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Embeddings of maximal tori in classical groups and

explicit Brauer—Manin obstruction
E. Bayer-Fluckiger, T-Y. Lee, R. Parimala
Introduction

Embeddings of maximal tori into classical groups over global fields of
characteristic # 2 are the subject matter of several recent papers (see for
instance Prasad and Rapinchuk [PR 10], [F 12], [Lee 14], [B 12], [B 13]),
with special attention to the Hasse principle. In particular, it is shown in
[Lee 14] that the Brauer-Manin obstruction is the only one.

The present paper gives necessary and sufficient conditions for the em-
bedding of maximal tori in classical groups. As in [PR 10], the embedding
problem will be described in terms of embeddings of étale algebras with in-
volution into central simple algebras with involution. Let (F, o) be an étale
algebra with involution defined over a global field, satisfying certain dimen-
sion conditions (cf. §1). In §4, we define a group III(E, o) which plays an
important role in the embedding problem.

Let (A,7) be a central simple algebra with involution defined over the
same global field, and assume that everywhere locally there exists an (orien-
ted) embedding of (E, o) in (A, 7). Then we define a map f : HI(E,0) —
Z/27 such that (E, o) can be embedded in (A, 7) globally if and only if f =0
(cf. Theorem 5.5.1.).

By [Lee 14] we know that the Brauer-Manin obstruction is the only one,
hence we obtain an explicit description of this obstruction.

In addition to the Hasse principle, one also needs to know when an em-
bedding exists over local fields. This is done in [Lee 14] in terms of Tits
indices, and in §3 of the present paper (see also 6.3. and 8.2.) in terms of
classical invariants. Finally, §9 contains some applications and examples. In
particular, we recover Theorem A of Prasad and Rapinchuk (see [PR 10],
Introduction, page 584).

The paper has two appendices. The first one outlines the relationship of
the point of view and results of [Lee 14] and those of the present paper, and
the second one contains a new proof of Theorem B of Prasad and Rapinchuk
(see [PR 10], Introduction, page 586).

We thank Gopal Prasad for his interest in our results, and for encouraging
us to include an alternative proof of Theorem B of [PR 10] in our paper.
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81. Definitions, notation and basic facts

1.1. Embeddings of algebras with involution

Let L be a field, and let A be a central simple algebra over L. Let 7 be an
involution of A, and let K be the fixed field of 7 in L. Recall that 7 is said
to be of the first kind if K = L and of the second kind if K # L; in this case,
L is a quadratic extension of K. Let dimz(A) = n%. Let E be a commutative
étale algebra of rank n over L, and let o : E — E be a K-linear involution.
such that o|L = 7|L. Set F' = {e € E|o(e) = e}. Assume that the following
dimension condition holds :

. B n fL#K;
dlmKF_{ ] L= K.

An embedding of (E,0) in (A, 7) is by definition an injective homomor-
phism f: E — A such that 7(f(e)) = f(o(e)) for all e € E. It is well-known
that embeddings of maximal tori into classical groups can be described in
terms of embeddings of étale algebras with involution into central simple
algebras with involution satisfying the above dimension hypothesis (see for
instance [PR 10], Proposition 2.3).

We say that a separable field extension E’/L is a factorof E if E = E'x E"
for some étale L—algebra E”. It is well-known that F can be embedded in
the algebra A if and only if each of the factors of F splits A :

Proposition 1.1.1. The étale algebra E can be embedded in the central
simple algebra A if and only if for every factor E' of E, the algebra A ®; E’
is a matriz algebra over E'.

Proof. See for instance [PR 10], Proposition 2.6.

Let € : E — A be an L-embedding which may not respect the given
involutions. The following properties are well-known :

Proposition 1.1.2. There exists a T—symmetric element a € A* such that

for
0 = 7o Int(«)

we have

e(o(e)) =6(e(e)) for all e € F,
in other words € : (E,0) — (A,0) is an L—embedding of algebras with
involution.

Proof. See [K 69], §2.5. or [PR 10], Proposition 3.1.



Note that 6 and 7 are of the same type (orthogonal, symplectic or uni-
tary), since « is T—symmetric.

Foralla € F* let 6, : A — A be the involution given by 6, = folnt(e(a)).
Note that € : (F,0) — (A, 0,) is an embedding of algebras with involution.

Proposition 1.1.3. The following conditions are equivalent :
(a) There exists an L-embedding v : (E,0) — (A,T) of algebras with
involution.

(b) There exists an a € F* such that (A,0,) ~ (A,T) as algebras with
involution.

Proof. See [PR 10], Theorem 3.2.

If v: (E,0) = (A, 1) is an embedding of algebras with involution, and if
a € ', o € A are such that Int(a) : (A,0,) — (A, 7) is an isomorphism
of algebras with involution satisfying Int(«) o € = ¢, then (¢, a, «) are called
parameters of the embedding.

Lemma 1.1.4. Let a,b € F* and let « € A*. Then we have :

(i) Int(«) : (A, 0,) — (A, ) is an isomorphism of algebras with involution
if and only if there exists A € L* such that 6(a)e(b)a = Xe(a).

(ii) Moreover, we have Int(a) o € = € if and only if there exists y € E*
and X € L* such that o = €(y) and Ng/p(y) = Xab™".

Proof. The proof of (i) follows from a direct computation. Let us prove (ii).
If Int(a) o € = ¢, then we have ae(x)a™! = €(z) for all x € E. Since E is
a maximal commutative subalgebra of A, this implies that o € ¢(FE). Let
a = €(y) for some y € E. Then we have 0(e(y))e(b)e(y) = Ae(a). This implies
that bo(y)y = Aa, hence Ng,/p(y) = Aab™'. The converse is clear.

In particular, there exists an isomorphism of algebras with involution
(A,0,) = (A, 6,) commuting with € if and only if we have ab™' € L*Ng,p(E*).

Definition 1.1.5. We say that (E, o) is split if there exists an idempotent
e € E such that e + o(e) = 1.

Equivalently, (E, o) is split if F ~ F; X Ey with o(E;) = E».

Definition 1.1.6. We say that (A, 7) is hyperbolic if there exists an idem-
potent a € A such that a + 7(a) = 1.

Equivalently, (A, 7) is hyperbolic if A ~ M, (D) for some division algebra
D, and 7 is induced by a hyperbolic hermitian form over D (cf. [KMRT 98],
Chapter 11, (6.7) and (6.8)).



Proposition 1.1.7. Suppose that (E, o) is split. Then the following are equi-
valent :

(a) The étale algebra with involution (E, o) can be embedded in the central
simple algebra with involution (A, ).

(b) All the factors of E split A, and the involution (A, 1) is hyperbolic.
Proof. Assume that (a) holds. Then by Proposition 1.1.1. all the factors of
E split A. Let ¢ : (F,0) = (A, 7) be an embedding, and let e € F be an
idempotent such that e+o(e) = 1. Set a = ¢(e). Then a € A is an idempotent,
and we have a+7(a) = 1, hence (A, 7) is hyperbolic. Conversely, assume that
(b) holds. Since E can be embedded in A, by Proposition 1.1.2. there exists
an involution 6 : A — A such that (F, o) embeds into (A, #). Hence (A, 0) is

hyperbolic, and therefore (A, 7) ~ (A, 6). By Proposition 1.1.3. this implies
that (F, o) embeds into (A, 7), hence (a) holds.

1.2. Scaled trace forms

Let us keep the notation introduced in 1.1. In particular, (F, o) is an étale
algebra with involution. Let a € F'*, and let us consider the form

T,: EXE— L
given by
To(@,y) = Trg/r(axo(y))-

Then T, is a quadratic form if L = K, and a hermitian form if L/K is a
quadratic extension. For a = 1, we use the notation 1" = Tj.

Proposition 1.2.1. Let a € F*. Then we have
det(7,) = Ng/(a)det(T),

in K*/K*?if L =K, and in K* /Ny (L*) if L/ K is a quadratic extension.

Proof. Let E* be the L-vector space of o-semilinear homomorphisms f :
E — L (ie. f(Ax) =0(N)f(x) for all x € E and A € L). For any quadratic
or hermitian form b : £ x E — L, let us denote by ad(b) : E — E* the L-
linear map defined by ad(b)(z)(y) = b(x,y) for all z,y € E. Let (eq,...,ep)
be an L-basis of E, and let (¢, ..., el) be the dual basis. Then det(d) is the
determinant of ad(b) in the bases (e1,...,e,) and (ef, ..., €t).

Let m, : E — FE be the multiplication by a. By definition, we have
Ng/r(a) = det(m,). Note that we have ad(7},) = ad(7T") o m,. This implies
that det(7,) = Ng/r(a)det(T).

Corollary 1.2.2. Let a € F*. Then we have
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(a) If L= K andn is even, then det(T,) = det(T).
(b) If L is a quadratic extension of K, then det(T,) = Np/k(a)det(T).
Proof. Let us assume that L = K. By Proposition 1.2.1. we have det(7},) =
Ng/k(a)det(T) € K*/K*2. Since a € F*, we have Np/k(a) = Ng/k(a)?,
which is an element of K% hence we have det(T,) = det(T) € K*/K*2,
This proves (a).

Suppose now that L is a quadratic extension of K. Then Proposition 1.2.1.
implies that det(7,) = Ng,(a)det(T) € K* /N x(L*). Since a € F*, we
have N/ (a) = Np/k(a), and this implies (b).

1.3. The discriminant of an étale algebra with involution

Recall that T': £ x . — L is defined by T'(z,y) = Trg/(zo(y)).
Definition 1.3.1. Set disc(F,0) = det(T'), considered as an element of
K*/K*?if L = K, and as an element of K /Ny (L*) if L/K is a quadratic
extension. This element is called the discriminant of the étale algebra with
involution (E, ).
Lemma 1.3.2. Suppose that L = K, and that n = 2r. Then

(i) disc(E, o) = (—1)"disc(E).

(ii) For all a € F* we have disc(T,) = disc(F).
Proof. Let us denote by T/ : EXE — K, given by (z,y) — Trg/k(xy), the
usual trace form. We have rank(E) = 2rank(F) = 2r. Writing £ = F(V/d)
for some d € F'*, a computation shows that det(T") = (—1)"det(Ty/x). By
definition, we have disc(E) = det(Tg/k ), hence disc(E, o) = (—1)"disc(E).

Since disc(T") = (—1)"det(T), by (i) we have disc(T") = disc(E). By Co-
rollary 1.2.2. we have disc(T},) = disc(7'), hence disc(T,) = disc(FE).

1.4. An embedding criterion

Assume that A = M,,(L) and that 7 is an orthogonal or unitary involu-
tion. Then 7 : A — A is given by an n—dimensional form b : V xV — L,
which is quadratic if L = K and hermitian if L # K. We have an embedding
criterion, in terms of the forms introduced in 1.2 :

Proposition 1.4.1. There exists an embedding of algebras with involution
(E,0) — (A, 7) if and only if there exists a € F* such that b ~T,.

Proof. If L = K, then this is well-known (see for instance [PR], 7.1.). The
proof is similar in the case when L # K. However, we give a proof for the
convenience of the reader.



Note that A = End (V). Since 7 is induced by b : V x V — L, we have
blex,y) = b(z,7(e)y) for all e € End(V') and all z,y € V.

Suppose first that there exists a € F* such that b ~ T,. Let us identify
V to F and b to T,, and note that sending e € E to the multiplication by e
gives rise to an embedding £ — End(FE). Identifying b to T,, we have, for all
e,r,y € F,

bex,y) = Trg/r(aexo(y)) = Trg/r(avo(o(e)y)) = bz, o(e)y).

Since this holds for all z € E, and that b(ex,y) = b(z, 7(e)y) for all z € E,
we have o(e) = 7(e) for all e € E. Hence the natural embedding of F in
A ~ End(FE) is an embedding of algebras with involution.

Suppose now that there exists an embedding of algebras with involution
L:(E,0) — (A, 7). Then for all e € E, we have

b(u(e), y) = b(x, 7(c(e))y) = bz, l(a(e))y).

Let us show that there exists a hermitian form h : V' x V — E such
that b(z,y) = Trg/r(h(z,y)) for all x,y € V. Let us fix z,y € V, and let
us consider the linear form F — L such that e — f(e) = b(¢(e)z,y). Since
E is a separable L-algebra, there exists ¢’ € I such that Trg,(ee’) = f(e)
for all e € E. Set h(z,y) = €. Let us check that h is a hermitian form. It is
easy to see that h is linear in the first variable, so it remains to check that
o(h(z,y)) = h(y,x) for all z,y € V. We have

Trp/L(eo(h(z,y))) = o [Trg(o(e)h(z,y))] = alb(u(o(e))z,y))] =

= a[b(z, l(e)y)] = alolbe(e)y, )] = b(e(e)y, x) = Trp/r(eh(y, ©)).

Since this holds for all e € E, we have h(y,z) = o(h(x,y)), as claimed.
Therefore h : V xV — FE is a one dimensional hermitian form. Let us identify
the 1-dimensional E-vector space V with E. Then there exists a € F* such
that h(z,y) = axo(y). Hence we have b ~ T,, and this completes the proof
of the Proposition.

Note that if (A, ) is the involution induced by T and if a € F*, then T,
induces the involution (A, 6,).

1.5. Invariants of central simple algebras with involution

If (A, 7) is of orthogonal type and n is even, we denote by disc(A, 7)
its discriminant (cf. [KMRT 98], Chap II. (7.2), and by C(A, 1) its Clifford
algebra (cf. [KMRT 98], Chap II. (8.7)). We denote by Z(A, ) the center
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of the algebra C'(A, 7). Then Z(A, 1) is a quadratic étale algebra over K.
If (A, 7) is unitary, then we denote by D(A, 7) its discriminant algebra (cf.
[KMRT 98], Chap II, (10.28)). The signature of (A, ) is defined in [KMRT
08], Chap II. (11.10) and (11.25).

If moreover A ~ M, (L), then 7 is induced by a symmetric, skew—symmetric
or hermitian form, according as 7 is of orthogonal, symplectic or unitary
type. In this case, we have some additional invariants, such as the Hasse
invariant (in the orthogonal case), as well as the determinant (in the uni-
tary case). In particular, if 7 is unitary and induced by a hermitian form h
over L/K, then we set det(A,7) = det(h) € K*/Np/k(L*). Let us write
L = K(V/6), and let us denote by Br(K) the Brauer group of K. Then we
have D(A,7) = (disc(h),d) € Br(K), where disc(h) = (—1)""~Y/2det(h) (cf.
[KMRT 98], Chap II. (10.35)). If 7 is orthogonal and induced by a quadratic
form g over K, then we denote by w(q) € Bry(K) its Hasse invariant.

Let d € F* be such that E = F(v/d). The following result is due to
Brusamarello, Chuard-Koulmann and Morales (cf. [BCM 03], Theorem 4.3.) :

Lemma 1.5.1. Let (A, 0) be an orthogonal involution. Assume that n is even,
and let a € F*. Then we have w(T,) = w(T) + corg/x(a, d).

Lemma 1.5.2. Let (A,0) be a unitary involution, and let a € F*. Then
D(A,0,) = D(A,0) + corpk(a,d).

Proof. By [KMRT 98], Chap. II, (10.36), we have D(A,60,) = D(A,0) +
(Np/k(a), L/K). We have (Np/k(a), L/ K) = corp/i(a, E/F) = corp/k(a,d),
hence the lemma is proved.

1.6. Some necessary embedding conditions

The existence of an embedding of algebras with involution (E, o) — (A, T)
implies the following relationship between the discriminants of £ and (A, 7) :

Proposition 1.6.1. Suppose that the degree of A is even, and that (A, T) is
of the orthogonal type. If there exists an embedding of algebras with involution
(E,0) — (A, 7), then we have disc(E) = disc(A, 1) € K*/K*2.

Proof. Let M be the function field of the Severi—-Brauer variety of the algebra
A. Then we have A ® M ~ M, (M), and the involution 7 is induced by a
quadratic form ¢ over M. By Proposition 1.4.1. and Lemma 1.3.2. (ii) (see
also [B 12], Lemma 1.4.1.) we have disc(E @k M) = disc(q) € M*/M*2,
Since the natural map K*/K*% — M>* /M*? is injective, we have disc(E) =
disc(A,7) € K*/K*2.

Proposition 1.6.2. Suppose that A ~ M,(L), and that (A,T) is of the

unitary type. If there exists an embedding of algebras with involution (E, o) —
(A, 1), then we have det(A, T)disc(E,0)™" € Np/x (F*)Np x(L*).
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Proof. Since A ~ M, (L), the involution 7 is induced by a hermitian form
h. By Proposition 1.4.1. there exists a € F'* such that h ~ T,. By Corollary
1.2.2. (b) we have det(T,) = Np/k(a)det(T"). Recall that disc(E,o) is by
definition equal to det(T') € K* /N k(L*). We have det(A, ) = det(h) =
det(7,). This implies that det(A,7) = Np/g(a)disc(E,0) € K*/Np/x(L*),
hence we have det(A, 7)disc(E, o) € Np/g (F*)Np g (L*).

§2. Orientation

In order to treat the non—split orthogonal case, we need an additional
tool, namely the notion of orientation. Assume that (A, 7) is an orthogonal
involution, and that the degree of A is even. Let us set deg(A) = 2r.

We have seen that the existence of an embedding of algebras with in-
volution (E,0) — (A, 7) implies that disc(F) = disc(A,7) € K*/K*? (see
Proposition 1.6.1.). Therefore the discriminant algebra of E (see below) is
isomorphic to the K—algebra Z(A, 7). However, such an isomorphism is not
unique. This leads to the notions of orientation, and of oriented embedding,
needed for the analysis of the Hasse principle (see 6.1.).

