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WAVE EXTENSION PROBLEM FOR THE FRACTIONAL LAPLACIAN

MIKKO KEMPPAINEN, PETER SJOGREN, AND JOSE LUIS TORREA

ABSTRACT. We show that the fractional Laplacian can be viewed as a Dirichlet-to-Neumann map for
a degenerate hyperbolic problem, namely, the wave equation with an additional diffusion term that
blows up at time zero. A solution to this wave extension problem is obtained from the Schrodinger
group by means of an oscillatory subordination formula, which also allows us to find kernel rep-
resentations for such solutions. Asymptotics of related oscillatory integrals are analysed in order to
determine the correct domains for initial data in the general extension problem involving non-negative
self-adjoint operators. An alternative approach using Bessel functions is also described.

1. INTRODUCTION

In the last decade a lot of attention has been devoted to fractional powers of the Laplacian —A.
The seminal paper by L. Caffarelli and L. Silvestre [CS07| showed that the operator (—A)?, with
0 < 0 < 1, mediates between Dirichlet and Neumann boundary values on R? for a certain degenerate
elliptic problem in the upper half-space Riﬂ.

Motivated by their work we show that up to a multiplicative constant the fractional Laplacian can
also be viewed as a Dirichlet-to-Neumann map f — lim;_,ot'~2?0;u for the hyperbolic problem

t

(1) Oru + 1=220,u = A,

Here 0 < o < 1, and for o = % we have the classical wave equation.

We use the language of semigroups to study this problem in a parallel way to that used by Stinga
and Torrea [ST10] for discussing the elliptic problem of Caffarelli and Silvestre in the generality of non-
negative self-adjoint operators. For an extension of their method to more general classes of semigroup
generators, see [GMS13|. We also wish to point out that an alternative approach to problem by
means of Bessel functions is available (see Section .

Our main result says that a solution to is given by means of the ‘oscillatory’ subordination
formula

it [ 2 ds
(2) u(-,t) = ‘m‘@/o el e Af slto”

also when A is replaced by a more general non-negative self-adjoint operator. It allows us to make
use of the Schrédinger kernel in order to find integral representations for solutions to the associated
Neumann problem in different dimensions.

It is perhaps interesting to note that in the classical case when o = %, the formula leads to the
identity

—it\/ —-A N o <t2 .
(3) < = \/7/ e~ lEs elsA ds
V—A T Jo Vs
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for the wave group (e~®V~2),cr. Recall in particular that the solution u to the wave equation with
Neumann initial data g (given by the imaginary part of the wave group)
(4) (1) sin(tv/—A)
u ° -~ = 7
v—A g

can be expressed in dimensions 3 and 2, respectively, by

C
o) uet) =t gly)dS() = $Slanea *9(z)
8B (x,t)
and
2 /1
6) o) =5 f W) gy = _CIBOY_, o)
2 Jowny @ —la—y2)} T (@] )

(see |[Eva98, Section 2.4, Equations (22) and (27)])E| These formulas highlight Huygens’ principle
concerning the finite propagation speed of solutions to the wave equation. It would be peculiar if the
smooth and fully supported Schrédinger kernel would transform by into a singular and spherically
supported one such as %S lo(0,+) in (9)), and indeed there are restrictions in the relation of o and the
dimension in our kernel representations.

We will now describe the content of this paper. Let L be a non-negative self-adjoint operator on a
Lebesgue space £2 and consider the Schrodinger group (e %) cr. In Theorem [1| we show that for
0 < 0 < 1 the oscillatory integral

Z'ot2cr 0 _-ﬁ » ds
UZ(f) = 4‘7F(0)/0 it o ZSLfSHU’

when interpreted as an improper integral, converges weakly in £2 for suitable f and solves the equation
1—-20
t

(7) OFu + Ou = —Lu, t>0,

with the initial data
u(-,0) = f and O%u(-,0) =i 27¢c,L°f.
where

1
I u(-t) = %t1_2”6tu(~,t).

Theorem (1| is established via the Spectral theorem (see Proposition ; the requirement that f €

Dom(L%JrZ) is needed to deal with the asymptotics of oscillatory integrals in Lemmas [2f and [3] Our
method for analysing these integrals and overcoming the delicate problems of convergence involves
‘sidestepping’ the imaginary half-axis and moving to more suitable complex paths that provide suffi-
cient decay. In Corollary [I} a solution u to with real initial data u(-,0) = f and 0fu(-,0) = g is
presented in terms of real and imaginary parts of U/ as

u(-,t) = coRe(i' >7U7 (f)) — ¢, Im(U7 (L™7g)).
For o = % this reduces to
e~V sin(tv/L)
VI N

In Section [3] we return to the case of L. = —A and find kernel representations for solutions u to
the Neumann problem

(8) u(-,t) = Re(e*itﬁf) — Im( g) = cos(tVL)f +

t

Ou+ =22 9pu = Aw,
u(-,t) =0, u(-,t)=g

IThe positive constants ¢, ¢’ appearing here and in what follows can have different values at different instances.
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on R? for d =1,2,...,5. From the subordination formula we obtain

_ 7 2 ds
Uto.((_A) Ug) = _1—\(0_) /0 e s ewAgSl—o'?
and inserting the Schréodinger kernel
1 jlzl?
7 e 4s s
(4mis)2
we arrive at the expression
.o-fﬁ &0 ,iﬁ i\Z*y|2 dS
(9) Cdol 2/0 e ' /Rde =Wy

the imaginary part of which gives the solution wu.
Theorem [2| concerns dimensions d = 1, 2,3 and ¢ for which 0 < 521 — o < 1 and derives from @D the
formula

u(z,t) = co / 9(v) —dy
Bat) (2 — |z —y[?)27°
The dimensions d = 3,4, 5 are considered in Theorem , which states that for o such that 1 < g—a <2
we have
Cd,o / 20 +1)gy) + (y —2) - Vyg(y) ,
2 JB@ (t2 — |z — yP)%_"_l

o tends to either zero or one are studied in Theorem |4} in dimensions

u(x,t) =

d _

The limiting cases when 3

d = 2,3,4 we then have

1
Ug (T, 1) — — 9(y)dS(y).
cat JoB(x,t)

In Theorem [l we show that the solution to

{8t2u + 1222 9,u = Auw,

t
u('7t) = fv 81?”('?” =g

with Schwartz initial data f and ¢ is unique and can be given in terms of Bessel functions Ji,,
namely,

u(-,t) = co(tV=D)J_g(tV=A) f 4 ¢, (tV=A)7 T, (tV/=A) (—A) .

