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LOEWNER CHAINS AND HÖLDER GEOMETRY

KYLE KINNEBERG

Abstract. The Loewner equation provides a correspondence between contin-
uous real-valued functions λt and certain increasing families of half-plane hulls
Kt. In this paper we study the deterministic relationship between specific an-
alytic properties of λt and geometric properties of Kt. Our motivation comes,
however, from the stochastic Loewner equation (SLEκ), where the associated
function λt is a scaled Brownian motion and the corresponding domains H\Kt

are Hölder domains. We prove that if the increasing family Kt is generated
by a simple curve and the final domain H\KT is a Hölder domain, then the
corresponding driving function has a modulus of continuity similar to that of

Brownian motion. Informally, this is a converse to the fact that SLEκ curves
are simple and their complementary domains are Hölder, when κ < 4. We also
study a similar question outside of the simple curve setting, which informally
corresponds to the SLE regime κ > 4. In the process, we establish general
geometric criteria that guarantee that Kt has a Lip(1/2) driving function.

1. Introduction

Let H = {z ∈ C : Im(z) > 0} denote the upper half-plane in C. A set K ⊂ H

is a half-plane hull if it is bounded and H\K is a simply connected domain, i.e.,
is simply connected, connected, and open. The Loewner differential equation pro-
vides a correspondence between certain one-parameter families of growing hulls, Kt,
and continuous real-valued functions λt. Under this correspondence, the (properly
normalized) Riemann maps gt : H\Kt → H solve an ODE that is “driven” by the
function λt. An important point of investigation is the relationship between geo-
metric properties of these hulls and analytic properties of the associated driving
function, or driving term.

Classically, interest in the Loewner equation was motivated by questions about
simply connected domains and their corresponding Riemann maps. For example,
if one can view a given domain Ω = H\K as the final object in a continuously
shrinking chain of domains Ωt = H\Kt, starting with Ω0 = H, where the evolution
is governed by a particular ODE, then one may hope to deduce properties of Ω from
properties of the ODE. In this way, the driving term becomes a tool for analyzing
the evolution process.

More recently, however, interest in Loewner’s equation has been renewed by
reversing this correspondence. Given a continuous function λt, one can solve the
associated ODE to obtain Riemann maps gt, corresponding to domains H\Kt which
shrink continuously in t. An interesting stochastic process arises when λt is equal
to a Brownian motion, scaled by a parameter κ > 0. In this case, the corresponding
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family of hulls is described by a random curve in H, called an SLEκ curve. For
various values of κ, these curves have been shown (or are conjectured) to arise as
scaling limits of certain discrete random planar processes.

The development of the SLE theory has rejuvenated interest in the deterministic
theory as well. More specifically, the curves arising from SLEκ processes are exam-
ples of fractal sets in the plane (cf. [3,24]), and the corresponding driving function
(Brownian motion) is highly non-smooth. In this spirit, there has been an effort
to understand better the deterministic Loewner correspondence when the driving
terms and the corresponding hulls are allowed to be non-smooth.

In the present paper, we take up this topic, motivated by specific properties of
SLE curves and their stochastic driving terms. Despite the fact that both of these
objects are non-smooth, each does enjoy some type of regularity: Brownian motion
is in the class of weak-Lip(1/2) functions; and the SLEκ domains H\Kt are, almost
surely, Hölder continuous conformal images of H. Our goal here is to investigate
the deterministic correspondence between driving functions that are weak-Lip(1/2)
and families of half-plane hulls whose complementary domains are Hölder domains.
To make this precise, we will need to discuss more background and some technical
terminology.

1.1. Background. Let K ⊂ H be a half-plane hull, so that H\K is a simply con-
nected domain. There is a unique conformal map f : H → H\K with the expansion

(1.1) f(z) = z − a1
z

+O

(

1

z2

)

, as |z| → ∞

where a1 ≥ 0 is a constant. The half-plane capacity of K is, by definition,

hcap(K) := a1.

We will see later that this is a measure of the size of K, seen “from infinity.” As
a basic example, we note that hcap(K) = 0 if and only if K = ∅, in which case
f = idH. Moreover, hcap is monotonic, in the sense that hcap(K) ≤ hcap(K ′)
whenever K and K ′ are hulls with K ⊂ K ′.

Observe that the inverse map g = f−1 : H\K → H has the form

(1.2) g(z) = z +
a1
z

+O

(

1

z2

)

, as |z| → ∞.

In this paper, we frequently use the normalizations in (1.1) and (1.2). Follow-
ing standard terminology, we say that such maps f and g are hydrodynamically
normalized.

Let λt be a continuous, real-valued function defined on a bounded interval [0, T ].
The associated Loewner equation is

(1.3) ∂tgt(z) =
2

gt(z)− λt
, g0(z) = z ∈ H.

The solutions to this initial value problem define, for each fixed t, a hydrodynam-
ically normalized conformal map gt : H\Kt → H, where Kt is a half-plane hull
[14, Section 4.1]. It is easy to see that K0 = ∅, as g0 = idH. Moreover, the hulls
form an increasing family, in the sense that Ks ( Kt whenever 0 ≤ s < t ≤ T .
This implies that hcap(Kt) is increasing in t. Indeed, more is true: hcap(Kt) = 2t
for each t. The fact that half-plane capacity increases continuously means, geomet-
rically, that the hulls are “growing continuously.” We see, then, that the family of
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hulls produced by a continuous driving term is an example of a geometric Loewner
chain, according to the following definition.

Definition 1.1. A one-parameter family of half-plane hulls Kt, for 0 ≤ t ≤ T , is
called a (geometric) Loewner chain if

(i) K0 = ∅,
(ii) Ks ( Kt for each 0 ≤ s < t ≤ T , and
(iii) hcap(Kt) = 2t for each t.

It is not true, however, that every geometric Loewner chain corresponds to a
continuous driving function. In fact, having a driving function places strong re-
strictions on how the hulls grow infinitesimally. A good example of Loewner chains
that do have a continuous driving term are those that are generated by a curve,
i.e., there is a path γ : [0, T ] → H for which H\Kt is the unbounded component
of H\γ[0, t] for each t. In the case that γ is a simple curve, this chain has an im-
portant property: whenever 0 < t− s ≪ 1 is very small, the set Kt\Ks has small
diameter. In particular, Kt\Ks can be separated from ∞ by a cross-cut in H\Ks

with diameter going to 0 as |s − t| → 0. The following theorem, originally proved
by C. Pommerenke for Loewner’s equation in the unit disk, says that this property
characterizes the Loewner chains that correspond to a continuous driving function.
See [16, Theorem 2.6] for a proof of what we state here.

Theorem 1.2 (Pommerenke [23]). Let Kt be a geometric Loewner chain for 0 ≤
t ≤ T . The following are equivalent.

(i) The hydrodynamic conformal maps gt : H\Kt → H satisfy (1.3) for some
continuous function λt.

(ii) For each 0 ≤ s < t ≤ T , the set Kt\Ks can be separated from ∞ by a
cross-cut in H\Ks of diameter ≤ ω1(t− s), where ω1(δ) → 0 as δ → 0.

(iii) For each 0 ≤ s < t ≤ T , the transition hull Ks,t = gs(Kt\Ks) has diameter
≤ ω2(t− s), where ω2(δ) → 0 as δ → 0.

We should remark that condition (iii) does not explicitly appear in Pommerenke’s
statement or in the statement of [16, Theorem 2.6]. However, the proof of the
equivalence of (i) and (ii) essentially goes through condition (iii). Moreover, it is
easy to see that (ii) and (iii) are equivalent, using, for example, Wolff’s lemma
about length distortion under conformal maps (cf. [22, Proposition 2.2]).

Pommerenke’s theorem sets up a correspondence between continuous driving
functions and Loewner chains with harmonically small “tails” Kt\Ks. Let us turn
to a few of the finer properties of this correspondence by imposing stronger geo-
metric properties on the hulls or stronger analytic properties on the driving terms.

The first results we should mention in this context concern classical smoothness.
Suppose that Kt is a geometric Loewner chain generated by a simple curve, so
that KT is a simple curve itself. In [6], C. Earle and A. Epstein proved that if
KT has a Cn parameterization, for n ≥ 2, then the associated driving function is
Cn−1. Conversely, if λt is in the class Cβ , with β > 1/2 and β + 1/2 /∈ N, then
the corresponding simple curve, parameterized by half-plane capacity, is in Cβ+1/2.
The case β ≤ 2 was demonstrated by C. Wong [32], and the result for β > 2 was
recently shown by J. Lind and H. Tran [20].

Closer to our interests in this paper, there have been several results dealing
with strictly fractional smoothness of λt. Due to certain scaling symmetries in the
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chordal Loewner equation, it is natural to study the Hölder class Lip(1/2). Namely,
let

||λ||1/2 = sup
0≤s6=t≤T

|λs − λt|
√

|s− t|
be the Lip(1/2) semi-norm. We say that λ is in Lip(1/2) if ||λ||1/2 < ∞. The
following theorem gives a relationship between Lip(1/2) driving terms and Loewner
chains that are generated by quasi-arcs.

Theorem 1.3 (Marshall–Rohde [21], Lind [17], Rohde–Tran–Zinsmeister [25]).
If Kt is a geometric Loewner chain generated by a quasi-arc that meets R non-
tangentially, then the corresponding driving term is in Lip(1/2). Conversely, if
‖λ‖1/2 < 4, then the corresponding Loewner chain is generated by a quasi-arc that
meets R non-tangentially.

In particular, this theorem ensures that if ‖λ‖1/2 < 4, then the corresponding
Loewner chain is generated by a simple curve. Finding weaker conditions on λt

that still give a simple curve is fairly wide open and seems surprisingly difficult.
For a statement about chains generated by curves that are Lipschitz graphs, see
[25, Theorem 1.2].

Coming from the opposite direction, J. Lind and S. Rohde have studied driving
functions that generate a space-filling curve, finding a second “transition value”
for the Lip(1/2) norm. Namely, if λ is a Lip(1/2) function that generates a curve
with non-empty interior, then ‖λ‖1/2 ≥ 4.0001. The constant 4.0001 here is most
likely not optimal. In the same paper, Lind and Rohde gave interesting (though
technical) geometric criteria for a Loewner chain to have a Lip(1/2) driving term.
We state it here, as it motivates one of the results in this paper.

Theorem 1.4 (Lind–Rohde [18]). Let Kt be a geometric Loewner chain, generated
by a continuous driving term λt, for 0 ≤ t ≤ T . Suppose that there are constants
C0 > 0 and k < ∞ such that for each 0 ≤ s < T , there is a k-quasi-disk Ds ⊂ H\Ks,
with ∞ ∈ Ds, for which

(i) KT \Ks ⊂ Ds and
(ii) diam(Kt\Ks) ≤ C0 max{dist(z, ∂Ds) : z ∈ Kt\Ks} for all s < t ≤ T .

Then ‖λ‖1/2 ≤ C, where C < ∞ is a constant depending only on C0 and k.

The Lip(1/2) theme in the study of Loewner’s equation has been motivated
primarily by properties of the SLE processes we mentioned earlier. Indeed, the
class Lip(1/2) allows for driving functions that generate non-smooth hulls and non-
smooth curves. To discuss SLE more thoroughly, fix κ > 0 and let λt =

√
κBt,

where Bt is a one-dimensional Brownian motion. Almost surely, there is a cor-
responding geometric Loewner chain (cf. Pommerenke’s theorem); moreover, this
chain is generated by a curve, γ. It turns out that these random SLEκ curves
exhibit two phase transitions, at κ = 4 and κ = 8 [15, 24]:

(i) if 0 ≤ κ ≤ 4, then almost surely γ is simple and intersects R in only one
point;

(ii) if 4 < κ < 8, then almost surely γ intersects itself but is not space-filling;
and

(iii) if κ ≥ 8, then almost surely γ is space-filling.