2.1. Discriminant algebra

We have E ~ F[X]/(X? — d) for some d € F*. Let us consider the
F-linear involution o’ : F[X]/(X? — d) — F[X]/(X? — d) determined by
0'(X) = —X. Then we have an isomorphism of algebras with involution
(E,0) ~ (F[X]/(X? —d),0’). Let x be the image of X in E, and note that
we have o(z) = —x. Let A(F) be the discriminant algebra of E (cf. [KMRT
98], Chapter V, §18, p. 290).

Lemma 2.1.1. We have an isomorphism of K —algebras
A(E) = K[Y]/(Y? = (=1)'Ng/k (2)).

Proof. Recall that Tg/x : £ x E — K, defined by T,k (e, f) = Trg/k(ef),
is the trace form of E. Then by [KMRT 98], Proposition (18.2) we have

A(E) ~ K[Y]/(Y? — det(Tg/xk)).

Note that Trg/x = Trp/xoTrg/p, and that the trace form Ty /p : EXE — F,
defined by Tg/r(e, f) = Trg/p(ef), is isomorphic to < 2,2d >. Further, we
have d = —Ng/p(r) and hence Np/ i (d) = (—=1)"Ng,k(x). Therefore we have
det(Tg k) = (—1)"Np/k(z) € K*/K*?, and this concludes the proof of the
lemma.

Let us denote by y the image of Y in A(FE). The elements x and y will
be fixed in the sequel. Let p : A(E) — A(E) be the automorphism of A(E)

8



induced by o. Note that we have p(y) = (—1)", and that hence p is the iden-
tity if r is even and the non—trivial automorphism of the quadratic algebra
A(E) if r is odd.

2.2. Generalized Pfaffian

For any central simple algebra A over K of degree 2r with an orthogonal
involution 6, let us denote by Skew(A,#) the set {a € A | 0(a) = —a} of
skew elements of A with respect to the involution 7. Recall that C(A,0)
is the Clifford algebra of (A,0), and that Z(A,6) is the center of C(A,8).

Recall that Z(A,#) is a quadratic étale algebra over K. Let us denote by =
the non—trivial automorphism of Z(A, 6) over K.

The generalized Pfaffian (cf. [KMRT 98|, Chapter II, §8) of (A,0) is a
homogeneous polynomial map of degree r, denoted by

7 = Skew (A, 0) — Z(A,0)

such that for all a € Skew(A, 0), we have v(my(a)) = —mg(a), and mg(a)? =
(=1)"Nrd(a); for all x € A and a € Skew(A,#), we have (mp(zab(x)) =
Nrda(z)m(a) (cf. [KMRT 98], Proposition (8.24)).

2.3. Orientation

For any orthogonal involution (A, 7), an isomorphism of K—algebras
A(E) = Z(A, 1)

will be called an orientation.

Let us assume that the étale algebra E can be embedded in the central
simple algebra A, and let us fix an embedding € : E — A. By Proposition
1.1.2. there exists an involution 6 : A — A of orthogonal type such that
€:(E,0) = (A,0) is an embedding of algebras with involution.

Let us fix such an involution (A,#). We now define an orientation u :
A(E) — Z(A,0) that will be fixed in the sequel. Fix a generalized Pfaffian
map 7y : Skew(A4,0) — Z(A,0) as above. Recall that F ~ F[X]/(X? — d),
that A(E) ~ K[Y]/(Y?—(—=1)"Ng/k(z)), and that we have fixed the images
zof X in E and y of Y in A(F). Let

w: A(E) — Z(A,0)

be defined by
y = mo(e(x)).

Lemma 2.3.1. The map u is an isomorphism of K—algebras.
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Proof. We have y(e(r)) = —e(z). Further, (mp(e(z))* = (—1)"Nrd4(e(x)) =
(—1)"Ng/k(x) = y*. This implies that u is an isomorphism of K-algebras.

2.4. Similitudes

Let aw € A*. Following [KMRT], Definition (12.14), page 158, we say that
a is a similitude of (A, 1) if ar(a) € K*. For a similitude o € A*, the
scalar at(«) is called the multiplier of the similitude. We say that « is a
proper similitude if Nrd(a) = (a1(«))"; otherwise, « is called an improper
similitude. Note that « is a similitude if and only if Int(a) : (A, 7) — (A, 7) is
an isomorphism of algebras with involution. If A is split, then (A, 7) admits
improper similitudes (indeed, any reflection is an improper similitude).

Any isomorphism of algebras with involution Int(a) : (A,7) — (A,7')
induces an isomorphism of the Clifford algebras C'(A,7) — C(A,7’). Let us
denote by

cla): Z(A, 1) = Z(A, T

the restriction of this isomorphism to the centers of the Clifford algebras.
The following property will be important in the sequel.

Lemma 2.4.1. Let (A, 7) be an orthogonal involution, and let o € A* be a
similitude. Then « is a proper similitude if and only if c(«) is the identity.

Proof. See for instance [KMRT 98], Proposition (13.2), page 173.
2.5. Compatible orientations

Recall that € : E — A is an embedding of algebras, that 6 : A — A is
an orthogonal involution such that € : (E,0) — (A,#) is an embedding of
algebras with involution, and that we are fixing an orientation u : A(E) —
Z(A,0). We now define a notion of compatibility of orientations.

Lemma 2.5.1. Let (A, 7) be a central simple algebra with an orthogonal invo-
lution, and let v : (E,0) — (A, T) be a embedding of algebras with involution.
Let a € A* be such that Int(«a) : (A, 7) — (A, 7) is an automorphism of
algebras with involution, and Int(«) o v = . Then

(a) There exists x € E* such that o = 1(z), and Ng/p(z) € K*.

(b) The map c(«) is the identity.
Proof. Since Int(a) o ¢ = ¢, the restriction of Int(«) to ¢(F) is the identity.
Note that «(E) is a maximal commutative subalgebra of A. Hence we have
a = ((x) for some z € E*. As Int(a) : (A,7) — (A, 7) is an automorphism
of algebras with involution, we have at(a) = A for some A € K*. Hence we
have (tz)7(wx) = A. Since ¢ : (E,0) — (A, 7) is an embedding of algebras
with involution, we have ¢(xo(x)) = A. This completes the proof of (a).
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Let us prove (b). By part (a), we have ata = (zo(x)) = t(A) = A
This implies that « is a similitude. Moreover, we have Nrd(a) = Ng/k(x) =
Np/k(A) = A". Hence « is a proper similitude, and by lemma 1.7.1. this
implies that ¢(«) is the identity.

Definition 2.5.2. Let #/ : A — A be an orthogonal involution such that
€ : (E,0) = (A,¢) is an embedding of algebras with involution, and let
u : A(E) — Z(A,0') be an orientation. We say that the orientations u
and u' are compatible if for every isomorphism of algebras with involution
Int(a) : (A,0) — (A, ¢) such that Int(a) o € = €, we have v = c¢(a) o u.

Recall that for all @ € F*, we define an involution 6, : A — A by
0, = 0 o Int(e(a)). Note that the embedding € : (E,0) — (A,0) induces an
embedding of algebras with involution € : (E,0) — (A, 0,). Our next aim is
to define an orientation of (A, 6,) compatible with the orientation u of (A, 6).
Let K, be a separable closure of K, and set A, = A @y K.

Proposition 2.5.3. Let a € F*. Then there exists a unique isomorphism
Go : Z(A,0) = Z(A,0,) such that for alla € A which gives an isomorphism
of algebras with involution Int(«) : (As, 0) — (As, 0,) with Int(a) o € = €, we
have c¢(a) = ¢q.

Proof. Let d € K* represent the square class of disc(A, #), and let us write
Z(A,0) = K ® Kz with 22 = d. Note that d also represents the square class
of disc(A, 0,), since a € F*. Let us write Z(A,0,) = K ® Kz, with 22 = d.

Let b € (E @k K,)* be such that bo(b) = a~*. Then Int(e(d)) : (As,0) —
(A, 0,) is an isomorphism of algebras with involution commuting with €, and
it induces an isomorphism of the Clifford algebras C'(As, ) — C(As, 0,).

We have Ay, = My, (Ky), and 0 : A, — A, is induced by a quadratic
form q: V xV — K. Let (eq,...,e3.) be an orthogonal basis for ¢. Since
Z(A,0) =K ®K(ey...es), we have z = p(ey ... ey, for some p € K. Let
us replace e; by u~'e;. Then we have z = e ... ey,.

Set ¢ = €(b)!que(b). Since a=! = bo(b) and a is f—symmetric, the in-
volution induced by ¢, is 0,. Let us consider the isometry €(b) : (V,q) —
(V,qa). Then €(b) induces a map c(e(b)) : C(V,q) — C(V,q,) which sends
e1...e to (e(b)er)...(e(b)es,). Therefore we have (e(b)ey)...(e(b)es,)? =
qa(e(b)er) ... qa(e(b)es,) = qler)...q(ea) = (e1...e3.)* = d. This implies
that €(b)(e1)...€(b)(ea) = +2z, and ¢(e(b))(z) = *z,. Hence the restriction
of the map c(e(b)) to Z(As, 0) is defined over K.

Set ¢, = c(e(b)), and note that ¢, : Z(A,0) — Z(A,d,) is an isomor-
phism.
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Let us show that ¢, is independent of the choice of b. Let b’ € A, such that
bo(t') = a. Then we have c¢(Int(e(b'))) = c(Int(e(b))). We have an isomor-
phism of algebras with involution Int(e(b='0')) : (A4,0) — (A4,0) satisfying
Int(e(b~'0')) o € = €. Hence by Lemma 2.4.1. the map

c(Int(e(b™10))) : Z(A,0) — Z(A,0)

is the identity. Therefore c(e(b)) = c(e(V')), hence c(e(b)) is independent of
the choice of b.

Let o € A} be such that Int(«) : (As,0) — (A, 6,) is an isomorphism
of algebras with involution with Int(a)) o € = €. Then by Lemma 2.4.1. there
exists © € (F ®k K;)* such that o = ¢(z). This implies that c¢(Int(e(x))) =
c(e(b)) = ¢q. Hence c(a) = ¢, as required. This also shows the uniqueness
of ¢4, and completes the proof of the proposition.

Recall that we have fixed an isomorphism u : A(E) — Z(A, ). For all
a € F*, let us define an orientation by u, = ¢,0u : A(E) — Z(A,0,). Then
u, is compatible with u. Note that ¢; is the identity, hence u; = w.

For all a € F*, let us identify A(F) with Z(A,6,) via the orientation u,.
This endows the Clifford algebra C'(A, 6,) with a structure of A(E)-algebra.
We have the following

Lemma 2.5.4. For all a € F'* we have
C(A,0,) = C(A,0) + resa(g)ykcorp/k(a, d)

in Br(A(FE)).
Proof. This follows from [BCM 03], Proposition 5.3.
2.6. Oriented embeddings

Recall that the existence of an embedding of algebras with involution
(E,0) — (A, 7) is equivalent with the existence of an element a € F* such
that the algebras with involution (A, §,) and (A, 7) are isomorphic. We need
the stronger notion of oriented embedding, defined as follows :

Definition 2.6.1. Let (A, 7) be an orthogonal involution, and let v : A(F) —
Z(A,7) be an orientation. An embedding ¢ : (E,0) — (A, 1) is called an
oriented embedding with respect to v if there exist a € F* and a € A*
satisfying the following conditions :

(a) Int(«) : (A,0,) — (A, 7) is an isomorphism of algebras with involution
such that Int(a) o€ = ¢.
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(b) The induced automorphism c(«) : Z(A,8,) — Z(A, ) satisfies

cla)ou, = v.

We say that there exists an oriented embedding of algebras with involution
with respect to v if there exists (¢, a,«) as above. The elements (¢, a, a, V)
are called parameters of the oriented embedding.

2.7. Changing the orientation — improper similitudes
Let v : A(E) — Z(A, 7) be an orientation. We have

Proposition 2.7.1. Suppose that (A, T) admits an improper similitude. As-
sume that there exists an embedding of algebras with involution (E,c) —
(A, 7). Then there exists an oriented embedding (E,o) — (A, ) with respect
to v. Moreover, if (1, a, ) are parameters of an embedding of (E, o) in (A, 1),
then there exist /' and [ such that (!, a,B,v) are parameters of an oriented
embedding.

Proof. If ¢(a) o u, = v, then (Int(a) o€, a, ) are parameters of an oriented
embedding (E,0) — (A, 7). Suppose that c(a) ou, # v. Let v € A* be
an improper similitude. Then ¢(7) is not the identity, and hence we have
c(ya)ou, = v. Set f = vya. Then (Int(B) o €,a, ) are parameters of an
oriented embedding, as claimed.

Lemma 2.7.2. Let Suppose that K s a local field or the field of real numbers,
and let (A, T) be an orthogonal involution. Assume that if A is non—split, then
disc(A,7) # 1 € K*/K*%. Then (A,7) admits improper similitudes.

Proof. If A is split, then any reflection is an improper similitude. Suppose
now that A is not split. Then we have A ~ M, (H), where H is a quaternion
division algebra. Let Z = Z(A, 7). Set D = disc(A, 7), and note that Z ~
K(v/D). Then Z is a quadratic extension of K, since D ¢ K*2. Hence H
is split by Z. The involution 7 is induced by an r—dimensional hermitian
form h over H. If r > 3, then the hermitian form h is isotropic (see [T
61], Theorem 3, if K is a local field, and [Sch 85], Theorem 10.3.7. if K
is the field of real numbers). Therefore h ~ h' @ h”, where h’ and h” are
hermitian forms over H with dim(2") < 3 and A" hyperbolic. Let v’ = dim(h'),
and let B = M,/ (H). Let 7/ be the involution of B induced by A', and
note that disc(B,7") = disc(A,7) = D. Since H is split by Z, we have
H = (\, D) € Br(K) for some A € K*.

We claim that A is a multiplier of a similitude of (B, 7’). Indeed, since
r’ < 3, we may apply the criterion of [PT 04], Theorem 4. Let v(B,7’") €
Br(K) such that vz = C(B’,7') in Br(Z) (cf. [PT 04], Theorem 2). Then by
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[PT 04], Theorem 4, the element A is the multiplier of a similitude of (B, 7') if
and only if Ay =0 in H3(K)/(K*.A). If K is a local field, then H*(K) = 0,
hence the condition is fulfilled. Assume that K is the field of real numbers.
Then either v = 0, or v = H in Br(K). Since A is non-split, we have A = H
in Br(K). Therefore we have \.y = 0 n H3(K)/(K*.A) in both cases.

Therefore by [PT 04], Theorem 4, the element A is the multiplier of a
similitude of (B, 7’), therefore also of the hermitian form A’. The hermitian
form A" is hyperbolic, therefore h” has a similitude of multiplier A\. Thus the
hermitian form h has a similitude of multiplier A as well, and hence (A, T)
has a similitude of multiplier A. By [PT 04], Theorem 1, using the fact that
A= H = (\D) € Bry(K), we see that A is the multiplier of an improper
similitude.

Corollary 2.7.3. Suppose that there exists an embedding of algebras with
involution (E,0) — (A, 1), and that one of the following holds :

(i) A is split.

(ii) K is a local field, or the field of real numbers, and disc(A,7) # 1 in
K* /K<,

Then there exists an oriented embedding (E,0) — (A, ) with respect to
v. Moreover, if (t,a,a) are parameters of an embedding of (E,o) in (A, )
and if then there exist /' and f such that (!, a,B,v) are parameters of an
ortented embedding.

Proof. In both cases, (A,7) admits an improper similitude. If A is split,
then any reflection in U(A, 7) is an improper similitude. If K is local or the
field of real numbers, then Lemma 2.7.2. implies that (A, 7) has an improper
similitude. Hence the Corollary follows from Proposition 2.7.1.

2.8. Changing the orientation — r odd

Recall that E' ~ F[X]/(X?—d), that A(E) ~ K[Y]/(Y?—(—1)"Ng/k(z)),
and that we have fixed the images z of X in £ and y of Y in A(E). Recall
that p: A(F) — A(F) is the automorphism of A(F) induced by o : E — E,
and that p is the identity if r is even, and the non—trivial automorphism of
A(FE) over K if r is odd.

Recall also that u: A(E) — Z(A,0) is defined by y — my(e(x)).

Lemma 2.8.1. Let Int(y) : (A,0) — (A,0) be an isomorphism of algebras
with involution safisfying Int(y) o € o 0 = €. Then we have ¢(y) ouo p = u.

Proof. It suffices to prove that this is true over a separable closure. Therefore
we may assume that A = M,,.(K) and that 6 : A — A is the transposition.
We have v0(y) = vy = X for some A € K. Recall that Nrd(y) = n\", where
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n = 1if v is a proper similitude, and n = —1 if v is an improper similitude.

We have e(x) = Int(y) o e o o(z) = ve(o(x))y™! = A ve(o ()7

On the other hand, we have (A" y(e(o(z))7") = A"Nrd(y)m(e(o(z)) =
nm(—e(x)) = (—=1)"nm(e(x)). Hence we have (—1)"nm(e(x)) = m(e(x)), thus
n = (—1)". This implies that ~ is a proper similitude if r is even, and an
improper similitude if 7 is odd. By Lemma 2.4.1. this implies that ¢(y) is the
identity if 7 is even, and the non—trivial automorphism of Z (A, ) if r is odd.
Therefore we have ¢(7) ouo p(y) = u(y), and hence ¢(y) ocuo p = u.

Proposition 2.8.2. Let a,b € F*, and let Int(a) : (A,0,) — (A, 7) and
Int(B) : (A,0,) — (A,7) be isomorphisms of algebras with involution such
that Int(a) o e o o = Int(B) o €. Then we have c(a) ou, o p = () o .