For o = § this coincides with the classical formula (8) (with L = —A); indeed

2 2 .
Vrd_qo(r) = \/;cosr and  /1Jy/9(r) = \/;smr

(and c1/9 = ¢} 2= \/7/2). Growth estimates for Bessel functions allow us to deduce, by means of
the Fourier transform, fixed-time estimates for solutions of the equation (see Theorem @ Finally,
a classical integral representation for (modified) Bessel functions K, is converted into an oscillatory
integral formula coinciding with , thus closing the circle.
In order to avoid ambiguity, let us agree that i® = €/™/2. Moreover, by saying that an integral
fooo is convergent, we mean that the limit of faR exists as € -+ 0 and R — oo.
By a < 8 we mean that there exists a constant C' such that « < C5. Two quantities « and [ are

comparable, a ~ [, if & < f and 8 < a.
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2. AN OSCILLATORY SUBORDINATION FORMULA

Let L be a non-negative self-adjoint operator on a Lebesgue space £2 and let 0 < ¢ < 1. In this
section, we study when and how a solution to the equation

1-20
t
can be obtained from the oscillatory integral

iGtQU o) 71'& il ds
— e "4s e .
40’1‘(0-) 0 glto

The main result of the article is:

Theorem 1. Let 0 < o < 1. The limit
io120 R 2 oL
1) = li TG el t
wt) = qopy I [ T e,
R—o0

) (if o > %). If f € Dom(L5+%)

(10) OFu + 0w = —Lu, t>0,

[

PN

exists weakly in L whenever f € L? (if o < %) or f € Dom(L
then u is a weak solution to equation i the sense that

(af + #at) (u(-, ), h) = —(Lu(-,t), h)

for all h € L£L2. Moreover, u converges to the initial data
9o (1 —0)
— _ 2
u(-,0)=f and Ofu(-,0)=—i "mlf’f
weakly in £2. Here 0f = itk%&t.
A solution for any combination of Dirichlet and Neumann initial data can be obtained in terms of
real and imaginary parts:

Corollary 1. Write
go - 7 /OO omite —isL 45
i 401"(0-) 0 glto
for the solution operator. Then

e the function
1

sin(om)
solves equation with real initial data
U(,O) :fv a?U(,O) =0,
whenever f € Dom(L%Jr%), and
e the function

u(-t) = Re(i' 2707 (f))

4°T
u(et) = —— 21 10)
sin(om)['(1 — o)
solves equation (10)) with real initial data
u(-,0) =0, 9u(-,0) =g,

Im(U7(L™"9))

whenever g € Dom(Lngr%).
Proof of Corollary[1. To prove the first claim, it suffices to calculate
lim Re(i'"2°U7 (f)) = Re(i' 72 lim U7 (f)) = Re(i" 27 f) = cos((1 — QJ)E)f = sin(on) f
t—0 t—0 2
and to note that

: o 1—20770 _ -1—20 1: oTTO0 _ ,F(l*O’)
lim 07 Re(i' U7 (/) = Re(i' " lim 67 U7 (1)) = Re(

a Z04‘711(0) Lgf) =0
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For the second claim we begin by noting that
lim Im(U7 (L™ 7¢)) = Im(lim U7 (L™ 7¢g)) = Im(L"7g) =0,
t—0 t—0
and calculate
_ 20l -0)
c4°T'(o)

NGRS 03 g

%1_13% O Im(U7 (L™7g)) = Im(%g%at U7 (L™%g)) = Im( 49T (o)

g) = —sin(om)
]

The rest of the section is devoted to the proof of Theorem [I and we start with several auxiliary
results. Notice that the following simple lemma is false for o = 1.

Lemma 1. Let0< o < 1. Then
R ds

I'(0) =4 Ui s :
N

Proof. For 0 < e < R < oo we may use Cauchy’s integral theorem to write
R _s ds _, dz
e T = ( + + )e —_,
—o l1—0o
€ s arce ray. g arcp z

0+ ce? and 0 Rei(%_a), 0<o<

where arc. and arcp are
s
57
and ray, p is

s—is, e<s<R.

Now 7, x
_, dz 2 i 2z _ 7
’/ e~ ? — | = e / et ew’@ dg‘ < 80/ e ecosf do < —¢% — 0,
arce z 0 0 2
as € — 0.
Similarly,

=R’

% iW(E—0) . /m % .
/ e~ Re (z )620(579) d9’ < RO’/ e~ Rsin® g
0 0

. dz
yl—0o
arcp

as R — oo, where we used the inequality sin 6 > %9, for 0 <0 < 3.
Thus we have

< R"/ e~ 71 qp < R"_l/ 20 4o — 0,
0 0

R R
d d d
I'(o) = lim e’ — ° — lim e * lz =147 lim e " 18 .
e—0 J, Chnd e0 Jray A R—o0 Jg s
R—oo R—o0 &R
O
Proposition 1. Let 0 <o < 1. For all A > 0 the limit
o B e ity ds
Io-(>\7t) = m ;IE)I%] ; & e 4s 5170_7 t> 07
R—o0
exists and I5(A,-) satisfies the equation
1-2
(11) (atQ + Taat) Ia()\a t) = _)\IU()‘at)a
with the initial value limy_o I,(\,t) = 1. Moreover,
I'(1-
L = -2y o,

c4°T' (o)

where 0f = %tl_%@t.
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Proof. The proof is split into four parts.
Part I: We consider the truncated integral

R d
(12) /6 e—zse—z—)\ 81 SU,

its convergence as € — 0 and R — oo, and to what extent it gives a solution to equation . Note
first that the integral is absolutely convergent as € — 0. On the other hand, using integration by
parts, we see that

