪ (1, ..., 1).

We define an equivalence relation on S by

(x1, ..., xm) ∼ (x′

1, ..., x
′

m) if (x1, ..., xm) + (x′

1, ..., x
′

m) = (1, ..., 1).

Let us denote by X = X(E, σ) the set of equivalence classes of S under
the above equivalence relation.

For all x ∈ S, we denote by x its class in X, and by (I0(x), I1(x)) the
corresponding partition of I. Let us denote by P ′ the set of non–trivial par-
titions (I0, I1) of I such that Σ(L/K) ∪ ( ∩

i∈I0
Σi) ∪ ( ∩

j∈I1
Σj) = ΩK , and set

P = P ′ ∪ {(I, ∅)} ∪ {∅, I)}. Let us define an equivalence relation on P by
(I0, I1) ∼ (I1, I0). Sending x to (I0(x), I1(x)) induces a bijection between X

and the set of equivalence classes of P under this equivalence relation.

Componentwise addition gives a group structure on the set of equivalence
classes of (Z/2Z)m. Let us denote this group by (Cm,+). We have

Lemma 4.1.1. The set X is a subgroup of Cm.

Proof. It is clear that the class of (0, . . . , 0) is the neutral element, and that
every element is its own opposite, so we only need to check that the sum of
two elements of X is again in X. If J is a subset of I, set Ω(J) = ∩

i∈J
Σi.

As we have seen above, the set X is in bijection with the set of equivalence
classes of partitions P/ ∼. Moreover, the transport of structure induces

(I0, I1) + (I ′0, I
′

1) = ((I0 ∩ I ′0) ∪ (I1 ∩ I ′1), (I0 ∩ I ′1) ∪ (I1 ∩ I ′0)).

Let us show that this is an element of P/ ∼. This is equivalent with proving
that ΩK is equal to

Σ(L/K) ∪ [(Ω(I0 ∩ I ′0)) ∩ (Ω(I1 ∩ I ′1))] ∪ [(Ω(I0 ∩ I ′1)) ∩ (Ω(I ′0 ∩ I1))],

and this follows from the equalities

Σ(L/K) ∪ Ω(I0) ∪ Ω(I1) = ΩK ,

and
Σ(L/K) ∪ Ω(I ′0) ∪ Ω(I ′1) = ΩK ,

which hold as (I0, I1) and (I ′0, I
′

1) are in P/ ∼.

The following propositions will be used in Sections 6 and 8 in order to
give necessary and sufficient conditions for the Hasse principle to hold. Let
us start with introducing some notation.
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Set CI = {(i, j) ∈ I × I | i 6= j and Σ(L/K) ∪ Σi ∪ Σj 6= ΩK}. For
any subset J of I, we say that i, j ∈ J are connected in J if there exist
j1, . . . , jk ∈ J with j1 = i, jk = j and (jr, jr+1) ∈ CI for all r = 1, . . . , k − 1.

Lemma 4.1.2. Let (i, j) ∈ CI , and let v ∈ ΩK such that v 6∈ Σ(L/K)∪Σi∪Σj.
Let aur ∈ (F u

r )
× for all r ∈ I and u ∈ ΩK . Then there exist bur ∈ (F u

r )
× such

that

• bur = aur whenever u 6= v or r 6= i, j, and

• corF v
i /Kv

(bvi , di) 6= corF v
i /Kv

(avi , di), corF v
i /Kv

(bvj , dj) 6= corF v
i /Kv

(avj , dj).

In particular, we have

Σv∈ΩK
corF v

i /Kv
(avi , di) 6= Σv∈ΩK

corF v
i /Kv

(bvi , di),

Σv∈ΩK
corF v

j /Kv
(avj , dj) 6= Σv∈ΩK

corF v
j /Kv

(bvj , dj).

Proof. Since (i, j) ∈ CI , we have Σ(L/K)∪Σi∪Σj 6= ΩK . Hence by Chebota-
rev’s density theorem, the complement of the set Σ(L/K)∪Σi∪Σj contains fi-
nite places. Let us choose a finite place v ofK such that v 6∈ Σ(L/K)∪Σi∪Σj .
As v 6∈ Σi, we have Ev

i = E ′

i × M , where M is a field stable by σ, and
Mσ 6= M . Set M0 = Mσ. Similarly, we have Ev

j = E ′

j × N , where N is a
field stable by σ, and Nσ 6= N . Set N0 = Nσ. Then M/M0 and N/N0 are
quadratic extensions of local fields. Let γ ∈ M0 such that γ 6∈ NM/M0

(M),
and let δ ∈ N0 such that δ 6∈ NN/N0

(N). Let us write avi = (α1, α2) with
α1 ∈ (E ′

i)
σ, α2 ∈ M0, and avj = (β1, β2) with β1 ∈ (E ′

j)
σ, β2 ∈ N0.

Set bvi = (α1, α2γ) and bvj = (β1, β2δ). If r ∈ I is such that r 6= i, j, then
set bvr = avr . For all u 6= v, set bur = aur for all r ∈ I. Then bur ∈ (F u

r )
× have

the required properties for all u ∈ ΩK and r ∈ I. This completes the proof
of the Lemma.

Proposition 4.1.3. Let i, j ∈ I be connected, and let aur ∈ (F u
r )

× for all
r ∈ I and u ∈ ΩK . Then there exist bur ∈ (F u

r )
× satisfying the following

conditions

(i) Σv∈ΩK
corF v

i /Kv
(avi , di) 6= Σv∈ΩK

corF v
i /Kv

(bvi , di).

(ii) Σv∈ΩK
corF v

j /Kv
(avj , dj) 6= Σv∈ΩK

corF v
j /Kv

(bvj , dj).

(iii) If r 6= i, j, then we have Σv∈ΩK
corF v

r /Kv
(avr , dr) = Σv∈ΩK

corF v
r /Kv

(bvr , dr).

(iv) For all v ∈ ΩK , we have Σi∈I corF v
i /Kv

(bvi , di) = Σi∈I corF v
i /Kv

(avi , di).

(v) If v is an infinite place of K, then bvr = avr for all r ∈ I.

Proof. Let j1, . . . , jk ∈ J with j1 = i, jk = j and (js, js+1) ∈ CI for all
s = 1, . . . , k − 1. Starting with aur ∈ (F u

r )
×, let us apply Lemma 4.1.2.
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successively to each of the pairs (js, js+1), and let bur ∈ (F u
r )

× be the elements
obtained at the end of the process.

Note that if s 6= 1, k, then we applied Lemma 4.1.2. twice. Hence we have

corF v
js
/Kv

(bvjs , djs) = corF v
js
/Kv

(avjs, djs)

for s 6= 1, k and for all v ∈ ΩK .

On the other hand, if s = 1 or s = k, then we applied Lemma 4.1.2. only
once. Note also that j1 = i and jk = j. Therefore we have

corF v
i /Kv

(bvi , di) 6= corF v
i /Kv

(avi , di)

for a certain v ∈ ΩK , and

corF v
i /Kv

(bui , di) = corF v
i /Kv

(aui , di)

for all u ∈ ΩK with u 6= v. Similarly, we have

corFw
j /Kw

(bwj , dj) 6= corFw
j /Kw

(awj , dj)

for a certain w ∈ ΩK , and

corFu
j /Ku

(buj , dj) = corFu
j /Ku

(auj , dj)

for all u ∈ ΩK with u 6= w. Therefore we have

Σv∈ΩK
corF v

i /Kv
(avi , di) 6= Σv∈ΩK

corF v
i /Kv

(bvi , di),

Σv∈ΩK
corF v

j /Kv
(avj , dj) 6= Σv∈ΩK

corF v
j /Kv

(bvj , dj).

Note that bvr = avr for all v ∈ ΩK if r 6= i, j, hence we have

Σv∈ΩK
corF v

r /Kv
(avr , dr) = Σv∈ΩK

corF v
r /Kv

(bvr , dr).

Moreover, all the applications of Lemma 4.1.2. concern a place v ∈ ΩK

and two distinct indices (js, js+1) ∈ CI . This implies that for all v ∈ ΩK , we
have

Σi∈I corF v
i /Kv

(bvi , di) = Σi∈I corF v
i /Kv

(avi , di)

All the changes were made at finite places, hence we have bvr = avr for all
r ∈ I if v is an infinite place. This completes the proof of the Proposition.

Proposition 4.1.4. Let avi ∈ (F v
i )

× for all v ∈ ΩK , i ∈ I, such that :

(i) We have
Σv∈ΩK

Σi∈I corF v
i /Kv

(avi , di) = 0.
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(ii) For all x ∈ X, we have

Σv∈ΩK
Σi∈I0(x) corF v

i /Kv
(avi , di) = 0.

Then there exist bvi ∈ F v
i for all v ∈ ΩK , i ∈ I such that :

(iii) For all i ∈ I, we have

Σv∈ΩK
corF v

i /Kv
(bvi , di) = 0.

(iv) For all v ∈ ΩK , we have

Σi∈I corF v
i /Kv

(bvi , di) = Σi∈I corF v
i /Kv

(avi , di).

(v) if v is an infinite place of K, then bvi = avi .

Proof. For all i ∈ I, set Ci = Ci(a) = Σv∈ΩK
corF v

i /Kv
(avi , di). If Ci = 0 for

all i ∈ I, we set bvi = avi for all i ∈ I and v ∈ ΩK . If not, then we construct a
connected graph with vertex set V and edge set E in order to make successive
modifications.

Our aim is to construct a graph containing two elements i0, ik ∈ I such
that Ci0 = Cik = 1 and that i0 and ik are connected within the graph.

Let us now construct the desired graph with vertex set V and edge set E .
We start with the empty graph, and add edges and vertices as follows. Let
us choose i0 ∈ I such that Ci0 = 1, and add {i0} to V. Set I0 = {i0} and
I1 = I − I0. Note that (I0, I1) 6∈ X. Indeed, if (I0, I1) ∈ X, then by (ii) we
have Σv∈ΩK

Σi∈I0 corF v
i
/Kv

(avi , di) = 0. But Σv∈ΩK
Σi∈I0 corF v

i
/Kv

(avi , di) = Ci0,
and Ci0 = 1, so this leads to a contradiction. Therefore by definition of X,
we have

Σ(L/K) ∪ ( ∩
i∈I0

Σi) ∪ ( ∩
j∈I1

Σj) 6= ΩK .

Hence there exist i1 ∈ I1 and v ∈ ΩK such that v 6∈ Σ(L/K) ∪ Σi0 ∪ Σi1 .
In other words, we have (i0, i1) ∈ CI , hence i0 and i1 are connected. Add
{i1} to V, and add the edge connecting i0 to i1 to E . If Ci1 = 1, we stop. If
not, set I0 = {i0, i1} and I1 = I − I0. We again have (I0, I1) 6∈ X. Indeed,
if (I0, I1) ∈ X, then by (ii) we have Σv∈ΩK

Σi∈I0 corF v
i /Kv

(avi , di) = 0. But
Σv∈ΩK

Σi∈I0 corF v
i /Kv

(avi , di) = Ci0+Ci1, and Ci0 = 1, Ci1 = 0, so this is again
a contradiction. Therefore by definition of X, we have

Σ(L/K) ∪ ( ∩
i∈I0

Σi) ∪ ( ∩
j∈I1

Σj) 6= ΩK .

Hence there exists i2 ∈ I1 and v ∈ ΩK such that v 6∈ Σ(L/K)∪ ( ∩
i∈I0

Σi)∪Σi2 .

This implies that at least one of (i0, i2), (i1, i2) belong to CI . We now add i2
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to V, and add to E all the edges connecting j to i2 with j ∈ V such that
(j, i2) ∈ CI . Note that i0 and i2 are connected within the graph. We continue
this way, adding vertices to V and edges to E . Since I is finite, and since by
(i) there exists j ∈ I with j 6= i0 and Cj = 1, the process will stop after a
finite number of steps.

In other words, after a finite number of steps we find ik ∈ I such that
Cik = 1, and such that the resulting graph with vertices V and edges E has the
following property : there exists a loop–free path in E connecting i0 to ik such
that for any two adjacent vertices i, j ∈ V we have (i, j) ∈ CI . In other words,
i0 and ik are connected in V. By Proposition 4.1.3. this implies that there
exist cvi ∈ F v

i for all v ∈ ΩK , i ∈ I such that for (c) = (cvi ) we have Ci0(c) =
Cik(c) = 0 and Ci(c) = Ci(a) for all i 6= i0, ik. Therefore the number of i ∈ I
with Ci(c) = 1 is less than the number of i ∈ I with Ci(a) = 1. Moreover,
for all v ∈ ΩK , we have Σi∈I corF v

i /Kv
(cvi , di) = Σi∈I corF v

i /Kv
(avi , di), and

that if v is an infinite place, then cvi = avi for all i ∈ I. Continuing this
way leads to the desired conclusion : we obtain bvi ∈ F v

i for all v ∈ ΩK ,
i ∈ I such that for (b) = (bvi ) we have Ci(b) = Σv∈ΩK

corF v
i /Kv

(bvi , di) = 0,
for all i ∈ I, and this implies (iii). Note that for all v ∈ ΩK , we have
Σi∈I corF v

i /Kv
(bvi , di) = Σi∈I corF v

i /Kv
(avi , di). This implies that (iv) holds.