Note that this behavior mirrors the transition values we discussed above for the
Lip(1/2) norm.
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The relationship between SLE curves and Loewner chains that are generated
by Lip(1/2) functions is only motivational, though. Indeed, Brownian motion is,
almost surely, not Lip(1/2), and the corresponding SLE curves are, almost surely,
not quasi-arcs. It is true, however, that Brownian motion is almost Lip(1/2):

(1.4) |Bs − Bt| ≤
√

2|s− t| log (1/|s− t|)
for |s − t| small enough. More generally, a function λ is said to be in the weak-
Lip(1/2) class if

|λs − λt| ≤
√

|s− t| · φ (1/|s− t|) ,
where φ(x) = oǫ(x

ǫ) as x → ∞ for all ǫ > 0. The bound in (1.4) shows that
Brownian motion is weak-Lip(1/2) almost surely.

In addition to weak-type regularity for SLE driving terms, one can also say
something nice about the geometry of SLE domains. For this we need a definition.

Definition 1.5. Let Ω = H\K, where K is a half-plane hull, and let f : H → Ω
be the hydrodynamic conformal map. We say that Ω is a (β,C0)-Hölder domain,
with 0 < β ≤ 1 and C0 > 0 if

(1.5) |f(z)− f(z′)| ≤ C0 max{|z − z′|β , |z − z′|}
for all z, z′ ∈ H. We say that Ω is a Hölder domain if it is a (β,C0)-Hölder domain
for some choice of β and C0.

Note that if Ω is a Hölder domain, the hydrodynamic map f : H → Ω extends
continuously to R, thereby giving ∂Ω a Hölder continuous parameterization. We
will discuss other geometric properties of Hölder domains in the next section. For
now, we record the following theorem, which we mentioned informally earlier.

Theorem 1.6 (Rohde–Schramm [24, Theorem 5.2]). Let Kt be an SLEκ chain,
for κ 6= 4. Then almost surely, the domains Ωt = H\Kt are Hölder domains, with
constants depending on κ, t, and on the randomness.

The main goal of this paper is to extend the themes taken up by Marshall,
Rohde, Lind, Tran, and Zinsmeister to a context that deals with weak-Lip(1/2)
driving terms and Hölder geometry of the corresponding domains. Ideally, one
would like to find weak-type regularity assumptions on λ that ensure that the
associated domains are Hölder. This seems to be a difficult question, so we focus
instead on the converse. In our first theorem, we show that Hölder geometry in
the domains indeed gives weak-Lip(1/2) control on the driving term, at least in the
case that the Loewner chain is generated by a simple curve.

Theorem 1.7. Let Kt be a geometric Loewner chain, for 0 ≤ t ≤ T , that is
generated by a simple curve. If H\KT is a (β,C0)-Hölder domain, then this chain
has a driving term, λ, for which

|λs − λt| ≤ C
√

|s− t| log(1/|s− t|).
if |s− t| ≤ 1/2. Here, C > 0 depends only on β, C0, and T .

In some sense, this result can be viewed as a deterministic “converse” to what
we know about SLEκ curves when κ < 4. For such values of κ, the driving term is
a scaled Brownian motion and the corresponding hulls are generated by a simple
curve whose complement is a Hölder domain.
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We must ask, then: what can be said in the absence of the “simple curve”
hypothesis? Here, statements are not as neat as in Theorem 1.7, but we still can
say something interesting. The conditions we will impose on the Loewner chains
are, however, fairly technical, and so we put it off until the end of Section 2. They
arise quite naturally, though, as a generalization of the following geometric criteria
that guarantee the existence of a driving term in Lip(1/2).

Theorem 1.8. Let Kt be a geometric Loewner chain, and let Ωt = H\Kt be the
complementary domains. Suppose that, for each 0 ≤ s < t ≤ T , there is a point
z0 ∈ Kt\Ks for which

(i) diamΩs
(Kt\Ks) ≤ C0 dist(z0, ∂Ωs), and

(ii) there is an L-John curve in Ωs with tip z0 and base-point ∞.

Then this chain has a continuous driving term, λ, for which ‖λ‖1/2 ≤ C, where
C > 0 depends only on L and C0.

This result extends the criteria given in Theorem 1.4 above. Indeed, any point
in the k-quasi-disk Ds can be connected to ∞ by an L-John curve in Ds, where L
depends only on k.

In the next section, we will introduce additional terminology and establish some
basic estimates that will be useful later on. There we will also state Theorem
2.11, which gives criteria to ensure that a Loewner chain be generated by a weak-
Lip(1/2) driving term. Section 3 is devoted to the proof of Theorem 1.7 and so
deals primarily with half-planes slit by a simple curve. In Section 4 we will prove
Theorems 1.8 and 2.11 after discussing their relationship to Theorem 1.7.

Acknowledgements. The author thanks Mario Bonk for his detailed explana-
tions of the background theory for the Loewner equation and of related topics in
conformal mapping. He is grateful to Steffen Rohde for several discussions and
for sharing his insight into SLE. He also thanks Michel Zinsmeister, Huy Tran,
Joan Lind, and Marie Snipes for helpful conversations during various stages of this
project.
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Asymptotic Geometry of Groups” program at IHP. He thanks those institutes for
their hospitality and the participants for a stimulating atmosphere. The author also
acknowledges partial support from NSF grants DMS-1162471 and DMS-1344959.

2. Preliminaries

In addition to the Euclidean structure that H possesses as a subset of C, it can
also be endowed with the Riemannian metric whose length element is

ds =

√

dx2 + dy2

y
=

|dz|
y

,

where x = Re(z) and y = Im(z) > 0. This makes H a model for 2-dimensional
hyperbolic space. We will frequently look to the interplay between the hyperbolic
and Euclidean structures on H.

Let Ω ( C be a simply connected domain; recall that a domain is open and
connected. By the Riemann mapping theorem, there is a conformal map f : H → Ω.
As such, the hyperbolic metric on H can be transferred to a hyperbolic metric on
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Ω, and we will denote it by ρΩ. More specifically, we let ρΩ(z)|dz| be the hyperbolic
length element at z ∈ Ω, where

ρΩ(z) =
1

|f ′(w)| Im(w)
, f(w) = z,

so that the metric is defined internally by

ρΩ(z0, z1) = inf
γ

∫

γ

ρΩ(z)|dz|, z0, z1 ∈ Ω

with the infimum taken over all rectifiable paths γ in Ω that join z0 and z1. Let
us point out a few features of this metric, which follow immediately from the cor-
responding properties of the hyperbolic metric on H.

First, any two points in Ω can be joined by a unique geodesic segment, and
the metric is geodesically complete. Thus, Ω has many hyperbolic lines (isometric
images of R) and hyperbolic rays (isometric images of [0,∞)). Second, if ℓ ⊂ Ω is
a hyperbolic line and z0 ∈ Ω is a point, then there is a unique point p ∈ ℓ for which

ρΩ(z0, p) = min{ρΩ(z0, z) : z ∈ ℓ}.
This nearest-point projection, p, is characterized by the property that the hyper-
bolic line joining z and p intersects ℓ orthogonally.

We use standard notation regarding the Euclidean geometry of C. Let B(z0, r)
denote the open Euclidean ball of radius r > 0 in C, centered at z0 ∈ C. We will
use B(z0, r) to denote the closed Euclidean ball. For 0 ≤ r < R, we let

A(z0, r, R) := B(z0, R)\B(z0, r)

be the open annulus with inner radius r and outer radius R. If A,B ⊂ C, then

diam(A) := sup{|a− a′| : a, a′ ∈ A}
and

dist(A,B) := inf{|a− b| : a ∈ A and b ∈ B}.
For a domain Ω ⊂ C and non-empty subsets A,B ⊂ Ω, let

distΩ(A,B) := inf {diam(E) : E ⊂ Ω is connected, A ∩ E 6= ∅, and B ∩ E 6= ∅}
be the internal distance between A and B. It is clear that one can require E to
be an arc in the infimum. In the case that A = {a} and B = {b} are singletons,
we abuse notation and simply write distΩ(a, b). Similarly, the internal diameter of
A ⊂ Ω is

diamΩ(A) := sup{distΩ(a, a′) : a, a′ ∈ A}.
Lastly, it will be convenient for us to suppress multiplicative constants in much

of our analysis. For quantities A and B that depend on certain choices, the notation
A . B means that there is a constant C > 0 such that A ≤ C · B for all possible
choices determining A and B. Similarly, the notation A ≈ B means that A . B
and B . A. In some instances, the implicit constant C will be an absolute constant,
though we will indicate this explicitly for clarity. We should remark that some of the
bounds we use can be made sharp without much difficulty, but the extra work does
not really improve our results. In fact, the methods we use are probably unable
to obtain sharp statements (for example, in Theorem 1.7) due to their inherent
“coarseness.”
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2.1. The quasi-hyperbolic metric. Let Ω ( C be a simply connected domain.
To understand ρΩ in terms of the Euclidean geometry of Ω, or of ∂Ω, a useful tool
is the comparable quasi-hyperbolic metric. For z ∈ Ω, let

δΩ(z) = dist(z, ∂Ω)

denote the Euclidean distance from z to ∂Ω. The Koebe distortion theorem guar-
antees that

(2.1)
1

2
ρΩ(z) ≤

1

δΩ(z)
≤ 2ρΩ(z),

cf. [22, Corollary 1.4], along with the fact that ρD(z) = 2/(1 − |z|2). The quasi-
hyperbolic distance is then defined by

kΩ(z0, z1) = inf
γ

∫

γ

|dz|
δΩ(z)

, z0, z1 ∈ Ω

where, once again, the infimum is taken over all rectifiable paths γ in Ω that join
z0 to z1. The estimate in (2.1) immediately implies that

1

2
ρΩ(z0, z1) ≤ kΩ(z0, z1) ≤ 2ρΩ(z0, z1)

for all z0, z1 ∈ Ω.
To analyze kΩ, it is often helpful to approximate it combinatorially, using Whit-

ney decompositions. We say that a collection W of closed dyadic Euclidean squares
(i.e., side lengths are powers of 2) is a Whitney decomposition of Ω if Ω =

⋃

Q∈W Q,
the squares have non-empty, pairwise disjoint interiors, and

(2.2) 1
2 diam(Q) ≤ dist(Q, ∂Ω) ≤ 4 diam(Q)

for allQ ∈ W . Note that diam(Q) =
√
2·2j where 2j is the side length ofQ. It is not

difficult to construct such a decomposition for a given domain Ω; see, for example
[28, Section 6.1]. The precise construction of W is not, however, important in our
analysis. Instead, the key property is that diam(Q) is comparable to dist(Q, ∂Ω)
for each Q ∈ W . For convenience, though, when Ω = H, we will always use the
decomposition with squares of the form

Qj,k = {z : k2j ≤ Re(z) ≤ (k + 1)2j and 2j ≤ Im(z) ≤ 2j+1},
where k, j ∈ Z. Let us also remark that, in general, the squares in a Whitney
decomposition have controlled overlap, in the sense that no point is contained in
more than four squares. This continues to hold if the squares are replaced by
slightly larger dilates of themselves.

If Q ∈ W is a Whitney square in a decomposition of Ω, then (2.2) easily implies
that the diameter of Q, with respect to the quasi-hyperbolic metric kΩ, satisfies

1/4 ≤ diamkΩ
(Q) ≤ 2.

In light of this, it is not surprising that one can approximate the quasi-hyperbolic
metric (and, therefore, also the hyperbolic metric) in Ω using chains of Whitney
squares, as the following lemma indicates.

Lemma 2.1. Let W be a Whitney decomposition of Ω, and let ℓ be a quasi-
hyperbolic geodesic segment in Ω with endpoints z0 and z1. Define N(ℓ) to be
the number of squares in W that ℓ intersects. Then

N(ℓ) . max{kΩ(z0, z1), 1} ≤ 2N(ℓ),
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where the implicit constant is absolute.