R
/ e—zse—z—)\ dS / a —zs —z—)\ dS
€

(13) PR
:’L|:€ ise )\U 1:| —’L/ e—isa(e z4s>\0 l)ds
S=& e
Here
t? 2
(14) Os(e™ 15)‘5‘7 b= (iz)\so{)’ —(1—0)s" e i3

so that the last integral converges absolutely as R — oco. Since the integrated term converges as
R — o0, we see that also the integral converges.
We then study the convergence of the integral corresponding to the time derivatives, and calculate:

1-2 12 1- :
(15) (07 + —0 )5 = (-4 zAQ i )
S S
so that
R 2 R R
- 1-2 2y d t d d
13 € N

which converges absolutely as R — oo, but appears problematic for ¢ — 0 (see Remark [2)). In order
to see to what extent the truncated integrals solve equation , we note from (14 and
that

1-2 2 2
(16) (83 + U&g) e imrs 1 = i)\as(e_’ﬁ’\s"_l).

In the light of equations and E, we infer that
1—2 R d ro
(3152 n t Jat> / e—zse—z—)\ S _ Z)\/ e—zsas( _lEASU 1) ds
€ 3

R 2 R
= —)\/ e e >‘ ds ~+ M[ fTs’\s‘T_l]
R st

s=¢&

At the upper limit R — oo the integrated term vanishes, but at the lower limit ¢ — 0 it diverges and
a careful argument will be needed. For now we record that

1-2 o0 d L2
(83 + 2o+ )\) / e85 T © = i e T,
1

S —0
Note here that the integral together with its time derivatives converges locally uniformly in ¢,
which justifies differentiating under the integral sign.
Part II: In order to show that

1
d 2
(17) <8t at + )\> /0 —zse—z—)\ Slfg _ i)\e_le_ltZA7

from which follows, we view the question in terms of complex path integrals:

1 d 1 2
s d(is t dz
/ e—zse—z4g>\ =479 / e—(ZS) 4(13) A ( ) =49 hm/ e e4z>‘ ,
0 Sl—(r 0 (ZS)I o ’Y . Zl—o

where the paths v approximate the segment [0, 7] in a suitable way (which we elaborate on below).
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Let 0 <6 < § be fixed and consider, for 0 < e < 1, the paths arc, arc; and ray, given by

0 ce® and 6 e ggeggw,

and
s sl c<g< .

)

By Cauchy’s integral theorem we may now write

1 2 d
Ly s dz
/ 6—156—145)\ —o' / / / _Z64z)\ )
1—0
€ arce ra; arcy

To see that the first integral on the right-hand side Vamshes as € — 0, it suffices to observe that
Re(e*) = cosf < 0 when I < 6 < Z +§ so that

2
_ 10 t2 —10 _ t _
‘6 ce 6—45/\6 | e acos@e—4g>\c059 <e ecosf 5 1.

The second integral on the right-hand side is
ds

2, dz . Lo imts) 2 —i(5+e)
/ e Z€42/\ - _ 620(2—1—5) e~ %€ 645)\8 =,
ray, € s

e U5310)) = cos(5 +0) <0

and it converges to a limit Js(\,t) as e — 0, again because Re(

Lastly,
dz 310 0 2y ,—i0
/ e e4z>‘ - :i/ e eTreT giot gg —. Es(\t),
arcy 5

N

z —0
2
so that altogether we have
! \ ds
/ emiseit: — i (Js(\t) — Es(\ 1),
0

SlU

Part III: For it suffices to show that

<a2 6t+/\)E5()\ ) =0, as 50
and that
2
(18) (82 8t + )\) Js(\t) — — it \eTie 1T as 5 — 0.
It is easy to see that
o 1—20 22 210 s P acoso
‘(at+ 6t+>\>E5()\,t)‘§(t)\ ) eS0TSO g (0 as § 0.
2

Write 5 = 5 + 0 so that
1 ) 2 ) d
_ 100 —geis 1= \e—i05 S
Js(\t)=e 5/0 e et e

Replacing A by ixe " in and (| u, we find that
<32 at)Ja(A t) =~ 1%\ / e 0,5 57 ds
t —i 1
= —\ello=1)0s [e*“waeﬂ’\e s s"*l} o As(At),

where the integrated term poses no problem at s = 0 because Re(e™) = cosfs < 0. As § — 0, the

2
integrated term therefore tends to \i°fle~ tT)‘, and and follow.
Part IV: We address the convergence to the initial value. By Lemma
0 R 2 d
¢ S

1 .
At)—1=——1i R CEERE! :
( ) F(O’) 51,111*21 e (6 4 ) gl—o
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The integral above is absolutely convergent as ¢ — 0 and therefore by dominated convergence,

1 . 42 ds
/ e_ls(e_lﬁ’\ —1)—=4— —0 as t—0.
0 §7°

Using integration by parts, we see that

R 2 d R . 2 d
_ i s . _ it S
/1 e e s —1) = = 2/1 Os(e™)(e's" = 1) e

42
_ Z[e zs(e—zﬁ/\ o 1)80—1}

where
12 2 it2 2y
Ds((e7 5 = 1)s7 1) = iz)\eﬂ@ 773 — (1 —o)(e s —1)s72,

so at the limit R — oo we have

o0 . .42 ds o .42 t2 o0 . 42 ds
€_ZS(€_ZE>\ -1 — ze_z(e_’TA _ 1) + A 6—156—14—3)\
1 4 1 g3—0o

N—
[V
(-
|
q

o o d
il — 0)/ e (e 1) 0
1 5577

The two integrals on the right-hand side converge absolutely and thus by dominated convergence we
have

© d
/ e*”(e*lfTs)‘ -1) 50 as t—0.
1

gl—o
This shows that I,(\,t) — 1 ast — 0.
Performing a change of variables i—i)\ = r in the truncated integral, we obtain