Moreover, all the modifications were made at finite places, hence (v) holds.

Proposition 4.1.5. Let avi ∈ (F v
i )

× for all v ∈ ΩK , i ∈ I, such that :

(i) We have
Σv∈ΩK

Σi∈I corF v
i /Kv

(avi , di) = 0.

(ii) For all x ∈ X, we have

Σv∈ΩK
Σi∈I0(x) corF v

i
/Kv

(avi , di) = 0.

Then for all i ∈ I, there exist bi ∈ F×

i such that

(iii) For all v ∈ ΩK , we have

Σi∈I corF v
i /Kv

(bi, di) = Σi∈I corF v
i /Kv

(avi , di).

Proof. By Proposition 4.1.4. conditions (i) and (ii) imply that for all v ∈ ΩK

and all i ∈ I, there exist bvi ∈ (F v
i )

× such that for all i ∈ I, we have
Σv∈ΩK

corF v
i /Kv

(bvi , di) = 0, and that for all v ∈ ΩK , we have

Σi∈I corF v
i /Kv

(bvi , di) = Σi∈I corF v
i /Kv

(avi , di).

Let i ∈ I. Since Σv∈ΩK
corF v

i /Kv
(bvi , di) = 0, we have Σw∈ΩFi

(bwi , di) = 0.
The Brauer–Hasse–Noether Theorem implies that there exists a quaternion
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algebra Qi over Fi such that for all v ∈ ΩK , we have Qi ≃ (bvi , di). Since Qv
i

splits over Ev
i for all v ∈ ΩK , the algebra Qi splits over Ei. Therefore there

exists bi ∈ (Fi)
× such that Qi ≃ (bi, di).

Then, for all v ∈ ΩK , we have

Σi∈I corFi/K(bi, di) = Σi∈I corF v
i /Kv

(bvi , di) = Σi∈I corF v
i /Kv

(avi , di).

Therefore (iii) holds. This completes the proof of the proposition.

5. The Brauer–Manin map

Assume that K is a global field, and that (Ev, σ) can be embedded in
(Av, τ) for all v ∈ ΩK . This implies that there exists an embedding of algebras
ǫ : E → A. By Proposition 1.1.2. there exists an involution θ : A → A of the
same type as τ such that ǫ induces an embedding of algebras with involution
(E, σ) → (A, θ). Let us fix such an involution θ. If A ≃ Mn(K) and if τ is an
orthogonal involution, then let us chose for θ the involution induced by the
quadratic form T : E ×E, given by T (x, y) = TrE/K(xσ(y)) for all x, y ∈ E.
Note that this is possible by Proposition 1.4.1.

The aim of this section is to define a map X(E, σ) → Z/2Z the vani-
shing of which is a necessary and sufficient condition for the existence of an
embedding of algebras with involution (E, σ) → (A, τ). To define this map,
we need the notion of embedding data (cf. 5.1.-5.3.). The Brauer–Manin map
is defined in 5.4.

5.1. Local embedding data – even degree orthogonal case

Assume that (A, τ) is an orthogonal involution, with A of degree n. As-
sume that n is even, and set n = 2r. Let us fix an isomorphism of K–algebras
u : ∆(E) → Z(A, θ), and recall (cf. 2.5.) that for all av ∈ (F v)× this induces
a uniquely defined isomorphism of Kv–algebras uav : ∆(Ev) → Z(A, θav).

We are assuming that for all v ∈ ΩK , there exists an embedding of al-
gebras with involution (Ev, σ) → (Av, τ). This implies that the K–algebras
∆(E) and Z(A, τ) are isomorphic. Let us fix an isomorphism of K–algebras

ν : ∆(E) → Z(A, τ).

Let us denote by O(E,A) the set of (a) = (av), with av ∈ (F v)×, such
that for all v ∈ ΩK , there exists αv ∈ (Av)× with the properties :

(a) Int(α) : (Av, θav) → (Av, τ) is an isomorphism of Kv–algebras with invo-
lution.
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(b) The induced automorphism c(α) : Z(Av, θav) → Z(Av, τ) satisfies

c(α) ◦ uav = ν.

In other words, (Int(α) ◦ ǫ, av, αv, ν) are parameters of an oriented em-
bedding.

Proposition 5.1.1. Let (a) = (av) ∈ O(E,A). Then we have :

(i) res∆(Ev)/Kv
corF v/Kv

(av, d) = 0 for almost all v ∈ ΩK , and

Σv∈ΩK
res∆(Ev)/Kv

corF v/Kv
(av, d) = 0.

(ii) Let Ω′ be the set of places v ∈ ΩK such that ∆(Ev) ≃ Kv×Kv. Then
we have corF v/Kv

(av, d) = 0 for almost all v ∈ Ω′, and

Σv∈Ω′ corF v/Kv
(av, d) = 0.

Proof. By Lemma 2.5.4. C(Av, θav) = C(Av, θ) + res∆(Ev)/Kv
corF v/Kv

(av, d)
in Br(∆(Ev) for all v ∈ ΩK . Since (av) ∈ O(E,A) we have C(Av, θav) =
C(Av, τ) for all v ∈ ΩK . Therefore we have

C(Av, τ)− C(Av, θ) = res∆(Ev)/Kv
corF v/Kv

(av, d),

hence (i) holds. If ∆(Ev) ≃ Kv ×Kv, then res∆(Ev)/Kv
is injective, and this

implies (ii).

Proposition 5.1.2. Let (av), (bv) ∈ O(E,A). Then, for all v ∈ ΩK

(i) res∆(Ev)/Kv
corF v/Kv

(av, d) = res∆(Ev)/Kv
corF v/Kv

(bv, d).

(i) If moreover ∆(Ev) ≃ Kv×Kv, then corF v/Kv
(av, d) = corF v/Kv

(bv, d).

Proof. We have C(Av, θav) = C(Av, θ) + res∆(Ev)/Kv
corF v/Kv

(av, d), and
C(Av, θbv) = C(Av, θ)+res∆(Ev)/Kv

corF v/Kv
(av, d) in Br(∆(Ev)) (cf. Lemma

2.5.4.). Since (av), (bv) ∈ O(E,A) we have C(Av, θav) = C(Av, θbv), and this
implies (i). If ∆(Ev) ≃ Kv ×Kv, then res∆(Ev)/Kv

is injective, hence (ii).

A local embedding datum will be a set (a) = (av) ∈ O(E,A) such that

• If v ∈ ΩK is such that ∆(Ev) is a quadratic extension of Kv, then there
exist only finitely many v ∈ ΩK such that corF v/Kv

(av, d) 6= 0.

• We have
Σv∈ΩK

corF v/Kv
(av, d) = 0.

We denote by L(E,A) the set of local embedding data.

28



Remark. Let (av) ∈ L(E,A). Then we have corF v/Kv
(av, d) = 0 for almost

all v ∈ ΩK . Indeed, by hypothesis this is true if v is such that ∆(Ev) is a
quadratic extension of Kv, and by Proposition 5.1.1. (ii) it also holds if v is
such that ∆(Ev) ≃ Kv ×Kv.

Recall that the notion of oriented embedding was defined in 2.6.

Proposition 5.1.3. Assume that for all v ∈ ΩK , there exists an oriented
embedding (Ev, σ) → (Av, τ) with respect to ν. Then there exists a local
embedding datum (a) = (av) ∈ L(E,A) such that for all v ∈ ΩK there exist
ιv and αv such that (ιv, a

v, αv, ν) are parameters of an oriented embedding.

Proof. Case 1. Assume that ∆(Ev)/Kv is a quadratic extension. Let (bv) ∈
O(E,A). Then C(Av, τ) = C(Av, θ) + res∆(Ev)/Kv

corF v/Kv
(bv, d) = C(Av, θ)

in Br(∆(Ev)), since ∆(Ev)/Kv is a quadratic extension. Moreover, we have
disc(Av, τ) = disc(Av, θbv) = disc(Av, θ). Hence (Av, θ) and (Av, τ) are iso-
morphic. By Corollary 2.7.3. (ii) there exist ιv and αv such that (ιv, 1, α

v, ν)
are parameters of an oriented embedding.

Case 2. Assume now that we have ∆(Ev) ≃ Kv × Kv. Let (ιv, a
v, αv, ν)

be parameters for an oriented embedding.

Let (a) = (av), where for v ∈ ΩK the element av is chosen as above, in
each of the two cases. We claim that (a) = (av) ∈ L(E,A). Since av = 1
when ∆(Ev)/Kv is a quadratic extension, we have corF v/Kv

(av, d) = 0 for
all such v. Let Ω′ be the set of v ∈ ΩK such that ∆(Ev) ≃ Kv ×Kv. Then
we have Σv∈ΩK

corF v/Kv
(av, d) = Σv∈Ω′ corF v/Kv

(av, d), and by Proposition
5.1.1. (ii) this sum is zero. Therefore we have (a) ∈ L(E,A).

Proposition 5.1.4. Let (a) = (av), (b) = (bv) ∈ L(E,A). Then there exists
λ ∈ K× such that for all v ∈ ΩK we have corF v/Kv

(λbv, d) = corF v/Kv
(av, d).

Proof. We have res∆(Ev)/K corF v/Kv
(av, d) = res∆(Ev)/K corF v/Kv

(bv, d) for
all v ∈ ΩK , and if ∆(Ev) ≃ Kv ×Kv, then corF v/Kv

(bv, d) = corF v/Kv
(av, d)

(cf. Proposition 5.1.2.).

Let Ω′ = {v ∈ ΩK | corF v/Kv
(bv, d) 6= corF v/Kv

(av, d)}. The above ar-
gument shows that if v ∈ Ω′, then ∆(Ev) is a quadratic extension of Kv.
It follows from the definition of L(E,A) that there exist only finitely many
v ∈ ΩK such that corF v/Kv

(av, d) 6= 0 or corF v/Kv
(bv, d) 6= 0, hence Ω′ is a

finite set.

Let v ∈ Ω′. Then ∆(Ev) splits corF v/Kv
(bv, d) − corF v/Kv

(av, d). Recall

that ∆(Ev) = Kv(
√
D), where D = (−1)rNE/K(

√
d) = NF/K(d). Then

we have corF v/Kv
(bv, d) − corF v/Kv

(av, d) = (λv, D) for some λv ∈ K×

v .
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Since (a), (b) ∈ L(E,A), by definition we have Σv∈ΩK
corF v/Kv

(av, d) =
Σv∈ΩK

corF v/Kv
(bv, d) = 0. This implies that Σv∈ΩK

(λv, D) = 0. Hence by
the Brauer–Hasse–Noether theorem, there exists λ ∈ K× such that (λ,D) =
(λv, D) ∈ Br(Kv) for all v ∈ Ω′, and λ has the required property.

5.2. Local embedding data – odd degree orthogonal case

In this section, we assume that A ≃ Mn(K) and that τ is induced by
an n–dimensional quadratic form q. We are primarily interested in the case
where n is odd, but we also need to consider the case where n is even.

Let us assume that there exists an embedding of algebras with involution
(Ev, σ) → (Av, τ) for all v ∈ ΩK . By Proposition 1.4.1. this implies that
for all v ∈ ΩK there exists av ∈ (F v)× such that q ≃ Tav . Let us write
av = (av1, . . . , a

v
m) with avi ∈ (F v

i )
×. The set of (a) = (avi ) with this property

will be denoted by L′(E,A).

Proposition 5.2.1. Let (a) ∈ L′(E,A), with (a) = (avi ). Then the following
properties hold :

(i) corF v/Kv
(av, d) = 0 for almost all v ∈ ΩK , and

Σv∈ΩK
corF v/Kv

(av, d) = 0.

(ii) Let (b) ∈ L′(E,A), with (b) = (bvi ). Then for all v ∈ ΩK , we have

corF v/Kv
(av, d) = corF v/Kv

(bv, d).

Proof. Let us first assume that n is even. Since (a) ∈ L′(E,A), we have
q ≃ Tav , and hence w(Tav) = w(q) for all v ∈ ΩK . By Lemma 1.5.1. we have
w(Tav) = w(T ) + corF v/Kv

(av, d). Hence for all v ∈ ΩK , we have w(q) =
w(Tav) = w(T ) + corF v/Kv

(av, d). Note that Σv∈ΩK
w(q) = Σv∈ΩK

w(T ) = 0.
Therefore we have Σv∈ΩK

corF v/Kv
(av, d) = 0, and this proves (i).

