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ABSTRACT

We present a new similarity measure based on information
theoretic measures which is superior than Normalized Com-
pression Distance for clustering problems and inherits the
useful properties of conditional Kolmogorov complexity.

We show that Normalized Compression Dictionary Size
and Normalized Compression Dictionary Entropy are com-
putationally more efficient, as the need to perform the com-
pression itself is eliminated. Also they scale linearly with ex-
ponential vector size growth and are content independent.

We show that normalized compression dictionary distance
is compressor independent, if limited to lossless compres-
sors, which gives space for optimizations and implementation
speed improvement for real-time and big data applications.

The introduced measure is applicable for machine learn-
ing tasks of parameter-free unsupervised clustering, super-
vised learning such as classification and regression, feature
selection, and is applicable for big data problems with order
of magnitude speed increase.

Index Terms— dissimilarity, distance function, normal-
ized compression distance, time-series clustering, parameter-
free data-mining, heterogenous data analysis, Kolmogorov
complexity, information theory, machine learning, big data

1. INTRODUCTION

The similarity measure between objects is fundamental for
machine learning tasks. Most similarity measures require
prior assumptions on the statistical model and/or the parame-
ters limits.

For most applications in computational social science,
economics, finance, human dynamics analysis this implies
a certain risk of being biased or not to account for partially
observed source signal fundamental properties [[1].
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For more technical applications such as digital signal pro-
cessing, telecommunications and remote sensing, given that
the signal could be observed and modelled, we face the prob-
lems of noise, features representation and algorithmic effi-
ciency.

We easily agree with the following outcome of 20 trials
of fair coin toss “01111011001101110001”, but we do not
accept the result “00000000000000000000”. However, both
results have equal chances given that the fair coin model as-
sumption holds. This is a common example of paradoxes in
probability theory, but our reaction is caused by the belief that
the first sequence is complicated, but the second is simple [2].
A second example of human-inspired limitations is “Green
Lumber Fallacy” introduced by Nassim Nicholas Taleb. It is
a kind of fallacy that a person “mistaking the source of im-
portant or even necessary knowledge, for another less visible
from the outside, less tractable one”. Mathematically, it could
be expressed as we use an incorrect function which, by some
chance, returns the correct output, such that g(z) is mixed
with f(x). The root of the fallacy is that “although people
may be focusing on the right things, due to complexity of the
thing, are not good enough to figure it out intellectually” [1].

Despite the psychological limitations and fallacies by
which we, human, reason and develop the models, during
the last few decades there were developed a number of ro-
bust methods to enhance model generalization properties and
resistance to noise, such as filtering, cross validation, boost-
ing, bootstrapping, bagging, random forests [3]. The most
promising approach to the challenging paradigm of approach-
ing antifragility uses Kolmogorov complexity theory [4] and
concepts of Computational Irreducibility or the Principle of
Computational Equivalence, introduced by Steven Wolfram
[5]. Unfortunately Kolmogorov complexity is uncomputable
for a general case. For practical applications we have to
implement the algorithms which run on computers having
Turing machine properties.



2. METHODOLOGY

For defining similarity measure which uses Kolmogorov com-
plexity researchers introduced Information Distance measure,
which is defined as a distance between strings x and y as the
length of the shortest program p that computes = from y and
vice versa. The Information Distance is absolute and to obtain
a similarity metric Normalized Information Distance (/N ID)
was introduced:

maz{K(z|y), K(y|x)}

NID(z,y) = maz{K (z), K (y)}

ey

Unfortunately, Normalized Information Distance is also
uncomputable for a general case, as it is dependent on uncom-
putable Kolmogorov complexity measure [6]. For approxi-
mating NID in a practical environment — Normalized Com-
pression Distance (NC D) was developed, based on based on
a real-world lossless abstract compressor C' [7]:

C(zy) —min{C(x),C(y)}

NCD(z,y) = maz{C(z),C(y)}

@)

Daniele Cerra and Mihai Datcu introduced another ap-
proximation metric — Fast Compression Distance (F'C'D),
which is applicable to medium-to-large datasets:

|D(z)| = N(D(x), D(y))

FOPe ="
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where | D(x)| and | D(y)| are the sizes of the relative dic-
tionaries, represented by the number of entries they contain,
and N(D(x), D(y)) is the number of patterns which are found
in both dictionaries. FCD accounts for the number of patterns
which are found in both dictionaries extracted during com-
pression by Lempel-Ziv-Welch algorithm, and reduces the
computational effort by computing the intersection between
dictionaries, which represents the joint compression step per-
formed in NCD [8]].