R 2 d R 2
) ) s t . ) ds
8t / eilseil%sA Zi}\ / 6725672%8)\
€ 2 Je

gl—o g2—o
- _Zii /w/46 i i AT
92 tl-20 12X /4R ri—(1-0o)
Since the convergence of the last integral here is locally uniform in ¢, it is easy to verify that
1-20
atOIU()‘vt) = 8tlo()‘7t)
20
o+1 Yo R 2 )
- A7 lim / el eI _dr
(o) 047 e, | rl-(1-o)
95 (1 —0)
20 o
= =" ——= N\, (A t).
! c4°T' (o) 1-o (A1)

Remark. As € — 0, the integral

R 2 d
. -t S
/ e—zse—zg)\ -
5 G

converges for kK = 2 but diverges for £ = 3. In both cases, this can be seen by means of the change of
variable r = %)" For k = 2, we also get bounds for the integral by means of Lemma

Lemma 2. Let 0 < 0 < 1. For every t > 0 we have

R
(19) | / e P S
15 1—|—)\2 4, O

81—0

uniformly in € and R.
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Proof. We denote A = # and show that

R 2
[ e
1—
€ $ 7

Observe that the phase ¢(s) = s + A; has its critical point where 0 = ¢/(s) =1 — ‘;‘—22 at s = A.
Consider first the case A < 1. We write

2 R i 2 d
([ [y e,
€ 2 S

and note that |I;] < 1. Using integration by parts, we see that
R +1 R o+1
) . ds T s? R ) . S
b= [ o) s =i S i o () as

Since A% < 1, we have

1, A<,
< 1
~Yl14+A4772, A>1.

Scf—i-l R 2cr+1 RO’+1
s2 — AQ] ‘ - +

[G—Ms) Gl <
s=2 3 R2 -1

and upon calculating the derivative

a( 80-1-1 )_ (O.+1>SO' B 250+2
S\g2 - A2/ 2 _ A2 (82—A2)2

R o+1 o) o o] o+2
—ip(s)g (5 ‘ < _5 S gs<
‘/2 e 65(52—A2>d8 s, 82_A2ds—|— , (32— A7) ds <1,

so that |I]| < 1.
Consider then the case A > 1. We follow the principle of stationary phase and decompose the
integral into three pieces

A-L1VA A+iVA
( 2er +2er ' )e_i(ﬁA;) LAYy
e A-LVA A+ivA sl=o ~ ’

we get

observe that A + %\/Z ~ A.
Note first that

A+IVA
A - VA ca
A-3VA § (A—5VA) e
For I1 + I3 we use integration by parts:

A—%\/Z R ) d
L +1Is= (/ —|—/ )e_“ﬂ(s) 17—80
£ A+ivA §

A-3VA R ‘
A e
c A+3VA ¢'(s)s

o+1 _1 o+1
— z’[e—iw(s) S }A 2V4 +1 [e_i‘ﬂ(s) S }R
§2 — A?ls=¢ 52 — A2 8=A+%\/Z
A-L1/A R ) 140
—z(/ ’ —i—/ )e_z‘p(s)&( 28 2)ds.
€ A+%\/Z s?—A
Here
H —igp(s) 87 }A_; A’ PG VAT + SRR + AT
e s2 — A2 ]s—¢ _A2—(A—% A)Q A2 — g2~ .
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and similarly

‘ s+l R (A 1 o+1 o+1
He_W( °) } - \F) S+ I S14 4773
— A2] = A+1f A—&-l\f R2 — A2 ™
Moreover, because

glto (52 _ AQ)(l 4 U)SU — 95012 sa+2(0 _ 1) _ A2(1 + U)SU
0 ( A2> B

(s2 — A2)2 - (s2 — A2)2 <0,

we have

A-1iVA R ‘ 140
([ e

A-LVA R 1+o
([ )

B [ glto }Aé A [ glto }R
52 — A2]s=¢ §2 — A?ls=aylva
1
S1+4+ A7z,

as before. Therefore )
’Il + 13‘ S 1+ A% 2,

Lemma 3. Let 0 < o < 1. For every t > 0 we have

(20) (83 + at) SO\ 8) ] < max{1,A5+11.
Proof. In order to obtain estimates for the derivatives
2 < ﬁ/\ ds
(a at) /0 el 22

10

we now split the interval of integratlon in a way which does not depend on t. We shall prove the
estimate for ¢ in a small neighbourhood of a fixed point ¢y > 0, by moving the differentiations
into the integrals. This will be uniform in tqg > 0. With A = tv/\/2 as before, we write Ay for
the value corresponding to tg. Let d = min(Ag,/Ap)/2. The integral will be split at the points
a=Ayp—dand b= Ay + d. We consider only values of ¢ so close to ¢y that |[A — Agp| < d/2. Thus

|s — A| > d/2 ~ min(A,/A) as soon as s ¢ (a,b).

For such ¢t we write

1—2 a b 00 ) 2 d
(92 +— Uat)(/ +/ +/ et EN 24 b+ I,
0 a b $

say. In Is and I3, it is clear that the derivatives can be taken inside the integrals:

b 9]
(3?+1_208t / + / e‘“”gA) ?i-
i(1— o) / / 7”#4) ds t2A2 / / 7ZS+A) ds‘
g2—o

To estimate I, we observe that s ~ A for a < s < b and that b —a = 2d < VA ~ )\1/4. Thus

b b
d d b— b
‘IQ,S)‘/ ngg"i‘tz)\z/ 838 <)\A2 J+t2/\2A </\2+4 -|-)\2

For I3 the estimate is clear when A < 1:

* d
1] < A/ ° +t2A2/ ds
S b S

AATTT 4 AZAT2 < NAT7E 4 N2AS
ASHE 4 BT < max(1, A5,

m\q

S
S
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When A > 1 we integrate by parts, with k = 2, 3:

o ds ds
e s) / a el s)
/b ¢/(s)sh=o

ios) 7 k+2 ) o) —igo(s)a Safk:+2
—Z[ ey —Z/b 0. )
Here o—k+2 o—k+2 o—k+2
—ip(s) s Rl b A Aa—k-l-%
S sye] R Rl e By el W '

Moreover, since by simple calculus,
Sa—k+2 (82 _ AZ)(U k4t 2)80—k+1 _ 280’—k+3
0 ( A2> -