Proof. Let K, be a separable closure of K, and let v,, v, € K be such that
Int(v,) : (A,6) — (A,6,) and Int(y) : (A,0) — (A, 6) are isomorphisms of
algebras with involution commuting with e. Then we have u, = ¢(7,) o u and
uy, = c(yy)ou. We have Int(v, ' 87 1ay,)ocoo = Int(7y, ' S~ a)o(Int(v,))ocoo =
Int(y, ') oInt(a) o eo o = Int(y, ') oInt(B) o e = Int(y, ') o€ = e
By Lemma 2.8.1. this implies that c(yb_lﬁ*la%) ouo p = u, hence we have
c(a) oug o p=c(B)oup.
Let v : A(E) — Z(A, T) be an orientation.

Corollary 2.8.3. Suppose that r is odd, and that there exists an embedding
of algebras with involution (E,0) — (A, 7). Then there exists an oriented
embedding (E,0) — (A, 1) with respect to v. Moreover, if (1,a,«) are para-
meters of an embedding of (E,0) in (A, T), then there exist /', b and B such
that (', b, B,v) are parameters of an oriented embedding.

Proof. Let (1,a,a) be parameters of an embedding of (E,o) in (A,7). If
c(a) ou, = v, then (¢, a,a, ) are parameters of an oriented embedding with
respect to v. Otherwise, we have c¢(a) ou, o p = v. Set / = 1o . Then there
exist b € F* and 8 € A* such that ¢/ = Int() o e. By Proposition 2.8.2. we
have ¢(f) oup = c¢(a) ou, 0 p = v, and hence (//, b, B, ) are parameters of an
oriented embedding.

83. Local conditions

The aim of this section is to give necessary and sufficient conditions for an
embedding of (E,0) in (A, 7) to exist when K is a local field of characteristic
# 2 or the field of real numbers. This is done in [Leel4] in terms of Tits indices
- however, the results of [Lee 14] are not used here. We assume that all the
factors of E split A. Hence there exists an embedding of algebras ¢ : E — A,
and an involution 6 of A of the same type as 7 such that € : (E,0) — (A, 0)
is an embedding of algebras with involution (cf. Proposition 1.1.2).
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Let £ = E, x E,, where E, and F,, are étale K—algebras stable under o
with (Fs, o) split and of maximal rank for this property. Let 2p be the rank
of F.

3.1. Orthogonal involutions — the even dimensional case
Assume that (A, 7) is an orthogonal involution.

Proposition 3.1.1. Assume that n is even, and that K is a local field. Then
there exists an embedding of algebras with involution of (F, o) into (A, T) if
and only if one of the following conditions holds :

(i) (E,0) is split and (A, T) is hyperbolic.
(ii) (E,0) is not split, and disc(A, 7) = disc(F) € K*/K*2.

Proof. (i) Suppose that (F, o) is split. Then (£, o) embeds into (A, 7) if and
only if (A, 7) is hyperbolic (cf. Proposition 1.1.7.).

(ii) Suppose that (E, o) is not split. By Proposition 1.6.1. if (E, o) can
be embedded into (A,7), then we have disc(A,7) = disc(E) € K*/K*2.
Conversely, assume that disc(A, 7) = disc(E) € K*/K*2.

Suppose first that A is split, in other words that A ~ M, (K). Then
7 is induced by an n—dimensional quadratic form ¢ over K, and we have
disc(q) = disc(4,7) = disc(F) € K*/K*%. By [B 12], Proposition 2.2.1.
there exists a € F'* such that w(T},) = w(q) € Bry(K). We have disc(7,) =
disc(F) € K*/K*? (cf. [B 12], Lemma 1.3.2.) Therefore the quadratic forms
q and T, have the same dimension, discriminant and Hasse invariant, hence
they are isomorphic. Thus (£, o) embeds into (A, 7) (cf. Proposition 1.4.1.).

Suppose now that A is not split. Since K is a local field, we have A =
M,.(H) with H a quaternion division algebra. By Proposition 1.6.1. we have
disc(A4,0) = disc(E) € K*/K*2. Therefore disc(A,7) = disc(4, ). By [T
61], Theorem 3, this implies that (A, 7) ~ (A, ). Therefore (F, o) embeds
into (A, 7). This completes the proof of the Proposition.

Proposition 3.1.2. Suppose that K = R and that n is even. Then there
exists an embedding of (E, o) in (A, T) if and only one of the following condi-
tions hold :

(i) A~ M,(R), the involution T is induced by the quadratic form q, and

the signature of q is of the shape (2r + p,2s + p) for some non—negative
integers r and S.

(ii) A ~ M,(H), where H is a quaternion division algebra.
Proof. If A ~ M,(R), then the result follows from [B 12|, Proposition

2.3.2. Assume that A ~ M, (H). Then by [Sch 85], Theorem 10.3.7. we have
(A, 1) ~ (A, 0). Therefore (E, o) can be embedded in (A, 7).
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3.2. Orthogonal involutions — the odd dimensional case

Assume that (A, 7) is an orthogonal involution, and that n is odd. Then
we have A ~ M, (K), and 7 is induced by an n—dimensional quadratic form
q. We have F = E’ x K, where E’ is a rank n — 1 étale K—algebra invariant
by o. If n =1, then F = K and o is the identity. In this case, it is clear that
there exists an embedding of (E, o) into (A, 7). Suppose that n > 3, and let
F’ = (E")? be the subalgebra of E’ composed of the elements fixed by the
restriction of o to E’. We have the following :

Proposition 3.2.1. Assume that n is odd and n > 3, and that K is a local
field. Then there exists an embedding of (E, o) in (A, 7) if and only if one of
the following holds :

(i) (E',0) is split, and q ~ ¢ ® ¢" with dim(¢’) =n—1 and ¢ hyperbolic.
(i) (E',0) is not split.

Proof. Suppose that (E, o) embeds into (A, 7). Then by Proposition 1.4.1.
there exists a € F* such that ¢ ~ T,. We have F' = F' x K, and a = (d,d")
with @' € (F')* and a” € K*. Note that we have T, ~ Ty @ T,». Let
A" = M, 1(K), and let 7 be the involution of A" induced by T,. Then
(E',0) embeds into (A’,7"). If (E’, o) is split, then by Proposition 3.1.1. (i),
the quadratic form T} is hyperbolic. Set ¢ = T, and ¢ = T, ; then we have
q~q @ q" with dim(q¢’) = n — 1 and ¢’ hyperbolic, as claimed.

Conversely, suppose that if (E’, o) is split, then g ~ ¢'®¢” with dim(¢') =
n — 1 and ¢’ hyperbolic, and let us prove that embeds (F, o) into (A, 7). Let
us show that we have ¢ ~ T,, ® T,» with a’ € (F’)* and a” € K*. Suppose
first that (E’,0) is split. Then we have ¢ ~ ¢’ ® ¢” with dim(¢’) = n — 1
and ¢’ hyperbolic. Let A" = M,,_1(K) and let 7" be the involution induced
by ¢'. Then Proposition 3.1.1. (i) implies that (E’, o) embeds into (A’, 7).
Therefore by Proposition 1.4.1. there exists o’ € (F')* such that ¢ ~ T.
Note that as dim(¢”) = 1, there exists a” € K* such that ¢” ~ T, hence the
statement is proved in this case. Suppose now that (E’, ) is not split, and set
a’ = (—1)"= det(q)disc(E') € K*/K*2. Since K is a local field, there exist
quadratic forms ¢’ and ¢” with ¢ ~ ¢’ ®¢”, dim(¢’) =n—1, dim(¢"”) = 1, and
det(q"”) = a”. This is clear if n > 5, since a non—degenerate quadratic form
of dimension > 5 over a local field represents all non—zero elements. Assume
that n = 3. Then a” = —det(q)disc(E’). Since (E’,0) is not split, we have
disc(E') ¢ K*2. The quadratic form ¢® < det(q)disc(E’) > has dimension
4 and non-square discriminant, hence it is isotropic (see for instance [Sch
85], Theorem 6.4.2. page 217). Hence ¢ represents a” = —det(q)disc(E’), as
claimed. This implies that disc(q’) = disc(E’). Set A" = M,,_1(K), and let
7' be the involution of A’ induced by ¢’. Then Proposition 3.1.1. (ii) implies
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that (E’, o) embeds into (A’, 7). By Proposition 1.4.1. we have ¢’ ~ T, for
some a’ € (F')*. Note that as dim(¢") = 1, we have ¢ ~ Tyn.

Therefore in both cases we have ¢ ~ T, & T,» with o/ € (F')* and
a’" € K*. Set a = (d’,a”). Then ¢ ~ q,, and by Proposition 1.4.1. there
exists an embedding of (F,o) in (A, 7). This completes the proof of the
Proposition.

Proposition 3.2.2. Suppose that K = R and that n is odd. Then there
exists an embedding of (E, o) in (A, T) if and only if the signature of q is of
the shape (r + p,s + p) for some non-negative integers r and s.

Proof. We have £ = E’ x R, where E’ is a rank n — 1 étale R—algebra
invariant by o. Let F’ be the subalgebra of E’ of the elements fixed by o.
Assume that there exists an embedding of (E,0) in (A, 7). Then by Propo-
sition 1.4.1. there exists a € F'* such that ¢ ~ T,. We have F' = F’ x R, and
a=(d,a") with o’ € (F')* and a” € R*. Let A" = M,,_1(K), and let 7’ be
the involution of A" induced by T,,. Then by Proposition 1.4.1. there exists
an embedding of (E',0) in (A’,7'). By Proposition 3.1.2. this implies that
the signature of T, is of the shape (21" + p,2s" + p) for some non-—negative
integers 7" and s’. Therefore the signature of ¢ is (21" + 1 + p,2s" + p) or
(2r' 4+ p, 28" + 1+ p).

Conversely, assume that the signature of ¢ is of the shape (r + p,s + p)
for some non—negative integers r and s. Then r 4+ s 4+ 2p = n, hence one of
r or s is odd and the other is even. Let ¢’ be a quadratic form of signature
(r—1+p,s+p) ifrisodd, and (r+p, s—14p) if s is odd. Then the dimension
of ¢’ is even, and hence by Proposition 2.1.3. there exists an embedding of
(E',0) in (A',7"), where A" = M,,_1(K), and where 7" is the involution of
A’ induced by ¢'. Therefore by Proposition 1.4.1. there exists a’ € (F')*
such that ¢ ~ T,. Set a” = 1 if r is odd and a” = —1 if s is odd, and
let a = (a/,a”). Then ¢ and T, have the same signature, hence they are
isomorphic. By Proposition 3.1.2.. this implies that there exists an embedding
of (E,0) in (A, 7).

3.3. The symplectic case

Assume that (A, ) is a symplectic involution. If A ~ M, (D) for some
quaternion division algebra D, let h be a hermitian form with respect to the
canonical involution of D which induces 7. The signature of h is defined as
in [Sch 85], 10.1.8. (i). Let E = E, x E,, where Eg and E,, are stable under
o such that (Es, o) is split and (E,, o) is non-split. Let 4p be the rank of Ej.

Theorem 3.3.1. Suppose that K is a local field, or K = R. Then (E, o) can
be embedded in (A, 1) if and only if one of the following holds :
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(i) K is a local field, or A is split.

(i) K = R, A is non-split, and sign(h) is of the shape (s + p,s" + p),
where s and s’ are non-negative integers.

Proof.(i) If A is split, then the involutions are given by skew—symmetric ma-
trices with coefficients in K. All non—degenerate skew—symmetric matrices
of the same dimension are isomorphic. Hence the algebras with involution
(A, 7) and (A, ) are isomorphic, therefore (F, o) can be embedded in (A, 7).
Suppose that A = M,.(D), where D is the unique quaternion division algebra
over K, and that K is a local field. By [Sch 85], 10.1.7. the algebras with in-
volution (A, 7) and (A, 6) are isomorphic. Therefore (E, o) can be embedded
in (A,7).

(ii) Suppose that K is the field of real numbers and that A = M, (D),
where D is the unique quaternion division algebra over K. Since all the
factors of E split A, the étale algebra E is isomorphic to the direct product
of r copies of C. Hence we have F; = (C x C)*, and ¢ acts on each copy of
C x C by exchanging the two factors, and we have E, = C"~%, and o acts
on each copy of C by complex conjugation. Set Fy; = E? and F,, = EY. Then
we have F, ~ C? and F,, ~ R"~?".

Let us consider the following hermitian forms with respect to the cano-
nical involution of D : let hy be the 2p—dimensional hyperbolic form, and let
hs be the r — 2p-dimensional unit form. Let Ay be the orthogonal sum of hy
and ho, and let 6 : A — A be the involution induced by hy.

Let us denote by x — T the canonical involution of D, and let € : Ey x
E,, — A be the map defined by

AT1, Y153 Ty Ypy 215 - -5 Tro2p) = AIAG(T1, Ty -+ s Tpy Uy 215+ - -5 Zr—2p)-

It is easy to check that € is an embedding of algebras with involution (F, o) —
(A, 0).

If c1,...,¢29, € R, let us denote by h, the r — 2p-dimensional diago-

nal hermitian form < ¢;,...,¢,—9, >. Let H. be the orthogonal sum of the
2p—dimensional hyperbolic hermitian form with h.. For a = (by,...,b,) X
(c1,...,¢22,) € F* x F,*, we see that the involution 6, : A — A is in-

duced by the hermitian form H.. Note that the signature of H,. is equal to
(p+ s,p+ s'), where s is the number of positive ¢;’s, and s’ the number of
negative ¢;’s. By Proposition 1.1.3. there exists an embedding of algebras
with involution (E,0) — (A, 7) if and only if there exists a € F'* such that
(A,0,) ~ (A, 7). By [Sch 85], 10.1.7. and 10.1.8. (i), this is equivalent with the
existence of a € F* such that sign(h,) = sign(h). Therefore there exists an
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embedding of algebras with involution (£, o) — (A, 7) if and only if sign(h)
is of the shape (s + p, s’ + p), where s and s’ are non—negative integers.

3.4. The unitary case

Assume that L is a quadratic extension of K, and suppose that (A, 1) is
an L/K unitary involution. Assume that A = M, (L), and that 7 is induced
by an n—dimensional hermitian form h over L/K (note that when K is a
local field or K = R, then this hypothesis is always fulfilled).

Proposition 3.4.1. Suppose that K is a local field. Then there exists an
embedding of algebras with involution of (E, o) into (A, 1) if and only if one
of the following conditions holds :

(i) (E,0) is split and (A, T) is hyperbolic.

(ii) (E, o) is not split, and det(A, 7)disc(E, o)™ € Np/(F*)Np/x(L*).

Proof. (i) follows from Proposition 1.1.7. Suppose that (E, o) is not split,
and that (E, o) embeds into (A, 7). Then by Proposition 1.6.2. we have

det(A, 7)disc(E,0) ™" € Np/g (F)Np /i (L7).

Conversely, assume that det(A, 7)disc(E, o)™ € Np/x(F*)Np/k(L*). Then
there exists a € F* such that det(A, 7) = Np g (a)disc(E, o) € K* /Ny /i (L*).
We have det(7,) = det(A, 7), hence h and T, have equal dimension and de-
terminant. Since K is a local field, this implies that 7, ~ h. By Proposition
1.4.1. there exists an embedding of (£, o) into (A, 7). This completes the
proof of the proposition.

Recall that £ = E; x E, where E; and F,, are étale K—algebras stable
under o with (FEs, o) split and of maximal rank for this property, and that
we denote by 2p the rank of Ei.

Proposition 3.4.2. Suppose that K = R. Then there exists an embedding
of algebras with involution of (E, o) into (A, T) if and only if the signature
of h is of the shape (r + p, s + p) for some non-negative integers r and s.

Proof. Indeed, since L/K is a quadratic field extension, we have L = C.
Therefore E is isomorphic to the direct product of n copies of C. Let us
denote by o : C — C the complex conjugation, and by o1 : CxC — Cx C
the map defined by oy(a,b) = (0¢(b),00(a)). Then we have F; = (C x C)*,
and the restriction of o : Ey, — FE, to each copy of C x C is equal to oy ; we
have E,, = C" 2/ and the restriction of o : E, — E, to each copy of C is
equal to ogg.

Set Fy = E? and F,, = E7. Note that F' = Fy x F,,, and that Fy, = C”
and F, = R" . Let a = (as,a,) € F x F*. Then the restriction of T, :
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E x E — K to Ej is hyperbolic with signature (p, p), and its restriction to
E,, has signature (r,, s,), where r, (respectively s,) is the number of positive
(respectively negative) coefficients of a,, € R" 2. Hence the signature of T}, is
(p+7a, p+5q). By Proposition 1.4.1. there exists an embedding of (F, o) into
(A, 7) if and only if h ~ T, for some a € F*. Hence (F, o) can be embedded
into (A, 7) if and only if the signature of A is of the shape (p + 7, p + s) for
some non-negative integers r and s.

84. The Tate—Shafarevich group

We keep the notation of the previous sections, and suppose that K is a
global field. Recall that either L = K, or L is a quadratic extension of K.
The aim of this section is to define a group that measures the failure of the
Hasse principle.

Let us denote by Q2 the set of places of K. For all v € Qg, we denote
by K, the completion of K at v. For all K—algebras B, set B = B Qx K,.

The commutative étale algebra E is by definition a product of separable
field extensions of L. Let us write £ = Ey X --- X E,,, with o(E;) = E; for
all i = 1,...,m, and such that F; is either a field stable by ¢ or a product
of two fields exchanged by o. Recall that F' = E°.

Set I = {1,...,m}. We have FF = F} x --- x F},,, where F; is the fixed
field of o in E; for all i € I. Note that either F;, = F; = K, E; = F; x F} or
E; is a quadratic field extension of F;. For all i € I, let d; € F;* such that
E; = Fy(\/d;) if E;/F; is a quadratic extension, and d; = 1 otherwise. Set
d=(dy,...,dp).

If 7 € I is such that Fj; is a quadratic extension of F}, let ¥; be the set of
places v € Qf such that all the places of F; over v split in E;. If E; = F; X F;
or if B; = K, set ; = Q.

If L # K, let ¥(L/K) be the set of places of K that split in L. If L = K,
then we set X(L/K) = ().