Let us prove (ii). Since (b) ∈ L′(E,A), for all v ∈ ΩK we have w(Tbv) =
w(q). By Lemma 1.5.1. we have w(Tbv) = w(T ) + corF v/Kv

(bv, d) for all v ∈
ΩK . Therefore, for all v ∈ ΩK , we have w(T ) + corF v/Kv

(av, d) = w(q) =
w(T ) + corF v/Kv

(bv, d). Hence we have corF v/Kv
(av, d) = corF v/Kv

(bv, d), and
this implies (ii).

Suppose that n is odd, and set A′ = Mn−1(K). Then by [PR 10], Pro-
position 7.2. there exists a σ–invariant étale subalgebra E ′ of rank n − 1 of
E such that E = E ′ × K, an (n − 1)–dimensional quadratic form q′ and a
1–dimensional quadratic form q′′ over K such that q ≃ q′ ⊕ q′′, and that the
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étale algebra with involution (E ′, σ) can be embedded in the central simple
algebra (A′, τ ′) over Kv for all v ∈ ΩK , where τ ′ : A′ → A′ is the involution
induced by q′. Moreover, there exists an embedding of (E, σ) into (A, τ) if and
only if there exists an embedding of (E ′, σ) into (A′, τ ′). Note that we have
L′(E,A) = L′(E ′, A′)× L′(K,K). We may suppose that Em = K. Then we
have dm = 1. Set J = {1, . . . , m− 1}, and note that for all v ∈ ΩK , we have
Σi∈IcorF v

i /Kv
(avi , di) = Σi∈JcorF v

i /Kv
(avi , di). Since n − 1 is even, statements

(i) and (ii) easily follow.

If n is odd, then we set L(E,A) = L′(E,A), and an element (a) ∈ L(E,A)
will be called local embedding datum.

If n is even, then the set of embedding data L(E,A) was defined in
the previous section. The relationship between L(E,A) and L′(E,A) is as
follows :

Proposition 5.2.2. Assume that n is even. Then we have

(i) L′(E,A) ⊂ L(E,A).

(ii) Let (a) ∈ L(E,A). Then there exists λ ∈ K× such that (λa) ∈
L′(E,A).

Proof. Let (a) ∈ L′(E,A). Then corF v/Kv
(av, d) = 0 for almost all v ∈ ΩK ,

and Σv∈ΩK
corF v/Kv

(av, d) = 0 (cf. Proposition 5.2.1. (i)). Since q ≃ Tav for
all v ∈ ΩK , the algebras with involution (Av, τ) and (Av, θav) are isomorphic.
Since A is split, Corollary 2.7.3. implies that for all v ∈ ΩK there exist
ιv and αv such that (ιv, a

v, αv, ν) are parameters of an oriented embedding
(Ev, σ) → (Av, τ). This implies that (a) ∈ L(E,A), hence (i) is proved.

Let us prove (ii). Let S be the finite set of places of K at which q or T is
not hyperbolic, or (av, d) 6= 0. Since (a) ∈ L(E,A), there exists λv ∈ K×

v such
that q and λvTav are isomorphic over Kv for all v ∈ S. There exists λ ∈ K×

such that λ(λv)−1 ∈ (Kv)
×2 for all v ∈ S. Then q and λTav are isomorphic

over Kv for all v ∈ S. For v 6∈ S, both q and Tav are hyperbolic over Kv,
hence we have q ≃ λTav . Since λTav = Tλav , we have (λa) ∈ L′(E,A).

5.3. Local embedding data – the unitary case

Let us assume that (A, τ) is a unitary involution.

The set of (a) = (av), with av ∈ (F v)×, such that for all v ∈ ΩK we have
(Av, τ) ≃ (Av, θav), is called a local embedding datum. We denote by L(E,A)
the set of local embedding data.

Proposition 5.3.1. Let (a) ∈ L(E,A) be an embedding datum, with (a) =
(avi ). Then the following properties hold :
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(i) We have
Σv∈ΩK

corF v/Kv
(av, d) = 0.

(ii) Let (b) ∈ L(E,A) be an embedding datum, with (b) = (bvi ). Then for
all v ∈ ΩK , we have

corF v/Kv
(av, d) = corF v/Kv

(bv, d).

Proof. Since (a) ∈ L(E,A), we have (Av, θav) ≃ (Av, τ) for all v ∈ ΩK .
Hence for all v ∈ ΩK , we have D(Av, θav) = D(Av, τ). By Lemma 1.5.2.
we have D(Av, θav) = D(Av, θ) + corF v/Kv(av, d) for all v ∈ ΩK . We have
Σv∈ΩK

D(Av, τ) = Σv∈ΩK
D(Av, θ) = 0, hence Σv∈ΩK

corF v/Kv
(av, d) = 0. This

proves (i).

Let us prove (ii). Let v ∈ ΩK . Since (b) ∈ L(E,A), by Lemma 1.5.2. we
have D(Av, θ) + corF v/Kv(av, d) = D(Av, θav) = D(Av, τ) = D(Av, θbv) =
D(Av, θ) + corF v/Kv(bv, d). Hence we have corF v/Kv

(av, d) = corF v/Kv
(bv, d),

as claimed.

5.4. The Brauer–Manin map

Let (a) ∈ L(E,A) be an embedding datum, with (a) = (avi ). Let us
consider the map

f(a) : X(E, σ) → Z/2Z

defined by

f(a)(I0, I1) = Σi∈I0Σv∈ΩK
corF v

i
/Kv

(avi , di).

Note that this is well–defined, since Σi∈IΣv∈ΩK
corF v

i /Kv
(avi , di) = 0. As

we will see, this map is independent of the choice of (a). In other words, we
have

Theorem 5.4.1. Let (a), (b) ∈ L(E,A) be two local embedding data. Then
we have f(a) = f(b).

Proof. Suppose that (a), (b) ∈ L(E,A) are such that f(a) 6= f(b). Note that
for all λ ∈ K×, we have (λb) ∈ L(E,A), and f(b) = f(λb). Since there
exists λ ∈ K× such that for all v ∈ ΩK we have Σi∈IcorF v

i /Kv
(avi , di) =

Σi∈IcorF v
i /Kv

(λbvi , di) (cf. Proposition 5.1.4. Proposition 5.2.1. (ii) and Pro-
position 5.3.1. (ii)), we may assume that for all v ∈ ΩK , we have

Σi∈IcorF v
i /Kv

(avi , di) = Σi∈IcorF v
i /Kv

(bvi , di).
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Let (I0, I1) ∈ X(E, σ) be such that f(a)(I0, I1) 6= f(b)(I0, I1). Then there
exists v ∈ ΩK such that Σi∈I0corF v

i /Kv
(avi , di) 6= Σi∈I0corF v

i /Kv
(bvi , di). This

implies that v 6∈ Σ(L/K), and v 6∈ ∩
i∈I0

Σi. Since Σi∈IcorF v
i /Kv

(avi , di) =

Σi∈IcorF v
i /Kv

(bvi , di), there exists j ∈ I1 such that

corF v
j /Kv

(avj , dj) 6= corF v
j /Kv

(bvj , dj).

Therefore v 6∈ ∩
i∈I1

Σi, and this contradicts Σ(L/K) ∪ ∩
i∈I0

Σi ∪ ∩
i∈I1

Σi = ΩK .

Hence we have f(a) = f(b) for all (a), (b) ∈ L(E,A).

Since f(a) is independent of (a), we obtain a map

f : X(E, σ) → Z/2Z

defined by
f(I0, I1) = Σi∈I0Σv∈ΩK

corF v
i /Kv

(avi , di)

for any (a) = (avi ) ∈ L(E,A). Note that f is a group homomorphism.

Recall that we are fixing an embedding ǫ : E → A, and an involution
θ : A → A such that ǫ : (E, σ) → (A, τ) is an embedding of algebras with
involution. If (A, θ) is orthogonal, then we also fix an orientation u : ∆(E) →
Z(A, θ). Our next aim is to discuss the dependence of f on these choices. We
first introduce some notation.

Recall that for all a ∈ F×, we set θa = θ◦Int(ǫ(a)). Similarly, if θ̃ : A → A
is an involution and if ǫ̃ : (E, σ) → (A, θ) is an embedding of algebras with
involution, then we set θ̃a = θ̃ ◦ Int(ǫ̃(a)). Then θ̃a : A → A is an involution,
and ǫ̃ : (E, σ) → (A, θ̃) is an embedding of algebras with involution.

Definition 5.4.2. Let ǫ̃ : E → A be an embedding, and let θ̃ : A → A be
an involution such that ǫ̃ : (E, σ) → (A, θ̃) is an embedding of algebras with
involution. Let ũ : ∆(E) → Z(A, θ̃) be an orientation. We say that (ǫ, θ, u)
and (ǫ̃, θ̃, ũ) are compatible if there exists α ∈ A× and c ∈ F× such that the
following two conditions are satisfied

(a) Int(α) : (A, θ̃) → (A, θc) is an isomorphism of algebras with involution
such that Int(α) ◦ ǫ̃ = ǫ.

(b) The induced automorphism c(α) : Z(A, θ̃) → Z(A, θc) satisfies

c(α) ◦ ũ = uc.

Recall that if (A, τ) is orthogonal, then we are fixing an orientation ν :
∆(E) → Z(A, τ).
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Proposition 5.4.3. Assume that (ǫ, θ, u) and (ǫ̃, θ̃, ũ) are compatible. Let
L̃(A,E) be the set of local embedding data defined with respect to (ǫ̃, θ̃, ũ),
and let (a) ∈ L̃(A,E). Let

f ′

(a) : X(E, σ) → Z/2Z

be defined by
f ′

(a)(I0, I1) = Σi∈I0Σv∈ΩK
corF v

i /Kv
(avi , di).

Then f ′

(a) = f .

Proof. Let α ∈ A× and c ∈ F× be such that Int(α) : (A, θ̃) → (A, θc) is an
isomorphism of algebras with involution such that Int(α) ◦ ǫ̃ = ǫ, and that if
θ is orthogonal, then we have c(α) ◦ ũ = uc.

Let (a) = (av) ∈ L̃(A,E). We claim that (ca) ∈ L(E,A). A straightfor-
ward computation shows that Int(α−1) : (A, θcav) → (A, θ̃av) is an isomor-
phism of algebras with involution for all v ∈ ΩK .

For all v ∈ ΩK , let (Int(βv) ◦ ǫ̃, av, βv, ν) be parameters of an orien-
ted embedding. Since ǫ̃ = Int(α−1) ◦ ǫ and c(α) ◦ ũa = uca, we see that
(Int(βvα−1) ◦ ǫcav, βvα−1, ν) are parameters of an oriented embedding with
respect to (ǫ, θ, u). Therefore we have (ca) ∈ L(E,A).

Let c = (c1, . . . , cm) with ci ∈ F×

i . We have

f ′

(a)(I0, I1) = Σi∈I0Σv∈ΩK
corF v

i /Kv
(avi , di) =

= Σi∈I0Σv∈ΩK
corF v

i /Kv
(avi , di) + Σi∈I0Σv∈ΩK

corF v
i /Kv

(ci, di) =

= Σi∈I0Σv∈ΩK
corF v

i /Kv
(cia

v
i , di) = f(I0, I1),

since (ca) ∈ L(E,A).

Corollary 5.4.4. Suppose that there exists an embedding of algebras with
involution (E, σ) → (A, τ). Then we have f = 0.

Proof. Since there exists an embedding (E, σ) → (A, τ), there exists a ∈ F×

such that τ ≃ θa. We have a = (a1, . . . , am) with ai ∈ F×

i . For all v ∈ ΩK ,
set avi = ai, and let (a) = (avi ). By Theorem 5.4.1. it suffices to show that
f(a) = 0. Let (I0, I1) ∈ X(E, σ). Then we have

f(a)(I0, I1) = Σv∈ΩK
Σi∈I0corF v

i
/Kv

(ai, di) = Σv∈ΩK
Σi∈I0corFi/K(ai, di) = 0.

Therefore f = f(a) = 0, as claimed.

5.5. Hasse principle
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The main result of the paper is the following :

Theorem 5.5.1. Let ν : ∆(E) → Z(A, τ) be an orientation. Suppose that
for all v ∈ ΩK there exists an oriented embedding (Ev, σ) → (Av, τ) with
respect to ν. Then there exists an embedding (E, σ) → (A, τ) if and only if
f = 0.

This will be proved in Sections 6–8.

§6. Orthogonal involutions

Suppose that K is a global field, that (A, τ) is orthogonal, and that all
the factors of E split A. The aim of this section is to give a criterion for the
Hasse principle for the existence of an embedding of (E, σ) into (A, τ) : in
other words, to prove Theorem 5.5.1. for orthogonal involutions. Moreover,
based on the results of §2, we give necessary and sufficient conditions for such
an embedding to exist everywhere locally.

6.1. The even degree case – Hasse principle

Suppose that deg(A) = n = 2r. We fix an embedding ǫ : (E, σ) → (A, θ)
and an isomorphism of K–algebras u : ∆(E) → Z(A, θ).

Let us assume that for all v ∈ ΩK , there exists an embedding of algebras
with involution (Ev, σ) → (Av, τ). This implies that the K–algebras ∆(E)
and Z(A, τ) are isomorphic. Let us fix an isomorphism of K–algebras ν :
∆(E) → Z(A, τ).