We found that the number of patterns which exist in the
both dictionaries is dependent on the compression algorithm
used. Also the dictionary of x and y set intersection could
be coded with different symbols, as the frequencies of strings
could be different in z, y and N(z,y), which leads to less
accurate approximation. The size of a compression dictionary
does not account for the symbol frequency properties of the
dictionary and the size of possible algorithmic “description
of the string in some fixed universal description language”,
which is the essence of Kolmogorov complexity. That means
that we loose a lot of information about « and y if we compute
only the size of a compression dictionary.

In order to overcome this problem we introduce Gen-
eralized Compression Dictionary Distance (GCDD) metric,
which is defined as:

GCDD(z,y) =

P(z-y) — min{®(x),®(y)} 4)
} )

max{®(x), ®(y)

where ®(x - y) is functional characteristics of the com-
pression dictionary extracted from concatination of z and y
byte arrays. GCDD returns an n-dimensional vector, which
characterizes the conditional similarity measure between x
and y. Each dimension of GCDD represents a real valued
function.

The algorithmic complexity of the proposed solution is
proportional to:

OGcpDp(a,y) — kmg logm,, (5)

where m; and m,, is the dictionary size of x and y, and k
is the constant dependent on the dimensionality of the result-
ing vector.

In comparison, the algorithmic complexity of the other
measures are:

OFCD(:v,y) — My IOg My, (6)

ONCD(m,y) — (nx + ny) log(ml + my)7 (7)

which shows asymptotically small increase in compu-
tational time for GCDD but preserving informational gain
through additional x and y characteristics transfer.

3. EXPERIMENTAL RESULTS AND DISCUSSION

The implementation of Generalized Compression Dictionary
Distance prototype was done in The Java Platform, Standard
Edition 8 for double precision 64-bit input vectors and work-
ing with the Huffman Coding and Lempel-Ziv-Welch com-
pression for byte array case applying the approach of binary-
to-string encoding.

The experiments were run on “Synthetic Control Chart
Time Series” — a well known dataset published in UCI Ma-
chine Learning Repository[9], which contains control charts
synthetically generated by Alcock and Manolopoulos [[10] for
the six different classes of time series: normal, cyclic, increas-
ing trend, decreasing trend, upward shift and downward shift.

Experimental results show that Normalized Compression
Dictionary Size and Normalized Compression Dictionary En-
tropy, as examples of GCDD, give more stable and accurate



results for time-series clustering problem when tested on het-
erogeneous input vectors, than NCD and other traditional dis-
tance (e.i. dissimilarity) measures, such as euclidean distance.

Experimental results shown in the Fig[l] are produced
from abovementioned collection of [ time series vectors,
on which 4 distance function are defined (GCDD, NCD,
L2-norm, Pearson correlation).

Applying a distance function for each pairwise vectors,
the dissimilarity matrix is consructed, such that:

011 012 -+ O
02,1 d22 -+ Oar

=1 . (8
0r1 dr2 -+ Orr

Then multidimensional scaling is performed. Given dis-
similarity matrix A, we find I vectors x4, ...,z € RY such
that ||x; — x| = 6, ; forallé,j € 1,...,I, where || - || is a
vector norm.

On the plots we use the following symbols to encode vec-
tors of time series trend types: N - normal, C - cyclic, IT -
increasing trend, DT - decreasing trend, US - upward shift
and DS - downward shift.

From the Fig we see, that GCDD based distance metric
efficiently groups time series on a hyperplane thus increasing
separation ability.

It has similar properties as NCD, and much better than
L2-norm and Pearson correlation based, where the time series
vectors are mixed.

Then we run the experiments with computationally inten-
sive state-of-the-art methods for time series clustering, such
as: (1) autocorrelation based method, (2) Linear Predictive
Coding based as proposed by Kalpakis, 2001 [11]], (3) Adap-
tive Dissimilarity Index based [12]] and (4) ARIMA based
(Piccolo, 1990) [13].

From the Fig[2|we see, that numerically intensive methods
do not enhance much the separation ability, which is com-
puted applying GCDD based distance metric. Also these dis-
tance methods require much more computation time and are
not applicable for big data problems.

Further more, the result proposed in this paper could
be used for unsupervised clustering, supervised classifica-
tion and feature representation for deep learning tasks given
the nice properties of GCDD, such as (1) it scales linearly
with exponential growth of the input vector size and (2) it
is content independent, as the semantics is coded inside the
extracted dictionary itself.

The future research steps include testing the concept on
diverse data sets, including image processing data and using
the GCDD output for different machine learning tasks.
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Fig. 1. Fast Methods Comparison
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Fig. 2. Numerically Intensive Methods Comparison
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