Given an m-tuple x = (21, ..., &) € (Z/2Z)™, set
[0 = [0(.77) = {Z ‘ T; = 0},

Note that (1o, I;) is a partition of I. Let S’ be the set

S"={(x1, ey ) € (Z/2Z)" |S(L/K)U(NE)U(N ;) =k},

1€l Jjeh
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and set

S=S8U(0,..,00U(L..,1).

We define an equivalence relation on S by
(@1, ooy ) ~ (2, oy xhy) A (21, ey @) + (2, s 2) = (1,0, 1).

Let us denote by I = III(E, o) the set of equivalence classes of S under
the above equivalence relation.

For all x € S, we denote by z its class in III, and by (Iy(z), I;(x)) the
corresponding partition of I. Let us denote by P’ the set of non-trivial par-
titions (lo, I;) of I such that 3(L/K) U ((} YU (ﬁl Y;) = Qg, and set

1€y J1€l

P =P U{(I,0)} U{0,I)}. Let us define an equivalence relation on P by
(lo, I1) ~ (I, Ip). Sending x to (Ip(x), I;(x)) induces a bijection between 111
and the set of equivalence classes of P under this equivalence relation.

Componentwise addition gives a group structure on the set of equivalence
classes of (Z/2Z)™. Let us denote this group by (C,,, +). We have

Lemma 4.1.1. The set 11 is a subgroup of C,,.

Proof. It is clear that the class of (0,...,0) is the neutral element, and that

every element is its own opposite, so we only need to check that the sum of

two elements of III is again in III. If J is a subset of I, set (J) = ﬂJZi.
1€

As we have seen above, the set III is in bijection with the set of equivalence
classes of partitions P/ ~. Moreover, the transport of structure induces

(Lo, ) + (Io, I1) = ((Io N Iy) U (I N I7), (Io N I}) U (I N 1))

Let us show that this is an element of P/ ~. This is equivalent with proving
that Qg is equal to

S(L/K) U (Lo N 1g)) (L N 1)U [(Q(Lo N 17)) N (21 N 1)),
and this follows from the equalities
S(L/K)UQ(Lo) QL) = Q,

and
S(L/K) U () URAT) = O,
which hold as (Iy, I1) and ([{, I]) are in P/ ~.

The following propositions will be used in Sections 6 and 8 in order to
give necessary and sufficient conditions for the Hasse principle to hold. Let
us start with introducing some notation.
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Set Cr = {(i,j) € I xI|i# jand X(L/K)UZX; U, # Qg}. For
any subset J of I, we say that i,j € J are connected in J if there exist
J1y- - Jk € J with j1 =i, jr = j and (jr, Jry1) €Crforallr=1,... k—1.
Lemma 4.1.2. Let (i, j) € Cr, and letv € Qg such thatv ¢ X(L/K)UX,U%;.
Let a¥ € (F*)* for allr € I and u € Q. Then there exist b € (F*)* such
that

o b = a whenever u# v orr #1i,7j, and
o CorFi”/Kv (b;}, dz) 7é COI‘F;’/KU (af, dz), COI'Fiv/KU (b;}, dj) 7& COI'Fiv/KU (a;?, d])

In particular, we have
ey COrpr /K, (aj,di) # Yoeay COI'FZ.”/KU@gadi)a

ZUEQK COI'F;_J/KU (a;?, dj) 7é ZUEQK COI'F;_J/KU (b;), d])

Proof. Since (7, j) € C;, we have X(L/K)UX,U%; # Qk. Hence by Chebota-
rev’s density theorem, the complement of the set ¥(L/K)UX;UY; contains fi-
nite places. Let us choose a finite place v of K such that v ¢ X (L/K)UX,;U%;.
As v & 3;, we have EY = E! x M, where M is a field stable by o, and
Me? # M. Set My = M?. Similarly, we have £ = E} x N, where N is a
field stable by o, and N7 # N. Set Ny = N?. Then M /M, and N/N, are
quadratic extensions of local fields. Let v € M, such that v & Nyz/a (M),
and let 0 € Ng such that § & Ny/n,(IV). Let us write af = (o, ) with
a1 € (E))7, ay € My, and af = (81, B2) with 8y € (Ej)?, B2 € No.

Set by = (a1, ayy) and b = (B, B20). If r € I is such that r # i, j, then
set bY = ay. For all u # v, set b = a¥ for all r € I. Then b* € (F*)* have
the required properties for all u € Qi and r € I. This completes the proof
of the Lemma.

Proposition 4.1.3. Let i,j € I be connected, and let a¥ € (F*)* for all
r € I and u € Q. Then there exist b* € (F*)* satisfying the following
conditions

1) Ypeax corpiv/KU(af,di) # Yoy corFiv/KU(bf,di).

1 EveﬂK COI‘F;_J/KU (a}?, d]) 75 EveﬂK COI‘F;_J/KU (b}j, dj)

(
(
(iii) Ifr # 4,7, then we have Xyeq, corpy/k,(ay,d,) = Syeqy COTpy /i, (b), d).
(
(

~—

iv) For all v € Qk, we have Xic; corpe /g, (b7, di) = Xier corpe i, (af, d;).
v) If v is an infinite place of K, then bY = a? for all r € I.

Proof. Let ji,...,j € J with j; = i, jr = j and (Js, jsy1) € Cr for all
s = 1,...,k — 1. Starting with a* € (F*)*, let us apply Lemma 4.1.2.
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successively to each of the pairs (js, js+1), and let b € (F*)* be the elements
obtained at the end of the process.

Note that if s # 1, k, then we applied Lemma 4.1.2. twice. Hence we have
corpy k., (05, d;,) = corpy /k,(aj,, dj,)
for s # 1, k and for all v € Q.

On the other hand, if s =1 or s = k, then we applied Lemma 4.1.2. only
once. Note also that j; =i and j, = j. Therefore we have

COTpv /K, (b7,d;) # COTpv /K, (a7, d;)
for a certain v € Qk, and
corpe i, (b di) = corpy k., (ayf', d;)
for all u € Qg with u # v. Similarly, we have
corpw i, (b5, dj) # corpe k., (af, d;)
for a certain w € Qg, and
corpu/k, (0f, dj) = corpuic, (a, d;)
for all u € Qx with u # w. Therefore we have
Yveak COrFy/K, (a;-J,dz‘) e Yveak COr'Fy/K, (bl-J,dz‘)’
Yoeax COTFy/ K, (af, dj) # Boeax COTFy/ K, (b3, dj).
Note that by = a; for all v € Qg if r # 4, j, hence we have
Yoew COrpy /i, (ay,dy) = Ypeq, corpe/k, (), d,).

Moreover, all the applications of Lemma 4.1.2. concern a place v € Qg
and two distinct indices (js, js+1) € Cr. This implies that for all v € Qg, we
have

Yier COr'pr /K, (b7, di) = Bier COr'pr /K, (ai, d;)

All the changes were made at finite places, hence we have b? = a? for all
r € I if v is an infinite place. This completes the proof of the Proposition.

Proposition 4.1.4. Let a} € (F?)* for allv € Qk, i € I, such that :

(i) We have
Yy Biel COTF,.U/KU(aga d;) = 0.
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(ii) For all z € III, we have
ZUEQKZZ'EI()(aC) COTF;/KU (a;’, dz) = 0.

Then there exist by € FY for allv € Q, © € I such that :
(ili) For alli € I, we have

Z’UEQK COI‘F;’/KU(bfa dl) =0.

(iv) For all v € Q, we have

Yiel COrpy /K, (b;‘}7 di) = Yier COTFY /K, (Gf, di)-
(v) if v is an infinite place of K, then bY = a?.

Proof. For all i € I, set C; = Cy(a) = Yyeq, corrr /i, (ai,d;). If C; =0 for
all i € I, we set b) = a] for all i € I and v € Q. If not, then we construct a
connected graph with vertex set V and edge set £ in order to make successive
modifications.

Our aim is to construct a graph containing two elements i, i; € I such
that C;, = C;, = 1 and that ¢y and ¢; are connected within the graph.

Let us now construct the desired graph with vertex set V and edge set €.
We start with the empty graph, and add edges and vertices as follows. Let
us choose iy € I such that C;, = 1, and add {ig} to V. Set Iy = {ip} and
I, = I — Iy. Note that (Iy, ;) ¢ 1. Indeed, if (Iy, I;) € 11, then by (ii) we
have Xyeq, Yier, corpe/k, (a7, d;) = 0. But By, Yicr, corpr /i, (af, d;) = Ciy,
and C;, = 1, so this leads to a contradiction. Therefore by definition of III,
we have

Y(L/K)U(NX)u(n;)#Qk.

i€l Jjeh

Hence there exist i; € [} and v € Qg such that v ¢ X(L/K)U%;, UY,;,.
In other words, we have (ig,4;) € Cr, hence ig and i; are connected. Add
{i1} to V, and add the edge connecting i to i; to €. If C;; = 1, we stop. If
not, set Iy = {ip,41} and I = I — Iy. We again have (ly, [1) ¢ III. Indeed,
if (Io,I;) € I, then by (ii) we have ¥,cq, Yier, corp/k,(af,d;) = 0. But
Ve Yiel, COTry /1, (af, di) = Ciy+Cyy, and Cyy = 1, C;, = 0, so this is again
a contradiction. Therefore by definition of III, we have

D(L/K)U (0 ) U (0 ) # .

jen
Hence there exists i, € I; and v € Q such that v ¢ 3(L/K)U (OI L)ULE,.
1€l
This implies that at least one of (i, 2), (i1, 2) belong to C;. We now add iz
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to V, and add to £ all the edges connecting j to 7o with j € V such that
(j,12) € C;. Note that ig and is are connected within the graph. We continue
this way, adding vertices to ¥V and edges to £. Since [ is finite, and since by
(i) there exists j € I with j # iy and C; = 1, the process will stop after a
finite number of steps.

In other words, after a finite number of steps we find i, € I such that
C;, = 1, and such that the resulting graph with vertices V and edges £ has the
following property : there exists a loop—free path in £ connecting iy to ; such
that for any two adjacent vertices 7, j € V we have (i, j) € C;. In other words,
1o and i are connected in V. By Proposition 4.1.3. this implies that there
exist ¢ € FY for all v € Qp, i € I such that for (¢) = (¢}) we have C;,(c) =
Ci.(c) =0 and Cj(c) = C;i(a) for all i # iy, is. Therefore the number of i € I
with C;(c) = 1 is less than the number of i € I with C;(a) = 1. Moreover,
for all v € Qg, we have s corpy K, (¢, di) = Xier corpr/k,(af,d;), and
that if v is an infinite place, then ¢} = a} for all + € I. Continuing this
way leads to the desired conclusion : we obtain b € F} for all v € Q,
i € I such that for (b) = (b)) we have Cj(b) = Yycq, corpr/k, (b7, d;) = 0,
for all ¢ € I, and this implies (iii). Note that for all v € Qg, we have
Yier COTpv /K, (bY,d;) = Sier corFiv/KU(af,di). This implies that (iv) holds.
Moreover, all the modifications were made at finite places, hence (v) holds.

Proposition 4.1.5. Let af € (F})* for allv € Qg, i € I, such that :

(i) We have
Yoy Biel COI“F,.U/KU(aga d;) = 0.

(i) For all x € I, we have
ZUEQKZiefo(aC) COTF;)/KU (a;’, dz) = 0.

Then for all i € I, there exist b; € F/* such that
(ili) For all v € Qg , we have

Yier corpy )k, (b, di) = Sier corgy )k, (a7, d;).
Proof. By Proposition 4.1.4. conditions (i) and (ii) imply that for all v € Qg

and all ¢ € I, there exist b} € (F)* such that for all i € I, we have
Ve corpy/k, (b7, d;) = 0, and that for all v € Q, we have

Yier corpr i, (b], di) = Sier corpyk, (af, d;).

Let i € I. Since Yyeq, corpy/k, (b7, d;) = 0, we have Yyeq, (b, d;) = 0.
The Brauer—-Hasse-Noether Theorem implies that there exists a quaternion
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algebra Q; over F; such that for all v € Qf, we have Q; ~ (b, d;). Since QY
splits over EY for all v € Qk, the algebra (); splits over E;. Therefore there
exists b; € (F;)* such that Q; ~ (b;,d;).

Then, for all v € Qk, we have
Yier COTFi/K(bz‘, di) = Yier COI‘F;/KU(Z)EJ, di) = Yier COI‘F;/KU(CL;)’ di)-
Therefore (iii) holds. This completes the proof of the proposition.

5. The Brauer—Manin map

Assume that K is a global field, and that (EY, o) can be embedded in
(AY, 1) for all v € Q. This implies that there exists an embedding of algebras
¢ : E— A. By Proposition 1.1.2. there exists an involution 6 : A — A of the
same type as 7 such that € induces an embedding of algebras with involution
(E,0) — (A, 0). Let us fix such an involution 0. If A ~ M, (K) and if 7 is an
orthogonal involution, then let us chose for € the involution induced by the
quadratic form T : E x E, given by T'(z,y) = Trg k(2o (y)) for all z,y € E.
Note that this is possible by Proposition 1.4.1.

The aim of this section is to define a map II(E, o) — Z/2Z the vani-
shing of which is a necessary and sufficient condition for the existence of an
embedding of algebras with involution (E, o) — (A, 7). To define this map,
we need the notion of embedding data (cf. 5.1.-5.3.). The Brauer-Manin map
is defined in 5.4.

5.1. Local embedding data — even degree orthogonal case

Assume that (A, 7) is an orthogonal involution, with A of degree n. As-

sume that n is even, and set n = 2r. Let us fix an isomorphism of K—algebras
u: A(E) — Z(A,0), and recall (cf. 2.5.) that for all a” € (F?)* this induces
a uniquely defined isomorphism of K,~algebras u, : A(EY) = Z(A,O4).

We are assuming that for all v € Q, there exists an embedding of al-
gebras with involution (EV o) — (A", 7). This implies that the K—algebras
A(FE) and Z(A, ) are isomorphic. Let us fix an isomorphism of K-algebras

v:A(FE)— Z(A, 7).

Let us denote by O(E, A) the set of (a) = (a), with a” € (F")*, such
that for all v € Qg, there exists o’ € (AY)* with the properties :
(a) Int(a) : (AY,040) — (AY,7) is an isomorphism of K, —algebras with invo-
lution.
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(b) The induced automorphism c(«a) : Z(A", 0,v) — Z(AY, T) satisfies
cla) oug = v.
In other words, (Int(«) o €,a”,a”, ) are parameters of an oriented em-
bedding.
Proposition 5.1.1. Let (a) = (a’) € O(E, A). Then we have :

(i)  resa(evy/k, COrpy/k,(a¥,d) =0 for almost all v € Q, and
YoeQ TeSA(E) /K, COTrv/k,(a”,d) = 0.

(i) Let Q' be the set of places v € Qg such that A(EV) ~ K, x K,,. Then
we have corpv ), (a’,d) = 0 for almost all v € ¥, and

Ypeqr corpy /i, (a”,d) = 0.

Proof. By Lemma 2.5.4. C(A”,0q0) = C(A?,0) 4 resa(gvy /K, COpv /i, (a’, d)
in Br(A(E?) for all v € Q. Since (a¥) € O(F,A) we have C(AY,0,) =
C(AY, 1) for all v € Q. Therefore we have

C(A", 1) — C(A",0) = resagv)/K, COrpv )k, (a’,d),

hence (i) holds. If A(E") ~ K, x K, then resagv/k, is injective, and this
implies (ii).
Proposition 5.1.2. Let (a"), (b") € O(E, A). Then, for allv € Qg

(i) resa(mv)/k, corpe/k,(a’, d) = resa(pv) i, COrpy /K, (0", d).

(i) If moreover A(EV) ~ K,x K, then corps i, (a’,d) = corpe /g, (b7, d).
Proof. We have C(A",0,.) = C(A®,0) + resagv)/k, COrpv/k,(a’,d), and
C(AY,0p) = C(AY,0) +resa(gvy /K, cOrpv/k, (a’,d) in Br(A(EY)) (cf. Lemma
2.5.4.). Since (a’), (b") € O(E, A) we have C(AY,0,v) = C(A", 0 ), and this
implies (i). If A(E”) ~ K, x K,, then resa(gv)/k, is injective, hence (ii).

A local embedding datum will be a set (a) = (a¥) € O(FE, A) such that

o If v € Q is such that A(F,) is a quadratic extension of K, then there
exist only finitely many v € Qg such that corp. g, (a’,d) # 0.

e We have
Yveq Corpy /i, (a’,d) = 0.

We denote by L(E, A) the set of local embedding data.
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Remark. Let (a”) € L(E, A). Then we have corpv /g, (a”,d) = 0 for almost
all v € Q. Indeed, by hypothesis this is true if v is such that A(F,) is a
quadratic extension of K,, and by Proposition 5.1.1. (ii) it also holds if v is
such that A(E,) ~ K, x K,.

Recall that the notion of oriented embedding was defined in 2.6.

Proposition 5.1.3. Assume that for all v € Qg, there exists an oriented
embedding (E¥,0) — (A", 7) with respect to v. Then there ezists a local
embedding datum (a) = (a¥) € L(E, A) such that for all v € Qf there exist
Ly and o such that (1,,a’, o, v) are parameters of an oriented embedding.

Proof. Case 1. Assume that A(EY)/K, is a quadratic extension. Let (b") €
O(E,A). Then C(AY,7) = C(A",0) + resa(ev)/k, cOrpy /i, (0", d) = C(A”,0)
in Br(A(E"Y)), since A(E")/K, is a quadratic extension. Moreover, we have
disc(AY, 1) = disc(AY, Oy) = disc(AY,0). Hence (AY,0) and (A", 7) are iso-
morphic. By Corollary 2.7.3. (ii) there exist ¢, and a” such that (¢,, 1,0, v)
are parameters of an oriented embedding.