The Brauer–Manin map f : X(E, σ) → Z/2Z was defined in 5.4.

Theorem 6.1.1. Suppose that for all v ∈ ΩK there exists an oriented em-
bedding (Ev, σ) → (Av, τ) with respect to ν. Then there exists an embedding
(E, σ) → (A, τ) if and only if f = 0.

Proof. By Corollary 5.4.4. we already know that the existence of a global
embedding (E, σ) → (A, τ) implies that f = 0. Let us prove the converse.
Let (a) = (avi ) ∈ L(E,A), and let (I0, I1) ∈ X. Then by hypothesis we have
f(I0, I1) = f(a)(I0, I1) = 0, hence

Σv∈ΩK
Σi∈I0 corF v

i /Kv
(avi , di) = 0.

By Proposition 4.1.5. there exists b ∈ F× such that

corF v/Kv
(b, d) = corF v/Kv

(av, d)

for all v ∈ ΩK . Applying Lemma 2.5.4. we see that C(Av, θav) = C(Av, θb) in
Br(∆(Ev)) for all v ∈ ΩK . Since the embedding is oriented with respect to ν,
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we have C(Av, τ) = C(Av, θav) in Br(∆(Ev)) for all v ∈ ΩK . Therefore for all
v ∈ ΩK , we have C(Av, τ) = C(Av, θb) in Br(∆(Ev)). Then by the Brauer–
Hasse–Noether Theorem, we have C(A, τ) = C(A, θb) in Br(∆(E)), hence
C(A, τ) and C(A, θb) are isomorphic over K. Note that (Av, τ) ≃ (Av, θb) over
Kv if v is a real place. Hence by [LT 99], Theorems A and B, we conclude that
(A, τ) ≃ (A, θb). By Proposition 1.1.3. there exists an embedding of (E, σ)
into (A, τ).

Corollary 6.1.2. Assume that for all v ∈ ΩK there exists an embedding
(Ev, σ) → (Av, τ). Suppose moreover that one of the following holds :

(i) A is split.

(ii) If v ∈ ΩK is such that Av is non-split, then disc(Av, τ) 6= 1 in
K×

v /K
×2
v .

(iii) deg(A) = 2r with r odd.

Then there exists an embedding (E, σ) → (A, τ) if and only if f = 0.

Proof. This follows from Theorem 6.1.1. together with Corollary 2.7.3. (in
cases (i) and (ii)), and Corollary 2.8.3. (in case (iii)).

6.2. The odd degree case - Hasse principle

Suppose that A = Mn(K), and that τ is induced by an n–dimensional
quadratic form q. Recall that f : X → Z/2Z was defined in 4.4.

Theorem 6.2.1. Suppose that n is odd, and that for all v ∈ ΩK there exists
an embedding of algebras with involution (Ev, σ) → (Av, τ). Then there exists
an embedding (E, σ) → (A, τ) if and only if f = 0.

Proof. We already know that if there exists an embedding (E, σ) → (A, τ),
then we have f = 0 (cf. Corollary 5.4.3). Let us show that the converse also
holds. Assume that we have f = 0.

If n = 1 then E = A = K, hence (E, σ) can be embedded into (A, τ). Let
us assume that n ≥ 3. Set A′ = Mn−1(K). Then by [PR 10], Proposition 7.2.
there exists a σ–invariant étale subalgebra E ′ of rank n − 1 of E such that
E = E ′ ×K, an (n− 1)–dimensional quadratic form q′ and a 1–dimensional
quadratic form q′′ over K such that q ≃ q′ ⊕ q′′, and that the étale algebra
with involution (E ′, σ) can be embedded in the central simple algebra (A′, τ ′)
over Kv for all v ∈ ΩK , where τ ′ : A′ → A′ is the involution induced by q′.
Moreover, there exists an embedding of (E, σ) into (A, τ) if and only if there
exists an embedding of (E ′, σ) into (A′, τ ′). Note that we have L(E,A) =
L′(E ′, A′)×L(K,K). We may suppose that Em = K. Then we have dm = 1.
Set J = {1, . . . , m− 1}.

36



Let f ′ : X(E ′, σ) → Z/2Z be the Brauer–Manin map associated to
(E ′, σ) and (A′, τ ′). Let (a) = (avi ) ∈ L(E,A). Set bvi = avi if i = 1, . . . , m−1.
Then (b) = (bvi ) is an element of L′(E ′, A′). By Proposition 5.2.2. (i) we have
L′(E ′, A′) ⊂ L(E ′, A′), hence (b) ∈ L(E ′, A′).

For all (J0, J1) ∈ X(E ′, A′) we have f ′(J0, J1) = f ′

(b)(J0, J1) = f(a)(I0, I1),

where I0 = J0 and I1 = J1∪{m}. Since fa = f = 0 by hypothesis, this implies
that f ′ = 0. By Corollary 6.1.2. (i) this implies that (E ′, σ) can be embedded
into (A′, τ ′). Therefore (E, σ) can be embedded into (A, τ).

6.3. Orthogonal involutions – local conditions

An infinite place w of F is said to be ramified in E if w is a real place
that extends to a complex place of E. For all v ∈ ΩK , let ρv be the number
of places of F above v which are not ramified.

Definition 6.3.1. We say that the signature conditions hold if for every real
prime v of K such that Av ≃ Mn(Kv), the signature of q at v is of the shape
(rv + ρv, sv + ρv) for some non–negative integers rv and sv such that rv and
sv are even if n is even.

Definition 6.3.2. We say that the hyperbolicity condition is satisfied if for
all v ∈ ΩK such that the étale algebra with involution (Ev, σ) is split, the
algebra with involution (Av, τ) is hyperbolic.

Note that as (Av, τ) is hyperbolic for all but a finite number of places
v ∈ Ω, we only need to check the hyperbolicity condition at finitely many
places.

The following is a consequence of the results of §3, in particular Proposi-
tions 3.1.1. and 3.1.2. (see also [B 12], Proposition 2.4.1. and [B 13], Theorem
12.1.).

Proposition 6.3.3. Suppose that n is even. The étale algebra with involution
(Ev, σ) can be embedded in the algebra with involution (Av, τ) for all v ∈ ΩK

if and only if the following conditions hold :

(i) We have disc(A, τ) = disc(E) ∈ K×/K×2.

(ii) The hyperbolicity condition is satisfied.

(iii) The signature conditions are satisfied.

Assume now that n is odd. We have E ≃ E ′ × K, where E ′ is an étale
algebra of rank n − 1 stable by σ. Note that if n = 1, then an embedding
of (E, σ) into (A, τ) always exists, hence we may assume that n ≥ 3. The
following is a consequence of Propositions 3.2.1. and 3.2.2.
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Proposition 6.3.4. Suppose that n is odd and ≥ 3. The étale algebra with
involution (Ev, σ) can be embedded in the algebra with involution (Av, τ) for
all v ∈ ΩK if and only if the following conditions hold :

(i) For all v ∈ ΩK such that (E ′)v, σ) is split, we have q ≃ q′ ⊕ q′′, where
q′ is hyperbolic, and q′′ is a 1–dimensional quadratic form over Kv.

(ii) The signature conditions are satisfied.

§7. Symplectic involutions

Suppose that K is a global field, that all the factors of E split A, and
that (A, τ) is a symplectic involution. Prasad and Rapinchuk proved that the
Hasse principle holds in this case (cf. [PR 10], Theorem 5.1).

An infinite place w of F is said to be ramified in E if w is a real place
that extends to a complex place of E. For all v ∈ ΩK , let ρv be the number
of places of F above v which are not ramified.

Definition 7.1.1. We say that the signature condition holds if for every real
prime v of K such that Av is non–split, the signature of (Av, τ) is of the
shape (rv + ρv, sv + ρv) for some non–negative integers rv and sv.

The following result is a consequence of the Hasse principle, and of Pro-
position 3.3.1.

Theorem 7.1.2. The étale algebra with involution (E, σ) can be embedded in
the central simple algebra with involution (A, τ) if and only if the signature
condition holds.

§8. Unitary involutions

Suppose that K is a global field, that all the factors of E split A, and
that (A, τ) is a unitary involution.

8.1. Unitary involutions – Hasse principle

Suppose that (Ev, σ) can be embedded in (Av, τ) for all v ∈ ΩK , and
recall that f : X(E, σ) → Z/2Z is the Brauer–Manin map defined in 5.4.

Theorem 8.1.1. Suppose that for all v ∈ ΩK there exists an embedding of
algebras with involution (Ev, σ) → (Av, τ). Then there exists an embedding
of algebras with involution (E, σ) → (A, τ) if and only if f = 0.

Proof. If there exists a global embedding, then we have f = 0 (cf. Corollary
5.4.4.). Let us prove the converse. For all v ∈ ΩK there exist av ∈ (F v)× such
that (Av, τ) = (Av, θav), hence we have D(Av, τ) = D(Av, θav) in Br(Kv).
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On the other hand, by Lemma 1.5.2. we have D(Av, θav) = D(Av, θ) +
corF v/Kv

(av, d). Hence we have Σv∈ΩK
corF v/Kv

(av, d) = 0. Let (I0, I1) ∈ X.
Then by hypothesis we have f(a)(I0, I1) = 0, therefore

Σv∈ΩK
Σi∈I0 corF v

i /Kv
(avi , di) = 0.

By Proposition 4.1.5. there exists b ∈ F× such that for all v ∈ ΩK , we have
corF v/Kv

(b, d) = corF v/Kv
(av, d), and that bv = av if v is a real place. On the

other hand, we have D(A, τ) = D(A, θb). Hence we have (A, τ) ≃ (A, θb). By
Proposition 1.1.3. there exists an embedding of (E, σ) into (A, τ).

8.2. Unitary involutions – local conditions

An infinite place w of F is said to be ramified in E if w is a real place
that extends to a complex place of E. For all v ∈ ΩK , let ρv be the number
of places of F above v which are not ramified.

Definition 8.2.1. We say that the signature condition holds if for every real
prime v of K, the signature of (Av, τ) is of the shape (rv + ρv, sv + ρv) for
some non–negative integers rv and sv.

Definition 8.2.2. We say that the hyperbolicity condition is satisfied if for
all v ∈ ΩK such that the étale algebra with involution (Ev, σ) is split, the
algebra with involution (Av, τ) is hyperbolic.

The following is a consequence of Propositions 3.4.1. and 3.4.2.

Proposition 8.2.3. The étale algebra with involution (Ev, σ) can be embed-
ded in the algebra with involution (Av, τ) for all v ∈ ΩK if and only if the
following conditions hold :

(i) For all v ∈ ΩK , we have

det(Av, τ)disc(Ev, σ)−1 ∈ NF v/Kv
((F v)×)NLv/Kv

((Lv)×).

(iii) The signature condition is satisfied.

(iii) The hyperbolicity condition is satisfied.

9. Applications and examples

The aim of this section is to describe some special cases in which the
Hasse principle for the embedding problem holds, and to give some examples.
We keep the notation of the previous sections. In particular, K is a global
field, (E, σ) is an étale algebra with involution, and (A, τ) is a central simple
algebra with involution.

9.1. The group X(E ′, σ)
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Let us write E = E1 × · · · × Em1
× Em1+1 × · · · × Em, where Ei/Fi is a

quadratic extension for all i = 1, . . . , m1 and Ei = Fi × Fi or Ei = K if i =
m1+1, . . . , m. Recall that I = {1, . . . , m}, and set I(split) = {m1+1, . . . , m},
I ′ = I(nonsplit) = {1, . . . , m1}. If I ′ is empty, then we set X(E ′, σ) = 0.

Let π : X(E, σ) → X(E ′, σ) be the map that sends the class of (I0, I1) to
the class of (I0∩I ′, I1∩I ′). Then π is surjective, and Ker(π) is the subgroup of
X(E, σ) consisting of the classes of partitions (I0, I1) such that I0 ⊂ I(split)
or I1 ⊂ I(split).

Let f : X(E, σ) → Z/2Z be the Brauer–Manin map (cf. §5.4.). Note
that Ker(π) ⊂ Ker(f), since if i ∈ I(split), then di = 1. Hence f induces a
map f : X(E ′, σ) → Z/2Z such that f = f ◦ π.
Proposition 9.1.1. We have f = 0 if and only if f = 0.

Proof. This follows immediately from the definitions.

9.2. Sufficient conditions

Assume that for all v ∈ ΩK there exists an embedding (Ev, σ) → (Av, τ),
and let ν : ∆(E) → Z(A, τ) be an orientation. The results of Sections 6–8
imply the following :

Theorem 9.2.1. Suppose that the following conditions hold :

(i) For all v ∈ ΩK, there exists an oriented embedding (Ev, σ) → (Av, τ)
with respect to ν.

(ii) X(E ′, σ) is trivial.

Then there exists an embedding (E, σ) → (A, τ).