(32 _ A2)2
(U _ k,)sa—k:-i-?) _ A2(0' —k+ Q)Sa—k-i-l
- (s2 — A2)2 <0

for all s > A, we have

[ “’“f;ws\sA“as<5§:kzi>ds={;::’“zi]zibw—w

as before. Therefore
|5 </\‘/ e els +t2/\2‘/ e~ () 33 ~

<AATE /\2A"*§ < max(1,\ET1),

as before.
We handle I; by switching to complex path integrals as in the proof of Proposition [I, namely

a 2 2
/ Z(S—"_4s)‘) ldS = i_a/ €_Z+A7 = _J / / _Z+ ?Z ’
0 577 [0,a] —o

- 270
ray,: s+—se's, 0<s<a,

where

and ' -
arc, : 06— aez(6+5), 0<o< 5

In the integrals over ray, and arc,, we shall take the derivatives of the integrand and verify con-
vergence of the resulting integrals. Observe first that for 0 < 0 < 7 /6

_ 6—(—(1—}—%2) sin 0

o i(0+7/2) | A% —i(6+m/2)
’6 ae + e | ,

and here 2 (4 s P
—s+?:2(A—s)+T>d+?
For 6 = /6 this implies that
|€7sem/3+%2w2w/3‘ _ (s < VA oo mntatA)

With £ = 2,3, we get for A <1

‘ —z-l-A*2 1
& z e
ray Zhe
a
A%
/ ‘6 z+
ray,

sk—cr ~

a
—eVA / -y
0

e 2 d
A S
~ / e_c ’ < 20—2k+2;
0

and for A > 1

for any M.
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[ e
for all A.

Altogether, this implies that

T e A e
ray, arcq arcCq z07e

< Amax(A%272, AU_’) + A2 max(AQU 4 AU_’

S max(l,)\%Jr%).

We also get

S Aakarl /6 670&0 Ao S.; Ao'kar%,
0

Proof of Theorem[1 Assume first that

£27 < la
f S g_1 7= %
Dom(L271), o> 5

and denote by E the spectral measure of L. In order to see that the family

it R ds
1) = —z— —zsL
UE7R(’ ) 401—‘(0)/&‘ € f glto

converges weakly in £2 as e — 0 and R — oo note first that for any h € £2,

at20' —1 —is)\ ds
(ue,r(+ 1), h = 9000 / 4‘/ dEsp(N) P
UtQJ ds
~ 49T(0) / / e )
12 /4e ) ds
e e —z—/\ — dEf,h()‘)
t2/4R S

Here, by Lemma

t2/4e
) / —zs —z 45)\ ds
t2/4R sl=o

< 1’ o_1 7 S
~Ml14+AETE, o>
from which the convergence follows.
Assume then that f € Dom(L%"“%). By Lemma |3| and Proposition !, we have

(2 + ! 2“&)<u(-,t),h>:/0°° (af+

__ / T AL ) B2 (V)
0
= _<Lu(-,t),h>-

I
I

D= N[

290) 1o (X, 1) dE ()

Weak convergence to the initial data,
(wlst) ) = [ L dEO) — (L), as ¢
0

holds by Proposition [I] and Lemma
Moreover, taking into account that

‘Il—a()‘a t)’ g {

1,
14173,

S
STIES
VAN

N[ D[
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we have, by Proposition [T, that

7 (u(-, ), hY = /0 T 00T, ) dEsa(V)
_ . ar(l — U) > o
= ) /O N Lo (M t) dE; n(\)

~JF(1_U) o
—i? m@ fih),

ast — 0. O
Remark. Note that the proof of Theorem [I] entails the fixed-time norm estimate
f 2, o< lv
ol s {1 %
Ifllz + [1L274 fll2, o> 35;
cf. Theorem [6l

3. KERNEL REPRESENTATIONS IN THE CASE OF THE LAPLACIAN
Let 0 < 0 < 1 and consider the Neumann problem

{(fu + 12299, = Au

t

(21) u(-,0) =0, 9u(-,0) =g,

for Schwartz initial data g on R?. In this section we prove the following three results:

Theorem 2. Suppose that d € {1,2,3} and let 0 < o < 1 be such that 0 < g — o < 1. A solution to
the Neumann problem with Schwartz initial data g is given by

O'SiIl((%l —o)mI(% - o) 9(y)
/B(x,t) (

Tt sin(em)I'(1 — o) 2 — |z — y|2)gf‘7

u(x,t) =

Theorem 3. Suppose that d € {3,4,5} and let 0 < o < 1 be such that 1 < 4 — o < 2. A solution to
the Neumann problem with Schwartz initial data g is given by

osin((§ —o—)mI(§ -0 —1) 1/ 2(0 +1)g(y) + (y = 2) - Vg(y) ,
2t sin(om)I'(1 — o) % JB(a) (t2 — |z — y|2)g—f’—1

This can be continued to higher dimensions, but the formulas will be more complicated.

u(x,t) =

Theorem 4. The solution u, of the Neumann problem (21)) with Schwartz initial data g has the limit

. 1
()= o [ g asty

when

o d=2 and o 0, in which case cq = 2,
e d=3and o — %, in which case cqg = 4m,
e d=4and o /1, in which case cq = 272,

Before the proofs, we use the Schrédinger kernel to rewrite the solution formulas. According to
Corollary |1} a solution to is given by

u(eot) = c4°T' (o)

~ sin(om)D(1 — o)

Im(U7 ((=4)7%9)),

where

_ A RN . ds i [ 2 A ds
UE(-8)0) = o [ e e arg = o [T ety 2
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by change of variable. Hence u(-,t) is the imaginary part of the integral
04%:° o2 ds
22 _ —igs HiSA i
(22) sin(om) (1 — o) /0 © e I
The Schrodinger group is given, for Schwartz functions g, by

- 1 Jz—yl?
Bg(a) = —— / e 1 g(y)dy
(4mis)z Jre

and in

TR ds 1 Loy o=yl ds
/0 e s ezsAg(x) e _ 4 — (/0 +/1 )6 i \/Rd e 43 g(y) dy i, =: Il([IZ) + IQ(.I'),
i) 2 52

the left-hand side converges absolutely and uniformly in z for all d and o (restricting to o < 3 for

d =1). Indeed,
*  ds
@l <l [ 5 <.