Case 2. Assume now that we have A(EV) ~ K, x K,,. Let (4, a",a",v)
be parameters for an oriented embedding.

Let (a) = (a¥), where for v € Q) the element a” is chosen as above, in
each of the two cases. We claim that (a) = (a¥) € L(E, A). Since a’ =1
when A(EV)/K, is a quadratic extension, we have corp./g,(a”,d) = 0 for
all such v. Let €' be the set of v € Q) such that A(E?) ~ K, x K. Then
we have Y,cq, corp i, (a’,d) = Yyeqr corpv/i,(a¥,d), and by Proposition
5.1.1. (ii) this sum is zero. Therefore we have (a) € L(E, A).

Proposition 5.1.4. Let (a) = (a”), (b) = (b*) € L(E, A). Then there exists
A € K* such that for all v € Qg we have corpe i, (ADY, d) = corpe i, (a’, d).
Proof. We have resagey/x corpe/k,(a’,d) = resagyy/x corpe/k, (0%, d) for
all v € Q, and if A(E") ~ K, x K,, then corp /g, (b”,d) = corpy /i, (a’, d)
(cf. Proposition 5.1.2.).

Let ¥ = {v € Qg | corpe/k,(b",d) # corpv/k,(a’,d)}. The above ar-
gument shows that if v € @, then A(E") is a quadratic extension of K.
It follows from the definition of L(E, A) that there exist only finitely many
v € Qg such that corpe/k,(a’,d) # 0 or corpe/,(b%,d) # 0, hence Q' is a
finite set.

Let v € €. Then A(E") splits corpv/k, (b, d) — corpe g, (a”, d). Recall
that A(E") = K,(VD), where D = (—1)"Ng/x(Vd) = Ng/x(d). Then
we have corpv/k, (b, d) — corpe/k,(a¥,d) = (A", D) for some N\’ € K.
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Since (a),(b) € L(E,A), by definition we have ¥,cq, corpe g, (a’,d) =
Yoex corpy/k, (bY,d) = 0. This implies that 3,cq, (A", D) = 0. Hence by
the Brauer-Hasse-Noether theorem, there exists A € K such that (A, D) =
(N, D) € Br(K,) for all v € €', and A has the required property.

5.2. Local embedding data — odd degree orthogonal case

In this section, we assume that A ~ M, (K) and that 7 is induced by
an n—dimensional quadratic form ¢. We are primarily interested in the case
where n is odd, but we also need to consider the case where n is even.

Let us assume that there exists an embedding of algebras with involution
(E,0) — (A", 1) for all v € Q. By Proposition 1.4.1. this implies that
for all v € Qg there exists a¥ € (F")* such that ¢ ~ T,.. Let us write
a’ = (ay,...,a’) with a} € (F’)*. The set of (a) = (a}) with this property
will be denoted by L'(E, A).

Proposition 5.2.1. Let (a) € L'(E, A), with (a) = (aY). Then the following
properties hold :

(i) corpek,(a”,d) =0 for almost all v € Qr, and

Yveax corpe i, (a’,d) = 0.

(i) Let (b) € L'(E, A), with (b) = (bY). Then for all v € Q, we have

corpv /i, (a”,d) = corp /i, (b7, d).

Proof. Let us first assume that n is even. Since (a) € L'(E, A), we have
q =~ T,v, and hence w(Tyw) = w(q) for all v € Q. By Lemma 1.5.1. we have
w(Tyw) = w(T) + corpe /g, (a”, d). Hence for all v € Qg, we have w(q) =
w(Tyw) = w(T) 4 corpe/k, (a’, d). Note that X,co, w(q) = Epeo,w(T) = 0.
Therefore we have ¥,cq, corpy /i, (a’,d) = 0, and this proves (i).

Let us prove (ii). Since (b) € L'(E, A), for all v € Qx we have w(Ty) =
w(q). By Lemma 1.5.1. we have w(Ty) = w(T) + corpe/, (b7, d) for all v €
Q. Therefore, for all v € Qg, we have w(T') + corp /g, (a’,d) = w(q) =
w(T') 4 corpe /i, (b”, d). Hence we have corpe /i, (a’,d) = corpe /i, (0", d), and
this implies (ii).

Suppose that n is odd, and set A" = M,,_1(K). Then by [PR 10], Pro-
position 7.2. there exists a o—invariant étale subalgebra E’ of rank n — 1 of
E such that £ = E' x K, an (n — 1)-dimensional quadratic form ¢’ and a
1-dimensional quadratic form ¢” over K such that ¢ ~ ¢’ ® ¢”, and that the
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étale algebra with involution (E’, o) can be embedded in the central simple
algebra (A’, 7") over K, for all v € Q, where 7/ : A" — A’ is the involution
induced by ¢'. Moreover, there exists an embedding of (E, o) into (A, 7) if and
only if there exists an embedding of (E’, o) into (A’,7"). Note that we have
L(E,A)=L(E'A) x L'(K, K). We may suppose that F,, = K. Then we
have d,, = 1. Set J ={1,...,m — 1}, and note that for all v € Qf, we have
Yiercorpe i, (a7, d;) = Biejcorpe /i, (ai, d;). Since n — 1 is even, statements
(i) and (ii) easily follow.

If n is odd, then we set L(E, A) = L'(E, A), and an element (a) € L(E, A)
will be called local embedding datum.

If n is even, then the set of embedding data L£(E,A) was defined in
the previous section. The relationship between L(F, A) and L'(F, A) is as
follows :

Proposition 5.2.2. Assume that n is even. Then we have

(i) L(E,A) C L(E,A).

(i) Let (a) € L(E,A). Then there exists A € K* such that (\a) €
L'(E,A).
Proof. Let (a) € L'(E, A). Then corpy /g, (a’,d) = 0 for almost all v € Qp,
and Y,co, corpe/k,(a’,d) = 0 (cf. Proposition 5.2.1. (i)). Since ¢ ~ T, for
all v € Qk, the algebras with involution (AY, 7) and (A", 0,) are isomorphic.
Since A is split, Corollary 2.7.3. implies that for all v € € there exist

1, and oV such that (i,,a”,a’,v) are parameters of an oriented embedding
(E¥,0) — (AY, 7). This implies that (a) € L(E, A), hence (i) is proved.

Let us prove (ii). Let S be the finite set of places of K at which ¢ or T is
not hyperbolic, or (a’,d) # 0. Since (a) € L(FE, A), there exists AV € K such
that ¢ and A"T,. are isomorphic over K, for all v € S. There exists A € K*
such that A(\?)™! € (K,)*? for all v € S. Then ¢ and AT+ are isomorphic
over K, for all v € S. For v ¢ S, both ¢ and T,. are hyperbolic over K,,
hence we have g ~ \To. Since AT,v = Ty,v, we have (Ma) € L'(E, A).

5.3. Local embedding data — the unitary case

Let us assume that (A, 7) is a unitary involution.

The set of (a) = (a”), with a € (F")*, such that for all v € Q we have
(Ay, 7) >~ (Ay, O4v), is called a local embedding datum. We denote by L(E, A)
the set of local embedding data.

Proposition 5.3.1. Let (a) € L(E, A) be an embedding datum, with (a) =
(a?). Then the following properties hold :
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(i) We have
YoeCorpy /i, (a’,d) = 0.

(i) Let (b) € L(E, A) be an embedding datum, with (b) = (bY). Then for
all v € Qk, we have

corpv/, (a”,d) = corpo /i, (b7, d).

Proof. Since (a) € L(E, A), we have (AY,0,) ~ (AY,7) for all v € Q.
Hence for all v € Qf, we have D(A",0,v) = D(A”, 7). By Lemma 1.5.2.
we have D(AY,0p0) = D(A",0) + corpe/ge(a’,d) for all v € Q. We have
Yoea DAY, 7) = Byeq, D(AY,0) = 0, hence Y,cq, corpe /i, (a”,d) = 0. This
proves (i).

Let us prove (ii). Let v € Q. Since (b) € L(E, A), by Lemma 1.5.2. we
have D(AY,0) + corpe/gv(a’,d) = D(A”,0,0) = D(AY,7) = D(A",0p) =
D(A",0) + corpe ko (b, d). Hence we have corpe /g, (a”, d) = corp )k, (0%, d),
as claimed.

5.4. The Brauer—Manin map

Let (a) € L(E,A) be an embedding datum, with (a) = (a}). Let us
consider the map

f(a) : H_I(E,O) — Z/2Z
defined by

f(‘l) (IO7 Il) = Ziefo ZUEQKcorFf’/Kv (a;)7 dl)

Note that this is well-defined, since ZZ‘EIZUEQKCOTFZ}/KU(Q;},dz‘) = 0. As
we will see, this map is independent of the choice of (a). In other words, we
have

Theorem 5.4.1. Let (a),(b) € L(E,A) be two local embedding data. Then
we have fu) = fu)-

Proof. Suppose that (a), (b) € L(E, A) are such that f) # f@). Note that
for all A € KX, we have (\b) € L(E,A), and fu = fow). Since there
exists A € K such that for all v € Qg we have Yiccorpe/k, (af, d;) =
Yiercorpy /., (A, d;) (cf. Proposition 5.1.4. Proposition 5.2.1. (ii) and Pro-
position 5.3.1. (ii)), we may assume that for all v € Qf, we have

EielcorFi”/KU (aj, d;) = EieICOTFiv/KU(bEJ, d;).
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Let (Io, ;) € II(E, o) be such that f)(lo, 1) # f#) (Lo, 11). Then there
exists v € Qg such that e corpe /., (af, d;) # Sicr,corpy k., (b7, d;). This
implies that v ¢ X(L/K), and v ¢ n Y. Since Yicrcorpy /i, (af,d;) =

1€lo ‘

Yiercorpy i, (b7, d;), there exists j € I such that
COI'F;_J/KU (CL;, d]) 7£ COI'FJ;)/KU (b;), d])

Therefore v & n ¥;, and this contradicts X(L/K) U n ¥ U n Y = Q.
i€l S 1€y

Hence we have f(q) = fp) for all (a), (b) € L(E, A).
Since f(q) is independent of (a), we obtain a map

f:Ul(E,0) = Z/2Z

defined by
f(]o, Il) = ZiEIoZUEQKCOIFi“/KU (af, dz)

for any (a) = (a}) € L(E, A). Note that f is a group homomorphism.

Recall that we are fixing an embedding € : F — A, and an involution
0 : A — Asuch that € : (F,0) — (A, 7) is an embedding of algebras with
involution. If (A, 6) is orthogonal, then we also fix an orientation u : A(E) —
Z(A,0). Our next aim is to discuss the dependence of f on these choices. We
first introduce some notation.

Recall that for all a € F*, we set 6, = foInt(e(a)). Similarly, if § : A — A
is an involution and if € : (F,0) — (A,#) is an embedding of algebras with
involution, then we set 6, = 6 o Int(é(a)). Then 6, : A — A is an involution,
and ¢ : (E,0) — (A,0) is an embedding of algebras with involution.

Definition 5.4.2. Let € : £ — A be an embedding, and let 6:A— Abe
an involution such that € : (E, o) — (A, 0) is an embedding of algebras with

involution. Let @ : A(E) — Z(A,0) be an orientation. We say that (e, 0, u)
and (€,0,u) are compatible if there exists & € A* and ¢ € F* such that the
following two conditions are satisfied

(a) Int(a) : (A,0) — (A, 6,) is an isomorphism of algebras with involution
such that Int(a) o € = e.

(b) The induced automorphism ¢(«) : Z(A,0) — Z(A, 0,) satisfies
cla) o U = u,.

Recall that if (A, 7) is orthogonal, then we are fixing an orientation v :
A(E) — Z(A, 7).
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Proposition 5.4.3. Assume that (e,0,u) and (€,0,1) are compatible. Let

L(A, E) be the set of local embedding data defined with respect to (€,0,u),
and let (a) € L(A,E). Let

floy  T(E,0) — Z/2Z

be defined by
fly (o, ) = Biery Yo, corrr k., (a7, di).
Then f(’a) =f.

Proof. Let o € A* and ¢ € F* be such that Int(a) : (A,0) — (A, 6,) is an
isomorphism of algebras with involution such that Int(a) o € = ¢, and that if
6 is orthogonal, then we have c¢(a) o @ = u,.

Let (a) = (a*) € L(A, E). We claim that (ca) € L(E,A). A straightfor-
ward computation shows that Int(a™") : (A, 0ew) — (A, 0,0) is an isomor-
phism of algebras with involution for all v € Q.

o

For all v € Q, let (Int(B") o € a, 5", v) be parameters of an orien-
ted embedding. Since ¢ = Int(a™') o € and c(a) o U, = U, we see that
(Int(B*a~t) o eca¥, BPa~!, v) are parameters of an oriented embedding with
respect to (¢, 0, u). Therefore we have (ca) € L(E, A).

Let ¢ = (¢, ..., ¢p) with ¢; € F*. We have
flwy (o, ) = Bicr, Yo, cotrr i, (af, di) =

= Yicly Bven COTEr /K, (a7, di) + Bic1yBveqy COTEy /1, (Ciy di) =
= ZiEIQZUEQKcorFi”/KU (ciaf, dz) = f(]o, Il),
since (ca) € L(E, A).

Corollary 5.4.4. Suppose that there exists an embedding of algebras with
involution (E,0) — (A, 7). Then we have f = 0.

Proof. Since there exists an embedding (F, o) — (A, 7), there exists a € F*
such that 7 ~ 6,. We have a = (ay,...,an) with a; € F*. For all v € Q,
set af = a;, and let (a) = (a}). By Theorem 5.4.1. it suffices to show that
f@ = 0. Let (I, I;) € HI(E, o). Then we have

f(a)(fo, Il) = ZueQKZieIocorF;’/KU(aia di) = ZueQKZieIocorFi/K(aia di) = 0.
Therefore f = f,) = 0, as claimed.

5.5. Hasse principle
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The main result of the paper is the following :

Theorem 5.5.1. Let v : A(E) — Z(A, 1) be an orientation. Suppose that
for all v € Qg there exists an oriented embedding (EV,0) — (A, T) with
respect to v. Then there exists an embedding (E,c) — (A, 7) if and only if

f=0.
This will be proved in Sections 6-8.

86. Orthogonal involutions

Suppose that K is a global field, that (A, 7) is orthogonal, and that all
the factors of E split A. The aim of this section is to give a criterion for the
Hasse principle for the existence of an embedding of (E, o) into (A,7) : in
other words, to prove Theorem 5.5.1. for orthogonal involutions. Moreover,
based on the results of §2, we give necessary and sufficient conditions for such
an embedding to exist everywhere locally.

6.1. The even degree case — Hasse principle

Suppose that deg(A) = n = 2r. We fix an embedding € : (E,0) — (A, 0)
and an isomorphism of K-algebras u : A(E) — Z(A,0).

Let us assume that for all v € g, there exists an embedding of algebras
with involution (EY,0) — (A", 7). This implies that the K-algebras A(FE)
and Z(A,7) are isomorphic. Let us fix an isomorphism of K-algebras v :

A(E) — Z(A,T).
The Brauer-Manin map f : HI(E, o) — Z/27Z was defined in 5.4.
Theorem 6.1.1. Suppose that for all v € Qg there exists an oriented em-

bedding (EV,0) — (AY, ) with respect to v. Then there exists an embedding
(E,0) = (A, 7) if and only if f = 0.

Proof. By Corollary 5.4.4. we already know that the existence of a global
embedding (F,0) — (A, 7) implies that f = 0. Let us prove the converse.
Let (a) = (a¥) € L(E, A), and let (Iy, I;) € III. Then by hypothesis we have
f([O7[1) = f(a)([07 [1) = O, hence

Yveay Sier, COTRy /i, (af, d;) = 0.

By Proposition 4.1.5. there exists b € F'* such that

corpv/kc, (b, d) = corpe /i, (a, d)

for all v € Q. Applying Lemma 2.5.4. we see that C'(AY, 0,v) = C(AY,6,) in
Br(A(E")) for all v € Q. Since the embedding is oriented with respect to v,
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we have C'(AY, 1) = C(AY,0,) in Br(A(E")) for all v € Q. Therefore for all
v € Qg, we have C(AY, 1) = C(A",0;) in Br(A(E")). Then by the Brauer—
Hasse-Noether Theorem, we have C(A,7) = C(A,6) in Br(A(FE)), hence
C(A, 1) and C(A, 0,) are isomorphic over K. Note that (AY, 7) ~ (AY, 6,) over
K, if v is a real place. Hence by [LT 99], Theorems A and B, we conclude that
(A,7) ~ (A, 6,). By Proposition 1.1.3. there exists an embedding of (F,0)
into (A, 7).

Corollary 6.1.2. Assume that for all v € Qg there exists an embedding
(EY,0) — (A%, 7). Suppose moreover that one of the following holds :

(i) A is split.

(i) If v € Qg is such that AV is non-split, then disc(A",7) # 1 in
KXJKX2.

(iii) deg(A) = 2r with r odd.
Then there ezists an embedding (E,0) — (A, 7) if and only if f = 0.

Proof. This follows from Theorem 6.1.1. together with Corollary 2.7.3. (in
cases (i) and (ii)), and Corollary 2.8.3. (in case (iii)).

6.2. The odd degree case - Hasse principle

Suppose that A = M, (K), and that 7 is induced by an n—dimensional
quadratic form ¢. Recall that f : I — Z/2Z was defined in 4.4.

Theorem 6.2.1. Suppose that n is odd, and that for all v € Qg there exists
an embedding of algebras with involution (EV,0) — (AY, 7). Then there exists
an embedding (E,0) — (A, 1) if and only if f = 0.

Proof. We already know that if there exists an embedding (E,0) — (A, 1),
then we have f =0 (cf. Corollary 5.4.3). Let us show that the converse also
holds. Assume that we have f = 0.