Note that the upper bound follows immediately from diamkΩ
(Q) ≤ 2 for each

Q ∈ W . The lower bound is not difficult to establish using the fact that each
Whitney square Q that intersects ℓ has a neighbor through which ℓ runs for length
comparable to diam(Q).

2.2. Geometry of half-plane hulls. The standard Whitney decomposition of H
is also important for a geometric understanding of the half-plane capacity. Recall
that for a half-plane hull K ⊂ H, i.e., K is bounded and H\K is a simply con-
nected domain, hcap(K) is the non-negative number for which the hydrodynamic
conformal map f : H → H\K has

f(z) = z − hcap(K)

z
+O

(

1

z2

)

, as z → ∞.

The following lemma tells us that hcap(K) is comparable to the total area of Whit-
ney squares that K intersects.

Lemma 2.2. Let K be a half-plane hull, and let W be the standard Whitney de-
composition of H. Define AreaW(K) to be the area of the union of squares Q ∈ W
for which Q ∩ K 6= ∅. Then hcap(K) ≈ AreaW(K), where the implicit constants
are absolute.

There are multiple proofs of this lemma; see, for example [13] and [26]. In these
references, it is shown, respectively, that hcap(K) is comparable to the area of the
union of disks tangent to R with centers in K and to the Euclidean area of the
hyperbolic 1-neighborhood of K in H. These two area quantities are, of course,
comparable to each other and also comparable to the Whitney area AreaW(K).
See also [14, Chapter 3, Section 4] for an interpretation of half-plane capacity in
terms of hitting probabilities of Brownian motion started near infinity.

Analysis of the hydrodynamic map f : H → H\K is made easier by the integral
representation of f . Namely, there is a finite, compactly supported measure µK on
R for which

f(z) = z −
∫

R

dµK(u)

z − u
, z ∈ H.

See, for example, [1, Proposition 2.1]. If f extends continuously to R, then dµK(u) =
1
π Im(f(u))du. In any case, a geometric series expansion of the integral representa-
tion shows immediately that µK(R) = hcap(K).

The support of µK is defined to be

supp(µK) = {x ∈ R : µK((x − r, x+ r)) > 0 for all r > 0},
which is a compact set in R. It is an important fact that if supp(µK) ⊂ (x−r, x+r),
then f can be extended, via Schwarz reflection, to a univalent map on C\B(x, r).
The smallest possible value for r here is, of course, diam(supp(µK))/2. Similarly,
if K ⊂ B(x, r) for some point x ∈ R, then f−1 can be extended to a univalent map
on C\B(x, r). The smallest value for r in this situation is the radius of K:

rad(K) = inf{r > 0 : there is x ∈ R with K ⊂ B(x, r)}.
Obviously, we have rad(K) ≤ diam(K) ≤ 2 rad(K), but it will be more convenient
to use the radius in the following distortion estimates.
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Lemma 2.3. Let K be a half-plane hull and let f : H → H\K be its hydrodynamic
conformal map.

(i) If supp(µK) ⊂ (x−r, x+r) then H\B(x, 2r) ⊂ f(H\B(x, r)). In particular,
K ⊂ B(x, 2r), so that rad(K) ≤ diam(supp(µK)).

(ii) If K ⊂ B(x, r), for some x ∈ R, then H\B(x, 2r) ⊂ f−1(H\B(x, r)). In
particular, supp(µK) ⊂ (x−2r, x+2r), so that diam(supp(µK)) ≤ 4 rad(K).

(iii) If w ∈ supp(µK) and z ∈ K, then |w − z| ≤ 4 rad(K)
(iv) hcap(K) ≤ (diam(supp(µK))/2)2 ≤ 4 rad(K)2.
(v) If z ∈ H, then |f(z)− z| ≤ 3 rad(K).

Proof. Parts (i) and (ii) follow from the well-known theorem on omitted values
for univalent functions. Namely, if h : C\D → C is a univalent map with h(z) =
z + b1/z +O(1/z2) as z → ∞, then

C\B(0, 2) ⊂ h(C\D).
In other words, the “omitted set” is contained in B(0, 2), cf. [22, p. 8]. The desired
estimates are obtained by using the functions

h(z) =
f(rz + x)− x

r
and h(z) =

f−1(rz + x) − x

r
,

respectively, for |z| > 1, where f and f−1 have been appropriately extended via
Schwarz reflection.

Part (iii) follows immediately from part (ii). Indeed, if K ⊂ B(x, r) then we
have K ∪ supp(µK) ⊂ B(x, 2r) so that |w − z| ≤ 4r.

Part (iv) is a consequence of the area theorem: for a univalent map h as before,
|b1| ≤ 1 [5, Theorem 2.1]. If supp(µK) ⊂ (x − r, x + r), then we can apply this
estimate to the function

h(z) =
f(rz + x)− x

r
= z − hcap(K)/r2

z
+O

(

1

z2

)

,

defined for |z| > 1 using a suitable Schwarz reflection. We deduce then that
hcap(K) ≤ r2.

Lastly, part (v) is essentially Corollary 3.44 in [14]. There, rad(K) is defined to
be the smallest radius of a disk centered at 0 that contains K. The proof, however,
is the same: one can simply translate K so that K ⊂ B(0, rad(K)). �

We will use these estimates frequently in later arguments. Overall, sharp con-
stants are not essential, though it will be necessary to have specified constants. For
now, one should focus on the fact that supp(µK) and K have comparable diame-
ters, that hcap(K) is bounded from above by a multiple of diam(K)2, and that the
map f does not move points by more than distance 3 diam(K).

Later, we will need some more precise distortion estimates for the hydrodynamic
map f : H → H\K. First, let us remark on the behavior of points that are far from
K. If z ∈ H has dist(z,K) ≥ 7 diam(K), then part (iii) of the previous lemma gives

dist(z, supp(µK)) ≥ 7 diam(K)− 4 diam(K) = 3 diam(K) ≥ 3 rad(K).

The integral representation of f then shows that

(2.3) |f ′(z)− 1| ≤
∫

R

dµK(u)

|z − u|2 ≤ µK(R)

9 rad(K)2
=

hcap(K)

9 rad(K)2
≤ 1

2
,
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where the last inequality comes from Lemma 2.3(iv). Thus, f is bi-Lipschitz in this
region. For other points in H, we have the following lemma.

Lemma 2.4. Let K be a half-plane hull and f : H → H\K the associated hydrody-
namic map. If Im(z) ≤ 10 diam(K), then

Im(z) . diam(K) · |f ′(z)|,
with an absolute implicit constant. In particular, Im(z)2 . diam(K) · δH\K(f(z)),
again with an absolute constant.

Proof. By the Koebe 1/4-theorem [5, Theorem 2.3], we know that

|f ′(z)| Im(z) ≤ 4δH\K(f(z)).

It therefore suffices to prove the first statement.
To this end, let z0 ∈ H be the point with Re(z0) = Re(z) and Im(z0) =

10 diam(K). Note that z ∈ B(z0, Im(z0)) ⊂ H due to the assumption that Im(z) ≤
10 diam(K). The Koebe distortion theorem [5, Theorem 2.5], applied to this ball
B(z0, Im(z0)), gives

|f ′(z)| ≥ 1− r

(1 + r)3
|f ′(z0)| ≥

1− r

8
|f ′(z0)|,

where r = |z − z0|/ Im(z0) = (Im(z0)− Im(z))/ Im(z0). Thus, we obtain

|f ′(z)| ≥ Im(z)

8 Im(z0)
|f ′(z0)| &

Im(z)

diam(K)
|f ′(z0)|.

The desired conclusion then follows from (2.3), which shows that |f ′(z0)| ≥ 1/2. �

2.3. John domains and Hölder domains. In this paper, we are primarily inter-
ested in the class of Hölder domains and their corresponding geometric properties
in relation to the Loewner equation. The motivation for two of our theorems, how-
ever, comes from the geometry associated to a smaller class of domains, namely,
the John domains. We think it is appropriate to mention these briefly. Moreover,
the curves that are used to define the John condition appear in the statements of
these two theorems.

Let Ω ⊂ C be a domain. For the most part, we will focus on the case where
Ω = H\K, but for now this is not important. Let α ⊂ Ω be a simple curve in
Ω. For two points x, y ∈ α lying on the curve, we use α[x, y] to denote the closed
sub-arc that joins x and y.

Definition 2.5. A simple curve α ⊂ Ω is called an L-John curve, with L ≥ 1, if
it has an endpoint z ∈ Ω such that diam(α[x, z]) ≤ LδΩ(x) for each x ∈ α. When
this holds, we say that the point z is the tip of α, and we call the other endpoint,
z0 ∈ Ω ∪ {∞}, the base-point of α.

Note that we require the tip of any John curve to lie in the domain Ω, but
we allow the base-point to be at infinity. Here, having an endpoint at infinity
simply means that the curve accumulates to infinity. It is easy to see that the John
condition prohibits the curve from accumulating to any point in ∂Ω\{∞}. For the
most part, the John curves we use will lie in domains of the form H\K and will in
fact have base-points at infinity.
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Geometrically, one should think of a John curve as the core of a “twisted cone”
in Ω that joins the base-point z0 to the tip z. This cone is formed by the union of
the balls

B(x, diam(α[x, z])/L) ⊂ Ω,

with x ∈ α. For z ∈ Ω close to ∂Ω, the existence of a John curve with tip z means
that z is nicely accessible if one starts at the base-point z0. The domain Ω is called
an L-John domain if there is a point z0 ∈ Ω ∪ {∞} such that every z ∈ Ω is the
tip of some L-John curve in Ω with base-point z0. This condition means that all
points of Ω are nicely accessible from the common base-point z0.

Given the interpretation of John curves in terms of accessibility, it is not sur-
prising that one can bound the quasi-hyperbolic distance between the base-point
z0 and arbitrary points on the curve. In fact, we will later need this type of state-
ment for the hyperbolic metric, so we now focus on the case that Ω is a simply
connected domain. The following lemma shows that John curves give bounds on
ρΩ that mimic the logarithmic-type bounds on ρH.

Lemma 2.6. Let Ω be a simply connected domain, and let α be an L-John curve
in Ω with base-point z0 ∈ Ω ∪ {∞} and tip z ∈ Ω. Then

ρΩ(x, z) ≤
1

β
log

(

δΩ(x)

δΩ(z)

)

+ C

for each x ∈ α, where 0 < β ≤ 1 and C > 0 depend only on L.

The proof of this lemma follows standard techniques used to study the quasi-
hyperbolic metric. For similar statements, see [8, Section 3].

Proof. Let W be a Whitney decomposition of Ω, and fix x ∈ α. Recall that
diamkΩ

(Q) ≤ 2 for each Q ∈ W , so

(2.4) ρΩ(z, x) ≤ 2kΩ(z, x) ≤ 4N(α[x, z]),

where N(α[x, z]) is the number of squares in W that α[x, z] intersects.
If x lies in a Whitney square that intersects a Whitney square containing z, then

ρΩ(x, z) ≤ 8, and the desired inequality holds by taking C large enough. Otherwise,
if Q ∈ W contains z, then diam(α[x, z]) ≥ diam(Q)/15, and so

δΩ(z) ≤ diam(Q) + dist(Q, ∂Ω) ≤ 5 diam(Q) ≤ 75 diam(α[x, z]).

Thus, we may assume that δΩ(z) ≤ 75 diam(α[x, z]).
Using the L-John condition, we first show that any Q ∈ W intersecting α[x, z]

must have

(2.5)
δΩ(z)

10L
≤ diam(Q) ≤ 200LδΩ(x).