Proof. This follows from Theorems 6.1.1. 6.2.1. 7.1. 8.1.1. and Proposition
9.1.1.

Note that the existence of an oriented embedding is only necessary if
(A, τ) is orthogonal, A is non-split and deg(A) = 2r with r even (cf. Corollary
6.1.2.). Note also that this implies Theorem A of Prasad and Rapinchuk (cf.
[PR 10], page 584) – indeed, if E is a field extension of L, then X(E, σ)
(= X(E ′, σ) in this case) is obviously trivial. Theorem 9.2.1. also has the
following application :

Corollary 9.2.2. Suppose that the following conditions hold :

(i) For all v ∈ ΩK, there exists an oriented embedding (Ev, σ) → (Av, τ)
with respect to ν.

(ii) There exists i0 ∈ I such that for all i ∈ I, we have

Σ(L/K) ∪ Σi0 ∪ Σi 6= ΩK .
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Then there exists an embedding (E, σ) → (A, τ).

This generalizes the Hasse principle results of [PR 10], [Lee 12] and [B 12].
The Corollary is a consequence of Theorem 9.2.1. and the following Lemma :

Lemma 9.2.3. Assume that there exists i0 ∈ I such that for all i ∈ I, we
have Σ(L/L) ∪Σi0 ∪Σi 6= ΩK . Then the group X(E, σ) is trivial. Therefore
X(E ′, σ) is trivial.

Proof. Suppose that the group X(E, σ) is not trivial, and let (I0, I1) be a
partition of I representing a non–trivial element of X(E, σ). Then we have

Σ(L/K) ∪ ( ∩
i∈I0

Σi) ∪ ( ∩
j∈I1

Σj) = ΩK .

Assume that i0 ∈ I0. Then we have Σ(L/K)∪Σi0 ∪ ( ∩
j∈I1

Σj) = ΩK , hence for

all j ∈ I1, we have Σ(L/K) ∪ Σi0 ∪ Σj = ΩK , contradicting the hypothesis.

Corollary 9.2.4. Suppose that the following conditions hold :

(i) For all v ∈ ΩK, there exists an oriented embedding (Ev, σ) → (Av, τ)
with respect to ν.

(ii) There exists a real place u ∈ ΩK such that u 6∈ Σi for all i ∈ I.

Then there exists an embedding (E, σ) → (A, τ).

Proof. By (ii), condition (ii) of Corollary 9.2.2. holds, hence there exists an
embedding (E, σ) → (A, τ).

Assume now that K = Q. Recall that (E, σ) is a CM étale algebra if E
is a product of CM fields, and if σ is the complex conjugation. Then we have

Corollary 9.2.5. Suppose K = Q, and that (E, σ) is a CM étale algebra.
Assume that for all v ∈ ΩK , there exists an oriented embedding (Ev, σ) →
(Av, τ). Then there exists an embedding (E, σ) → (A, τ).

Proof. This follows from Corollary 9.2.4. since condition (ii) holds for CM
étale algebras.

9.3. An example

As we have seen in Corollary 9.2.5. above, the local–global principle holds
for oriented embeddings when (E, σ) is a CM étale algebra with involution.
The aim of this section is to show that this is not the case for not necessarily
orientated local embeddings. More precisely, there exist CM étale algebras
with involution (E, σ) and (non–split) central simple algebras with orthogo-
nal involution (A, τ) such that (E, σ) embeds into (A, τ) everywhere locally,
but not globally.
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Let v1, v2, v3 and v4 be four distinct places of K. Let a ∈ K× be such that
a 6∈ K×2

vi
for i = 1, . . . , 4, and let b ∈ K× such that b 6∈ K×2 and that b ∈ K×2

vi

for i = 1, . . . , 4. Let E1 = K(
√
a), and let σ1 : E1 → E1 be the K–linear

involution such that σ1(
√
a) = −√

a. Set E2 = K(
√
b), let σ2 : E2 → E2

be the K–linear involution such that σ2(
√
b) = −

√
b. Set E = E1 ⊗ E2 and

σ = σ1 ⊗ σ2. Then (E, σ) is a rank 4 étale K–algebra with involution, and
F = Eσ = K(

√
ab).

Let H1 be the quaternion skew field over K ramified exactly at v1 and
v2, and H2 the quaternion skew field over K ramified exactly at v3 and v4.
Let τi : Hi → Hi be the canonical involution for i = 1, 2, and set (A, τ) =
(H1, τ1) ⊗ (H2, τ2). Since τ1 and τ2 are both symplectic involutions, their
tensor product τ is an orthogonal involution. We have H1 ⊗ H2 ≃ M2(H),
where H is a quaternion skew field over K.

Proposition 9.3.1. For all v ∈ ΩK , there exists an embedding of algebras
with involution (Ev, σ) → (Av, τ).

Proof. Since E1 splits H1 and H2 locally everywhere, it splits H locally eve-
rywhere too, and hence E embeds in H as a maximal subfield globally. Let
τ0 be the canonical involution of H . Since τ0 restricts to the non–trivial auto-
morphism on any maximal subfield, it follows that there exists an embedding
of algebras with involution of (E1, σ1) into (H, τ0).

Let w ∈ ΩK . By hypothesis, either H1 or H2 is split over Kw. Hence either
(Hw

1 , τ1) ≃ (M2(Kw), σ0) or (H
w
2 , τ2) ≃ (M2(Kw), σ0), where σ0 denotes the

symplectic involution of M2(Kw). Therefore we have

(M2(H
w), τ) ≃ (Hw

1 ⊗Hw
2 , τ1 ⊗ τ2) ≃ (M2(Kw), σ0)⊗ (Hw, τ0).

The algebra with involution (Ew
1 , σ1) can be embedded into (Hw, τ0), and the

algebra with involution (Ew
2 , σ2) can be embedded into (M2(Kw), σ0). Hence

(Ew, σ) embeds into (M2(H
w), τ).

Proposition 9.3.2. There is no global embedding (E, σ) → (A, τ).

Proof. Let us denote by H0
i the skew elements of H1, for i = 1, 2. Then every

skew element of H1 ⊗ H2 belongs to the direct sum H0
1 ⊕ H0

2 . Moreover, if
a skew element is square central, then it has to be in H0

1 or in H0
2 . Assume

by contradiction that there exists an embedding of algebras with involution
f : (E, σ) → (A, τ). Note that f(

√
b) is a square central skew element.

Therefore it has to belong to H0
1 or to H0

2 . But this contradicts the fact that
E2 = K(

√
b) does not split H1 nor H2.

In the above example, we can take K = Q and can choose a and b such
that E is a CM étale algebra. This provides the desired counter–example to
the Hasse principle.
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Appendix A

Embedding functor, Tate–Shafarevich group and orientation

The purpose of this appendix is to recall some of the results of [Lee 14],
and to outline the relationship of these results with those of the present
paper.

§A1. The embedding functor

Let K be a field of characteristic 6= 2, let Ks be a separable closure of
K, and let ΓK = Gal(Ks/K). Let G be a reductive group over K. Let T be
a torus and let Ψ be a root datum attached to T (see [SGA 3], Exp. XXI,
1.1.1.). For a maximal torus T ′ in G, we let Φ(G, T ′) be the root datum of G
with respect to T ′. If Φ(G, T ′)Ks

and ΨKs
are isomorphic, then we say that

G and Ψ have the same type.

Assume that G and Ψ have the same type. Let Isom(Ψ,Φ(G, T ′)) be the
scheme of isomorphisms between the root data Ψ and Φ(G, T ′). Define

Isomext(Ψ,Φ(G, T ′)) = Isom(Ψ,Φ(G, T ′))/W(Ψ),

where W(Ψ) is the Weyl group of Ψ. The scheme Isomext(Ψ,Φ(G, T ′)) is
independent of the choice of the maximal torus T ′, and we denote it by
Isomext(Ψ, G). An orientation is by definition an element of Isomext(Ψ, G)(K).

The embedding functor E(G,Ψ) is defined as follows : for any K-algebra
C, let E(G,Ψ)(C) be the set of embeddings f : TC → GC such that f
is both a closed immersion and a group homomorphism which induces an
isomorphism fΨ : ΨC

∼−→ Φ(GC , f(TC)) such that fΨ(α) = α ◦ f−1|f(TC′ ) for
all the C ′-roots α in ΨC′ for each C-algebra C ′ (see [Lee 14], 1.1.) Given an
orientation ν ∈ Isomext(Ψ, G)(K), we define the oriented embedding functor
as follows (cf. [Lee 14], 1.2.) : for any K-algebra C, set

E(G,Ψ, ν)(C) =

{

f : TC →֒ GC

∣

∣

∣

∣

f ∈ E(G,Ψ)(C), and the image of fΨ

in Isomext(Ψ, G)(C) is ν.

}

.

The oriented embedding functor is a homogeneous space under the adjoint
action of G. For each root datum Ψ, we can associate a simply connected
root datum sc(Ψ) to it (cf. [SGA3], Exp. XXI, 6.5.5 (iii)]). Let sc(T ) be the
torus associated to sc(Ψ).

§A2. Algebras with involution and the embedding functor

Let L be a field of characteristic 6= 2, and let A be a central simple algebra
over L with involution τ . Let E be an étale algebra over L with involution σ,
and suppose that Lσ = K. Given (A, τ) and (E, σ), we always assume that
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dimL(E) = degK(A) and τ |L = σ|L.

The unitary groups U(A, τ) and U(E, σ) are defined as follows. For any com-
mutative K-algebra C, set

U(A, τ)(C) = {x ∈ A⊗K C| xτ(x) = 1},

and
U(E, σ)(C) = {x ∈ E ⊗K C| xσ(x) = 1}.

Let G = U(A, τ)◦ be the connected component of U(A, τ) containing the neu-
tral element, and let T = U(E, σ)◦ be the connected component of U(E, σ)
containing the neutral element.

Set F = Eσ. Let us suppose furthermore that

dimK(F ) =

{

⌈dimL(E)
2

⌉, if τ is of the first kind ;
dimL(E), if τ is of the second kind.

Then one can associate a root datum Ψ to the torus T such that G is of type
Ψ (see [Lee 14], 1.3.). Moreover, except for A of degree 2 with τ orthogonal,
there exists a K-embedding from (E, σ) to (A, τ) if and only if there exists
an orientation ν such that E(G,Ψ, ν)(K) is nonempty (see [Lee 14], Theorem
1.15. and Proposition 1.17.).

§A3. Orientations in terms of algebras

Let (E, σ) and (A, τ) be as above. Assume moreover that (A, τ) is ortho-
gonal, and that the degree of A is even. Recall that ∆(E) is the discriminant
of the étale algebra E, and that Z(A, τ) is the center of the Clifford algebra
of (A, τ). In 1.8. an orientation is defined as the choice of an isomorphism
∆(E) → Z(A, τ). This is equivalent to the definition of A 1. More precisely,
we have

Proposition A.3.1. We have an isomorphism

Isom(∆(E), Z(A, τ)) ≃ Isomext(Ψ, G).

Proof. Let Eτ be a maximal τ -invariant étale subalgebra of A. Let Tτ =
U(Eτ , τ)

◦ ; then Tτ is a maximal torus of G. Let Φ(G, Tτ ) be the root datum of
G with respect to Tτ . Then we have a natural map α : Isom((E, σ), (Eτ , τ)) →
Isom(Ψ,Φ(G, Tτ )). Using the identification of Aut(E, σ) and Aut(Ψ), we see
that α is equivariant under the action of Aut(E, σ). Let Γ0 be the subgroup
of Aut(E, σ) corresponding to the Weyl group of Ψ under this identification.
Let us consider the following commutative diagram :
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Isom((E, σ), (Eτ , τ))

��

// Isom(Ψ,Φ(G, Tτ))

��

Isom((E, σ), (Eτ , τ))/Γ0
// Isom(Ψ,Φ(G, Tτ))/W(Ψ).

Recall that Isom(Ψ,Φ(G, Tτ ))/W(Ψ) = Isomext(Ψ,Φ(G, Tτ)), and note that
we have Isom((E, σ), (Eτ , τ))/Γ0 ≃ Isom(∆(E),∆(Eτ )).

If we pick another maximal étale subalgebra E ′

τ of A invariant by τ , then
the method used for Isomext(Ψ,Ψτ ) in [Lee 14] 1.2.1. shows that we have a
canonical isomorphism between Isom(∆(E),∆(E ′

τ )) and Isom(∆(E),∆(Eτ )).

Let us fix an isomorphism ∆(Eτ ) → Z(A, τ) as in 1.8. This gives an
isomorphism Isom(∆(E),∆(Eτ )) → Isom(∆(E), Z(A, τ)). Hence, we have

Isom(∆(E), Z(A, τ)) ≃ Isomext(Ψ,Φ(G, Tτ )) = Isomext(Ψ, G),

as claimed.