s1+g
and
isA N ~
sup [[e”*7gllo < sup |[le"2gll1 = [|g]l1
0<s<1 0<s<1
so that

1
. ds
@I [ 2 <o
Now the expression (22) is

474772 o e lo—y|? d
- Q?ZQ /e’fxs/ezy()dylf_,
(4m)2 sin(om)I'(1 — o) Jo Rd t3—o

[ i lo—y|? ds
V79($7t):Z ’Y/O e '4s ‘/Rdez s g(y)dysli_'_,y

for a free parameter v > 0. Thus

and we define

o475
(23) u(z,t) = —— ImV,g(z,t).
72 sin(om)I'(1 — o)

Observe that
t
(24) atv’\/g(xat) = 5 ’Y+1g(x7t>
which after iteration gives, for any n > 1, that

2 n
Visng(a.t) = (01) Vagla,t).

Cases 0 <y<1land 1< ~vy<2. When 0 < vy < 1, the kernel can be computed from

it Lozl > ds
Y
Vyg(z,t) =47 lim /]Rd/ SHWg(y) dy.

e—0
In the inner integral here, we make a change of variable % = +r, separating the cases t > |z —y|
and t < |x — y|. Doing so we obtain, respectively,
t27\z7 ‘2
0 _2=le—y® ds 47 e, dr 47771 ()
(& v 4s = e s —_—
e st (P =z —y?) Jo rir (P = —yP)
and
lo—y|%—t2

= (&

/°° *Z't2_|z_y‘2 ds 47 ZE . dr 47T ()
e s — ,
: R T 7 (e g - BT
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where we also used Lemma [I] Consequently, we have by dominated convergence

ey () + lpa B V)

: R\ B(z.0)

25 V. ,t) =4"T dy.

Proof of Theorem[4 The formula for the solution u follows from (23)) and ([25) with v = % —o. 0O
In order to calculate 0)ImVgg(x,t) for 0 < § < 1 we argue by change of variables y’ = ¥==:

_ +ty)
J Bas (& — |z —yP)P v) = so1) (1—[y]?)? v)

— 4d-28-1 / (d _ 26)‘(](1: + ty/) + ty' ) Vg(l' + ty,) dy/
B(0,1)

(1—1]y'[?)P
1 (d—28)g(y) + (y — =) - Vyg(y)
ot /B(:Jc,t) (12 — |z —y[?)? .
Now implies
(26) OdmVgg(z,t) = — sin(ﬁﬂ)élﬁf‘(ﬁ)% /B( ) G Qﬂ)(fQ(y_) ‘—;(_yy—’;)c; Vo) dy.

Proof of Theorem[3 The formula for the solution follows by means of from with v = % —0
and with 8 =~ — 1, so that

o475
i sin(om)I'(1 — o)

2(c +1)g(y) + (y — =) - Vg(y)

u(z,t) = —

2
Eatlmvv_lg(x, t)

= 2Cd,a* dyv
Blown (@l —yP)i
where ]
4% 2 sin((y — M)A T(y —1)  osin((4—o—D)m)I(¢ -0 —1)
Cdo = = .
T8 sin(om)I'(1 — o) drt sin(om)['(1 — o)
O
Limiting cases v 1 and « N\, 1. For the case v /1, recall first that
: 9(y)
ImV,g(x,t) = —4"T () sin(yw / dy.
9l = O [ @y
By the change of variable z = y — z and writing 2’ = |%Z|, the integral can be written
_ ! /
/ glwte) :/ gl + 2) 9(2$+Z)dz+/ ECREIRFRISY S953
B(og) (12 —12[%)7 B(0,1) (t2 — [2]?)7 B(og) (B2 —12[2)7
Here

t—|2| (t =]
1< Vel [ 4z <[ Vgll | &= 5 |Vl
= Iy (2 =122 = JBoy (E+z[) >
and, with polar coordinates,

Td_1

II:/:lg(x—l—tw)dS(w)/O mdr.

After the transformation p = r?/t2, the inner integral here will be

pd—2y /1 pl P D(HI(1— )
2 Jo (L=p) 2 TE+1-9)
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Since I'(1 — ) = ﬁ +O(1) and sin(y7) = (1 — )7 + O((1 — v)?) as v — 1, we conclude that

td=2 27
ImV,yg(z,t) = —4m—— g(x +tw)dS(w) = ——

9(y) dS(y),
2 Jjw=1 t JoB()

as vy 1.
Consider then the case v \, 1 and begin by recalling that

2
ImV,g(z,t) = EﬁtlmVV,lg(x, t)

2 41 : (d—2(y—1))glz+y)+y Vgl +y)
— 47 T(y — D) sin((y — 1)7) /B(O ) =y dy.

Since I'(y — 1) sin((y — 1)7) — mas v — 1,
27
lim ImV,g(x,t) = ——
N1 ~9(@, t)

> | (dela+y) +y- Vol +y))dy.
B(0,t)

Noting that
2

d=Ah and y=Vh for h(y):|y2’,

we make use of Green’s formula
Y
[ (g +h-vo)dy= [ (vh-Dygasiy)
B(0,) 9B(0,t)
to see that also
. 27
(27) lim ImV,g(x,) = —— 9(y) dS(y).
TN\ t JoB(at)
Proof of Theorem[]. Note first that v = % — o0 — 1 is possible in dimensions d = 2, 3 and 4 when
o\ 0,0— % and ¢ 1, respectively. Since
d
4°72
Ug(x,t) = —— o= ImVa__g(z,1),
72 sin(om)I'(1 — o) 2
together with the limits and it suffices to note that

1

4 T when d=2 and o \,0,

047" 2 T 1

7 — 9 2 when d=3 and o — g3,
w2 sin(om)I'(1 - o) ﬁ, when d=4 and o 71.