Indeed, if w ∈ Q ∩ α[x, z], then the Whitney property implies that

δΩ(w) ≤ diam(Q) + dist(Q, ∂Ω) ≤ 5 diam(Q),

and so the L-John property gives

δΩ(z) ≤ diam(α[w, z]) + δΩ(w) ≤ (L+ 1)δΩ(w) ≤ 10L diam(Q).

Similarly, we have

diam(Q) ≤ 2 dist(Q, ∂Ω) ≤ 2δΩ(w) ≤ 2(diam(α[w, z]) + δΩ(z))

≤ 200 diam(α[x, z]) ≤ 200LδΩ(x),
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which gives the other inequality in (2.5).
For each j ∈ Z, let Wj be the collection of Q ∈ W for which Q∩α[x, z] 6= ∅ and

diam(Q) =
√
2 · 2j . Then (2.5) implies that Wj is empty unless

log2

(

δΩ(z)

20L

)

≤ j ≤ log2 (200LδΩ(x)) .

Moreover, if Q ∈ Wj , then the L-John condition ensures that Q ⊂ B(z, 10L · 2j).
Any such Q contains a ball of radius ≥ 2j−1 in its interior, so the doubling property
of Lebesgue measure guarantees that #Wj ≤ C1, where C1 depends only on L. We
can then estimate

N(α[x, z]) =
∑

j∈Z

#Wj ≤ C2 log

(

δΩ(x)

δΩ(z)

)

+ C3,

where C2, C3 ≥ 1 depend only on L. The desired conclusion now follows from the
bound in (2.4). �

Recall from the previous section that a domain Ω = H\K, which is the com-
plement in H of a half-plane hull K, is said to be a (β,C0)-Hölder domain if the
hydrodynamic conformal map f : H → Ω satisfies the Hölder continuity condition

|f(z)− f(z′)| ≤ C0 max{|z − z′|β , |z − z′|}
for all z, z′ ∈ H. We should remark that, in the literature, Hölder domains are
typically defined as Hölder continuous conformal images of D and, as such, are
necessarily bounded. Many of the facts that we establish here have classical analogs
for bounded Hölder domains, and although it is a technical nuisance to work with
unbounded domains, the ideas we use are very similar to those found in the bounded
setting. We begin with the following lemma which gives an equivalent condition
for the Hölder property in terms of |f ′| (see [4, Theorem 5.1] for the analogous
statement about bounded Hölder domains).

Lemma 2.7. Let f : H → Ω be a conformal map onto a domain Ω, and let 0 <
β ≤ 1. Then the following are quantitatively equivalent.

(i) There is C0 > 0 such that |f(z)− f(z′)| ≤ C0 max{|z− z′|β , |z− z′|} for all
z, z′ ∈ H.

(ii) There is C1 > 0 such that |f ′(z)| ≤ C1 max{Im(z)β−1, 1} for all z ∈ H.

By quantitatively equivalent, we mean that C1 depends only on β and C0, and that
C0 depends only on β and C1.

Proof. The implication “(i) implies (ii)” follows almost immediately from the Koebe
distortion theorem. Indeed, for z ∈ H, let B := B(z, Im(z)/2). Then we have
|f ′(z)| diam(B) ≤ 10 diam(f(B)). Using the bounds in (i), we also know that
diam(f(B)) ≤ C0 max{diam(B)β , diam(B)}, so

|f ′(z)| . max{Im(z)β , Im(z)}/ Im(z) . max{Im(z)β−1, 1},
where the implicit constant depends only on C0 and β.

The opposite implication is slightly more difficult but straightforward. The idea
is to bound |f(z) − f(z′)| by the length of the hyperbolic geodesic in f(H) that
joins the two points. It is easier to carry this out in the following way. Without
loss of generality, assume that Im(z′) ≤ Im(z). As a first case, we suppose that
Im(z) < 2|z−z′|. Let γ and γ′ denote, respectively, the vertical segments beginning
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at z and z′, going up to height 2|z − z′|. Let w and w′ denote, respectively, their
endpoints at height 2|z − z′| so that w′ ∈ B := B(w, Im(w)/2). We then estimate

|f(z)− f(z′)| ≤ length(f(γ)) + length(f(γ′)) + diam(f(B)).

Notice that

length(f(γ)) =

∫ 2|z−z′|

Im(z)

|f ′(Re(z) + it)|dt ≤ C1

∫ 2|z−z′|

Im(z)

max{tβ−1, 1}dt

. max{|z − z′|β , |z − z′|},
where the implicit constant depends only on C1 and β. A similar bound holds for
length(f(γ′)). To control diam(f(B)), we use the Koebe distortion theorem again:

diam(f(B)) ≤ 10|f ′(w)| diam(B) . max{Im(w)β−1, 1} Im(w)

. max{|z − z′|β , |z − z′|},
with implicit constant depending only on C1 and β. This gives the desired bound
on |f(z)− f(z′)|.

For the remaining case, when Im(z) ≥ 2|z − z′|, we once again use the Koebe
distortion theorem, along with the fact that z′ ∈ B(z, Im(z)/2), to obtain

|f(z)− f(z′)| ≤ 10|f ′(z)| · |z − z′| . max{Im(z)β−1, 1}|z − z′|
. max{|z − z′|β , |z − z′|},

where the constant again depends only on C1 and β. �

A second condition that characterizes Hölder domains, originally due to J. Becker
and C. Pommerenke [2] in the bounded setting, is a growth condition on the hy-
perbolic metric for points close to the boundary.

Lemma 2.8. Let Ω = H\K, where K 6= ∅ is a half-plane hull, and assume that Ω
is a (β,C0)-Hölder domain. Then there is a point z0 ∈ Ω and a constant C > 0,
depending only on β and C0, such that

(2.6) ρΩ(z0, z) ≤
1

β
log

(

max{diam(K)β , diam(K)}
δΩ(z)

)

+ C

for all z ∈ Ω that lie on a hyperbolic geodesic segment joining z0 to a point in the
set DK := {w ∈ Ω : dist(w,K) ≤ 100 diam(K)}.

Before giving the proof, we should make a few remarks. First, the set DK is not
important in itself. Indeed, it is straightforward to show that the growth condition
in (2.6) for points z lying on geodesics that join z0 to DK is equivalent to the same
growth condition for all points z in any fixed bounded set that contains K in its
interior, as long as one is willing to change the additive constant C. We prefer,
however, to specify DK in order to obtain quantitative control of constants. In a
similar way, one could change the base-point z0 ∈ Ω, as long as C was also allowed
to change. Lastly, one could subsume the numerator max{diam(K)β , diam(K)}
into the additive constant C, but it will be important for us to keep track of how
diam(K) affects the constants.

Proof. For notational ease, let r = diam(K) > 0, and let x ∈ R be a point in K.
By Lemma 2.3(v), we know that

(2.7) DK ⊂ f(B(x, 104r)).
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Let w0 = x + 104ri ∈ H, and set z0 = f(w0) ∈ Ω. Using Lemma 2.3(v) again, we
observe that

dist(z0,K) ≤ 107r and Im(z0) ≥ 100r.

Now, fix z ∈ Ω lying on a hyperbolic geodesic segment joining z0 to a point in
DK . Let w = f−1(z) ∈ H. From the inclusion in (2.7), we know that w lies on a
hyperbolic geodesic in H that joins w0 to a point in B(x, 104r). In particular, this
means that

ρH(w0, w) ≤ log

(

Im(w0)

Im(w)

)

+ C,

where C > 0 is an absolute constant. As Ω is a (β,C0)-Hölder domain, Lemma 2.7
gives the estimate |f ′(w)| . max{Im(w)β−1, 1}, with implicit constant depending
on β and C0. Thus, the Koebe distortion theorem gives

δΩ(z) . |f ′(w)| Im(w) . max{Im(w)β , Im(w)}.
If Im(w) ≥ 1, then this implies that

ρΩ(z0, z) = ρH(w0, w) ≤ log

(

Im(w0)

Im(w)

)

+ C ≤ log

(

diam(K)

δΩ(z)

)

+ C′,

where C′ > 0 depends only on β and C0. If Im(w) < 1, then we similarly obtain

ρΩ(z0, z) ≤ log

(

diam(K)

δΩ(z)1/β

)

+ C′′ ≤ 1

β
log

(

diam(K)β

δΩ(z)

)

+ C′′,

where C′′ > 0 again depends only on β and C0. �

For later use, we should note that the growth condition in (2.6) implies that Ω
is a (β,C′)-Hölder domain for some C′ > 0. It is important here, however, that C′

is allowed to depend on z0, or more precisely, that it is allowed to depend on the
distance between z0 and K. We record this fact in the following lemma.

Lemma 2.9. Let Ω = H\K, where K 6= ∅ is a half-plane hull. Let z0 ∈ Ω be a point
for which Im(z0) ≥ R and dist(z0,K) ≤ 100R for some value R ≥ 10 diam(K).
Suppose that there is a constant C > 0 such that

ρΩ(z0, z) ≤
1

β
log

(

1

δΩ(z)

)

+ C

for all z ∈ Ω with dist(z,K) ≤ 10 diam(K). Then Ω is a (β,C′)-Hölder domain,
where C′ > 0 depends only on β, C, and R.

Proof. Let f : H → H\K be the hydrodynamic conformal map. We want to estab-
lish the bound

|f ′(w)| . max{Im(w)β−1, 1}, for all w ∈ H,

where the implicit constants depend only on β, C, and R. For notational ease, we
again let r = diam(K) > 0. First note that if dist(w,K) ≥ 7r, then the estimate
in (2.3) shows that |f ′(w)| ≤ 3/2.

Thus, we may assume that dist(w,K) < 7r. In this case, Lemma 2.3(v) gives
dist(f(w),K) ≤ 10r. Let z = f(w), so our hypothesis implies that

ρΩ(z0, z) ≤
1

β
log

(

1

δΩ(z)

)

+ C.
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Now let w0 = f−1(z0) ∈ H. Observe that dist(w0,K) ≤ 100R + 3r ≤ 101R and
Im(w0) ≥ R−3r ≥ R/2; in particular, dist(w0,K) and Im(w0) are both comparable
to R. This implies that

ρH(w0, w) ≥ log

(

1

Im(w)

)

− C′,

where C′ > 0 depends only on R. Together with the upper bound on ρΩ(z0, z) =
ρH(w0, w), we have

log

(

1

Im(w)

)

≤ 1

β
log

(

1

δΩ(z)

)

+ C′′,

where C′′ depends only on C and R. Thus,

δΩ(z) . Im(w)β ,

with implicit constant depending on β, C, and R. To conclude, note that Koebe’s
1/4-theorem guarantees that δΩ(z) ≈ |f ′(w)| Im(w), with absolute constants, so
|f ′(w)| . Im(w)β−1. �

Observe that the base-point z0 we found during the proof of Lemma 2.8 had
dist(z0,K) ≤ 200 diam(K) and Im(z0) ≥ 100 diam(K). In particular, it satisfies
the hypotheses in the previous lemma, with R = 10 diam(K).

It turns out that one can strengthen the statement given in Lemma 2.8, and the
stronger version of it will be of particular importance for our analysis of Hölder
domains. The result is originally due to W. Smith and D. Stegenga [27, Theorem
3] in the setting of bounded Hölder domains. For completeness, we give a proof,
but it is mostly an adaptation of their proof to our setting. Once again, we must
keep track of how diam(K) affects the bounds.

Lemma 2.10. Assume that Ω = H\K is a (β,C0)-Hölder domain. Let z0 ∈ Ω be
the base-point given by Lemma 2.8. There is a constant C > 0, depending only on
β and C0, such that whenever ℓ is a hyperbolic geodesic segment from z0 to a point
z1 ∈ DK , we have

ρΩ(z0, x) ≤
1

β
log

(

max{diam(K)β , diam(K)}
length(ℓ[x, z1])

)

+ C

for each point x ∈ ℓ.

