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Abstract. We show that the fractional Laplacian can be viewed as a Dirichlet-to-Neumann map for
a degenerate hyperbolic problem, namely, the wave equation with an additional diffusion term that
blows up at time zero. A solution to this wave extension problem is obtained from the Schrödinger
group by means of an oscillatory subordination formula, which also allows us to find kernel rep-
resentations for such solutions. Asymptotics of related oscillatory integrals are analysed in order to
determine the correct domains for initial data in the general extension problem involving non-negative
self-adjoint operators. An alternative approach using Bessel functions is also described.

1. Introduction

In the last decade a lot of attention has been devoted to fractional powers of the Laplacian −∆.
The seminal paper by L. Caffarelli and L. Silvestre [CS07] showed that the operator (−∆)σ, with
0 < σ < 1, mediates between Dirichlet and Neumann boundary values on Rd for a certain degenerate
elliptic problem in the upper half-space Rd+1

+ .
Motivated by their work we show that up to a multiplicative constant the fractional Laplacian can

also be viewed as a Dirichlet-to-Neumann map f 7→ limt→0 t
1−2σ∂tu for the hyperbolic problem

(1)

{
∂2
t u+ 1−2σ

t ∂tu = ∆u,

u(·, 0) = f.

Here 0 < σ < 1, and for σ = 1
2 we have the classical wave equation.

We use the language of semigroups to study this problem in a parallel way to that used by Stinga
and Torrea [ST10] for discussing the elliptic problem of Caffarelli and Silvestre in the generality of non-
negative self-adjoint operators. For an extension of their method to more general classes of semigroup
generators, see [GMS13]. We also wish to point out that an alternative approach to problem (1) by
means of Bessel functions is available (see Section 4).

Our main result says that a solution to (1) is given by means of the ‘oscillatory’ subordination
formula

(2) u(·, t) =
iσt2σ

4σΓ(σ)

ˆ ∞
0

e−i
t2

4s eis∆f
ds

s1+σ
,

also when ∆ is replaced by a more general non-negative self-adjoint operator. It allows us to make
use of the Schrödinger kernel in order to find integral representations for solutions to the associated
Neumann problem in different dimensions.

It is perhaps interesting to note that in the classical case when σ = 1
2 , the formula (2) leads to the

identity

(3)
e−it

√
−∆

√
−∆

=

√
i

π

ˆ ∞
0

e−i
t2

4s eis∆
ds√
s
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for the wave group (e−it
√
−∆)t∈R. Recall in particular that the solution u to the wave equation with

Neumann initial data g (given by the imaginary part of the wave group)

(4) u(·, t) =
sin(t
√
−∆)√
−∆

g

can be expressed in dimensions 3 and 2, respectively, by

(5) u(x, t) = t

 
∂B(x,t)

g(y) dS(y) =
c

t
S|∂B(0,t) ∗ g(x)

and

(6) u(x, t) =
t2

2

 
B(x,t)

g(y)

(t2 − |x− y|2)
1
2

dy =
c′1B(0,t)

(t2 − | · |2)
1
2

∗ g(x).

(see [Eva98, Section 2.4, Equations (22) and (27)]).1 These formulas highlight Huygens’ principle
concerning the finite propagation speed of solutions to the wave equation. It would be peculiar if the
smooth and fully supported Schrödinger kernel would transform by (3) into a singular and spherically
supported one such as 1

tS|∂B(0,t) in (5), and indeed there are restrictions in the relation of σ and the
dimension in our kernel representations.

We will now describe the content of this paper. Let L be a non-negative self-adjoint operator on a
Lebesgue space L2 and consider the Schrödinger group (e−isL)s∈R. In Theorem 1 we show that for
0 < σ < 1 the oscillatory integral

Uσt (f) =
iσt2σ

4σΓ(σ)

ˆ ∞
0

e−i
t2

4s e−isLf
ds

s1+σ
,

when interpreted as an improper integral, converges weakly in L2 for suitable f and solves the equation

(7) ∂2
t u+

1− 2σ

t
∂tu = −Lu, t > 0,

with the initial data
u(·, 0) = f and ∂σt u(·, 0) = i−2σcσL

σf.

where
∂σt u(·, t) =

1

2σ
t1−2σ∂tu(·, t).

