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EXPONENTIAL FRAMES ON UNBOUNDED SETS

SHAHAF NITZAN, ALEXANDER OLEVSKII AND ALEXANDER ULANOVSKII

Abstract. For every set S of finite measure in R we construct a discrete set

of real frequencies Λ such that the exponential system {exp(iλt), λ ∈ Λ} is a

frame in L2(S).

1. Introduction

This note can be viewed as a continuation of our previous paper [NOU]. In
[NOU] we constructed "good" sampling sets for the Paley–Wiener spaces PWS

of entire L2(R)−functions with bounded spectrum S in R. This construction is
based on a result in [BSS] on existence of well-invertible sub-matrices of large
orthogonal matrices. Recently, an important progress in the latter area has been
made in [MSS]. Based on this, we prove existence of exponential frames in L2(S),
for every unbounded set S in R of finite measure.

Recall that a system of vectors E = {uj} is a frame in a Hilbert space H if
there are positive constants a, A such that

a‖h‖2 ≤
∑

uj∈E

|〈h, uj〉|2 ≤ A‖h‖2 ∀h ∈ H.

The numbers a and A above are called frame bounds.

Given a discrete set Λ in R, we denote by

E(Λ) := {eiλt}λ∈Λ
the system of exponentials with frequencies in Λ.

Exponential frames E(Λ) in L2(S) (equivalently, stable sampling sets Λ for
PWS) have been carefully studied from different points of view. There is a large
number of results in the area. In the classical case when S is an interval, such
systems were essentially characterized by Beurling [B] in terms of the so-called
"lower uniform density" of Λ. A complete description of exponential frames for
intervals is given by Ortega–Cerdá and Seip [OS]. However, the problem of ex-
istence of exponential frames for unbounded sets remained open. The following
result fills this gap by showing that for every set S of finite measure, the space
L2(S) admits an exponential frame:

Theorem 1 There are positive constants c, C such that for every set S ⊂ R of
finite measure there is a discrete set Λ ⊂ R such that E(Λ) is a frame in L2(S)
with frame bounds c|S| and C|S|.
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Here by |S| we denote the measure of S.

Remark 1. The frame bounds are essential in many contexts, since they charac-
terize the "quality" of frame decompositions. Assume that an exponential system
E(Λ) forms an orthogonal basis in L2(S). One can easily check that in this case
E(Λ) is a frame in L2(S) with frame bounds a = A = |S|. These are, in a sense,
the "optimal" frame bounds. In general, there may be no exponential orthogonal
basis in L2(S). However, Theorem 1 shows that an exponential frame in L2(S)
always exists with "almost" (up to fixed multiplicative constants) optimal frame
bounds.

Remark 2. A similar to Theorem 1 result regarding the existence of complete
exponential systems E(Λ) in L2(S) (equivalently, existence of uniqueness sets Λ
for PWS) is obtained in [OU] by an effective direct construction. That is not
the case here, since the proof of Theorem A below in [MSS] involves stochastic
elements.

Remark 3. Assume that S lies on an interval of length 2πd, d > 0. It follows
from Lemma 10 below that a set Λ satisfying the conclusion of Theorem 1 can be
chosen satisfying Λ ⊂ (1/d)Z.

Remark 4. Assume that Λ satisfies the conclusions of Theorem 1. Then there
are two absolute constants k,K such that the inequalities

k|S| < #(Λ ∩ Ω)

|Ω| < K|S|

hold whenever Ω is a sufficiently long interval in R. In fact, one can choose any
numbers k < 1/2π and K > 4C, where C is the constant in Theorem 1. Then,
as it was shown by Landau [L] (for a more elementary proof see [NO]), the left
hand-side inequality above follows from the frame property of E(Λ). The right
hand-side inequality follows from Lemma 6 (ii) below.

2. Well-invertible submatrices

Our construction is based on the following result by Marcus, Spielman and
Srivastava from [MSS]:

Theorem A Let ǫ > 0, and u1, ..., um ∈ Cn such that ‖ui‖2 ≤ ǫ for all i = 1, ...m,
and

m
∑

i=1

|〈w, ui〉|2 = ‖w‖2 ∀w ∈ C
n.