If n=1then E = A= K, hence (F, o) can be embedded into (A, 7). Let
us assume that n > 3. Set A’ = M,,_;(K). Then by [PR 10], Proposition 7.2.
there exists a o—invariant étale subalgebra E’ of rank n — 1 of E such that
E =FE' x K, an (n — 1)-dimensional quadratic form ¢’ and a 1-dimensional
quadratic form ¢” over K such that ¢ >~ ¢’ @ ¢”, and that the étale algebra
with involution (E’, o) can be embedded in the central simple algebra (A’, 77)
over K, for all v € Qg, where 7/ : A’ — A’ is the involution induced by ¢'.
Moreover, there exists an embedding of (E, o) into (A, 7) if and only if there
exists an embedding of (E’,0) into (A’, 7). Note that we have L(F, A) =
L'(E',A") x L(K, K). We may suppose that F,, = K. Then we have d,, = 1.
Set J={1,...,m—1}.
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Let ' : II(E',0) — Z/2Z be the Brauer-Manin map associated to
(E',0) and (A’,7'). Let (a) = (a}) € L(E,A). Set by =aY ifi=1,...,m—1.
Then (b) = (bY) is an element of L'(E’, A’). By Proposition 5.2.2. (i) we have
L'(E' A" C L(E',A"), hence (b) € L(E', A").

For all (Jo, Jl) c IH(E,, A/) we have f/<J0, Jl) = f(,b)(‘](]’ Jl) = f(a) ([0, [1),
where Iy = Jy and I} = J;U{m}. Since f, = f = 0 by hypothesis, this implies
that f* = 0. By Corollary 6.1.2. (i) this implies that (E’, o) can be embedded
into (A’, 7). Therefore (F, o) can be embedded into (A, 7).

6.3. Orthogonal involutions — local conditions

An infinite place w of F' is said to be ramified in F if w is a real place
that extends to a complex place of E. For all v € Qk, let p, be the number
of places of F' above v which are not ramified.

Definition 6.3.1. We say that the signature conditions hold if for every real
prime v of K such that A ~ M, (K,), the signature of ¢ at v is of the shape
(ry + pu, Su + py) for some non—negative integers r, and s, such that r, and
s, are even if n is even.

Definition 6.3.2. We say that the hyperbolicity condition is satisfied if for
all v € Qg such that the étale algebra with involution (EY, o) is split, the
algebra with involution (AY, ) is hyperbolic.

Note that as (AY,7) is hyperbolic for all but a finite number of places
v € ), we only need to check the hyperbolicity condition at finitely many
places.

The following is a consequence of the results of §3, in particular Proposi-
tions 3.1.1. and 3.1.2. (see also [B 12], Proposition 2.4.1. and [B 13], Theorem
12.1.).

Proposition 6.3.3. Suppose that n is even. The étale algebra with involution
(E¥,0) can be embedded in the algebra with involution (A", ) for allv € Qk
if and only if the following conditions hold :

(i) We have disc(A, 7) = disc(E) € K*/K*2.

(ii) The hyperbolicity condition is satisfied.

(iii) The signature conditions are satisfied.

Assume now that n is odd. We have ' ~ E’ x K, where E’ is an étale
algebra of rank n — 1 stable by o. Note that if n = 1, then an embedding

of (E,0) into (A, ) always exists, hence we may assume that n > 3. The
following is a consequence of Propositions 3.2.1. and 3.2.2.
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Proposition 6.3.4. Suppose that n is odd and > 3. The étale algebra with
involution (EV,0) can be embedded in the algebra with involution (A", 1) for
all v € Qg if and only if the following conditions hold :

(i) For all v € Qi such that (E')",0) is split, we have q ~ ¢ ® q", where
q' is hyperbolic, and ¢" is a 1-dimensional quadratic form over K.

(ii) The signature conditions are satisfied.
87. Symplectic involutions

Suppose that K is a global field, that all the factors of F split A, and
that (A, 7) is a symplectic involution. Prasad and Rapinchuk proved that the
Hasse principle holds in this case (cf. [PR 10], Theorem 5.1).

An infinite place w of F' is said to be ramified in F if w is a real place
that extends to a complex place of E. For all v € Qk, let p, be the number
of places of F' above v which are not ramified.

Definition 7.1.1. We say that the signature condition holds if for every real
prime v of K such that AV is non—split, the signature of (AY,7) is of the
shape (r, + pu, Sy + py) for some non—negative integers r, and s,.

The following result is a consequence of the Hasse principle, and of Pro-
position 3.3.1.

Theorem 7.1.2. The étale algebra with involution (E, o) can be embedded in
the central simple algebra with involution (A, T) if and only if the signature
condition holds.

§8. Unitary involutions

Suppose that K is a global field, that all the factors of F split A, and
that (A, 7) is a unitary involution.

8.1. Unitary involutions — Hasse principle

Suppose that (EY,0) can be embedded in (AY,7) for all v € Q, and
recall that f: II(E, o) — Z/2Z is the Brauer-Manin map defined in 5.4.

Theorem 8.1.1. Suppose that for all v € Qi there exists an embedding of
algebras with involution (EY,0) — (A, 7). Then there exists an embedding
of algebras with involution (E,c) — (A, T) if and only if f = 0.

Proof. If there exists a global embedding, then we have f = 0 (cf. Corollary
5.4.4.). Let us prove the converse. For all v € Qg there exist a” € (F")* such
that (A", 7) = (A", 0,), hence we have D(AY,7) = D(A", 0,») in Br(K,).
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On the other hand, by Lemma 1.5.2. we have D(A",0,,) = D(A",0) +
corpe /i, (a¥, d). Hence we have ¥ycq, corpe /g, (a’,d) = 0. Let (Iy, ;) € 1L
Then by hypothesis we have f(4)(Iy, [1) = 0, therefore

v
ZUEQKZiEIO CorFi”/KU (ai s dz) = 0.

By Proposition 4.1.5. there exists b € F'* such that for all v € Q, we have
corpe i, (b, d) = corpe i, (a’,d), and that b¥ = a if v is a real place. On the
other hand, we have D(A, 7) = D(A, 6,). Hence we have (A, 7) ~ (A, 6,). By
Proposition 1.1.3. there exists an embedding of (E, o) into (A4, 7).

8.2. Unitary involutions — local conditions

An infinite place w of F' is said to be ramified in F if w is a real place
that extends to a complex place of E. For all v € Qk, let p, be the number
of places of I’ above v which are not ramified.

Definition 8.2.1. We say that the signature condition holds if for every real
prime v of K, the signature of (AY,7) is of the shape (7, + py, sy, + py) for
some non—negative integers r, and s,,.

Definition 8.2.2. We say that the hyperbolicity condition is satisfied if for
all v € Qg such that the étale algebra with involution (EY,0) is split, the
algebra with involution (AY, ) is hyperbolic.

The following is a consequence of Propositions 3.4.1. and 3.4.2.

Proposition 8.2.3. The étale algebra with involution (E¥, o) can be embed-
ded in the algebra with involution (AY,T) for all v € Qg if and only if the
following conditions hold :

(i) For allv € Qk, we have
det(A”, 7)disc(E”,0) ™" € Npo g, (F°))Npo/x, (L°)7).

(iii) The signature condition is satisfied.

(iii) The hyperbolicity condition is satisfied.

9. Applications and examples

The aim of this section is to describe some special cases in which the
Hasse principle for the embedding problem holds, and to give some examples.
We keep the notation of the previous sections. In particular, K is a global
field, (F, o) is an étale algebra with involution, and (A, 7) is a central simple
algebra with involution.

9.1. The group II(E', o)
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Let us write F = Fy X -++ X Ep, X Ep01 X -+ X E,,, where E;/F; is a
quadratic extension for all i = 1,...,my and E; = F; x F; or F; = K if 1 =
my—+1,...,m. Recall that I = {1,...,m}, and set I(split) = {m1+1,...,m},
I’ = I(nonsplit) = {1,...,my}. If I" is empty, then we set III(E’, o) = 0.

Let 7 : III(F, o) — HI(E’, o) be the map that sends the class of (1o, I1) to
the class of (IpN1’, I;NI"). Then 7 is surjective, and Ker(r) is the subgroup of
III(E, o) consisting of the classes of partitions ([, I1) such that Iy C I(split)
or [} C I(split).

Let f : III(E,0) — Z/2Z be the Brauer-Manin map (cf. §5.4.). Note
that Ker(m) C Ker(f), since if i € I(split), then d; = 1. Hence f induces a
map f: HI(E',0) — Z/27Z such that f = fomr.

Proposition 9.1.1. We have f = 0 if and only if f = 0.
Proof. This follows immediately from the definitions.
9.2. Sufficient conditions

Assume that for all v € Qg there exists an embedding (EY, o) — (A", 1),
and let v : A(E) — Z(A,7) be an orientation. The results of Sections 6-8
imply the following :

Theorem 9.2.1. Suppose that the following conditions hold :

(i) For all v € Qf, there exists an oriented embedding (EV, o) — (AY, 1)
with respect to v.

(i) HI(E', o) is trivial.
Then there ezists an embedding (E,0) — (A, 7).

Proof. This follows from Theorems 6.1.1. 6.2.1. 7.1. 8.1.1. and Proposition
9.1.1.

Note that the existence of an oriented embedding is only necessary if
(A, 7) is orthogonal, A is non-split and deg(A) = 2r with r even (cf. Corollary
6.1.2.). Note also that this implies Theorem A of Prasad and Rapinchuk (cf.
[PR 10], page 584) — indeed, if E is a field extension of L, then III(F,0)
(= HI(E',0) in this case) is obviously trivial. Theorem 9.2.1. also has the
following application :

Corollary 9.2.2. Suppose that the following conditions hold :

(i) For all v € Qf, there exists an oriented embedding (E¥, o) — (AY, 1)
with respect to v.

(ii) There exists ig € I such that for all i € I, we have

Y(L/K)UX, UL, # Q.
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Then there ezists an embedding (E,0) — (A, T).

This generalizes the Hasse principle results of [PR 10], [Lee 12] and [B 12].
The Corollary is a consequence of Theorem 9.2.1. and the following Lemma :

Lemma 9.2.3. Assume that there exists ig € I such that for all i € I, we
have X(L/L)UX;, UY; # Q. Then the group III(E, o) is trivial. Therefore
HI(E', o) is trivial.

Proof. Suppose that the group III(F, o) is not trivial, and let (Iy, I;) be a
partition of I representing a non—trivial element of III(E, o). Then we have

S(L/K)U(NX)u(n;)=Qk.

1€lo Jjeh

Assume that ig € Iy. Then we have X(L/K)U%;, U (jQIle) = (g, hence for
all j € I, we have X(L/K) U, UX,; = Qk, contradicting the hypothesis.
Corollary 9.2.4. Suppose that the following conditions hold :

(i) For all v € Qf, there exists an oriented embedding (E¥, o) — (AY, 1)

with respect to v.

(ii) There exists a real place u € Qg such that u & 3; for all i € I.

Then there ezists an embedding (E,0) — (A, 7).
Proof. By (ii), condition (ii) of Corollary 9.2.2. holds, hence there exists an
embedding (E,0) — (A, 7).

Assume now that K = Q. Recall that (E,0) is a CM étale algebra if E

is a product of CM fields, and if o is the complex conjugation. Then we have

Corollary 9.2.5. Suppose K = Q, and that (E,0) is a CM étale algebra.
Assume that for all v € Q, there exists an oriented embedding (EV,0) —
(AY, 7). Then there ezists an embedding (FE,0) — (A, T).

Proof. This follows from Corollary 9.2.4. since condition (ii) holds for CM
étale algebras.

9.3. An example

As we have seen in Corollary 9.2.5. above, the local-global principle holds
for oriented embeddings when (E, o) is a CM étale algebra with involution.
The aim of this section is to show that this is not the case for not necessarily
orientated local embeddings. More precisely, there exist CM étale algebras
with involution (F, o) and (non-split) central simple algebras with orthogo-
nal involution (A, 7) such that (E, o) embeds into (A, 7) everywhere locally,
but not globally.
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Let vy, v9, v3 and vy be four distinct places of K. Let a € K* be such that
a Q’KUXZ_Q fori =1,...,4,and let b € K* such that b ¢ K*? and that b € va2
fori =1,...,4. Let By = K(y/a), and let oy : By — E; be the K-linear
involution such that oy(y/a) = —v/a. Set Ey = K(Vb), let 0y : By — E,
be the K-linear involution such that 02(\/5) = —/0b. Set E = FE; ® E, and
0 = 01 ®0e. Then (E,0) is a rank 4 étale K—algebra with involution, and
F = E° = K(ab).

Let H; be the quaternion skew field over K ramified exactly at v; and
vy, and Hy the quaternion skew field over K ramified exactly at vs and vy.
Let 7; : H; — H; be the canonical involution for ¢ = 1,2, and set (A,7) =
(Hy,m) ® (Ho, 7). Since 77 and 75 are both symplectic involutions, their
tensor product 7 is an orthogonal involution. We have Hy ® Hy ~ My(H),
where H is a quaternion skew field over K.

Proposition 9.3.1. For all v € Qg, there exists an embedding of algebras
with involution (E,0) — (AY,T).

Proof. Since E; splits H; and H locally everywhere, it splits H locally eve-
rywhere too, and hence E embeds in H as a maximal subfield globally. Let
To be the canonical involution of H. Since 7 restricts to the non—trivial auto-
morphism on any maximal subfield, it follows that there exists an embedding
of algebras with involution of (Fy, 0y) into (H, 7).

Let w € Q. By hypothesis, either H; or H, is split over K,,. Hence either
(H, 1) ~ (My(K,),00) or (HY,75) ~ (My(Ky),00), where oy denotes the
symplectic involution of My(K,,). Therefore we have

(Mo(HY),7) ~ (H @ HY ;71 @ T9) ~ (M3(Ky),00) @ (H”, 7).

The algebra with involution (£}, 01) can be embedded into (H", 7p), and the
algebra with involution (EY, 0y) can be embedded into (Ms(K,), 0o). Hence
(E"™, o) embeds into (My(H™), 7).

Proposition 9.3.2. There is no global embedding (E, o) — (A, 7).

Proof. Let us denote by H the skew elements of H;, for i = 1,2. Then every
skew element of H; ® Hy belongs to the direct sum HY & HY. Moreover, if
a skew element is square central, then it has to be in H} or in HY. Assume
by contradiction that there exists an embedding of algebras with involution
f : (E,0) = (A,7). Note that f(v/b) is a square central skew element.
Therefore it has to belong to HY or to HY. But this contradicts the fact that
E, = K(\/l_)) does not split H; nor Hs.

In the above example, we can take K = Q and can choose a and b such
that E is a CM étale algebra. This provides the desired counter—example to
the Hasse principle.
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Appendix A
Embedding functor, Tate—Shafarevich group and orientation

The purpose of this appendix is to recall some of the results of [Lee 14],
and to outline the relationship of these results with those of the present

paper.
§A1l. The embedding functor

Let K be a field of characteristic # 2, let K, be a separable closure of
K, and let I'x = Gal(K,/K). Let G be a reductive group over K. Let T be
a torus and let ¥ be a root datum attached to T (see [SGA 3|, Exp. XXI,
1.1.1.). For a maximal torus 7" in G, we let ®(G,T") be the root datum of G
with respect to T". If ®(G,T")k, and Vg, are isomorphic, then we say that
G and V¥ have the same type.

Assume that G and ¥ have the same type. Let Isom (¥, &(G,T")) be the
scheme of isomorphisms between the root data ¥ and ®(G,T"). Define

Tsomext (U, &(G, T")) = Isom(¥, &(G, T")) /W (),

where W(WV) is the Weyl group of W. The scheme Isomext(V, ®(G,T")) is
independent of the choice of the maximal torus 7”7, and we denote it by
Isomext(¥, G). An orientation is by definition an element of Isomext(¥, G)(K).

The embedding functor E(G, V) is defined as follows : for any K-algebra
C, let E(G,¥)(C) be the set of embeddings f : T — G¢ such that f
is both a closed immersion and a group homomorphism which induces an
isomorphism Y : We = ®(Ge, f(Te)) such that fY(a) = oo [y, for
all the C’-roots « in W for each C-algebra C” (see [Lee 14], 1.1.) Given an
orientation v € Isomext(¥, G)(K), we define the oriented embedding functor
as follows (cf. [Lee 14], 1.2.) : for any K-algebra C, set

E(G, 9, 1)(C) = { ¢ To s G| £ € BGW(C), and the image of f* } |

in Isomext(V, G)(C) is v.

The oriented embedding functor is a homogeneous space under the adjoint
action of G. For each root datum W, we can associate a simply connected
root datum sc(¥) to it (cf. [SGA3], Exp. XXI, 6.5.5 (iii)]). Let sc(7") be the
torus associated to sc(WV).

§A2. Algebras with involution and the embedding functor

Let L be a field of characteristic # 2, and let A be a central simple algebra
over L with involution 7. Let E be an étale algebra over L with involution o,
and suppose that L7 = K. Given (A, 1) and (F,0), we always assume that
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dimy(F) = degy(A) and 7|, = o|L.

The unitary groups U(A, 7) and U(E, o) are defined as follows. For any com-
mutative K-algebra C', set

U(A,7)(C) ={z € ARk C| z7(x) = 1},

and

U(E,0)(C)={r € E®k C| zo(z) = 1}.

Let G = U(A, 7)° be the connected component of U(A, 7) containing the neu-
tral element, and let 7= U(E, 0)° be the connected component of U(E, o)
containing the neutral element.

Set F' = E°. Let us suppose furthermore that

: - [dimTL(E)L if 7 is of the first kind ;
dimy (F) = { dimy (F), if 7 is of the second kind.

Then one can associate a root datum W to the torus 7" such that G is of type
U (see [Lee 14], 1.3.). Moreover, except for A of degree 2 with 7 orthogonal,
there exists a K-embedding from (E, o) to (A, 7) if and only if there exists
an orientation v such that E(G, ¥, v)(K) is nonempty (see [Lee 14], Theorem
1.15. and Proposition 1.17.).