Proof. For simplicity, let M = max{diam(K)β, diam(K)}. Fix z1 ∈ DK , and let ℓ
be the hyperbolic geodesic segment in Ω from z0 to z1. Let C1 be a large constant,
to be determined, and suppose that there is x0 ∈ ℓ for which

ρΩ(z0, x0) >
1

β
log

(

M

length(ℓ[x0, z1])

)

+ C1.

We wish to arrive at a contradiction if C1 is large enough, depending on β and C0.
To this end, let L = length(ℓ[x0, z1]), and define points xk recursively by

xk ∈ ℓ[xk−1, z1] such that length(ℓ[xk−1, xk]) =
L

2k
,

for k ∈ N. Let ρΩ(z)|dz| denote the hyperbolic length element in Ω. Recall from
earlier that 1/2 ≤ δΩ(z)ρΩ(z) ≤ 2 for all z ∈ Ω. Now, we note that if z ∈ ℓ[x0, z1],
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then

1

β
log

(

M

L

)

+ C1 < ρΩ(z0, x0) ≤ ρΩ(z0, z) ≤
1

β
log

(

M

δΩ(z)

)

+ C

≤ 1

β
log (MρΩ(z)) + C +

1

β
,

where C > 0 is the additive constant in Lemma 2.8. Thus, we find

1

LρΩ(z)
≤ e1+β(C−C1)

for all z ∈ ℓ[x0, z1]. Choose C1 large enough that e1+β(C−C1) < β/4, and let

λk = sup

{

1

LρΩ(z)
: z ∈ ℓ[xk, z1]

}

for each k ≥ 0. From what we have already verified, we know that

λ0 ≤ e1+β(C−C1) < β/4.

We claim that, by imposing one more condition on the size of C1, we can ensure
that λk ≤ λk+1

0 for all k. We proceed by induction on k, the case k = 0 being true
automatically.

Suppose λk−1 ≤ λk
0 for some k ≥ 1. Fix z ∈ ℓ[xk, z1] and note that

ρΩ(xk−1, z) =

∫

ℓ[xk−1,z]

ρΩ(w)|dw| ≥
∫

ℓ[xk−1,z]

|dw|
Lλk−1

≥ 1

λk−12k
.

Thus, we can bound

1

β
log

(

M

L

)

+ C1 +
1

λk−12k
≤ ρΩ(z0, x0) + ρΩ(xk−1, z) ≤ ρΩ(z0, z)

≤ 1

β
log

(

M

δΩ(z)

)

+ C.

This implies that

log

(

1

LρΩ(z)

)

≤ 1 + log

(

δΩ(z)

L

)

≤ 1 + β

(

C − C1 −
1

λk−12k

)

for each z ∈ ℓ[xk, z1], so by the definition of λk and the induction hypothesis, we
obtain

(2.8) log(λk) ≤ 1 + β

(

C − C1 −
1

(2λ0)k

)

.

Recall that we chose C1 large enough that λ0 < β/4. It is straightforward to

calculate that for any k ≥ 1, the function t 7→ tk+1eβ/(2t)
k

is decreasing on the
interval (0, β/4). Thus,

λk+1
0 eβ/(2λ0)

k ≥
(

β

4

)k+1

eβ/(β/2)
k ≥ 1

2

(

β

4

)k+1 (
2k

βk−1

)2

≥ β2

8
.

Consequently, if we also impose the condition that C1 is large enough that

e1+β(C−C1) ≤ β2/8,

then (2.8) gives

λk ≤ e1+β(C−C1)e−β/(2λ0)
k ≤ β2

8
· e−β/(2λ0)

k ≤ λk+1
0 ,
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as claimed. This completes the induction.
To finish the proof, observe that z1 ∈ ℓ[xk, z1] for each k, so

0 <
1

ρΩ(z1)
≤ Lλk ≤ Lλk+1

0 .

The desired contradiction comes from taking k large enough. �

Before finishing this section, we return to the discussion at the end of the previous
section. There we stated Theorem 1.8, which gives geometric criteria for a Loewner
chain to have a Lip(1/2) driving term. Although this result is interesting in its
own right, it also provides motivation for the following theorem, which we view as
an analog of Theorem 1.7 outside of the “simple curve” setting. The statement
is technical, and we put off further discussion until Section 4. Here, we use the
notation log+(x) = max{log(x), 0} for x ≥ 0.

Theorem 2.11. Let Kt be a geometric Loewner chain, and let Ωt = H\Kt be the
complementary domains. Suppose that, for each 0 ≤ s < t ≤ T , there are points
x0 ∈ Ωs and z0 ∈ Kt\Ks such that

(i) diamΩs
({x0} ∪Kt\Ks) ≤ C0δΩs

(x0),

(ii) diamΩs
(Kt\Ks) ≤ C0δΩs

(z0)
(

1 + log+
(

1
δΩs

(z0)

))

,

(iii) there is an L-John curve in Ωs with tip x0 and base-point ∞, and

(iv) ρΩs
(x0, z0) ≤ 1

β log+
(

diamΩs
(Kt\Ks)

δΩs
(z0)

)

+ C0.

Then this chain has a continuous driving term, λ, with

|λ(s) − λ(t)| ≤ C
√

|s− t| (log(1/|s− t|))1/β

for all |s− t| ≤ 1/2, where C > 0 depends only on L, β, C0, and T .

3. Slit half-planes and the Loewner equation

A slit half-plane is a domain of the form H\γ(0, τ ], where γ : [0, τ ] → H is a
simple curve in H that meets R only at γ(0). After re-parameterizing γ by half-
plane capacity, one obtains a geometric Loewner chain Kt = γ(0, t] for 0 ≤ t ≤ T ,
where T = hcap(γ)/2. In fact, this Loewner chain corresponds to a continuous
driving function λ, which can be explicitly described. If gt : H\Kt → H is the
hydrodynamic map, then gt extends continuously to the “tip” γ(t) of the slit and
λt = gt(γ(t)).

In general, a Loewner chainKt is said to be generated by a simple curve if it arises
from a slit half-plane. Such chains therefore correspond to a unique simple curve γ,
parameterized by half-plane capacity, for which Kt = γ(0, t] and γ intersects R only
at γ(0). Moreover, the chain is associated to a continuous driving function. Recall
from our earlier discussion that SLEκ chains are, almost surely, generated by a
simple curve when κ ≤ 4. On the deterministic side, there are several nice examples
of slit half-planes whose driving functions are computable (see, for example, [11,19]).

Our primary goal in this section is to prove Theorem 1.7, which tells us that
if a slit half-plane is a Hölder domain, then the associated driving function has a
modulus of continuity similar to that of Brownian motion. More specifically, let us
recall the full statement.
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Theorem 1.7. Let Kt be a geometric Loewner chain, for 0 ≤ t ≤ T , that is
generated by a simple curve. If H\KT is a (β,C0)-Hölder domain, then this chain
has a driving term, λ, for which

|λs − λt| ≤ C
√

|s− t| log(1/|s− t|)
if |s− t| ≤ 1/2. Here, C > 0 depends only on β, C0, and T .

We will regularly use the notation Ωt = H\Kt = H\γ(0, t] for the domains
corresponding to the Loewner chain. Moreover, ft : H → Ωt and gt : Ωt → H will
denote the hydrodynamically normalized conformal maps (which are inverses of
each other). The proof of Theorem 1.7 consists essentially of three steps.

(i) Restriction property: Each Ωt is a (β,C1)-Hölder domain, with C1 depend-
ing only on β, C0, and T .

(ii) Sub-invariance property: For each 0 ≤ s < t ≤ T , the domain gs(Ωt) ⊂ H

is a (β/2, C2)-Hölder domain, with C2 depending only on β, C0, and T .
(iii) Half-plane capacity estimate: There is good control on the diameter of the

transition hull Ks,t = gs(Kt\Ks) in terms of the total area of Whitney
squares that intersect it, or equivalently, in terms of hcap(Ks,t) = 2(t− s).

It is a standard fact that the driving function of a Loewner chain satisfies the bound
|λs − λt| . diam(Ks,t), cf. [18, Lemma 4.1]. This, along with the estimate in (iii),
will give the desired result.

We should remark that (ii) is an example of the so-called “sub-invariance prin-
ciple.” Namely, if g : D → D′ is a conformal map with D′ a disk or a half-plane,
and if E ⊂ D is nice, then g(E) is also nice. See [7, p. 51] and [10, Section 6] for
further discussion of the sub-invariance principle, where it is applied to quasi-disks
and to John domains.

Steps (i) and (ii) will follow almost immediately from more general properties
of Hölder domains that are contained in larger domains. We establish these as
two separate lemmas. To set them up, let Ω = H\K and Ω′ = H\K ′ be domains
corresponding to hulls K and K ′, with ∅ 6= K ′ ⊂ K, so that Ω ⊂ Ω′.

Lemma 3.1. Suppose that Ω is a (β,C0)-Hölder domain and is dense in Ω′. Then
Ω′ is a (β,C)-Hölder domain, where C > 0 depends only on β, C0, and diam(K).

Lemma 3.2. Suppose that Ω is a (β,C0)-Hölder domain and that g : Ω′ → H is
the hydrodynamic conformal map. Then g(Ω) ⊂ H is a (β/2, C)-Hölder domain,
where C > 0 depends only on β, C0, and diam(K).

Proof of Lemma 3.1. By hypothesis, Ω is a (β,C0) Hölder domain. Let z0 ∈ Ω ⊂ Ω′

be the point coming from Lemma 2.8. Recall that this point can be chosen so that
dist(z0,K) ≤ 200 diam(K) and Im(z0) ≥ 100 diam(K). In particular, dist(z0,K

′) ≤
300 diam(K) and Im(z0) ≥ 10 diam(K).

Fix a point z ∈ Ω′ with dist(z,K ′) ≤ 10 diam(K). We wish to establish appro-
priate bounds on ρΩ′(z0, z). To this end, let r = δΩ′(z) > 0 denote the distance
from z to ∂Ω′. Suppose first that |z − z0| ≥ r/2. As Ω is dense in Ω′, we can find
z1 ∈ Ω for which

|z − z1| ≤ min{diam(K), r/4}.
Observe, in particular, that

dist(z1,K) ≤ dist(z,K) + |z − z1| ≤ 10 diam(K) + diam(K) ≤ 100 diam(K),
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so z1 ∈ DK . Let ℓ denote the hyperbolic geodesic from z0 to z1 in Ω, and let x ∈ ℓ
be a point on ℓ with |z − x| = r/2. We then have

(3.1) ρΩ′(z0, z) ≤ ρΩ′(z0, x) + ρΩ′(x, z) ≤ ρΩ(z0, x) + 2,

where the second inequality uses two ingredients: the fact that x ∈ B(z, r/2) implies
ρΩ′(x, z) ≤ 2, and the fact that Ω ⊂ Ω′ implies ρΩ′ ≤ ρΩ by the Schwarz lemma.

As Ω is a (β,C0)-Hölder domain and z1 ∈ DK , Lemma 2.10 gives the bound

ρΩ(z0, x) ≤
1

β
log

(

1

length(ℓ[x, z1])

)

+ C,

with C depending only on β, C0, and diam(K). Here, we have incorporated the
quantity max{diam(K)β , diam(K)} into the constant C. This estimate, along with
the bound in (3.1) and the fact that length(ℓ[x, z1]) ≥ r/4 = δΩ′(z)/4, gives

ρΩ′(z0, z) ≤
1

β
log

(

1

δΩ′(z)

)

+ C′,

with C′ depending only on β, C0, and diam(K).
If |z − z0| < r/2 then the same inequality holds trivially, provided that C′ is

large enough. Thus, Ω′ with base-point z0 satisfies the hypotheses in Lemma 2.9
with R = 10 diam(K) ≥ 10 diam(K ′). Consequently, Ω′ is a (β,C′′)-Hölder domain
with C′′ depending only on β, C0, and diam(K). �

Proof of Lemma 3.2. Again, by hypothesis, Ω is a (β,C0) Hölder domain. Let
z0 ∈ Ω be the point coming from Lemma 2.8 with dist(z0,K) ≤ 200 diam(K) and
Im(z0) ≥ 100 diam(K). Recall from Lemma 2.3(v) that |g(z)− z| ≤ 3 diam(K ′) ≤
3 diam(K) for all z ∈ Ω′. In particular, if we define

K̂ = g(K\K ′) = H\g(Ω),
then K̂ is contained in the 3 diam(K)-neighborhood of K. Note that, as a result,

diam(K̂) ≤ 7 diam(K).