Then there exists a partition of {1, ..., m} into S1 and S2, such that for each
j = 1, 2,

∑

i∈Sj

|〈w, ui〉|2 ≤
(1 +

√
2ǫ)2

2
‖w‖2 ∀w ∈ C

n. (1)
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Observe that, clearly, (1 +
√
2ǫ)2 ≤ 1 + 5

√
ǫ when ǫ < 1.

Remark 5. Let ǫ < 1. Since
∑

i∈S1

|〈w, ui〉|2 = ‖w‖2 −
∑

i∈S2

|〈w, ui〉|2,

estimate (1) shows that the two-sided estimate holds for each j = 1, 2:

1− 5
√
ǫ

2
‖w‖2 ≤

∑

i∈Sj

|〈w, ui〉|2 ≤
1 + 5

√
ǫ

2
‖w‖2 ∀w ∈ C

n. (2)

The following corollary (see Corollary F.2 in [HO]) gives a reformulation of
Theorem A in a form well prepared for an induction process:

Corollary B Let v1, ..., vk ∈ Cn be such that ‖vi‖2 ≤ δ for all i = 1, ..., k. If

α‖w‖2 ≤
k

∑

i=1

|〈w, vi〉|2 ≤ β‖w‖2 ∀w ∈ C
n,

with some numbers α > δ and β, then there exists a partition of {1, ..., k} into S1

and S2 such that for each j = 1, 2,

1− 5
√

δ/α

2
α‖w‖2 ≤

∑

i∈Sj

|〈w, vi〉|2 ≤
1 + 5

√

δ/α

2
β‖w‖2 ∀w ∈ C

n. (3)

For the sake of completeness, we reproduce the proof.

Let M : Cn → Cn be the operator defined by Mw =
∑k

i=1〈w, vi〉vi. Observe
that M is positive and that

α‖w‖2 ≤ ‖M1/2w‖2 ≤ β‖w‖2 ∀w ∈ C
n.

Set ui = M−1/2vi. Then ‖ui‖2 ≤ ‖vi‖2/α ≤ δ/α. Further, for all w ∈ Cn,

k
∑

i=1

〈w, ui〉ui = M−1/2
k

∑

i=1

〈M−1/2w, vi〉vi = M−1/2MM−1/2w = w.

We see that ui satisfy the assumptions of Theorem A with m = k and ǫ = δ/α < 1.
Hence, there is a partition of {1, ..., k} into two sets S1 and S2 satisfying (2). Using
the right hand-side of (2) we get

∑

i∈Sj

|〈w, vi〉|2 =
∑

i∈Sj

|〈M1/2w, ui〉|2 ≤
1 + 5

√
ǫ

2
‖M1/2w‖2 ≤

≤ 1 + 5
√
ǫ

2
β‖w‖2 = 1 + 5

√

δ/α

2
β‖w‖2.

The proof of the left hand-side of (3) is similar.

We will use an elementary lemma:
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Lemma 1 Let 0 < δ < 1/100, and let αj , βj, j = 0, 1, ..., be defined inductively

α0 = β0 = 1, αj+1 := αj

1− 5
√

δ/αj

2
, βj+1 := βj

1 + 5
√

δ/αj

2
.

Then there exist a positive absolute constant C and a number L ∈ N such that

aj ≥ 100δ, j ≤ L, 25δ ≤ aL+1 < 100δ, bL+1 < CaL+1.

Proof. Clearly, if aj ≥ 100δ then

αj

4
≤ αj+1 <

αj

2
.

Denote by L ≥ 1 the greatest number such that aL ≥ 100δ, and set γj :=

5
√

δ/aj , j ≤ L. Then γL−j < 2−1−j/2. It follows that

L
∏

j=0

1 + γj
1− γj

< C :=
∞
∏

j=0

1 + 2−1−j/2

1− 2−1−j/2
.

This gives bL+1 < CaL+1, and the lemma follows.