Remark. The one-dimensional problem

(28) {8,?71 + 1=229,u = 02u

u(-,0) =0, Fu(-,0)=g

is not covered by Theoremwhen o> % A solution formula can be derived by the method of descent
by viewing u and g with an additional spatial variable and using Theorem [2| for d = 2. Doing so we

obtain
x —|— ty1
// ) —dyrdys.
Yy +312 <1 y2)

Here the double integral can be calculated as follows:

1 2 1 1
+t -1 +t
/ (= yl / 1 _ ¥ 2>U dys dyy = / Y@t ty) 3{1) / (1— %) tdsdy,
¥3<1 L=u 1 (1—yf)2 77/
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where ) 1 1
/ (1—s*)7""ds = / (1—r) Y 2dr = w.
Therefore

ol'(0) / i 9(y)

w0+ g) St (12— |z —yf2)27

1 -+t
3 / 9(y) dy,
x—t

as o\ % This coincides with the limit as ¢ %

u(z,t) =

dy,

which converges to

Remark. In a similar vein one may consider the modified Klein—-Gordon equation arising from L =
—A 4+ m? with m > 0. The solution to is then given by

d
40’7* oo 42 Jz— |2 i d
e [ [ g )

72 sin(om)I'(1 — o) 0 Rd R g

where the quantity inside Im coincides with

il y\%? 2. ds
m = —im*s
Vi'g(z,t) =i lim /Rd/ R 9(y) dy,

e—0

with v = g — 0. Assuming that 0 < v < 1, we may use the formula (cf. Lemma )

oo oo
—A_im?2s ds .y —A _m2s ds
e s = =1 e s T

when A = m > 0 to deduce finite speed of propagation:

d
49~3 il d
u(z,t) = —— 7 2hm/ / o mims :S_ g(y)dy).
B(z,t)

w2 sin(om)'(1 — J) e=0

4. A BESSEL FUNCTION APPROACH

In this section we study the wave extension problem for the Laplacian L = —A on R? by means
of Bessel functions and obtain some elementary estimates for the solutions. In order to simplify the
presentation, we make stronger decay and regularity assumptions than necessary.

For a given o € (0,1) we consider the problem

PRu+ 1=220u = Au

u(-,0) = f, 0fu(-,0) =g,
where f and g are Schwartz functions whose Fourier transforms vanish in a neighbourhood of the
origin, and 7 = %tl_%@t.

We interpret the problem as an evolution equation in £2(R?), and call u a Schwartz solution if the
map (0,00) — L2(RY) : t + u(-,t) is C? (in the norm topology), and u(-,t), dyu(-,t), and }u(-,t)
are Schwartz functions for every ¢t > 0. The Fourier transform of such a solution u then satisfies for
every ¢ € R? the equation

(30) ORi(E. 1) + L og(e, 1) = —[e[FlE. 1), ¢ > 0.
Writing @(€,t) = (t[€])7w(t|€]) we get for w
7‘2w"(7“) +rw'(r) + (1"2 — O‘Q)w(T) =0,

which is Bessel’s differential equation. Thus two linearly independent solutions to are u(&,t) =
(€))7 Jxo (t|€]); see [Leb65l, Sections 5.1 and 5.3].

(29)

1—
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Let us then find the coefficients that give convergence to the correct initial values. The Bessel
functions satisfy for 0 <o < 1land r > 0

1 T\ 19 1 T\ ~° o2
o(r)="—"=\35 7 d Jor)==———(= o
Jo (1) I‘(1+0)(2) +O0(r’") and J_4(r) F(1—0)<2> +O(r )
as r \( 0, as seen from the power series expansion. Further,
d ag ag
%(r Jig(r)) = %7 Ji(g_l)(r);
see |[Leb65, Formula (5.3.5)]. This implies
20'
HENT T, (t d (HENTT_o(t 4
(tlE))7 Jo (tlE]) — 0 and  (¢l¢])7T -5 (t[E]) — T —o)

as t — 0. Moreover,

a g ’6‘20 g g
o7 (e Tote)) — oy and 97 ((ENTTo(0l€])) — 0
ast — 0.
Therefore the solution to (30)) given by
- ra- ~ 95~
(31) (€)= "L =9 1) o (€N F(E) + 02T (o) Hel) o (€D [€273(6)
satisfies

~

u(g,t) — f(§) and 9Ofu(&,t) — g(§) as t—0.

Since f and g were assumed to vanish in a neighbourhood of the origin, the next result follows
immediately by dominated convergence:

Theorem 5. Let 0 < 0 < 1. The unique Schwartz solution u to the problem
{Q?U + 1222 0u = Aw

i
U(,O) = f7 atgu(vo) =9,
with Schwartz initial data f and g whose Fourier transforms vanish in a neighbourhood of the origin,
s given by
-
1) = D R (V=) + 02T (o) (V=) Uy (V=) (),
which convergences to the initial data in £>(R?).

Remark. The same method can be used to prove uniqueness of solutions also in other settings, say
for non-negative self-adjoint operators L with discrete spectrum (such as the Hermite operator L =
—A + |z|> on R?), by replacing |¢| = v/A. In such a case the solution u of

{8t2u + 122990 = —Lu

¢
U(,O) = f’ atau(vo) =9,
is unique under the assumption that u, f and g all consist of a finite number of eigenfunctions.

Fixed-time norm estimates. For any order of smoothness s € R we define the Sobolev norm of a
Schwartz function f on R¢ by

1
I£12 = ([ 1€ FOP dc)".
Rd
where (§) = (1 + [¢ \2)% As a consequence of Theorem |5, we derive the following fixed-time norm

estimates for solutions u in the spirit of [Str70, Theorem 2|:

Theorem 6. Let s > 0 and let u, f and g be as in Theorem [5
o Ifo <35 then Ju(t)ll2s S IIfll2s + 7 llgllz + llgll2,s—20 for all t > 0.
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o Ifo >} then [[u(-,t)]zs S (1+1) s+ 272 + 17 gl 1 for all t > 0.