Let w0 = g(z0) so that Im(w0) ≥ 90 diam(K) and dist(w0, K̂) ≤ 300 diam(K).

Our goal is to apply Lemma 2.9 to the domain g(Ω) = H\K̂ with base-point w0

and R = 70 diam(K) ≥ 10 diam(K̂). To this end, fix w ∈ g(Ω) with dist(w, K̂) ≤
10 diam(K̂). If z = g−1(w) ∈ Ω, then using Lemma 2.3(v) once again, we have

dist(z,K) ≤ 3 diam(K ′) + dist(w,K) ≤ 6 diam(K) + dist(w, K̂)

≤ 6 diam(K) + 70 diam(K) ≤ 100 diam(K).

Thus, z ∈ DK , so the Hölder property for Ω guarantees that

ρg(Ω)(w0, w) = ρΩ(z0, z) ≤
1

β
log

(

1

δΩ(z)

)

+ C,

where C depends only on β, C0, and diam(K).
We now apply Lemma 2.4 to the map f = g−1 : H → H\K ′ and the point

w ∈ H. More specifically, if Im(w) ≤ 10 diam(K ′), then this lemma gives Im(w) .
|f ′(w)|, with implicit constant depending only on diam(K ′), which is bounded above
by diam(K). Otherwise, if Im(w) > 10 diam(K ′), then |f ′(w)| ≈ 1; using that
Im(w) ≤ 100 diam(K), we again have Im(w) . |f ′(w)| with constant depending
only on diam(K). Thus, in either case, the Koebe 1/4-theorem, implies that

δΩ(z) ≥
1

4
|f ′(w)|δg(Ω)(w) & Im(w)δg(Ω)(w) ≥ δg(Ω)(w)

2.



LOEWNER CHAINS AND HÖLDER GEOMETRY 21

Inserting this into the previous inequality gives

ρg(Ω)(w0, w) ≤
2

β
log

(

1

δg(Ω)(w)

)

+ C′,

where C′ depends only on β, C0, and diam(K). Invoking Lemma 2.9, we conclude
that g(Ω) is a (β/2, C′′)-Hölder domain, where C′′ depends only on β, C0, and
diam(K). �

The core of the proof of Theorem 1.7 consists in the following lemma, which
controls the diameter of a simple curve in H whose complement is a Hölder domain.
To put it in a clearer context, we recall that for any half-plane hull, K, the bound
hcap(K) . diam(K)2 holds, with an absolute constant. The lemma tells us that
this is almost an equivalence (up to a log term) when H\K has the Hölder property.

Lemma 3.3. Let K be a simple curve in H, intersecting R in exactly one point.
If H\K is a (β,C0)-Hölder domain, then

diam(K) .

√

hcap(K)

(

1 + log+
1

diam(K)

)

,

where log+(x) = max{0, log(x)} and the implicit constant depends on β and C0.

Proof. Without loss of generality, we may assume that K meets R at the point 0.
As a first case, observe that if sup{Im(z) : z ∈ K} ≥ sup{|Re(z)| : z ∈ K}, then
we immediately have

diam(K) ≤ 4 sup{Im(z) : z ∈ K} .
√

hcap(K).

The last inequality here follows from Lemma 2.2, which says that hcap(K) is com-
parable to the total area of Whitney squares that intersect K. Thus, we may
assume that sup{Im(z) : z ∈ K} ≤ sup{|Re(z)| : z ∈ K}, so in particular,
diam(K) ≤ 4 sup{|Re(z)| : z ∈ K}.

Let W denote the standard Whitney decomposition of H, and let C ⊂ W be the
collection of all squares in W that intersect K but have no ancestors (i.e., squares

above it) that intersect K. For Q ∈ C, let Q̂ be the rectangle made up of Q and all
of its descendants:

Q̂ = {z ∈ H : z + iy ∈ Q for some y ≥ 0}.
Note that the collection {Q̂ : Q ∈ C} consists of rectangles with pairwise disjoint
interiors, and the union of these rectangles contains K.

Let w0 ∈ K be a point with

sup{|Re(z)| : z ∈ K} ≤ 2|Re(w0)|,
and for which there is a square Q0 ∈ C that contains w0. For notational ease we
will assume that Re(w0) > 0; the argument works in the same way if Re(w0) < 0.
For i ≥ 1, inductively define Qi to be the (unique) square in C for which

max{Re(z) : z ∈ Qi} = min{Re(z) : z ∈ Qi−1}.
We do this for i ≤ n, where n is the first time at which

min{Re(z) : z ∈ Qn} ≤ Re(w0)/2.

Notice that for each 1 ≤ i ≤ n, the right edge of Q̂i intersects the left edge of Q̂i−1.
Moreover, the choice of n ensures that max{Re(z) : z ∈ Qn} ≥ Re(w0)/2.
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Let z0 ∈ H\K and C > 0 be the point and the constant given by Lemma 2.8, so
C depends only on β and C0. Recall also that we may take

50 diam(K) ≤ δH\K(z0) ≤ Im(z0) ≤ 200 diam(K).

Then choose z1 ∈ H\K with 0 < Re(z1) < Re(w0)/4 very small, and for which
Im(z1) is small enough that the vertical segment from z1 to R does not meet K.
This is possible because K is assumed to be a simple curve meeting R only at the
point 0. Let ℓ be the hyperbolic geodesic in H\K from z0 to z1.

The choice of z1, along with the fact that K is a simple curve and z0 lies far above
K, implies that ℓ must cross each of the rectangles Q̂i. More specifically, there exist
points xi ∈ ℓ that lie on the right edge of Q̂i for each 1 ≤ i ≤ n. Observe that
the hyperbolic length of ℓ[xi, xi+1] is at least 1/4. Indeed, this segment contains a

sub-arc lying entirely in Q̂i of length at least the side length of Qi. Using Lemma
2.10, we have

n

4
≤ ρH\K(z0, xn) ≤

1

β
log

(

max{diam(K)β, diam(K)}
length(ℓ[xn, z1])

)

+ C′,

where C′ > 0 depends only on β and C0. Noting that |xn − z1| ≥ Re(w0)/4 ≥
diam(K)/40, we obtain

n . 1 + log+
(

max{diam(K)β , diam(K)}
diam(K)

)

. 1 + log+
(

1

diam(K)

)

,

with constant depending on β and C0. By the Cauchy-Schwarz inequality, we have

diam(K) . Re(w0) .

n
∑

i=0

diam(Qi) ≤ (n+ 1)1/2

(

n
∑

i=0

diam(Qi)
2

)1/2

.

√

hcap(K)
(

1 + log+ (1/ diam(K))
)

,

where the final inequality is a consequence of Lemma 2.2. �

Putting together the three preceding lemmas, we are able to prove Theorem 1.7
without much difficulty.

Proof of Theorem 1.7. By assumption, the Loewner chain Kt is generated by
a simple curve. Let γ : [0, T ] → H be this curve, parameterized by half-plane
capacity, so that γ(0) ∈ R and Kt = γ(0, t] for each t. Let Ωt = H\Kt denote the
corresponding domains. By assumption, ΩT is a (β,C0)-Hölder domain.

Let us first make a remark about the dependence of the implicit constant on the
parameter T . In a few places, we will need to allow certain constants to depend on
diam(Kt), which is of course bounded from above by diam(KT ). Moreover, as ΩT

is a (β,C0)-Hölder domain, Lemma 3.3 implies that

diam(KT ) .
√

T
(

1 + log+(1/ diam(KT ))
)

.

√

T
(

1 + log+(1/T )
)

,

with implicit constants depending only on β and C0. Here, we have used that
hcap(KT ) = 2T and diam(KT ) & hcap(KT )

1/2; this latter inequality follows im-
mediately from Lemma 2.2. Thus, diam(KT ) is bounded by an increasing function
of T , so dependence on β, C0, and diam(KT ) can be replaced by dependence on β,
C0, and T .
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We now proceed to the proof. Fix 0 ≤ s < t ≤ T . As γ is a simple curve,
we know that ΩT ⊂ Ωt is dense in Ωt. Thus, Lemma 3.1 implies that Ωt is a
(β,C1)-Hölder domain with C1 > 0 depending only on β, C0, and T .

Let gs : Ωs → H be the hydrodynamic conformal map. Lemma 3.2 guarantees
that gs(Ωt) is a (β/2, C2)-Hölder domain, where C2 > 0 also depends only on β,
C0, and T . The corresponding transition hull for this domain,

Ks,t = gs(Kt\Ks) = H\gs(Ωt),

is a simple curve that intersects R in exactly one point. Lemma 3.3, along with the
facts that hcap(Ks,t) = 2(t− s) and diam(Ks,t) & hcap(Ks,t)

1/2, therefore gives

(3.2) diam(Ks,t) .
√

|s− t|
(

1 + log+(1/|s− t|)
)

,

with implicit constant again depending only on β, C0, and T .
It is a general fact that Loewner chains generated by a simple curve have contin-

uous driving functions (cf. [14, Chapter 4, Section 1]). Alternatively, we could note
that the right-hand side of (3.2) goes to 0 as |s− t| goes to zero, so Pommerenke’s
theorem ensures that the chain Kt has a continuous driving term. Regardless, let
λ denote the driving function. It is a standard fact (cf. [18, Lemma 4.1]) that
|λs − λt| ≤ 4 diam(Ks,t), and invoking (3.2) once more, we obtain

|λs − λt| .
√

|s− t| log(1/|s− t|)
for |s− t| small enough; certainly |s− t| ≤ 1/2 works. �

4. Non-slit half-planes

In the previous section, we established that geometric Loewner chains corre-
sponding to slit half-planes with the Hölder property have driving terms with reg-
ularity similar to that of Brownian motion. In an informal sense, we see this as a
type of converse to the fact that SLEκ domains are Hölder domains, for κ < 4. We
mentioned earlier that when κ > 4, the SLEκ domains are still Hölder domains,
even though the corresponding curves are not simple. A natural question, then, is
the following.

Question 1. Is there a result that is, to the regime κ > 4, analogous to what
Theorem 1.7 is to the regime 0 < κ < 4?

A first attempt toward such a statement might ask for a direct analogy: is
Theorem 1.7 true (possibly with a worse bound on the modulus of continuity for λ)
without the assumption that KT is a simple curve? Perhaps it is true if the “simple
curve” assumption is replaced by the hypothesis that each H\Kt is a (β,C0)-Hölder
domain? Unfortunately, these questions do not have positive answers: it is possible
for the hulls to grow in such a way that their complementary domains have nicely-
accessible boundaries (say, are uniformly John domains) but Kt\Ks lies very close
to ∂(H\Ks) for a relatively large distance. One can construct such chains, for
example, using space-filling curves.

Our main goal in this section is to prove Theorem 2.11, which is a partial answer
to Question 1. The conditions we impose on the geometric Loewner chain are
chosen precisely to prevent the growth of Kt\Ks “along” the boundary of H\Ks.
Namely, our hypotheses ensure that Kt\Ks does not lie too close to ∂(H\Ks) for
too large a distance. In making these conditions precise, we are motivated by
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the geometry of Hölder domains (or rather, localized Hölder-type growth for the
hyperbolic metric) rather than the Hölder condition itself. Let us restate the result
here for convenience.