We will need the following

Lemma 2 Assume the hypothesis of Theorem A are fulfilled and that ‖ui‖2 =
n/m, i = 1, ..., m. Then there is a subset J ⊂ {1, ..., m} such that

c0
n

m
‖w‖2 ≤

∑

i∈J

|〈w, ui〉|2 ≤ C0
n

m
‖w‖2 ∀w ∈ C

n, (4)

where c0 and C0 are some absolute positive constants.

Proof. If n/m ≥ 1/100, then (4) holds with J = {1, ..., m} and C0 = c0 = 100.

Assume δ := n/m < 1/100. Let αj and βj be as defined in Lemma 1. Then the
vectors vi = ui satisfy the assumptions of Corollary B with α0 = β0 = 1. Hence, a
set J1 ⊂ {1, ..., m} exists such that

α1‖w‖2 ≤
∑

i∈J1

|〈w, ui〉|2 ≤ β1‖w‖2 ∀w ∈ C
n.

Since α1 ≥ αL > 100δ, we may apply Corollary B the second time to get a set
J2 ⊂ J1 such that the two-sided inequality above holds with J2, α2 and β2, and so
on. Since αL > 100δ, Corollary B can be applied L times. We thus obtain a set
JL+1 ⊂ {1, ..., m} for which the two-sided inequality holds with αL+1 and βL+1.
From Lemma 1 it follows that (4) is true with J = JL+1.

We now reformulate Lemma 1 in terms more convenient for our application.
Given a matrix A of order m× n and a subset J ⊆ {1, ..., m}, we denote by A(J)
the sub-matrix of A whose rows belong to the index set J .

Lemma 3 There exist positive constants c0, C0 > 0, such that whenever A is an
m×n matrix which is a sub-matrix of some m×m orthonormal matrix, and such



EXPONENTIAL FRAMES FOR UNBOUNDED SETS 5

that all of its rows have equal l2 norm, one can find a subset J ⊂ {1, ..., m} such
that

c0
n

m
‖w‖2 ≤ ‖A(J)w‖2 ≤ C0

n

m
‖w‖2 ∀w ∈ C

n. (5)

3. Auxiliary results

In what follows we write F = f̂ , where f is the Fourier transform of F :

f(x) =
1√
2π

∫

R

e−itxF (t) dt.

Given a discrete set Λ, we denote by d(Λ) its separation constant

d(Λ) := inf
λ,λ′∈Λ,λ6=λ′

|λ− λ′|.

Given a sequence of sets Λj satisfying d(Λj) ≥ d > 0 for all j, a set Λ is called
the weak limit of Λj if for every ǫ > 0 and for every interval Ω = (a, b), a, b 6∈ Λ,
both inclusions Λj ∩ Ω ⊂ (Λ ∩ Ω) + (−ǫ, ǫ) and Λ ∩ Ω ⊂ (Λj ∩ Ω) + (−ǫ, ǫ) hold
for all but a finite number of j’s. The standard diagonal procedure implies that
if Λj satisfy d(Λj) ≥ d > 0 for all j, then there is a subsequence which weakly
converges to some (maybe, empty) set Λ satisfying d(Λ) ≥ d.

Recall that the Paley–Wiener space PWS is defined as the space of all functions
f ∈ L2(R) such that f̂ vanishes a.e. outside S. When the measure of S is finite,
we have

∫

S

|F (t)| dt ≤ ‖F‖
√

|S| ∀F ∈ L2(S).

Here ‖F‖ means the L2−norm of F . Hence, f̂ ∈ L1(R) for every f ∈ PWS, and
so every function f ∈ PWS is continuous.

Sometimes it will be more convenient for us to work with the Paley–Winer space
PWS, rather than L2(S). In this connection we observe that by taking the Fourier
transform, Theorem 1 is equivalent to the following statement:

There exist positive constants c, C such that for every set S ⊂ R, |S| < ∞, there
is a discrete set Λ ⊂ R such that

c|S|‖f‖2 ≤
∑

λ∈Λ

|f(λ)|2 ≤ C|S|‖f‖2 ∀f ∈ PWS (6)

We will prove (6) with the constants C = C0 and c = c0/(36C0), where c0 and
C0 are the constants in Lemma 3.