Proof. Let x be a frequency cut-off with 1p 1) < x < 1p(g,2) and recall the standard estimates for
Bessel functions:

+o
, O<r<l,
(32) o) <S40 "
r-z, r>1

Consider first the case 0 < 0 < % By we have
(tENT |- (tEN] S 1

H(tv— )T o (tV=L)fll2,s S [1f 2.6
On the other hand, according to we have (t|¢])7]J,(t|¢€])] < min{(¢|¢])??, 1}, which implies that

<£>8(t|£!)“|Jo(t|£|)!|£| 2SO HIEN*IEITH + (1 = x(ONE°lEI >
S PX(E) + (1= x(€)(€)* ™,

1tV =2)7Jo (0 =D)(=2) "7 gll2s S 7 Nlgll2 + llgll2.5-20-
Assume then that < o < 1. By (2)) we have (¢[¢])7]J_,(t¢])| < max{1, (t|§|)"’%} so that

)’ (t|§|) |J- (tlﬁl)\ < X(E)E)® + (1 — x(t€))(€)(tle])7 3,
o~ (f )5t7=2 . Consequently,

and therefore

and thus

(€
where (£)*(t[¢])73 <
||(t\/j)az]fo(tm)f||2s S Fll2s + 7720 Fllgepos S (14772 fllygrg 1

Moreover, from (32) we see that (¢€)7|J, (t|€])] < min{(t[¢)?, (£|¢[)°~2} and so
(€)*(HEDT 1o (HEDT €727 S X (E)E)* (HENIEI™ + (1 — X(€))(tlE))T = (€)* ||~
SN + (1 — X ()73 (€)* 73,
from which infer that
|EV=2)7 Ty (tV=B) (=) 7gll2,s S 7 gl + 172 |lgllyy o1
O

An integral formula. We finish by deriving the oscillatory subordination formula of Theorem
from a classical integral representation for modified Bessel functions

K (2) = 7l 5(2) — I5(2)

2 sin(ow) larg 2| <,

(see [Leb65) Section 5.7]). Noting that

oty = 1T~ 0
2 sin(o)

, >0,

we see that the solution u in Theorem [l for real initial data can be written as

u(-,t) = 72Tm2;0) Re (i1*2“(z’t\/1)"f(g(it\/1) f)
— %0’201—‘(0) Im((it\/I)UKg(it\/I)(—A)—ag).

Proposition 2. Let 0 < o < 1. We have

itV R K (ity/B) f = L / it pisay 48
0

21+0' 1+o’

for Schwartz functions f.
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Proof. We first show that

I > 2 ; ds
SN —it=  —is
K, (ir) = e /0 et e g, T > 0.

By |Leb65, Eq. (5.10.25)] we have the integral representation

27 [ _2 . ds T
KO(Z):WA e 4s e Sglﬁ’ |argz| <Z

z2
Note that when |arg z| > 7, this integral diverges at zero because Ree™ = 2 1.
If we introduce the bianalytic function
22 Y
(33) F(z,w)=e twe w77 |argz| < 5 |argw| < m,

the integral above can be written [;° F(z,s) ds.
Integrating instead w — F'(z,w) along the imaginary half-axis, we obtain the analytic function

) * 2. ds m
Z'—)ZU/ s e "* O<argz<§.
0

81—1—0 )
;22 =2
Indeed, for such z the integral is absolutely convergent since |e'%s | = e~ 4s | where ¢ = sin(2arg z) >
0. We claim that
o o0 T
(34) / F(z,s)ds:i/ F(z,is) ds, O<argz<1.
0 0

To see this, we let € > 0 and R < 0o, and use Cauchy’s integral theorem to write

/eRF(Z’S) = </ _/MCR)F (2, w) dw 3 / Rz i) ds,

where arc. and arcgr are the paths

. . T
0 ce? and 60— Re?, 0<6< 5
Then
N _ie*ie —ee? o —ioh
F(z,w)dw =1 e E=° e e % e,
arce 0

and with ¢ = argz € (0,7%) we have
|e—§e—i9| _ ol cos(20-60)/4c _ —|z[2sin(F ~26-+0) /4
Since sina > cmin(a, ™ — «) for 0 < a < 7, it follows that
sin (g —2¢+ 9) > cmin(f, /2 — 6).

As a consequence,
e 3 _ clz|? min(0,7/2-6) o
F(z,w)dw| S e e e g <e?— 0, as e—0.
arce 0

Likewise,

[T e _pio o
F(z,w)dw:z/ e R e B RTIeT90 ) 0, as R — oo,

arcp 0

and follows.

Now since the functions

ZO' /'OO
A F(z,is)ds
91l+0o 0
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and K,(z) are both analytic for 0 < argz < § and agree for 0 < argz < 7 because of , they
must coincide, so that

17729 [ 2 .. ds ™
Ky(2) = / 't e’ 0<argz < 5
0

21+0' 81+o' )
Finally,
) R
r? L+ . ds r? 2. ds
Ky (ir) = lim K (ir + 6 lim e as e ¥ = ——Ilim e s e ——
o(ir) 5—0 (i )= 2147 550 /o slto olto ok | sltao’

where the swapping of the limits in the last equality is justified since the arguments above show that
the limit in € and R is uniform in §.
The proposition now follows by Fourier transform from the identity

t 2‘7 '2 . d 'O'tQU R .2 ) d
(itlel)” K, Gitle]) = L) i / —iglePo-is 48 _ U7 / ot omislel 45
I3

21+<7 81+U 91l+o &R $1+o'

Indeed, after a change of variables s’ = thi the last integral is amenable to Lemma [2[ which gives

R
‘/ —it2 —is|¢|? ds <
e "4s e
Sl+0'
€

>

<yb
L4 Jel73,

1
g bR
1

The functions

iot2o R 22 isle? 7 ds
. —igs o—is[¢]
g 21—‘1—0’ /6 € is e f(g) 81+U

therefore converge in £L2(R%), as ¢ — 0 and R — oo, which justifies the exchange of limits with the
Fourier transform. 0

Remark. It is clear that Proposition [2| holds for any non-negative self-adjoint operator L in place of
—A when f is suitably chosen (cf. Theorem . Moreover, recalling that

\/i?Kl/z(ir) = \/Ee_", r>0,

we see that in the classical case o0 = % the formula reads

e—it\/ff — \[t —’LE e—zst
27 Jo 83/2
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