Theorem 2.11. Let Kt be a geometric Loewner chain, and let Ωt = H\Kt be the
complementary domains. Suppose that, for each 0 ≤ s < t ≤ T , there are points
x0 ∈ Ωs and z0 ∈ Kt\Ks such that

(i) diamΩs
({x0} ∪Kt\Ks) ≤ C0δΩs

(x0),

(ii) diamΩs
(Kt\Ks) ≤ C0δΩs

(z0)
(

1 + log+
(

1
δΩs

(z0)

))

,

(iii) there is an L-John curve in Ωs with tip x0 and base-point ∞, and

(iv) ρΩs
(x0, z0) ≤ 1

β log+
(

diamΩs
(Kt\Ks)

δΩs
(z0)

)

+ C0.

Then this chain has a driving term, λ, with

|λ(s) − λ(t)| ≤ C
√

|s− t| (log(1/|s− t|))1/β

for all |s− t| ≤ 1/2, where C > 0 depends only on L, β, C0, and T .

Before taking up the full proof of Theorem 2.11, we turn our attention to Theo-
rem 1.8. The conditions we impose in this latter result are similar in spirit to those
found in the former result, with the exception that they are motivated by John-type
properties instead of Hölder-type properties (and also that they are much simpler!).
As we mentioned in Section 1, this result gives criteria under which a geometric
Loewner chain has a Lip(1/2) driving term. Let us recall it here as well.

Theorem 1.8. Let Kt be a Loewner chain, and let Ωt = H\Kt be the complemen-
tary domains. Suppose that, for each 0 ≤ s < t ≤ T , there is a point z0 ∈ Kt\Ks

for which

(i) diamΩs
(Kt\Ks) ≤ C0δΩs

(z0), and
(ii) there is an L-John curve in Ωs with tip z0 and base-point ∞.

Then this chain has a driving term, λ, for which ‖λ‖1/2 ≤ C, where C > 0 depends
only on L and C0.

The methods we use to prove Theorems 1.8 and 2.11 have much in common with
each other. Central to both is the use of modulus of path families: a conformal
invariant and an important tool in the analysis of metric spaces. We shall need
this concept only in the planar setting, so we leave the more general metric theory
aside (see [9, Chapter 7] for further discussion).

Let Ω ⊂ C be a domain, and let Γ be a family of paths in Ω. A Borel function
ρ : Ω → [0,∞] is called a density, and it is said to be admissible for Γ if

∫

γ

ρds ≥ 1

for each locally rectifiable path γ ∈ Γ, where ds denotes integration with respect
to arc-length. The modulus of Γ is then defined as

mod2(Γ,Ω) = inf
ρ

∫

Ω

ρ2dA,

where the infimum is taken over all admissible densities for Ω, and dA denotes
integration with respect to Lebesgue measure. Two basic properties of modulus
that we will need are the following (cf. [9, pp. 50–52]).
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(i) mod2 is an outer measure on the collection of paths in Ω: if Γ1,Γ2, . . . are
families of paths in Ω, then mod2(∪iΓi,Ω) ≤

∑

i mod2(Γi,Ω).
(ii) mod2 is a conformal invariant: if f : Ω → Ω′ is conformal and Γ is a path

family in Ω, then mod2(Γ,Ω) = mod2(Γ
′,Ω′), where Γ′ = {f ◦ γ : γ ∈ Γ}.

Another tool that will be helpful for us is a topological result due to Janiszewski,
which is often “very useful for giving rigorous proofs of ‘obvious’ facts in plane
topology” [22, p. 2]. Our application of it will not contradict this characteristic.

Lemma 4.1 (Janiszewski). Let A be a closed set in D such that x, y ∈ D lie in
different path components of D\A. Then there is a connected component, C, of A
for which x and y lie in different path components of D\C.

Proof. A more common version of Janiszewski’s lemma deals with the case that A
has two connected components: if A1 and A2 are disjoint, closed subsets of D such
that A1 ∪ A2 separates x and y in D, then either A1 or A2 must separate x and y
(cf. [31, Theorem 4.26]). In the terminology of [30, Section II.4], this means that
D has the Phragman-Brouwer property. As D is connected and locally connected,
this is equivalent to the Brouwer property: if M is a closed and connected subset
of D and V is a connected component of D\M , then ∂V := V \V is closed and
connected [30, Theorem II.4.3].

Let A be as in the statement of the lemma, and let U be the connected component
of D\A that contains x. In particular, U is closed and connected. Let V be the
connected component of D\U that contains y, so the Brouwer property implies that
∂V is connected. Note that ∂V ⊂ ∂U ⊂ A. Moreover, ∂V separates x and y in D

because x /∈ V and y ∈ V . Thus, the connected component of A that contains ∂V
separates x and y. �

The main ingredients for the proofs of Theorems 1.8 and 2.11 are the same, so
we begin with a few lemmas (likely familiar to many experts in this field) that will
be used in both. Let us recall the notation log+(x) = max{log(x), 0} for x ≥ 0.

Lemma 4.2. Let z ∈ H and let ℓ denote the vertical line from 0 to ∞. Then

log+
( |Re(z)|

Im(z)

)

− 2 ≤ ρH(z, ℓ) ≤ log+
( |Re(z)|

Im(z)

)

+ 2.

Proof. By scaling, which is an isometry of H preserving ℓ, we may assume that
|z| = 1. By reflection across ℓ, we may also assume that Re(z) ≥ 0. As such, we
can write z = cos(t0) + i sin(t0) for some 0 < t0 ≤ π/2. The hyperbolic projection
of z onto ℓ is i, so computing the hyperbolic distance gives

ρH(z, ℓ) = ρH(z, i) =

∫ π/2

t0

dt

sin t
= log

cos(t0/2)

sin(t0/2)
.

If t0 ≥ π/10, the desired inequality holds easily by noting that

0 ≤ ρH(z, ℓ) ≤ log
cos(π/20)

sin(π/20)
≤ 2,

and

0 ≤ log+
( |Re(z)|

Im(z)

)

= log+
(

cos(t0)

sin(t0)

)

≤ log

(

1

sin(π/10)

)

≤ 2.
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Suppose, then, that 0 < t0 < π/10. As t 7→ cot(t) is decreasing on the interval
(0, π), we have

ρH(z, ℓ) = log

(

cos(t0/2)

sin(t0/2)

)

≥ log

(

cos(t0)

sin(t0)

)

= log+
( |Re(z)|

Im(z)

)

.

For the opposite inequality, observe that

cos(t0/2) ≤ 2 cos(t0) and sin(t0/2) ≥ sin(t0)/2,

so

ρH(z, ℓ) ≤ log

(

4 cos(t0)

sin(t0)

)

≤ log+
( |Re(z)|

Im(z)

)

+ 2,

as desired. �

Lemma 4.3. Let Ω ( C be a simply connected domain, and let ℓ be a hyperbolic
geodesic line in Ω. Fix z ∈ Ω and let Γ denote the family of paths in Ω that join
the ball B(z, δΩ(z)/2) to ℓ. Then

ρΩ(z, ℓ) ≤
π

mod2(Γ,Ω)
+ 3.

We should remark here that if z ∈ ℓ, then Γ contains a constant path. As such,
there is no admissible density ρ for Γ, so mod2(Γ,Ω) = ∞.

Proof. Let p ∈ ℓ be the point for which ρΩ(z, p) = ρΩ(z, ℓ), and let f : Ω → H be
the conformal map for which f(p) = i and f(z) = ai for some 0 < a ≤ 1. The
hyperbolic geodesic in Ω determined by p and z intersects ℓ orthogonally at p, so
ℓ′ = f(ℓ) must intersect the imaginary axis orthogonally at i. Consequently, we
know that ℓ′ is the semi-circe ∂D ∩H.

As f is an isometry in the hyperbolic metrics, we have

ρΩ(z, ℓ) = ρH(ai, ℓ
′) = ρH(ai, i) = log(1/a).

Let E = f(B(z, δΩ(z)/2)), and let Γ′ denote the family of paths in H that join
E to the line ℓ′. Conformal invariance of modulus implies that mod2(Γ,Ω) =
mod2(Γ

′,H). It therefore suffices to prove that

log(1/a) ≤ π

mod2(Γ′,H)
+ 3.

To this end, we first note that if a ≥ 1/10, the desired inequality holds trivially.
Thus, we may assume that a < 1/10. By the Koebe 1/4-theorem, we have

|f ′(z)|δΩ(z) ≤ 4δH(f(z)) = 4a.

Moreover, the growth theorem [5, Theorem 2.6] ensures that

|f(w) − f(z)| ≤ 2|f ′(z)|δΩ(z) ≤ 8a

for all w ∈ B(z, δΩ(z)/2), so that E ⊂ B(0, 10a). We now exhibit a density ρ that
gives the desired upper bound on mod2(Γ

′,H), namely,

ρ(z) =
1

log(1/10a)|z| · χ{z∈H:10a≤|z|≤1}(z), for z ∈ H.

Every path in Γ′ joins {z ∈ H : |z| = 10a} to ℓ′ = {z ∈ H : |z| = 1}, and this easily
implies that ρ is admissible for Γ′. Consequently,

mod2(Γ
′,H) ≤

∫

H

ρ(z)2dA =
1

log(1/10a)2

∫ π

0

∫ 1

10a

1

r
drdθ =

π

log(1/10a)
.
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Rearranging this inequality gives

log(1/a) ≤ π

mod2(Γ′,H)
+ log(10),

as desired. �

Lemma 4.4. Let K be a half-plane hull, and let ℓ be a hyperbolic geodesic line in
Ω = H\K with one endpoint at ∞. Suppose that there is an L-John curve in Ω
with tip z ∈ Ω and base-point ∞. Then

ρΩ(z, ℓ) ≤ C

(

1 + log+
(

distΩ(z, ℓ)

δΩ(z)

))

,

where C > 0 depends only on L.

Proof. We may, of course, assume that z does not lie on ℓ. For notational ease, let
R = 2distΩ(z, ℓ) > 0. If δΩ(z) > R, then there is a point w ∈ ℓ with |z − w| <
δΩ(z)/2, which immediately gives the bound ρΩ(z, ℓ) ≤ 2. Thus, we may also
assume that δΩ(z) ≤ R.

Let α ⊂ Ω be the L-John curve with tip z and base-point at infinity. Suppose,
as a first case, that α intersects ℓ inside the closed ball B(z, 2R). Let x ∈ α ∩ ℓ be
a point of intersection inside this ball, so Lemma 2.6, applied to the curve α, gives
the bound

ρΩ(z, ℓ) ≤ ρΩ(z, x) . 1 + log+
(

δΩ(x)

δΩ(z)

)

,

where the implicit constant depends only on L. As

δΩ(x) ≤ |x− z|+ δΩ(z) ≤ 3R = 6distΩ(z, ℓ),

we obtain

ρΩ(z, ℓ) . 1 + log+
(

distΩ(z, ℓ)

δΩ(z)

)

with constant depending only on L.
We may now assume that α and ℓ are disjoint in B(z, 2R). Our first goal is to

show that for all R < r < 2R, there is a sub-arc of the circle ∂B(z, r) that lies
in Ω and joins ℓ to α. To do this, fix an arc β ⊂ Ω that joins z to ℓ and has
diam(β) < 2 distΩ(z, ℓ) = R. Note that β ⊂ B(z,R). Consider the three curves ℓ,
α, and β. It is not difficult to see that there are sub-arcs ℓ′ ⊂ ℓ, α′ ⊂ α, and β′ ⊂ β
such that any two of these sub-arcs intersect in a single point (possibly at infinity)
and whose concatenation forms a closed Jordan curve on the Riemann sphere.