We will need the following Bessel’s inequality (see [Y], Ch. 4.3): Given a set
Λ satisfying d(Λ) > 0 and a bounded set S, there is a constant K which depends
only on d(Λ) and the diameter of S such that

∑

λ∈Λ

|f(λ)|2 ≤ K‖f‖2 ∀f ∈ PWS.
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The proof of Theorem 1 below uses three auxiliary lemmas:

Lemma 4 Let S be a bounded set of positive measure and let Λk ⊂ R be a
sequence of sets satisfying d(Λk) > δ > 0, k = 1, 2, ..., which converges weakly to
some set Λ. Then

lim
k→∞

∑

λ∈Λk

|f(λ)|2 =
∑

λ∈Λ

|f(λ)|2 ∀f ∈ PWS.

Proof. Take any function f ∈ PWS, and pick up a point xl ∈ [lδ − δ/2, lδ + δ/2]
such that

|f(xl)| = max
|x−lδ|≤δ/2

|f(x)| ∀l ∈ Z.

Since xl+2 − xl ≥ δ, the sequence xk is a union of two sets each having separation
constant ≥ δ. By Bessel’s inequality, we see that

∑

k∈Z

|f(xk)|2 < ∞.

Let R > 0, and write
∣

∣

∑

λ∈Λk

|f(λ)|2−
∑

λ∈Λ

|f(λ)|2
∣

∣ ≤
∣

∣

∑

λ∈Λk,|λ|<R

|f(λ)|2−
∑

λ∈Λ,|λ|<R

|f(λ)|2
∣

∣+2
∑

|k|≥R/δ

|f(xk)|2.

The first term in the right hand-side tends to zero as k → ∞ whenever ±R 6∈ Λ,
while the second one tends to zero as R → ∞. This proves the lemma.

Lemma 5 Let S1 ⊆ S2 ⊆ ... be an increasing sequence of bounded sets in R with
S = ∪kSk being a set of finite measure. Let Λ ⊂ R, d(Λ) > 0, and positive k,K
be such that the inequalities

k‖fj‖2 ≤
∑

λ∈Λ

|fj(λ)|2 ≤ K‖fj‖2 ∀fj ∈ PWSj
(7)

hold for every j. Then

k‖f‖2 ≤
∑

λ∈Λ

|f(λ)|2 ≤ K‖f‖2 ∀f ∈ PWS. (8)

Proof. Given a function f ∈ PWS, let fj ∈ PWSj
be the Fourier transform of the

function f̂ · 1Sj
, where 1Sj

is the indicator function of Sj . Then the L1−norm of

f̂ − f̂j tends to zero as j → ∞, and so the functions fj(x) converge uniformly to
f(x).

For every R > 0 we have,
∑

λ∈Λ,|λ|<R

|fj(λ)|2 ≤ K‖fj‖2.
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Taking the limit as j → ∞, we obtain
∑

λ∈Λ,|λ|<R

|f(λ)|2 ≤ K‖f‖2.

By letting R → ∞, we obtain the right hand-side inequality in (8). Using this
inequality, we get

(

∑

λ∈Λ

|f(λ)|2
)1/2 ≥

(

∑

λ∈Λ

|fj(λ)|2
)1/2 −

(

∑

λ∈Λ

|(f − fj)(λ)|2
)1/2 ≥

k1/2‖fj‖ −K1/2‖f − fj‖2.
Taking the limit as j → ∞, we prove the left hand-side inequality in (8).

Lemma 6 Assume that the inequality
∑

λ∈Λ

|f(λ)|2 ≤ C|S|‖f‖2 ∀f ∈ PWS (9)

is true for some C > 0, S ⊂ R, |S| < ∞, and Λ ⊂ R. Then

(i) There is a constant η > 0 which depends only on S such that

#(Λ ∩ Ω) ≤ 9C,

for every interval Ω ⊂ R, |Ω| = η.

(ii) There is a constant K > 0 which depends only on S such that

#(Λ ∩ Ω)

|Ω| ≤ 4C|S|,

for every interval Ω ⊂ R, |Ω| ≥ K.