§A4. Tate–Shafarevich group

Assume now that K is a global field. Then, using Borovoi’s results (cf.
[Bo 99]), it is shown in [Lee 14] that the Brauer-Manin obstruction is the only
obstruction to the local-global principle for E(G,Ψ, u) and the obstruction
lies in the Tate–Shafarevich group X

2(K, sc(T )) (cf.[ Lee 14], Proposition
2.8). Note that X2(K, sc(T )) is isomorphic to X

1(K, sc(T̂ ))∗ by Poitou-Tate
duality (cf. [NSW 08], Chap. VIII, Thm. 8.6.9).

In the following, we determine the group X
1(K, sc(T̂ )) explicitly, and

show that it is isomorphic to the group X(E ′, σ) defined in §9 :

Proposition A.4.1. The groups X
1(K, sc(T̂ )) and X(E ′, σ) are isomor-

phic.

The proof of this proposition is different according as L = K or L 6=
K. Let us start by introducing some notation that will be used in both
proofs. For any finite separable field extension N/N ′ and any discrete ΓN–

module M , set IN/N ′(M) = Ind
ΓN′

ΓN
(M). Note that IN/N ′(Z) is the character

group of RN/N ′(Gm). Let ŜN/N ′ be the character group of the norm-one torus

R
(1)
N/N ′(Gm).

Proof of Proposition A.4.1. when L = K

Let us consider the following diagram :
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(1) 1

��

1

��

1 // R
(1)
F/K(Gm) //

��

R
(1)
E/K(Gm) //

��

sc(T ) // 1

1 // RF/K(Gm) //

��

RE/K(Gm)

��

1 // Gm
×2

//

��

Gm

��

1 1

where the first row (cf. [Lee 14], Lemma 3.16.) and the columns are exact.
Then consider the corresponding diagram of character groups :

(2) 0

��

0

��

Z
×2

//

��

Z

��

IE/K(Z)
π

//

��

IF/K(Z) //

��

0

0 // sc(T̂ ) // ŜE/K
π

//

��

ŜF/K
//

��

0

0 0

Note that we have IE/K(Z) =
m
⊕
i=1

IEi/K(Z) and IF/K(Z) =
m
⊕
i=1

IFi/K(Z).

The module IEi/K(Z) can also be written as IFi/K(IEi/Fi
(Z)). Let d be the

degree map from IEi/Fi
(Z) ≃ Z⊕ Z to Z, which sends (x, y) to x+ y. Then

on each IFi/K(IEi/Fi
(Z)), the map π is the map induced by the degree map

from IEi/Fi
(Z) to Z.

Set Γ = ΓK . We derive the following long exact sequence from diagram
(2) :

0 → sc(T̂ )Γ → (ŜE/K)
Γ π−→ (ŜF/K)

Γ → H1(K, sc(T̂ )) → H1(K, ŜE/K).
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Thus we have the exact sequence

0 → (ŜF/K)
Γ/π((ŜE/K)

Γ)
δ−→ H1(K, sc(T̂ )) → H1(K, ŜE/K)

Note that H2(K,R
(1)
E/K(Gm)) injects into H2(K,RE/K(Gm)) by Hilbert’s

Theorem 90. By the Brauer-Hasse-Noether Theorem, X2(K,RE/K(Gm)) va-

nishes, hence so does X2(K,R
(1)
E/K(Gm)). By Poitou-Tate duality, we have

X
1(K, ŜE/K) ≃ X

2(K,R
(1)
E/K(Gm)))

∗ = 0.

Therefore, X1(K, sc(T̂ )) is in the image of (ŜF/K)
Γ/π((ŜE/K)

Γ).

Since the F ′

is are field extensions of K, we have IFi/K(Z)
Γ ≃ Z. Thus, we

have IF/K(Z)
Γ ≃

m
⊕
i
IFi/K(Z)

Γ ≃ Zm, and (ŜF/K)
Γ ≃ Zm/(1, ..., 1).

If Ei = Fi × Fi, then π sends IEi/K(Z)
Γ ≃ IFi/K(Z)

Γ × IFi/K(Z)
Γ surjec-

tively onto IFi/K(Z)
Γ ≃ Z. If Ei = K, then IEi/K(Z) ≃ Z ≃ IFi/K(Z). If

Ei is a quadratic field extension of Fi, the map π sends IEi/K(Z)
Γ ≃ Z to

IFi/K(Z)
Γ ≃ Z by multiplication by 2. Recall that m = m1+m2, where m1 is

the number of indices i such that Ei is a quadratic field extension of Fi, and
m2 the number of indices i such that either Ei = Fi × Fi or Ei = K. Then
we have

(ŜF/K)
Γ/π((ŜE/K)

Γ) ≃ (Z/2Z)m1/(1, ..., 1).

We claim that δ : (ŜF/K)
Γ/π((ŜE/K)

Γ) → H1(K, sc(T̂ )) sends bijectively

X(E ′, σ) to X
1(K, sc(T̂ )).

Let (I0, I1) ∈ X(E ′, σ), let a be the corresponding element in

(ŜF/K)
Γ/π((ŜE/K)

Γ)

and let x be the image of a in H1(K, sc(T̂ )). We claim that x is inX
1(K, sc(T̂ )).

It suffices to prove that for any v ∈ ΩK , we have av = 0.

For a place v ∈ ∩
i∈I1

Σi, we have that E
v
i splits over F v

i for all i ∈ I1. Hence,

π maps IEv
i /Kv

(Z)Γv ≃ IF v
i /Kv

(Z)Γv ⊕ IF v
i /Kv

(Z)Γv onto IF v
i /Kv

(Z)Γv for each

i ∈ I1, so (ŜF/K)
Γv/π((ŜE/K)

Γv) = 0 for each i ∈ I1 and avi = 0. On the other
hand, for each i ∈ I0, ai = 0 by definition. Therefore, we have av = 0.

For a place v ∈ ∩
i∈I0

Σi, we replace (a1, ..., am1
) by (a1, ..., am1

) + (1, ..., 1).

Note that (a1, ..., am1
) + (1, ..., 1) and (a1, ..., am1

) represent the same class
a in (ŜF/K)

Γ/π((ŜE/K)
Γ). By the same argument as above, we have av = 0.
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Since ( ∩
i∈I0

Σi) ∪ ( ∩
j∈I1

Σj) = ΩK , we have av = 0 for all v ∈ ΩK , which proves

that x is in X
1(K, sc(T̂ )).

This proves that δ induces a map X(E ′, σ) → X
1(K, sc(T̂ )). We already

know that this map is injective. Let us prove that it is also surjective.

Let 0 6= x ∈ X
1(K, sc(T̂ )). Let a ∈ (ŜF/K)

Γ/π((ŜE/K)
Γ) be the preimage

of x, let av be the localization of a at the place v, and let (a1, ..., am1
) be a lift

of a in (Z/2Z)m1 . Let (I0, I1) be the corresponding partition. Now we claim
that ( ∩

i∈I0
Σi) ∪ ( ∩

j∈I1
Σj) = ΩK . Suppose that ( ∩

i∈I0
Σi) ∪ ( ∩

j∈I1
Σj) 6= ΩK , and

let v ∈ ΩK\( ∩
i∈I0

Σi) ∪ ( ∩
j∈I1

Σj). Therefore there exist i0 ∈ I0 and i1 ∈ I1 such

that Ev
i0 is not split over F v

i0 and Ev
i1 is not split over F v

i1 . Let F
v
i =

ni
∏

j=1

Li,j,

where the Li,j ’s are field extensions of Kv. Let E
v
i =

ni
∏

j=1

Mi,j , where Mi,j is a

quadratic étale algebra over Li,j. Set Γv = ΓKv
. Then we have

IF v
i /Kv

(Z)Γv/π(IEv
i /Kv

(Z)Γv) =
ni⊕
j=1

ILi,j/Kv
(Z)Γv/π(IMi,j/Kv

(Z)Γv).

If Mi,j is split over Li,j, then

IMi,j/Kv
(Z)Γv = ILi,j×Li,j/Kv

(Z)Γv = ILi,j/Kv
(Z)Γv ⊕ ILi,j/Kv

(Z)Γv ,

so the map π sends IMi,j/kv(Z)
Γv surjectively to ILi,j/kv(Z)

Γv . On the other
hand, if Mi,j is a field extension over Li,j , then π maps IMi,j/Kv

(Z)Γv ≃ Z to
2Z ⊆ Z ≃ ILi,j/Kv

(Z)Γv and we have

ILi,j/Kv
(Z)Γv/π(IMi,j/Kv

(Z)Γv) ≃ Z/2Z.

For ai ∈ IFi/K(Z)
Γ/π(IEi/K(Z)

Γ) ≃ Z/2Z, the localization map sends ai
diagonally into to IF v

i /Kv
(Z)Γv/π(IEv

i /Kv
(Z)Γv) ≃ ⊕

j, whereMi,j

is non−split

Z/2Z. Let avi be

the image of ai in IF v
i /Kv

(Z)Γv/π(IEv
i /Kv

(Z)Γv). By our choice of v, we have
IF v

i0
/Kv

(Z)Γv/π(IEv
i0
/Kv

(Z)Γv) (resp. IF v
i1
/Kv

(Z)Γv/IEv
i1
/Kv

(Z)Γv) non-trivial. In

particular, avi1 is non-zero as ai1 is non-zero. Note that

⊕
i
(ŜF v

i /Kv
)Γv/π((ŜEv

i /Kv
)Γv) =

⊕
i
IF v

i
/Kv

(Z)Γv/π(IEv
i
/Kv

(Z)Γv)

(1, ..., 1)
,

where 1 denotes the image of the diagonal element of IF v
i /Kv

(Z)Γv in

IF v
i /Kv

(Z)Γv/π(IEv
i /Kv

(Z)Γv).
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Since av = 0, either avi = 0 ∈ IF v
i /Kv

(Z)Γv/π(IEv
i /Kv

(Z)Γv) for all i, or avi =

1 ∈ IF v
i /Kv

(Z)Γv/π(IEv
i /Kv

(Z)Γv) for all i. In particular, this implies that avi0
and avi1 are both 0 or both 1, which is a contradiction. Therefore we have
( ∩
i∈I0

Σi)∪ ( ∩
j∈I1

Σj) = ΩK and (I0, I1) ∈ X(E ′, σ). This completes the proof of

the Proposition.

Proof of Proposition A 4.1. when L 6= K.

In this case, the torus sc(T ) fits in the following exact sequence :

(3) 1 // sc(T ) // RF/K(R
(1)
E/F (Gm)) // R

(1)
L/K(Gm) // 1

We take the dual sequence of exact sequence (3) :

(4) 0 // ŜL/K
ι
// IF/K(ŜE/F )

p
// sc(T̂ ) // 0 ,

from which we derive the long exact sequence

(5)

... // H1(K, ŜE/K)
ι1
// H1(K, IF/K(ŜE/F ))

p1
// H1(K, sc(T̂ )) // H2(K, ŜE/K) .

By Poitou-Tate duality, we have X
2(K, ŜE/K) ≃ X

1(K,R
(1)
E/K(Gm))

∗. We

claim that X2(K, ŜE/K) ≃ X
1(K,R

(1)
E/K(Gm))

∗ = 0. To see this, we consider
the following exact sequence :

1 // R
(1)
L/K(Gm) // RL/K(Gm) // Gm

// 1 ,

By Hilbert Theorem 90, we have H1(K,R
(1)
L/K(Gm)) = K×/NL/K(L

×), where
NL/K is the norm map from L to K. Since the norms of the quadratic exten-

sion L overK satisfy the local-global principle, we haveX1(K,R
(1)
L/K(Gm)) =

0. HenceX2(K, ŜL/K) = 0. Therefore the Tate–Shafarevich groupX
1(K, sc(T̂ ))

lies in the image of H1(K, IF/K(ŜE/F )).

Let us consider the following exact sequence :

(6) 1 // Gm
// RL/K(Gm)

π
// R

(1)
L/K(Gm) // 1 ,

where π(x) = x/σ(x). Considering the dual sequence, we get

(7) 0 // ŜL/K
// IL/K(Z)

d
// Z // 0 ,
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where d is the degree map which maps (a, b) ∈ Z ⊕ Z ≃ IL/K(Z) to a + b.
Taking the long exact sequence of (7), we have

(8) IL/K(Z)
Γ d

// Z // H1(K, ŜL/K) // H1(K, IL/K(Z)) = 0 .

Since L is a quadratic field extension of K, we have

H1(K, ŜL/K) ≃ Z/d(IL/K(Z)
Γ) = Z/2Z.

Similarly, we have

H1(K, IF/K(ŜE/F )) = H1(F, ŜE/F ) =
m
∏

i=1

H1(Fi, ŜEi/Fi
)

If Ei = Fi × Fi, then H1(Fi, ŜEi/Fi
) = 0 since d is surjective. If Ei is

a quadratic extension of Fi, then H1(Fi, ŜEi/Fi
) = Z/2Z. Recall that m =

m1 + m2 where m1 is the number of indices i such that Ei is a quadratic
extension of Fi, and m2 the number of indices i such that Ei = Fi×Fi. Then
we have H1(K, IF/K(ŜE/F )) ≃ (Z/2Z)m1 .