Let C ⊂ Ω denote this Jordan curve (note that we do not include the possible
point at infinity). By the Jordan curve theorem, C\C has two connected compo-
nents. As ∂Ω is connected and is disjoint from C, it lies entirely in one of these
components. Let ∆ denote the other component. It is then not hard to see that

∆ = ∆ ∪ C ⊂ Ω

is homeomorphic to a closed triangle (possibly with one vertex removed), where the
three sides of the triangle correspond to the “sides” ℓ′, α′, and β′ of ∆.

Let x ∈ B(z,R) be the point at which ℓ′ and β′ intersect, and let

y ∈ Ω ∪ {∞}\B(z, 2R)

be the point at which ℓ′ and α′ intersect. As x, y ∈ C ∪ {∞}, it is clear that there
are many curves in ∆ ∪ {y} that join x and y. Fix R < r < 2R, and observe
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that every such curve passes through ∂B(z, r) ∩∆. In other words, the closed set
∂B(z, r) ∩∆ separates the points x and y in the topological triangle ∆ ∪ {y}. By
Janiszewski’s lemma, there is a connected component of ∂B(z, r) ∩∆, call it Cr,
that separates x and y in this triangle. Observe that Cr is a closed sub-arc of the
circle ∂B(z, r) and its endpoints lie on C. In particular, its endpoints must be on
ℓ′ ∪α′, due to the fact that β′ ⊂ B(z,R). Notice that if both endpoints of Cr were
on ℓ′, then it could not separate the vertices x and y in the topological triangle
∆ ∪ {y}. Similarly, it is not possible for both endpoints of Cr to be on α′. Thus,
Cr is a sub-arc of ∂B(z, r), lying inside ∆ ⊂ Ω, that joins ℓ′ and α′.

Now, let A(z,R, 2R) = B(z, 2R)\B(z,R) denote the annulus, and let Γ be the
family of paths in Ω that join α∩A(z,R, 2R) to ℓ. Suppose that ρ is an admissible
density for Γ, so by what we have just shown, we know that

∫

Ω∩∂B(z,r)

ρds ≥ 1

for each R < r < 2R. The Cauchy-Schwarz inequality then gives
∫

Ω∩∂B(z,r)

ρ2ds ≥ 1

2πr
,

so that
∫

Ω

ρ2dA ≥
∫ 2R

R

(

∫

∂B(z,r)∩Ω

ρ2ds

)

dr ≥
∫ 2R

R

1

2πr
dr =

log 2

2π
.

In this way, we find that mod2(Γ,Ω) ≥ 1/25.
By the L-John property for α, every point w ∈ α∩A(z,R, 2R) has δΩ(w) ≥ R/L.

It is therefore possible to find a finite set of points

w1, . . . , wn ∈ α ∩ A(z,R, 2R),

with n ≥ 1 depending only on L, such that the collection of balls

B(w1, δΩ(w1)/2), . . . , B(wn, δΩ(wn)/2)

covers α ∩ A(z,R, 2R). For each 1 ≤ i ≤ n, let Γi be the family of paths in Ω that
join B(wi, δΩ(wi)/2) to the geodesic line ℓ. Thus,

Γ ⊂
n
⋃

i=1

Γi,

so by the sub-additivity property for modulus, we obtain

1/25 ≤ mod2(Γ,Ω) ≤
n
∑

i=1

mod2(Γi,Ω).

This implies that there is 1 ≤ i0 ≤ n for which mod2(Γi0 ,Ω) & 1, and Lemma 4.3
then gives

(4.1) ρΩ(wi0 , ℓ) . 1,

where the implicit constants depend only on L.
Invoking the L-John condition for α, along with Lemma 2.6, once more, we have

the bound

ρΩ(z, wi0) . 1 + log+
(

δΩ(wi0 )

δΩ(z)

)
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with implicit constant again depending only on L. As δΩ(wi0 ) ≤ 2R+ δΩ(z) ≤ 3R,
this gives

ρΩ(z, wi0) . 1 + log+
(

R

δΩ(z)

)

. 1 + log+
(

distΩ(z, ℓ)

δΩ(z)

)

.

Along with the bound ρΩ(wi0 , ℓ) . 1 from (4.1), we obtain the desired result. �

With the three preceding lemmas established, we are ready to prove Theorems
1.8 and 2.11.

Proof of Theorem 1.8. Fix 0 ≤ s < t ≤ T . Let z0 ∈ Kt\Ks be a point with

diamΩs
(Kt\Ks) ≤ C0δΩs

(z0),

and for which there is an L-John curve in Ωs with tip z0 and base-point at infinity.
Let Ks,t = gs(Kt\Ks) ⊂ H denote the transition hull, and let w0 = gs(z0). Our
goal is to bound diam(Ks,t) from above by something comparable to the quantity
sup{Im(w) : w ∈ Ks,t}.

To this end, fix w ∈ Ks,t and consider |Re(w) − Re(w0)|. Let ℓ′ denote the
hyperbolic geodesic line in H that passes through w and ∞. Then ℓ = g−1

s (ℓ′) is
a hyperbolic geodesic in Ωs that intersects Kt\Ks and has an endpoint at infinity.
In particular, as z0 ∈ Kt\Ks, we have

distΩs
(z0, ℓ) ≤ diamΩs

(Kt\Ks) ≤ C0δΩs
(z0).

Combining this with Lemmas 4.2 and 4.4, we obtain

log+
( |Re(w) − Re(w0)|

Im(w0)

)

≤ ρH(w0, ℓ
′) + 2 = ρΩs

(z0, ℓ) + 2

. 1 + log+
(

distΩs
(z0, ℓ)

δΩs
(z0)

)

. 1,

where the implicit constants depend only on L and C0. Thus, we find

|Re(w) − Re(w0)| . Im(w0),

for any w ∈ Ks,t, with constant depending only on L and C0. This inequality easily
implies that diam(Ks,t) . sup{Im(w) : w ∈ Ks,t}.

Recall that by Lemma 2.2, which relates half-plane capacity to the area of Whit-
ney squares intersecting a given hull, we have

sup{Im(w) : w ∈ Ks,t} .
√

hcap(Ks,t) =
√

2|s− t|,

with uniform constants. Thus, diam(Ks,t) .
√

|s− t| with constant depending
only on L and C0.

Pommerenke’s theorem now guarantees that there is a continuous driving term,
λ, associated to the Loewner chain Kt. The desired Lip(1/2) bound on λ then
follows, once again, from the fact that |λs − λt| ≤ 4 diam(Ks,t). �

Proof of Theorem 2.11. Let us again make a comment about the dependence
of the implicit constant on T . In the course of the proof, we will use an estimate
that depends on diam(KT ). Fortunately, our hypotheses allow us to replace this
by dependence on T . Indeed, let z0 ∈ KT be a point with

diam(KT ) ≤ C0 Im(z0)

(

1 + log+
(

1

Im(z0)

))

,
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which is guaranteed by assumption (ii) applied to s = 0 and t = T . Note that

Im(z0) .
√

hcap(KT ) .
√
T , with absolute constants, so

diam(KT ) .
√
T
(

1 + log+(1/T )
)

,

with implicit constant depending only on C0.
We now begin the proof. Fix 0 ≤ s < t ≤ T , and let x0 ∈ Ωs and z0 ∈ Kt\Ks be

points satisfying the hypotheses of the theorem. Once again, let Ks,t = gs(Kt\Ks)
be the transition hull, and let w0 = gs(z0). Fix a point w ∈ Ks,t. As in the previous
proof, we wish to bound |Re(w) − Re(w0)| in terms of Im(w0).

Towards this end, let ℓ′ denote the hyperbolic geodesic line in H that passes
through w and ∞. Then ℓ = g−1

s (ℓ′) is a hyperbolic geodesic in Ωs that intersects
Kt\Ks and has another endpoint at infinity. In particular,

distΩs
(x0, ℓ) ≤ diamΩs

({x0} ∪Kt\Ks) ≤ C0δΩs
(x0).

Along with Lemma 4.4, this bound allows us to estimate

ρΩs
(x0, ℓ) . 1 + log+

(

distΩs
(x0, ℓ)

δΩs
(x0)

)

. 1,

with implicit constants depending only on L and C0. Consequently, we have

ρΩs
(z0, ℓ) ≤ ρΩs

(z0, x0) + ρΩs
(x0, ℓ)

≤ 1

β
log+

(

diamΩs
(Kt\Ks)

δΩs
(z0)

)

+ C

≤ 1

β
log+

(

1 + log+
(

1

δΩs
(z0)

))

+ C′,

where C and C′ depend only on L and C0.
Consider the quantity δΩs

(z0). If Im(w0) ≤ 10 diam(Ks), then the distortion
estimate in Lemma 2.4 guarantees that δΩs

(z0) & Im(w0)
2, with implicit constant

depending only on diam(Ks), and therefore depending only on T . Otherwise, if
Im(w0) > 10 diam(Ks), then we have δΩs

(z0) & Im(w0) because gs does not move
points more than distance 3 diam(Ks). In either case, we obtain

ρΩs
(z0, ℓ) ≤

1

β
log+

(

1 + log+
(

1

Im(w0)

))

+ C′′,

where C′′ now depends on L, β, C0, and T . This bound, along with Lemma 4.2,
gives

log+
( |Re(w) − Re(w0)|

Im(w0)

)

≤ ρH(w0, ℓ
′) + 2 = ρΩs

(z0, ℓ) + 2

≤ 1

β
log+

(

1 + log+
(

1

Im(w0)

))

+ C′′ + 2.

Exponentiating, we obtain

|Re(w)− Re(w0)| . Im(w0)

(

1 + log+
(

1

Im(w0)

))1/β

,

where the implicit constant depends on L, β, C0, and T .
Recall that w ∈ Ks,t was arbitrary. If it were the case that

diam(Ks,t) ≤ 4 sup{Im(w) : w ∈ Ks,t},
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then we would immediately have

diam(Ks,t) .
√

hcap(Ks,t) .
√

|s− t|
with absolute implicit constants. Otherwise, we know that

diam(Ks,t) . sup{|Re(w)− Re(w0)| : w ∈ Ks,t}

. Im(w0)

(

1 + log+
(

1

Im(w0)

))1/β

.

If Im(w0) ≥ 1, then this bound, along with the fact that

(4.2) Im(w0)
2 . hcap(Ks,t) . |s− t|,

gives diam(Ks,t) .
√

|s− t|. In the case that Im(w0) < 1, the estimate in (4.2)
still holds and allows us to bound

(4.3) diam(Ks,t) .
√

|s− t|
(

1 + log+
(

1

|s− t|

))1/β

.

In all of these inequalities, the implicit constants depend only on L, β, C0, and T .
To conclude, we once again invoke Pommerenke’s theorem to obtain a continuous

driving term, λ, associated to this Loewner chain. The desired control on λ then
follows from (4.3), together with with the estimate |λs − λt| ≤ 4 diam(Ks,t), which
we have used several times before. �

In addition to Question 1, which motivated this section, we end with a few other
questions of a similar spirit. First, what “local” geometric properties, perhaps
along the lines of the hypotheses in Theorem 2.11, do SLEκ domains satisfy, in
particular when κ > 4? We know, of course, that such domains are Hölder domains,
almost surely, but this unfortunately does not guarantee any of the local properties
assumed in our theorem. There are good known estimates on the number of times
SLEκ curves cross annuli (cf. [12, 29]); perhaps this could be a place to begin.

Ultimately, from a deterministic point of view, it is highly desirable to under-
stand the converse of what we have studied here: which driving functions λ generate
Loewner chains whose complementary domains are Hölder? All known determin-
istic conditions break down if ||λ||1/2 ≥ 4, and moreover, they guarantee much
stronger geometric properties than the Hölder property. From what we have es-
tablished here, such driving functions must lie in the weak-Lip(1/2) class. Going
further: are there finer analytic properties that these functions must have?
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