Proof. (i) Denote by h ∈ PWS the Fourier transform of the indicator function
1S. Then h(x) is continuous,

h(0) =
|S|√
2π

, ‖h‖2 = ‖1S‖2 = |S|.

Choose η > 0 so small that |h(x)| > |S|/3, |x| ≤ η/2. Then, applying (9) for
f = h, we see that the statement (i) of Lemma 6 holds for Ω = [−η/2, η/2]. To
complete the proof, it suffices to observe that every function h(x − x0), x0 ∈ R,
belongs to PWS.

(ii) Take any function g ∈ PWS satisfying ‖g‖ = 1, and choose a number R
such that

∫ R

−R

|g(x)|2 dx ≥ 1

2
.

Assume K > 2R. We now apply (9) to the function f(x) := g(x−s) and integrate
over (−K,K) with respect to s:

∫ K

−K

∑

λ∈Λ

|g(λ− s)|2 ds ≤ 2KC|S|.
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When |λ| < K/2, we have
∫ K

−K

|g(λ− s)|2 ds ≥
∫ R

−R

|g(s)|2 ds ≥ 1

2
.

We conclude that

#(Λ ∩ (−K/2, K/2))

2
≤

∫ K

−K

∑

λ∈Λ

|g(λ− s)|2 ds ≤ 2KC|S|.

This proves statement (ii).

4. Proof of Theorem 1

The proof of Theorem 1 will consist of a series of lemmas.

Lemma 7 Let n,m ∈ N, n < m. For every set

S =
⋃

r∈I

[

2πr

m
,
2π(r + 1)

m

]

, I ⊂ {0, ..., m− 1},#I = n,

there is a set Λ ⊂ Z such that

c0|S|‖f‖2 ≤
∑

λ∈Λ

|f(λ)|2 ≤ C0|S|‖f‖2 ∀f ∈ PWS, (10)

where c0, C0 are the constants in Lemma 3.

Proof. Observe that |S| = 2πn/m, and denote by

FI := (ei
2πjr

m )r∈I,j=0,...,m−1

the submatrix of the Fourier matrix F whose columns are indexed by I. Since
the matrix (

√
m)−1F is orthonormal, by Lemma 3 there exists J ⊂ {0, ..., m− 1}

such that

c0n‖w‖2 ≤ ‖FI(J)w‖2l2(J) ≤ C0n‖w‖2, w ∈ l2(I). (11)

Observe that every function F ∈ L2(S) can be written as

F (t) =
∑

r∈I

Fr(t−
2πr

m
),

where Fr ∈ L2(0, 2π
m
) is defined by

Fr(t) := F (t+
2πr

m
)1[0, 2π

m
](t).

Therefore, every function f ∈ PWS admits a representation

f(x) =
∑

r∈I

ei
2πr
m

xfr(x), fr ∈ PW[0, 2π
m

],
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where the functions ei
2πr
m

xfr(x) are orthogonal in L2(R). We note that for every
function h ∈ PW[0,2π/m] we have,

2π

m
‖h‖2 =

∑

λ∈mZ

|h(λ)|2. (12)

We now verify that the sequence

Λ := {j + km : j ∈ J, k ∈ Z}
satisfies (10). Take any function f ∈ PWS. Then

∑

j∈J

∑

k∈Z

|f(j + km)|2 =
∑

j∈J

∑

k∈Z

∣

∣

∣

∣

∣

∑

r∈I

ei
2πrj

m fr(j + km)

∣

∣

∣

∣

∣

2

.

For every j ∈ J we apply (12) to the function
∑

r∈I e
i 2πrj

m fr(x). We find that the
last expression is equal to

2π

m

∑

j∈J

∫

R

∣

∣

∣

∣

∣

∑

r∈I

ei
2πrj

m fr(x)

∣

∣

∣

∣

∣

2

dx =
2π

m

∫

R

‖FI(J)(fr(x))r∈I‖2l2(J)dx.