The map ι1 : H1(K, ŜL/K) → H1(K, IF/K(ŜE/F )) maps Z/2Z diagonally
into (Z/2Z)m1 . Therefore, we have

X
1(k, sc(T̂ )) ⊆ Im(p1) ≃ (Z/2Z)m1/(1, ..., 1).

Let us show that p1 maps X(E ′, σ) bijectively to X(K, sc(T̂ )).

Let (I0, I1) ∈ X(E ′, σ), and let a in H1(K, IF/K(ŜE/F )) be the correspon-

ding element. We want to show that p1(a) ∈ X
1(K, sc(T̂ )). Let v ∈ ΩK .

If v ∈ Σ(L/K) or v ∈ ∩
j∈I1

Σj , then av = 0. Hence, it suffices to prove

that for v ∈ ΩK \ (Σ(L/K) ∪ ( ∩
i∈I1

Σi)), we have av = ι1v(1) = ι1(1)v. Since

Σ(L/K) ∪ ( ∩
i∈I0

Σi) ∪ ( ∩
j∈I1

Σj) = ΩK , we have v ∈ ( ∩
i∈I0

Σi). Consequently, for

all i ∈ I0, we have H1(Fi, ŜEv
i /F

v
i
) = 0 and the projection of ι1v(1) to these

components are trivial. For i ∈ I1, we have that ai and the i− th coordinate
of ι1(1) are both 1, so their images in H1(F v

i , ŜEv
i /F

v
i
) are equal. This proves

that av = ι1v(1), hence p1(av) = 0.

We next show that the restriction of p1 to X(E ′, σ) is surjective onto
X

1(K, sc(T̂ )).

Let a = (a1, ..., am1
) ∈ (Z/2Z)m1 ≃ H1(K, IEσ/k(ŜE/F )) and let (I0, I1) be

the associated partition. If a = 0 or a = (1, ..., 1), then a is in the image of
ι1 and p1(a) = 0 ∈ X

1(K, sc(T̂ )). Hence, we may assume that I0 and I1 are
non-empty. We claim that
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0 6= p1(a) ∈ X
1(K, sc(T̂ )) if and only if I0 and I1 are non-empty and

Σ(L/K) ∪ ( ∩
i∈I0

Σi) ∪ ( ∩
j∈I1

Σj) = ΩK .

Suppose that 0 6= p1(a) ∈ X
1(K, sc(T̂ )). Let v ∈ ΩK\(Σ(L/K)∪( ∩

i∈I0
Σi)).

Since v /∈ Σ(L/K), we have H1(Lv, ŜLv/Kv
) = Z/2Z. Let av denote the

localization of a at v. Since p1(a) ∈ X
1(K, sc(T̂ )), we have av in the image of

ι1v, so either av = 0 or av = ι1v(1). It suffices to show that v ∈ ∩
i∈I1

Σi. Consider

the i-th component of (Z/2Z)m1 , which corresponds to H1(K, IFi/K(ŜEi/Fi
)) =

H1(Fi, ŜEi/Fi
). If Ei splits over Fi at a place v ∈ ΩK , then by the exact

sequence (8), the map d is surjective and H1(F v
i , ŜEv

i /F
v
i
) = 0, which means

that the i-th component vanishes at place v. Since v /∈ ∩
i∈I0

Σi, there exists

i ∈ I0 such that Ev
i is not split over F v

i . Let F
v
i =

ni
∏

j=1

Li,j , where Li,j’s are field

extensions of Kv. Let E
v
i =

ni
∏

j=1

Mi,j, where Mi,j is a quadratic étale algebra

over Li,j . Then

H1(F v
i , ŜEv

i /F
v
i
) =

∏

j

H1(Li,j, ŜMi,j/Li,j
).

By the choice of i, there is j such that Mi,j is not split over Li,j, and hence

H1(Li,j, ŜMi,j/Li,j
) 6= 0. Then the projection of ι1v(1) to H1(Li,j , ŜMi,j/Li,j

) is
1. On the other hand, the projection of av to the same component is 0 since
i ∈ I0. Therefore, a

v = 0 which means that H1(F v
i , ŜEv

i /F
v
i
) = 0 for all i ∈ I1,

hence v ∈ ∩
i∈I1

Σi. This proves that a ∈ X(E ′, σ).

Appendix B

Orthogonal involutions and maximal subfields

Let K be a global field of characteristic 6= 2, and let ΩK be the set of
places ofK. The purpose of this appendix is to give a new proof of Theorem B
of Prasad and Rapinchuk (see [PR 10], Introduction, page 586) using some of
the results of the present paper, in particular the local embedding conditions
of §3. Theorem B has two parts. The proof of the first part will be presented
in the first section of this appendix, and the proof of the second one in the
second section. The application to maximal subfields determining orthogonal
involutions of degree divisible by 4 is given in §B3.

We thank Gopal Prasad for encouraging us to include our proofs of these
results in our paper.
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§B1. First part of Theorem B

We start by recalling the dimension condition :

Definition B.1.1. Let E be an n–dimensional commutative étaleK–algebra,
and let σ : E → E be a K–linear involution. Let F = Eσ. We say that (E, σ)
satisfies the dimension condition if dimK(F ) = [n+1

2
].

The following result was proved by Prasad and Rapinchuk (cf. [PR 10],
Theorem B (i), Introduction, page 586 ; see also [PR 10], Theorem 9.4.) :

Theorem B.1. Let (A1, τ1) and (A2, τ2) be two central simple algebras with
orthogonal involutions with deg(A1) = deg(A2) = n, with n ≥ 3. Suppose
that the Ai’s have the same isomorphism classes of n–dimensional commu-
tative étale algebras invariant under the involutions satisfying the dimension
condition. Then for all v ∈ ΩK , we have (Av, τ1) ≃ (Av, τ2).

Definition B.1.2. Let (A, τ) be an orthogonal involution, with deg(A) = n.
Let v ∈ ΩK and let E be a τ–invariant rank n étale subalgebra of Av satisfying
the dimension condition. An n–dimensional τ–invariant subalgebra Ẽ of A
is called a lifting of E if (Ẽ, τ) ≃ (E, τ) over Kv.

Lemma B.1.3. Let (A, τ) be an orthogonal involution, with deg(A) = n. Let
v ∈ ΩK and let E be an n–dimensional τ–invariant étale subalgebra of Av

satisfying the dimension condition. Then E has a lifting in A.

Proof. See for instance [PR 10] , Proposition 2.4.

Lemma B.1.4. Let (A1, τ1) and (A2, τ2) be two central simple algebras with
orthogonal involutions with deg(A1) = deg(A2) = n. Suppose that the Ai’s
have a common n–dimensional commutative étale subalgebra invariant under
the involutions satisfying the dimension condition. Then we have disc(A1, τ1) =
disc(A2, τ2).

Proof. Let E be an n–dimensional τ1–invariant subalgebra of A1 satisfying
the dimension condition such that (E, τ1) embeds into (A2, τ2). By Proposi-
tion 1.6.1. we have disc(A1, τ1) = disc(E) = disc(A2, τ2).

Proposition B.1.5. Let (A1, τ1) and (A2, τ2) be two central simple alge-
bras with orthogonal involutions with deg(A1) = deg(A2) = n, with n ≥ 3.
Suppose that the Ai’s have the same isomorphism classes of n–dimensional
commutative étale algebras invariant under the involutions satisfying the di-
mension condition. Then we have the following

(i) disc(A1, τ1) = disc(A2, τ2).

(ii) The algebras A1 and A2 are isomorphic.
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(iii) Let v ∈ ΩK be such that Av
1 and Av

2 are split, and let q1 and q2 be
quadratic forms inducing the involutions τ1 and τ2. Then the Witt indices of
q1 and q2 are equal.

Proof. (i) This follows from Lemma B.1.4.

(ii) If n is odd, then A1 and A2 are both split, hence they are isomorphic.
Let us assume that n is even, and set n = 2r. Let v ∈ ΩK . Then for i =
1, 2, either Av

i is split or it is isomorphic to Mr(D), where D is the unique
quaternion division algebra over Kv. Hence it suffices to prove that for all
v ∈ Ω, the algebra Av

1 splits if and only if Av
2 splits.

Let v ∈ ΩK be a place such that Av
1 ≃ Mr(D). Let τ1 be induced by a

hermitian form h1 over D. Suppose that Av
2 splits, and that τ2 is induced by

a quadratic form q2 over Kv. We claim that q2 is isotropic.

Assume first that v is a finite place. For n ≥ 5 all quadratic forms are
isotropic (cf. [Sch 85], 6.4.2.). For n = 4, if q2 is anisotropic, then the determi-
nant of q2 is trivial. Since disc(A1, τ1) = disc(A2, τ2) = 1, the 2–dimensional
hermitian form h1 over D is hyperbolic (cf. [T 61], Theorem 3.). Then there
exists an n–dimensional τ1–invariant étale subalgebra E1 of A

v
1 satisfying the

dimension condition such that (E1, τ1) is split. Let E be a lifting of E1 in
A1. Then (E, τ1) can be embedded into (A2, τ2). Since (Ev, τ1) ≃ (Ev

1 , τ1)
is split, by Proposition 3.1.1. this implies that (Av

2, τ2) is hyperbolic, which
contradicts the assumption that q2 is anisotropic. Therefore q2 is isotropic.

Suppose now that v is a real place. Let k = [ r
2
], and let E1 = Ck ×Ck ×

Cr−2k, and let σ : E1 → E1 be the involution which exchanges the two copies
of Ck, and acts on Cr−2k as the complex conjugation. Then (E1, σ) can be
embedded into (Av

1, τ1) (cf. Proposition 3.1.2.), hence we can assume that the
restriction of τ1 to E1 is σ. Let E be a lifting of E1 in A1. Since (E, τ1) can
be embedded into (A2, τ2), by Proposition 3.1.2. the signature of q2 is of the
form (2k+2s, 2k+2s′) for some non–negative integers s, s′. Note that k ≥ 1,
since n ≥ 3. Hence q2 is isotropic.

Let v ∈ ΩK , and let us write q2 ≃ q0 ⊕ q, with q0 hyperbolic and q
anisotropic. Let dim(q0) = 2m ; since q2 is isotropic, we have m ≥ 1. Then
there exists a τ2–invariant commutative étale subalgebra E2 = Km

v ×Km
v ×E ′

of Av
2 satisfying the dimension condition such that τ2 permutes the two copies

of Km
v . Let E be a lift of E2. Since (E, τ2) can be embedded into (A1, τ1), we

see that Kv splits Av
1, which is a contradiction.

Therefore for all v ∈ ΩK , the algebra Av
1 splits if and only if Av

2 splits.
This implies that A1 and A2 are isomorphic. If v is a place such that Av

1 and
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Av
2 are split, the above argument also shows that the Witt indices of q1 and

q2 are equal, and this proves (iii).

Proposition B.1.6. Let A be a central simple K–algebra of degree n, and
let τ1 : A → A and τ2 : A → A be two orthogonal involutions. Assume that
we have

(i) disc(A, τ1) = disc(A, τ2).

(ii) Let v ∈ ΩK be such that Av is split, and let q1 and q2 be quadratic
forms inducing the involutions τ1 and τ2. Then the Witt indices of q1 and q2
are equal.

Then for all v ∈ ΩK , the algebras with involution (Av, τ1) and (Av, τ2) are
isomorphic.

Proof. If v ∈ ΩK is a real place such that Av splits, then having the same
Witt index implies that q1 and q2 have the same signature, hence they are
isomorphic. Therefore we have (Av, τ1) ≃ (Av, τ2). For a real place v such that
Av is not split, we have (Av, τ1) ≃ (Av, τ2) (cf. [Sch 85], 10.3.7). Therefore
for all real places v ∈ ΩK , we have (Av, τ1) ≃ (Av, τ2).

Let v ∈ ΩK be a finite place. Assume first that Av is non-split. By (i) we
have disc(Av, τ1) = disc(A, τ2), and this implies that (Av, τ1) ≃ (Av, τ2) (cf.
[T 61], Theorem 3.).

Assume now that v is a finite place such that Av is split. Since q1 and q2
have the same Witt index, it remains to prove that their anisotropic parts
are similar. Let n0 be the dimension of the anisotropic parts of q1 and q2. We
are reduced to the case where n0 ≤ 4, and the quadratic forms q1 and q2 are
anisotropic of dimension n0. If n0 = 4, then there is only one isomorphism
class of anisotropic forms, hence q1 ≃ q2. Recall that we have det(q1) =
det(q2). Two anisotropic forms of dimension ≤ 3 having the same determinant
are similar. Therefore q1 and q2 are similar, hence (Av, τ1) ≃ (Av, τ2). This
completes the proof of the Proposition.

Proof of Theorem B.1. By Proposition B.1.5. we can assume that A1 =
A2 = A, and that conditions (i) and (ii) of Proposition B.1.6. are fulfilled.
Hence Proposition B.1.6. implies the Theorem.