8A3. Orientations in terms of algebras

Let (E,0) and (A, 7) be as above. Assume moreover that (A, 7) is ortho-
gonal, and that the degree of A is even. Recall that A(E) is the discriminant
of the étale algebra E, and that Z(A, 7) is the center of the Clifford algebra
of (A, 7). In 1.8. an orientation is defined as the choice of an isomorphism
A(FE) — Z(A, 7). This is equivalent to the definition of A 1. More precisely,
we have

Proposition A.3.1. We have an isomorphism

Isom(A(E), Z(A, 7)) ~ Isomext (¥, G).

Proof. Let E, be a maximal 7-invariant étale subalgebra of A. Let T, =
U(E;,7)°; then T} is a maximal torus of G. Let ®(G, T;) be the root datum of
G with respect to T;. Then we have a natural map « : Isom((F,0), (E,, 7)) —
Isom (W, ®(G,T)). Using the identification of Aut(F, o) and Aut(¥), we see
that « is equivariant under the action of Aut(F, o). Let 'y be the subgroup
of Aut(FE, o) corresponding to the Weyl group of ¥ under this identification.
Let us consider the following commutative diagram :
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Isom((E,0), (E,, 7)) Isom (¥, ®(G, T7))

l |

Isom((E, o), (E;, 7))/To — Isom(¥, &(G, T,)) /W ().

Recall that Isom (¥, ®(G,T;))/W(¥) = Isomext(V, ®(G,T,)), and note that
we have Isom((E,0), (E;,7))/To ~ Isom(A(E), A(E;)).

If we pick another maximal étale subalgebra E! of A invariant by 7, then
the method used for Isomext(¥, ¥, ) in [Lee 14] 1.2.1. shows that we have a
canonical isomorphism between Isom(A(E), A(E”)) and Isom(A(E), A(E;)).

Let us fix an isomorphism A(E;) — Z(A,7) as in 1.8. This gives an
isomorphism Isom(A(E), A(E;)) — Isom(A(E), Z(A, 7)). Hence, we have

Isom(A(E), Z(A, 1)) ~ Isomext(V, (G, T;)) = Isomext(V, G),
as claimed.

8§A4. Tate—Shafarevich group

Assume now that K is a global field. Then, using Borovoi’s results (cf.
[Bo 99]), it is shown in [Lee 14] that the Brauer-Manin obstruction is the only
obstruction to the local-global principle for E(G, ¥, u) and the obstruction
lies in the Tate-Shafarevich group IIT*(K,sc(T)) (cf.| Lee 14], Proposition
2.8). Note that ITTI2(K, sc(T)) is isomorphic to I (K, s¢(T'))* by Poitou-Tate
duality (cf. [NSW 08], Chap. VIII, Thm. 8.6.9).

In the following, we determine the group IIT'(K, sc(T)) explicitly, and
show that it is isomorphic to the group III(E’, o) defined in §9 :

Proposition A.4.1. The groups I (K, sc(T)) and II(E', o) are isomor-
phic.

The proof of this proposition is different according as L = K or L #
K. Let us start by introducing some notation that will be used in both
proofs. For any finite separable field extension N/N’ and any discrete I'y—
module M, set Iy (M) = Indgx/(M). Note that In/n/(Z) is the character
group of Ry/n'(G,). Let SN/N/ be the character group of the norm-one torus

1)
R, (G,
Proof of Proposition A.4.1. when L = K

Let us consider the following diagram :
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1 —= R (G,) —=RY)

X2

1 G,

1 1

where the first row (cf. [Lee 14], Lemma 3.16.) and the columns are exact.
Then consider the corresponding diagram of character groups :

(2) 0 0

Note that we have Ip/x(Z) = GmEIEi/K(Z) and Ip/k(Z) = %IF,./K(Z)-
i=1 i=1

The module Ig,/x(Z) can also be written as Ip,/x(Ig,/r (Z)). Let d be the
degree map from lg,/p,(Z) ~ Z ® Z to Z, which sends (z,y) to x + y. Then
on each I, /k(Ig,/r,(Z)), the map 7 is the map induced by the degree map
from I, /p,(Z) to Z.

Set I' = I'x. We derive the following long exact sequence from diagram

(2)

0 — se(T)" = (Sg/x)" = (Spyw)t — HY(K,sc(T)) — HY(K, Sgyx)-

46



Thus we have the exact sequence
0= (Spyx)"/m((Sex)") = HY(K,sc(T)) — H'(K, Sg/x)

Note that H*(K, RS}K(Gm)) injects into H*(K, Rg/k(Gyy,)) by Hilbert’s
Theorem 90. By the Brauer-Hasse-Noether Theorem, IT11%( K, Re/k(Gn)) va-
nishes, hence so does ITI*(K, Rg} x(Gm)). By Poitou-Tate duality, we have
. L .
I (K, Spyx) ~ (K, RY) 1 (Gin)))* = 0.

Therefore, IIT' (K, sc(T)) is in the image of (Sg/x)"/m((Sg/x)F).
Since the F]'s are field extensions of K, we have I, x(Z)" ~ Z. Thus, we
have Ly (Z)" ~ @1p, x(Z)" ~ Z™, and (Spyx)" ~ Z™/(1, ..., 1).

If E; = F; x F}, then 7 sends Ig, x(Z)" ~ Ip,/x(Z)" x Ip, x(Z)" surjec-
tively onto Iy, x(Z)" ~ Z. If E; = K, then Ip x(Z) ~ Z ~ Ipx(Z). If
E; is a quadratic field extension of F;, the map 7 sends IEZ,/K(Z)F ~ 7 to
I,k (Z)" ~ Z by multiplication by 2. Recall that m = my +ms, where m; is
the number of indices ¢ such that F; is a quadratic field extension of F;, and
ms the number of indices 7 such that either F; = F; x F; or E; = K. Then
we have

(Se/) /7 (Sex)) = (Z/2Z)™ (1, ..., 1).

We claim that & : (Sp/x)"/7((Sg/x)") — HY(K,sc(T)) sends bijectively
II(E', o) to I (K, sc(T)).

Let (Io, I;) € LII(E’, 0), let a be the corresponding element in

(gF/K)F/W((gE/K)F)

and let z be the image of a in H' (K, sc¢(T")). We claim that z is in III* (K, s¢(T)).
It suffices to prove that for any v € Qk, we have a” = 0.

For a place v € ﬂI ¥, we have that E! splits over F’ for all ¢ € I;. Hence,

wely

7 maps Iger, (Z)™ ~ Ipo i, (Z)' @ Ipv i, (Z)" onto Ipe /., (Z)" for each

i €1y, 50 (Spyr)™ /m((Sg/x)"™) = 0 for each i € T, and a? = 0. On the other
hand, for each ¢ € Iy, a; = 0 by definition. Therefore, we have a” = 0.

For a place v € N Y, we replace (ay, ..., am,) by (a1, ..., am,) + (1,..., 1).
1€lo

Note that (a1, ..., am,) + (1,...,1) and (ay, ..., a,) represent the same class
ain (Sp/x)"/7((Sg/x)"). By the same argument as above, we have a, = 0.

47



Since (F} Y)u (ﬂI ¥;) = Qk, we have a¥ = 0 for all v € (g, which proves
1€lp 1€y
that z is in I (K, sc(T)).
This proves that § induces a map IIL(E’, o) — I (K, sc(T)). We already
know that this map is injective. Let us prove that it is also surjective.

Let 0 # 2 € I (K, sc(T)). Let a € (Sp/x)"/7((Sg/x)") be the preimage
of z, let a” be the localization of a at the place v, and let (ay, ..., a,,, ) be a lift
of ain (Z/2Z)™ . Let (Iy, I;) be the corresponding partition. Now we claim
that (ZQOZZ-) U (thZj) = Q. Suppose that (iQOZi) U (thZj) # Q, and

let v e QK\(F} ) U (ﬂl Y;). Therefore there exist iy € Iy and i; € I; such
1€lp 1€y
n;
that £ is not split over F and £} is not split over F. Let F = [] L;;,
j=1

ng
where the L, ;’s are field extensions of K,,. Let EY = [[ M, ;, where M, ; is a
j=1

quadratic étale algebra over L; ;. Set I', = I';,. Then we have
Leo i, (Z)" (L i, (Z)') = @illLi,j/KU(Z)F”/W(IMi,j/KU(Z)F”)-
j:

If M; ; is split over L, ;, then

4,7
IMi,j/Kv<Z>Fv = ILi,jXLi,j/KU<Z)FU = ILz’,j/Kv(Z)FU ) IL@J-/KU(Z)Fvv

so the map m sends Iy, ,/k, (Z)"™ surjectively to I, k,(Z)". On the other
hand, if M; ; is a field extension over L;j, then m maps In;, ,/x, (Z)' ~ Z to
22 CZ~1,,, /k,(Z)" and we have

ILi,j/Kv(Z)Fv/ﬂ-(IMi,j/Kv(Z)Fv) = Z/2Z

For a; € 1,k (Z)" /7 (1g, /i (Z)7) ~ Z/2Z, the localization map sends a;
diagonally into to Ipv/k, (Z)" /7(lge/k,(Z)') ~ @  Z/2Z. Let af be
s wherelvli’j

is non—split

the image of a; in g/, (Z)"™ /7(Igv/k,(Z)"). By our choice of v, we have
IFi%/KU<Z)FU /W(IE;JO/KU(Z)FU) (resp. IF;’l/KU(Z)FU/IE;JI/KU(Z)FU) non-trivial. In
particular, aj is non-zero as a;, is non-zero. Note that

. R Olp i, (Z)" /(g (Z)")
D(Srr/r,) " /m((Seryw,)™) = = T .0 ;

where 1 denotes the image of the diagonal element of Ipv/k, (Z)"™ in

Lo i, (2)" [ (L, (2)").
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Since a” = 0, either af = 0 € Ipv/k,(Z)"" /7(1ge /i, (Z)") for all i, or af =
1 € Ik, (Z2)" /7(1gr/k,(Z)") for all i. In particular, this implies that ag,
and aj are both 0 or both 1, which is a contradiction. Therefore we have
(Z_QOZZ-) U (jQIle) = Qg and (Iy, [;) € HI(E’, o). This completes the proof of

the Proposition.

Proof of Proposition A 4.1. when L # K.

In this case, the torus sc(7') fits in the following exact sequence :

(3) 1 —s¢(T) — Ry (RY) - (G)) — RY) o (G) — 1

We take the dual sequence of exact sequence (3) :

(4) 0 SL/K ! IF/K(SE/F) P SC(T) 0,
from which we derive the long exact sequence

(5)
.. — HY(K, SE/K) S H'(K, IF/K(SE/F)) P H'(K,sc(T)) —= HX(K, sE/K) '

By Poitou-Tate duality, we have III*(K,Sg/x) ~ I (K, R,(El,}K<Gm>>* We

claim that ITI*(K, SE/K) ~ (K, Rg}K(Gm))* = 0. To see this, we consider
the following exact sequence :

1 —= R (Gr) — Riyx(Gin) G, 1,

By Hilbert Theorem 90, we have H'(K, R} (Gy)) = K* /Np i (L*), where
N,k is the norm map from L to K. Since the norms of the quadratic exten-
sion L over K satisfy the local-global principle, we have IIT* (K, R(Ll/) (Gm)) =

0. Hence ITT*(K, Sy /x) = 0. Therefore the Tate-Shafarevich group ITI* (K, sc(T))
lies in the image of H(K, IF/K(SE/F)).

Let us consider the following exact sequence :

(6) 1 G, Ri/x(Gm) —=R{) o (Gp) —> 1,

where m(z) = z/o(z). Considering the dual sequence, we get

(7) 0 Sp/x Ix(Z) 47 —0,
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where d is the degree map which maps (a,b) € Z® Z ~ 1;/x(Z) to a + b.
Taking the long exact sequence of (), we have

8)  Iyx(Z) —~Z—H'(K,Sx) — H'(K,I;/x(Z)) = 0.
Since L is a quadratic field extension of K, we have
HY(K,Sp/k) ~ Z/d(11x(Z)") = Z/27Z.

Similarly, we have

H (K, 1p/k(Se/r)) = HY(F,Sgyr) = [TH(F;, Se,/r,)
i=1

If B, = F; x F;, then HI(E,gEi/Fi) = 0 since d is surjective. If F; is
a quadratic extension of Fj, then H'(F},Sg,/r,) = Z/2Z. Recall that m =
m1 + my where my is the number of indices i such that E; is a quadratic
extension of F}, and mo the number of indices 7 such that E; = F; x F;. Then
we have H' (K, Ip/k(Sg/r)) ~ (Z/2Z)™.

The map ¢! : H(K, SL/K) — HY(K, IF/K(QE/F)) maps Z/27Z diagonally
into (Z/2Z)™ . Therefore, we have

I (k, se(T)) € Im(p') ~ (Z/2Z)™ /(1, ..., 1).

Let us show that p' maps ITI(E’, o) bijectively to III(K,sc(T)).

Let (I, I;) € HI(E',0), and let a in H! (K, IF/K(gE/F)) be the correspon-
ding element. We want to show that p'(a) € III'(K,sc(T)). Let v € Q.
If v e ¥(L/K) or v € n ¥;, then a” = 0. Hence, it suffices to prove

g€l

that for v € Qg \ (X(L/K) U (q ¥)), we have a” = (1(1) = «*(1),. Since
el
Y(L/K)U (F;l Y)u (ﬂI Y;) = Qg, we have v € (F}I ¥;). Consequently, for
1€1p WASI St 1€lp
all i € Iy, we have Hl(FZ-,SEiv/Fiv) = 0 and the projection of ¢}(1) to these
components are trivial. For ¢ € I;, we have that a; and the ¢ — th coordinate

of t*(1) are both 1, so their images in H(FY, SEZV/FZ.U) are equal. This proves
that a” = 11(1), hence p'(a’) = 0.

We next show that the restriction of p! to II(E’, o) is surjective onto
I (K, sc(T)).

Let a = (a1, ..., am,) € (Z/2Z)™ ~ H"(K,1go 1(Sg/r)) and let (I, 1) be
the associated partition. If a = 0 or @ = (1,...,1), then a is in the image of
' and p'(a) = 0 € HIY(K, sc(T)). Hence, we may assume that I and I; are
non-empty. We claim that
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0 # p'(a) € III'(K,sc(T)) if and only if Iy and I; are non-empty and
N(L/K)U(NE)u (N X)) =k
1€lp Jjeh

Suppose that 0 # p'(a) € IITY(K, sc¢(T)). Let v € QK\<E<L/K)U<_Q ).

Since v ¢ N(L/K), we have H'(LY,Spv/k,) = Z/2Z. Let a® denote the
localization of a at v. Since p'(a) € II*(K, sc(T)), we have a” in the image of

1) so either a¥ = 0 or a¥ = (! (1). It suffices to show that v € q ¥;. Consider
ey

the i-th component of (Z/2Z)™, which corresponds to H! (K, IFi/K(SEi/Fi)) =
Hl(Fi,SEi/FZ,). If E; splits over F; at a place v € Qp, then by the exact
sequence (8), the map d is surjective and H!(F?,S gr/re) = 0, which means
that the i-th component vanishes at place v. Since v ¢ q Y, there exists
1€lp
1 € Ip such that E} is not split over F}. Let F}” = 1_1 L; ;, where L; ;’s are field
j=1

extensions of K. Let E = ﬁ M; ;, where M; ; is a quadratic étale algebra
j=1
over L; ;. Then

HY(FY, Speype) = [[H" (L, s .,)-

J

By the choice of i, there is j such that M, ; is not split over L; ;, and hence
H'(Li;,Swm,,/1.,) # 0. Then the projection of (1) to H'(L; ;,Sa,,/1.,) is
1. On the other hand, the projection of a” to the same component is 0 since
i € Iy. Therefore, a’ = 0 which means that H'(F},Sgo/p) = 0 for all i € I,
hence v € N Y;. This proves that a € III(E', o).
vely
Appendix B
Orthogonal involutions and maximal subfields

Let K be a global field of characteristic # 2, and let Qi be the set of
places of K. The purpose of this appendix is to give a new proof of Theorem B
of Prasad and Rapinchuk (see [PR 10], Introduction, page 586) using some of
the results of the present paper, in particular the local embedding conditions
of §3. Theorem B has two parts. The proof of the first part will be presented
in the first section of this appendix, and the proof of the second one in the
second section. The application to maximal subfields determining orthogonal
involutions of degree divisible by 4 is given in §B3.

We thank Gopal Prasad for encouraging us to include our proofs of these
results in our paper.
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§B1. First part of Theorem B
We start by recalling the dimension condition :

Definition B.1.1. Let E be an n—dimensional commutative étale K—algebra,
and let 0 : E — FE be a K-linear involution. Let F' = E?. We say that (E, o)
satisfies the dimension condition if dimy (F) = [2£].

The following result was proved by Prasad and Rapinchuk (cf. [PR 10],
Theorem B (i), Introduction, page 586 ; see also [PR 10], Theorem 9.4.) :

Theorem B.1. Let (A1, 1) and (As, 7o) be two central simple algebras with
orthogonal involutions with deg(A;) = deg(As) = n, with n > 3. Suppose
that the A;’s have the same isomorphism classes of n—dimensional commu-
tative étale algebras invariant under the involutions satisfying the dimension
condition. Then for all v € Q, we have (AY, 1) ~ (A", 13).

Definition B.1.2. Let (A, 7) be an orthogonal involution, with deg(A) = n.
Let v € Q2 and let E' be a T-invariant rank n étale subalgebra of A" satisfying

the dimension condition. An n-dimensional 7—invariant subalgebra E of A
is called a lifting of E if (E,7) ~ (E,T) over K,.