By inequality (11) we have on one hand,

∑

λ∈Λ

|f(λ)|2 ≥ c0
n

m

∫

R

∑

r∈I

|fr(x)|2dx =

c0
n

m

∫

R

∑

r∈I

|ei 2πr
m

xfr(x)|2dx = c0
n

m

∫

R

|
∑

r∈I

ei
2πr
m

xfr(x)|2dx =

c0
n

m

∫

R

|f(x)|2dx,

while on the other hand, applying the same computation, we get

∑

λ∈Λ

|f(λ)|2 ≤ C0
n

m

∫

R

∑

r∈I

|fr(x)|2dx = C0
n

m

∫

R

|f(x)|2dx.

This completes the proof.

Lemma 8 For every compact set S ⊂ [0, 2π] of positive measure there is a set
Λ ⊂ Z such that (10) holds.

This follows immediately from Lemma 7, since every such set S can be covered
by a set from Lemma 7 whose measure is arbitrarily close to |S|.

Lemma 9 For every set S ⊂ [0, 2π] of positive measure there is a set Λ ⊂ Z such
that (10) holds.
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Proof. It suffices to prove Lemma 9 for open sets S. Let S be such a set end let
S1 ⊂ S2 ⊂ ... be an increasing sequence of compact sets such that S = ∪jSj. By
Lemma 8, there exist sets Λj ⊂ Z such that

c0|S|‖fj‖2 ≤
∑

λ∈Λj

|fj(λ)|2 ≤ C0|S|‖fj‖2 ∀fj ∈ PWSj
, (13)

where c0, C0 are the constants in Lemma 3. Since PWSj
⊂ PWSk

, k > j, we have

c0|Sk|‖fj‖2 ≤
∑

λ∈Λk

|fj(λ)|2 ≤ C0|Sk|‖fj‖2 ∀fj ∈ PWSj
(14)

We may assume that Λk converge weakly to some set Λ ⊂ Z. Using Lemma 4, we
take the limit as k → ∞:

c0|S|‖fj‖2 ≤
∑

λ∈Λ

|fj(λ)|2 ≤ C0|S|‖fj‖2 ∀fj ∈ PWSj
. (15)

Now, the result follows from Lemma 5.

Lemma 10 For every bounded set S of positive measure there is a set Λ ⊂ (1/d)Z
such that (10) holds, where d is any positive number such that S lies on an interval
of length 2πd.

Observe that the translations of S change neither the frame property of E(Λ)
nor the frame constants. So, it suffices to assume that S ⊂ [0, 2πd]. Then the
result follows from Lemma 9 by re-scaling.

Proof of Theorem 1. We may assume that S is an unbounded set of finite
measure.

Let S1 ⊂ S2 ⊂ ... be any sequence of bounded sets satisfying S = ∪jSj . By
Lemma 10, there exist discrete sets Λj such that (13) is true. Since PWSj

⊂
PWSk

, j < k, we see that (14) holds for all j < k.

By Lemma 6 (i), there is a number η > 0 and an integer r which depends
only on the constant C0 in (6) (it is easy to check that one may take r ≤ 36C0)

such that every set Λk can be can be splitted up into r subsets Λ
(l)
k satisfying

d(Λ
(l)
k ) ≥ η, l = 1, ..., r. By taking an appropriate subsequence, we may assume

that each Λ
(l)
k converges weakly to some set Λ(l) as k → ∞. By Lemma 4, we may

take limit in (14) as k → ∞:

c0|S|‖fj‖2 ≤
r

∑

k=1

∑

λ∈Λ(k)

|fj(λ)|2 ≤ C0|S|‖fj‖2 ∀fj ∈ PWSj
.

Set Λ := ∪r
k=1Λ

(k). It may happen that the sets Λ(k) have common points.
Anyway, we have

∑

λ∈Λ

|fj(λ)|2 ≤
r

∑

k=1

∑

λ∈Λ(k)

|fj(λ)|2 ≤ r
∑

λ∈Λ

|fj(λ)|2.
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From the latter inequalities, it readily follows that
c0
r
|S|‖fj‖2 ≤

∑

λ∈Λ

|fj(λ)|2 ≤ C0|S|‖fj‖2 ∀fj ∈ PWSj
.

Theorem 1 now follows easily from Lemma 5.
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