If n is even, having the same invariant subfields is enough. In order to
prove this, we need a few lemmas :

Lemma B.1.7. Let k be a local field, let r ≥ 1 be an integer, and let δ ∈
k×/k×2. Assume that one of the following holds

(i) δ 6= 1 in k×/k×2.
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(ii) r is even, and δ = 1 in k×/k×2.

Then we have the following :

(iii) There exists a degree r field extension M of k and x ∈ M× such that
x 6∈ M×2 and that NM/k(x) = δ ∈ k×/k×2.

(iv) There exists a tower of field extensions N/M/k with [M : k] = r and
[N : M ] = 2 such that the discriminant of N is δ.

Proof. Let us prove (iii). Assume first that (i) holds. Suppose that δ is a
unit, and let M be the unique unramified extension of k of degree r. Let x
be a unit of M such that NM/k(x) = δ. Then x 6∈ M×2.

Suppose that δ = π, where π is a uniformizer of K. Let f(X) = Xr +
(−1)rπ, and let M = k[X ]/(f). Let x be the image of X in M . Then we have
NM/k(x) = π, and x 6∈ M×2.

Assume that (ii) holds, and let r = 2m. Let M/k be unramified of degree
2m. Let π be a uniformizer of k. Then π is also a uniformizer of M , hence
π 6∈ M×2. We have NM/K(π) = π2m, hence NM/K(π) ∈ k×2. Set x = π.

Therefore (iii) is proved. Let us prove (iv). With M and x as in (iii), let
us set N = M(

√
x). Then N and M have the required properties, hence (iv)

is proved.

Lemma B.1.8. Let (A, τ) be an orthogonal involution, with deg(A) = 2r
with r ≥ 2. Let S be a finite subset of ΩK and for all v ∈ S, let E(v) be an
n–dimensional τ–invariant étale subalgebra of Av satisfying the dimension
condition. Then the algebras E(v) for v ∈ S have a common lifting in A
which is a degree 2r field extension of K.

Proof. Assume first that r is even, or disc(A, τ) 6= 1 ∈ K×/K×2. Let δ =
disc(A, τ) ∈ K×/K×2. Let w ∈ ΩK be a finite place such that w 6∈ S, and
that if δ 6= 1 ∈ K×/K×2, then δ 6∈ K×2

w . Let N and M be as in Lemma B.1.7.
(iv) and let σ : N → N be the Kw–linear involution with fixed field M . Note
that since disc(N) = δ and (N, σ) is not split, Proposition 3.1.1. (ii) implies
that (N, σ) can be embedded into (Aw, τ). By [PR 10], Proposition 2.4. there
exists an étale subalgebra E of A which is a common lifting of N and E(v),
for all v ∈ S. Since N is a field, E is a field as well.

Suppose now that r is odd and that disc(A, τ) = 1 ∈ K×/K×2. Then by
hypothesis we have r ≥ 3 ; let us write r = m + 3. Let v1 and v2 be two
distinct finite places of K such that v1, v2 6∈ S, that Av1 and Av2 are split,
and that (Av2 , τ) is hyperbolic.

Let π be a uniformizer at v1, and let µ be an unit such that µ 6∈ K×2
v1 .

Then Kv1 has exactly four square classes, and they are represented by 1, µ,
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π and µπ. Set E1 = Kv1(
√
µ), E2 = Kv1(

√
π), and E3 = Kv1(

√
µπ). Let

σi : Ei → Ei be the non-trivial automorphism of Ei/Kv1 for all i = 1, 2, 3.
If m > 0, let E4 = Km

v1 × Km
v1 , and let σ4 : E4 → E4 be the involution

which exchanges the two copies of Kv1 . Set E(v1) = E1 × E2 × E3 × E4,
and let σ(v1) : E(v1) → E(v1) be the involution which is equal to σi on
Ei. Then (E(v1), σ(v1)) is a non–split rank 2r étale algebra of discriminant
1 satisfying the dimension condition. Hence (E(v1), σ(v1)) can be embedded
into (A, τ) by Proposition 3.1.1. (ii). Let us denote by (E(v1), τ) the image
of (E(v1), σ(v1)) in (Av1 , τ).

Let L be the unramified extension of degree r of Kv2 . Since r is odd, we
have disc(L) = 1 ∈ K×

v2
/K×2

v2
. Let E(v2) = L × L, and let σ(v2) : E(v2) →

E(v2) be the involution exchanging the two copies of L. Then (E(v2), σ(v2))
is a split rank 2r étale algebra with involution satisfying the dimension condi-
tion. Since Av2 is split and (Av2 , τ) is hyperbolic, (E(v2), σ(v2)) can be em-
bedded into (Av2 , τ) by Proposition 3.1.1. (i). Let us denote by (E(v2), τ) the
image of (E(v2), σ(v2)) in (Av2 , τ).

Let (E, τ) be a common lifting of (E(v1), τ), (E(v2), τ) and of (E(v), τ)
for v ∈ S ; such a lifting exists by [PR 10], Proposition 2.4. Let F be the
subalgebra of τ–symmetric elements of E. Then F is a field, since F v2 is a
field. Moreover, (E, τ) is not split, since (E(v1), τ) is not split. Therefore E is
a degree 2r field extension of K. This completes the proof of the proposition.

We have the following strengthening of Proposition B.1.5. :

Proposition B.1.9. Let (A1, τ1) and (A2, τ2) be two central simple algebras
with orthogonal involutions with deg(A1) = deg(A2) = 2r with r ≥ 2. Suppose
that the Ai’s have the same isomorphism classes of 2r–dimensional subfields
invariant under the involutions satisfying the dimension condition. Then

(i) disc(A1, τ1) = disc(A2, τ2).

(ii) The algebras A1 and A2 are isomorphic.

(iii) Let v ∈ ΩK be such that Av
1 and Av

2 are split, and let q1 and q2 be
quadratic forms inducing the involutions τ1 and τ2. Then the Witt indices of
q1 and q2 are equal.

Proof. (i) follows from Lemma B.1.4. The proofs of (ii) and (iii) follow the
pattern of the proof of Proposition B.1.5. with the following modifications. By
Lemma B.1.8. the algebras E1 and E2 appearing in the proof of Proposition
B.1.5. have liftings that are subfields of A1 respectively A2. Since we are
assuming that Ai’s have the same isomorphism classes of 2r–dimensional
subfields invariant under the involutions satisfying the dimension condition,
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the arguments of the proof of Proposition B.1.5. apply and we get the desired
conclusion.

Therefore we obtain the following :

Theorem B.1’. Let (A1, τ1) and (A2, τ2) be two central simple algebras with
orthogonal involutions with deg(A1) = deg(A2) = 2r, with r ≥ 2. Suppose
that the Ai’s have the same isomorphism classes of maximal subfields inva-
riant under the involutions satisfying the dimension condition. Then for all
v ∈ ΩK , we have (Av, τ1) ≃ (Av, τ2).

Proof. By Proposition B.1.9. we may assume that A1 = A2 = A, and that
conditions (i) and (ii) of Proposition B.1.6. are fulfilled. Hence Proposition
B.1.6. implies the Theorem.

§B2. Second part of Theorem B

We now prove the second part of Theorem B of Prasad and Rapinchuk
(cf. [PR 10], Introduction, page 586, and Theorem 8.1.). Let A be a central
simple K–algebra, let τ : A → A be an orthogonal involution of degree 4m.

Let J = J (A, τ) be the set of orthogonal involutions η : A → A such
that (Av, η) ≃ (Av, τ) for all v ∈ ΩK . Let Ω

′ be the set of places v ∈ ΩK such
that Av is not split and that Z(Av, τ) = Kv ×Kv.

Theorem B.2. We have the following :

(i) Let η ∈ J . Then there exists an η–invariant maximal subfield Eη of
A satisfying the dimension condition such that (Ev

η , η) is split for all v ∈ Ω′.

(ii) Let η ∈ J , and let Eη be an η–invariant subalgebra of A of rank 4m
such that (Ev

η , η) is split for all v ∈ Ω′. Let γ ∈ J . If (Eη, η) embeds into
(A, γ), then the algebras with involution (A, η) and (A, γ) are isomorphic.

Proof. (i) Let v ∈ Ω′. Then we have A ≃ M2m(D(v)), where D(v) is
the unique quaternion division algebra over Kv. By hypothesis, we have
disc(A, η) = 1 ∈ K×/K×2. By [T 61], Theorem 3. this implies that (A, η) is
hyperbolic. Let L(v) be a quadratic extension of Kv splitting D(v) and set
E(v) = L(v)m×L(v)m. Let us endow E(v) with the involution σ(v) : E(v) →
E(v) which exchanges the two copies of L(v). By Propositions 3.1.1. and
3.1.2. there exists an embedding of algebras with involution (E(v), σ(v)) →
(Av, η). By Lemma B.1.8. there exists a η–invariant subfield Eη of A such
that (Ev

η , η) ≃ (E(v), σ(v)) for all v ∈ Ω′.

(ii) Let Eη be an η–invariant étale subalgebra of A satisfying the dimen-
sion condition such that (Eη, η) is split over Kv for all v ∈ Ω′. Let Fη be
the subalgebra of η–symmetric elements of Eη, and let d ∈ F×

η such that
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Eη = Fη(
√
d). Let γ ∈ J , and assume that there exists an embedding of

algebras with involution (Eη, η) → (A, γ). By Proposition 1.1.3. there exists
a ∈ F×

η such that (A, ηa) ≃ (A, γ). We claim that (A, ηa) ≃ (A, η).

Let Ω1 be the set of places of K such that Av is non-split and that
Z(Av, τ) is a field. Let Ω2 be the set of places of K such that Av is split.
Note that we have ΩK = Ω′ ∪ Ω1 ∪ Ω2. We have compatible orientations
u : ∆(Eη) → Z(A, η) and ua : ∆(Eη) → Z(A, ηa). We regard C(A, ηa)
and C(A, η) as ∆(Eη)–algebras via ua and u. By Proposition 2.5.4. we have
C(A, ηa) = C(A, η) + res∆(Eη)/KcorFη/K(a, d) in Br(∆(Eη)).

Let v ∈ Ω′. Then (Ev
η , η) is split by hypothesis, hence we have d ∈ (F v

η )
×2.

Therefore corF v
η /K(a, d) = 0, and hence we have C(Av, ηa) = C(Av, η) in

Br(∆(Ev
η )).

Let v ∈ Ω1. Then Z(Av, η) is a field, hence ∆(Ev
η ) is also a field. Thus

res∆(Ev
η )/KcorF v

η /K(a, d) = 0, hence we have C(Av, ηa) = C(Av, η) in Br(∆(Ev
η )).

Let v ∈ Ω2. Then Av is split, and hence (Av, η) admits improper si-
militudes. Hence there exists an isomorphism of algebras with involution
Int(α) : (Av, ηa) → (Av, η) such that u = c(α) ◦ ua. Therefore C(Av, ηa) is
isomorphic to C(Av, η) as ∆(Ev

η )–algebras.

Hence we have C(Av, ηa) = C(Av, η) in Br(∆(Ev
η )) for all v ∈ ΩK . By

the Hasse–Brauer–Noether theorem, this implies that C(A, ηa) = C(A, η) in
Br(∆(Eη)). Note that disc(A, ηa) = disc(A, η), and that (Av, ηa) and (Av, η)
are isomorphic for all real places v of K. By [LT 99], Theorems A and B
this implies that (A, ηa) ≃ (A, η). Since (A, ηa) ≃ (A, γ), we obtain (A, η) ≃
(A, γ).

§B3. Application

The results of §B1 and §B2 have the following application (see [PR 10],
Introduction, page 586, last line before the statement of Theorem B) :

Theorem B.3. Let (A1, τ1) and (A2, τ2) be two central simple algebras
with orthogonal involutions with deg(A1) = deg(A2) = 4m. Assume that the
Ai’s have the same isomorphism classes of maximal subfields invariant under
the involutions satisfying the dimension condition. Then we have (A, τ1) ≃
(A, τ2).

Proof. By Theorem B.1.’ we have (Av
1, τ1) ≃ (Av

2, τ2) for all v ∈ ΩK . Let
J = J (A, τ1) be the set of orthogonal involutions η : A → A such that
(Av, η) ≃ (Av

2, τ1) for all v ∈ ΩK . Then we have τ2 ∈ J . By Theorem B.2. (i)
there exists a τ1–invariant maximal subfield Eτ1 of A satisfying the dimension
condition and such that (Ev

τ1
, τ1) is split over Kv for all v ∈ Ω′ (where Ω′ is the
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set of places v ∈ ΩK such that Av is not split and Z(Av, τ1) = Kv×Kv. Since
(A, τ1) and (A, τ2) have the same isomorphism classes of maximal subfields
invariant by the involutions and satisfying the dimension condition, (Eτ1 , τ1)
embeds into (A, τ2). Therefore by Theorem B.2. (ii) we have (A, τ1) ≃ (A, τ2).
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