Lemma B.1.3. Let (A, ) be an orthogonal involution, with deg(A) = n. Let
v € Q and let E be an n—dimensional T—invariant étale subalgebra of A®
satisfying the dimension condition. Then E has a lifting in A.

Proof. See for instance [PR 10] , Proposition 2.4.

Lemma B.1.4. Let (A1, 1) and (Ay, 72) be two central simple algebras with
orthogonal involutions with deg(A;) = deg(As) = n. Suppose that the A;’s
have a common n—dimensional commutative étale subalgebra invariant under

the involutions satisfying the dimension condition. Then we have disc(Ay, 1) =
disc(Asg, ).

Proof. Let FE be an n—dimensional 7—invariant subalgebra of A; satisfying
the dimension condition such that (F, ) embeds into (As, 72). By Proposi-
tion 1.6.1. we have disc(Ay, 1) = disc(F) = disc(Ag, 72).

Proposition B.1.5. Let (Ay,71) and (As, 7o) be two central simple alge-
bras with orthogonal involutions with deg(A;) = deg(As) = n, with n > 3.
Suppose that the A;’s have the same isomorphism classes of n—dimensional
commutative étale algebras invariant under the involutions satisfying the di-
mension condition. Then we have the following

(i) disc(Ay, 1) = disc(Asg, 72).

(ii) The algebras Ay and Ay are isomorphic.
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(iii) Let v € Qg be such that A} and Ay are split, and let q; and g2 be
quadratic forms inducing the involutions 7, and 7. Then the Witt indices of
q1 and qo are equal.

Proof. (i) This follows from Lemma B.1.4.

(ii) If n is odd, then A; and Ay are both split, hence they are isomorphic.
Let us assume that n is even, and set n = 2r. Let v € Q. Then for i =
1,2, either AY is split or it is isomorphic to M, (D), where D is the unique
quaternion division algebra over K,. Hence it suffices to prove that for all
v € Q, the algebra A} splits if and only if A} splits.

Let v € Qg be a place such that A} ~ M, (D). Let 7 be induced by a
hermitian form h; over D. Suppose that A% splits, and that 7, is induced by
a quadratic form ¢, over K,. We claim that ¢ is isotropic.

Assume first that v is a finite place. For n > 5 all quadratic forms are
isotropic (cf. [Sch 85], 6.4.2.). For n = 4, if ¢ is anisotropic, then the determi-
nant of ¢y is trivial. Since disc(Ay, 1) = disc(Ay, 7o) = 1, the 2—dimensional
hermitian form h; over D is hyperbolic (cf. [T 61], Theorem 3.). Then there
exists an n—dimensional 7;-invariant étale subalgebra F; of A} satisfying the
dimension condition such that (Ey,7) is split. Let E be a lifting of F; in
Ay. Then (E, 7)) can be embedded into (As, 7). Since (EY, 1) ~ (EY, )
is split, by Proposition 3.1.1. this implies that (A%, 7») is hyperbolic, which
contradicts the assumption that ¢y is anisotropic. Therefore ¢, is isotropic.

Suppose now that v is a real place. Let k = [£], and let E; = C* x C* x
C™2*_ and let o : B, — E; be the involution which exchanges the two copies
of Ck, and acts on C"2?* as the complex conjugation. Then (Ej, o) can be
embedded into (A}, 1) (cf. Proposition 3.1.2.), hence we can assume that the
restriction of 77 to E; is 0. Let E be a lifting of E; in A;. Since (F,11) can
be embedded into (As, 73), by Proposition 3.1.2. the signature of ¢ is of the
form (2k 4+ 2s, 2k + 25’) for some non—negative integers s, s’. Note that k > 1,
since n > 3. Hence g5 is isotropic.

Let v € Qg, and let us write ¢ ~ gy @ ¢, with ¢y hyperbolic and ¢
anisotropic. Let dim(qg) = 2m ; since ¢ is isotropic, we have m > 1. Then
there exists a 7p—invariant commutative étale subalgebra Fy = K" x K" x E'
of A} satisfying the dimension condition such that 7 permutes the two copies
of K. Let E be a lift of Fy. Since (E, 73) can be embedded into (A;, 1), we
see that K, splits A}, which is a contradiction.

Therefore for all v € Q, the algebra Ay splits if and only if A} splits.
This implies that A; and A, are isomorphic. If v is a place such that A} and
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AY are split, the above argument also shows that the Witt indices of ¢; and
g are equal, and this proves (iii).

Proposition B.1.6. Let A be a central simple K—algebra of degree n, and
let 1 : A— Aand o : A — A be two orthogonal involutions. Assume that
we have

(i) disc(A, 1) = disc(A, 79).

(ii) Let v € Qg be such that A is split, and let ¢ and qs be quadratic
forms inducing the involutions 11 and 1o. Then the Witt indices of 1 and g
are equal.

Then for allv € Q, the algebras with involution (A”, 1) and (A", 1) are
1somorphic.

Proof. If v € Q is a real place such that A" splits, then having the same
Witt index implies that ¢; and ¢, have the same signature, hence they are
isomorphic. Therefore we have (A", 77) ~ (A", 13). For a real place v such that
A? is not split, we have (A", 1) ~ (AY,75) (cf. [Sch 85], 10.3.7). Therefore
for all real places v € Qf, we have (A", 1) ~ (A", 12).

Let v € Qk be a finite place. Assume first that A" is non-split. By (i) we
have disc(AY, 1) = disc(A, 72), and this implies that (A", 1) ~ (AY, 12) (cf.
[T 61], Theorem 3.).

Assume now that v is a finite place such that A" is split. Since ¢; and g9
have the same Witt index, it remains to prove that their anisotropic parts
are similar. Let ng be the dimension of the anisotropic parts of ¢; and ¢o. We
are reduced to the case where ng < 4, and the quadratic forms ¢; and ¢, are
anisotropic of dimension ng. If ng = 4, then there is only one isomorphism
class of anisotropic forms, hence ¢; ~ ¢o. Recall that we have det(q;) =
det(g2). Two anisotropic forms of dimension < 3 having the same determinant
are similar. Therefore ¢; and ¢, are similar, hence (A", 77) ~ (A", 7»). This
completes the proof of the Proposition.

Proof of Theorem B.1. By Proposition B.1.5. we can assume that A; =
Ay = A, and that conditions (i) and (ii) of Proposition B.1.6. are fulfilled.
Hence Proposition B.1.6. implies the Theorem.

If n is even, having the same invariant subfields is enough. In order to
prove this, we need a few lemmas :

Lemma B.1.7. Let k be a local field, let r > 1 be an integer, and let § €
kX /k*2. Assume that one of the following holds

(i) 6 #£1 in k* k2,
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(ii) r is even, and 6 = 1 in k> /k*2.
Then we have the following :

(iii) There exists a degree v field extension M of k and x € M* such that
x & M*? and that Ny (x) = 6 € k™ k™.

(iv) There exists a tower of field extensions N/M [k with [M : k] = r and
[N : M] =2 such that the discriminant of N is J.

Proof. Let us prove (iii). Assume first that (i) holds. Suppose that J is a
unit, and let M be the unique unramified extension of k of degree r. Let x
be a unit of M such that Ny /() = 6. Then = & M*2.

Suppose that § = m, where 7 is a uniformizer of K. Let f(X) = X" +
(—1)"m, and let M = k[X]/(f). Let « be the image of X in M. Then we have
Nuyyi(x) = m, and @ & M*2.

Assume that (ii) holds, and let » = 2m. Let M/k be unramified of degree
2m. Let m be a uniformizer of k. Then 7 is also a uniformizer of M, hence
m & M*?. We have Ny x(m) = 7™, hence Ny i (m) € k*2. Set © = 7.

Therefore (iii) is proved. Let us prove (iv). With M and x as in (iii), let
us set N = M(y/x). Then N and M have the required properties, hence (iv)
is proved.

Lemma B.1.8. Let (A, 1) be an orthogonal involution, with deg(A) = 2r
with r > 2. Let S be a finite subset of Qi and for all v € S, let E(v) be an
n—dimensional T—invariant étale subalgebra of AV satisfying the dimension
condition. Then the algebras E(v) for v € S have a common lifting in A
which 1s a degree 2r field extension of K.

Proof. Assume first that r is even, or disc(A,7) # 1 € K*/K*?. Let § =
disc(A4,7) € K*/K*?. Let w € Qg be a finite place such that w ¢ S, and
that if 6 #1 € K*/K*? then § ¢ K ?. Let N and M be as in Lemma B.1.7.
(iv) and let o : N — N be the K,,~linear involution with fixed field M. Note
that since disc(IN) = § and (N, o) is not split, Proposition 3.1.1. (ii) implies
that (N, o) can be embedded into (A", 7). By [PR 10], Proposition 2.4. there
exists an étale subalgebra E of A which is a common lifting of N and E(v),
for all v € S. Since N is a field, F is a field as well.

Suppose now that r is odd and that disc(A,7) =1 € K*/K*2. Then by
hypothesis we have r > 3; let us write r = m + 3. Let v; and vy be two
distinct finite places of K such that vy,vy &€ S, that A" and A" are split,
and that (A", 7) is hyperbolic.

Let m be a uniformizer at vy, and let p be an unit such that p & K2
Then K,, has exactly four square classes, and they are represented by 1, u,
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mand pm. Set By = K, (i), By = K, (v/7), and E3 = K, (\/ur). Let
o; : E; — E; be the non-trivial automorphism of E;/K,, for all i = 1,2, 3.
If m >0, let By = K] x K, and let o4 : £y — E4 be the involution
which exchanges the two copies of K, . Set E(v;) = E; X Fy X E3 X Ey,
and let o(vy) : E(v1) — E(v1) be the involution which is equal to o; on
E;. Then (E(v1),0(v1)) is a non-split rank 2r étale algebra of discriminant
1 satisfying the dimension condition. Hence (E(vy),o(v1)) can be embedded
into (A, 7) by Proposition 3.1.1. (ii). Let us denote by (F(v1),7) the image
of (E(v1),0(vy1)) in (A", 7).

Let L be the unramified extension of degree r of K,,. Since r is odd, we
have disc(L) =1 € K2 /K)? Let E(vy) = L x L, and let o(vs) : E(vy) —
E(vs) be the involution exchanging the two copies of L. Then (E(vs),0(vs))
is a split rank 2r étale algebra with involution satisfying the dimension condi-
tion. Since A% is split and (A", 7) is hyperbolic, (E(vs),o(v3)) can be em-
bedded into (A", 7) by Proposition 3.1.1. (i). Let us denote by (E(uvs), ) the
image of (E(v2),0(v2)) in (A%, 7).

Let (F,7) be a common lifting of (E(vy),7), (E(ve),7) and of (E(v), )
for v € S; such a lifting exists by [PR 10], Proposition 2.4. Let F' be the
subalgebra of 7—symmetric elements of E. Then F' is a field, since F'*? is a
field. Moreover, (F, T) is not split, since (E(v;), 7) is not split. Therefore E' is
a degree 2r field extension of K. This completes the proof of the proposition.

We have the following strengthening of Proposition B.1.5. :

Proposition B.1.9. Let (Ay, 1) and (A2, 72) be two central simple algebras
with orthogonal involutions with deg(A;) = deg(As) = 2r withr > 2. Suppose
that the A;’s have the same isomorphism classes of 2r—dimensional subfields
invariant under the involutions satisfying the dimension condition. Then

(1) diSC(Al, 7'1) = diSC(AQ, 7'2).
(ii) The algebras Ay and Ay are isomorphic.

(i) Let v € Qg be such that A} and Ay are split, and let q; and gs be
quadratic forms inducing the involutions 7 and 7o. Then the Witt indices of
q1 and qs are equal.

Proof. (i) follows from Lemma B.1.4. The proofs of (ii) and (iii) follow the
pattern of the proof of Proposition B.1.5. with the following modifications. By
Lemma B.1.8. the algebras F; and FE, appearing in the proof of Proposition
B.1.5. have liftings that are subfields of A; respectively A,. Since we are
assuming that A;’s have the same isomorphism classes of 2r—dimensional
subfields invariant under the involutions satisfying the dimension condition,
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the arguments of the proof of Proposition B.1.5. apply and we get the desired
conclusion.

Therefore we obtain the following :

Theorem B.1’. Let (A1, 1) and (Ay, 72) be two central simple algebras with
orthogonal involutions with deg(A;) = deg(As) = 2r, with r > 2. Suppose
that the A;’s have the same isomorphism classes of mazimal subfields inva-
riant under the involutions satisfying the dimension condition. Then for all
v € Qg, we have (AY, 1) ~ (AY, 7).

Proof. By Proposition B.1.9. we may assume that A; = Ay = A, and that
conditions (i) and (ii) of Proposition B.1.6. are fulfilled. Hence Proposition
B.1.6. implies the Theorem.

§B2. Second part of Theorem B

We now prove the second part of Theorem B of Prasad and Rapinchuk
(cf. [PR 10], Introduction, page 586, and Theorem 8.1.). Let A be a central
simple K—algebra, let 7: A — A be an orthogonal involution of degree 4m.

Let J = J(A,7) be the set of orthogonal involutions  : A — A such
that (A”,n) ~ (AY,7) for all v € Q. Let Q' be the set of places v € Qg such
that AV is not split and that Z(A",7) = K, x K,.

Theorem B.2. We have the following :

(i) Let n € J. Then there exists an n-invariant mazimal subfield E, of
A satisfying the dimension condition such that (E},n) is split for allv € .

(ii) Let n € J, and let E, be an n-invariant subalgebra of A of rank 4m
such that (Ep,n) is split for all v € V. Let v € J. If (Ey,n) embeds into
(A,7), then the algebras with involution (A,n) and (A,~) are isomorphic.

Proof. (i) Let v € @'. Then we have A ~ My, (D(v)), where D(v) is
the unique quaternion division algebra over K,. By hypothesis, we have
disc(4,n) =1 € K*/K*2. By [T 61], Theorem 3. this implies that (A,n) is
hyperbolic. Let L(v) be a quadratic extension of K, splitting D(v) and set
E(v) = L(v)™x L(v)™. Let us endow E(v) with the involution o(v) : E(v) —
E(v) which exchanges the two copies of L(v). By Propositions 3.1.1. and
3.1.2. there exists an embedding of algebras with involution (E(v),o(v)) —
(A”,n). By Lemma B.1.8. there exists a n-invariant subfield E, of A such
that (Ep,n) ~ (E(v),o(v)) for all v € Q.

(ii) Let £, be an n-invariant étale subalgebra of A satisfying the dimen-

sion condition such that (E,,n) is split over K, for all v € Q. Let F, be

the subalgebra of n-symmetric elements of F,, and let d € F* such that
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E, = F,(Vd). Let v € J, and assume that there exists an embedding of
algebras with involution (E,,n) — (A, ). By Proposition 1.1.3. there exists
a € I such that (A,n,) ~ (A,v). We claim that (A,7,) ~ (A4,7).

Let €27 be the set of places of K such that AV is non-split and that
Z(AY,7) is a field. Let 2y be the set of places of K such that AV is split.
Note that we have Qr = Q U Q; U Q. We have compatible orientations
u  A(E,) = Z(A,n) and u, : A(E,) = Z(A,n,). We regard C(A,n,)
and C(A,n) as A(E,)-algebras via u, and u. By Proposition 2.5.4. we have
C(A,n.) = C(A,n) + resag,)/xcorr, /k (a, d) in Br(A(E,)).

Let v € . Then (E}, n) is split by hypothesis, hence we have d € (F})**.
Therefore corpy/i(a,d) = 0, and hence we have C(A%n,) = C(A%n) in
Br(A(E})).

Let v € Q). Then Z(A” n) is a field, hence A(E}) is also a field. Thus
resa(gy)/K COTFy /i (a, d) = 0, hence we have C'(A”, n,) = C(A”,n) in Br(A(E})).

Let v € Q. Then AV is split, and hence (A",n) admits improper si-
militudes. Hence there exists an isomorphism of algebras with involution
Int(a) : (A%, n.) — (AY,n) such that u = ¢(«) o u,. Therefore C'(AY,n,) is
isomorphic to C(A”,n) as A(Ey)-algebras.

Hence we have C'(A",n,) = C(A” n) in Br(A(E})) for all v € Q. By
the Hasse-Brauer-Noether theorem, this implies that C(A,n,) = C(A,n) in
Br(A(E,)). Note that disc(A,n,) = disc(4,n), and that (A", n,) and (A", n)
are isomorphic for all real places v of K. By [LT 99|, Theorems A and B
this implies that (A4,n,) ~ (A,n). Since (A,n,) ~ (A,~), we obtain (A,n) ~
(4,7).

8§B3. Application

The results of §B1 and §B2 have the following application (see [PR 10],
Introduction, page 586, last line before the statement of Theorem B) :

Theorem B.3. Let (A1, 71) and (As, 7o) be two central simple algebras
with orthogonal involutions with deg(A;) = deg(As) = 4m. Assume that the
A;’s have the same isomorphism classes of maximal subfields invariant under

the involutions satisfying the dimension condition. Then we have (A, 1) =~
(A, Tg).

Proof. By Theorem B.1.” we have (A}, 71) ~ (A%, 7) for all v € Q. Let
J = J(A, 1) be the set of orthogonal involutions n : A — A such that
(Av,n) ~ (A%, 1) for all v € Qk. Then we have 7, € J. By Theorem B.2. (i)
there exists a mj—invariant maximal subfield F, of A satisfying the dimension
condition and such that (E?, , ) is split over K, for all v € €' (where ' is the
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set of places v € Qk such that A” is not split and Z(AY, 1) = K, x K,,. Since
(A, ) and (A, 1) have the same isomorphism classes of maximal subfields

invariant by the involutions and satisfying the dimension condition, (E,,, )
embeds into (A, 72). Therefore by Theorem B.2. (ii) we have (A, 1) ~ (A, ).
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