Theorem 1 is established via the Spectral theorem (see Proposition 1); the requirement that f ∈
Dom(L

σ
2

+ 3
4 ) is needed to deal with the asymptotics of oscillatory integrals in Lemmas 2 and 3. Our

method for analysing these integrals and overcoming the delicate problems of convergence involves
‘sidestepping’ the imaginary half-axis and moving to more suitable complex paths that provide suffi-
cient decay. In Corollary 1, a solution u to (7) with real initial data u(·, 0) = f and ∂σt u(·, 0) = g is
presented in terms of real and imaginary parts of Uσt as

u(·, t) = cσRe(i1−2σUσt (f))− c′σIm(Uσt (L−σg)).

For σ = 1
2 this reduces to

(8) u(·, t) = Re(e−it
√
Lf)− Im

(e−it√L√
L

g
)

= cos(t
√
L)f +

sin(t
√
L)√

L
g.

In Section 3, we return to the case of L = −∆ and find kernel representations for solutions u to
the Neumann problem {

∂2
t u+ 1−2σ

t ∂tu = ∆u,

u(·, t) = 0, ∂σt u(·, t) = g

1The positive constants c, c′ appearing here and in what follows can have different values at different instances.
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on Rd for d = 1, 2, . . . , 5. From the subordination formula (2) we obtain

Uσt ((−∆)−σg) = − iσ

Γ(σ)

ˆ ∞
0

e−i
t2

4s eis∆g
ds

s1−σ ,

and inserting the Schrödinger kernel
1

(4πis)
d
2

ei
|x|2
4s ,

we arrive at the expression

(9) cd,σi
σ− d

2

ˆ ∞
0

e−i
t2

4s

ˆ
Rd
ei
|x−y|2

4s g(y)dy
ds

s1+ d
2
−σ
,

the imaginary part of which gives the solution u.
Theorem 2 concerns dimensions d = 1, 2, 3 and σ for which 0 < d

2 − σ < 1 and derives from (9) the
formula

u(x, t) = cd,σ

ˆ
B(x,t)

g(y)

(t2 − |x− y|2)
d
2
−σ
dy.

The dimensions d = 3, 4, 5 are considered in Theorem 3, which states that for σ such that 1 < d
2−σ < 2

we have

u(x, t) =
cd,σ
t2

ˆ
B(x,t)

2(σ + 1)g(y) + (y − x) · ∇g(y)

(t2 − |x− y|2)
d
2
−σ−1

dy.

The limiting cases when d
2 − σ tends to either zero or one are studied in Theorem 4; in dimensions

d = 2, 3, 4 we then have

uσ(x, t) −→ 1

cdt

ˆ
∂B(x,t)

g(y)dS(y).

In Theorem 5 we show that the solution to{
∂2
t u+ 1−2σ

t ∂tu = ∆u,

u(·, t) = f, ∂σt u(·, t) = g

with Schwartz initial data f and g is unique and can be given in terms of Bessel functions J±σ,
namely,

u(·, t) = cσ(t
√
−∆)σJ−σ(t

√
−∆)f + c′σ(t

√
−∆)σJσ(t

√
−∆)(−∆)−σg.

For σ = 1
2 this coincides with the classical formula (8) (with L = −∆); indeed

√
rJ−1/2(r) =

√
2

π
cos r and

√
rJ1/2(r) =

√
2

π
sin r

(and c1/2 = c′1/2 =
√
π/2). Growth estimates for Bessel functions allow us to deduce, by means of

the Fourier transform, fixed-time estimates for solutions of the equation (see Theorem 6). Finally,
a classical integral representation for (modified) Bessel functions Kσ is converted into an oscillatory
integral formula coinciding with (2), thus closing the circle.

In order to avoid ambiguity, let us agree that iα = eiπα/2. Moreover, by saying that an integral´∞
0 is convergent, we mean that the limit of

´ R
ε exists as ε→ 0 and R→∞.

By α . β we mean that there exists a constant C such that α ≤ Cβ. Two quantities α and β are
comparable, α ∼ β, if α . β and β . α.

Acknowledgements. The first author gratefully acknowledges the financial support from the Finnish
Academy of Science and Letters, Väisälä Foundation, and from the Finnish Centre of Excellence in
Analysis and Dynamics Research. He is thankful for the hospitality of the Department of Mathematics
at the Autonomous University of Madrid during his stay. The third author is supported by the grant
MTM2011-28149-C02-01 from Spanish Government.
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2. An oscillatory subordination formula

Let L be a non-negative self-adjoint operator on a Lebesgue space L2 and let 0 < σ < 1. In this
section, we study when and how a solution to the equation

(10) ∂2
t u+

1− 2σ

t
∂tu = −Lu, t > 0,

can be obtained from the oscillatory integral
iσt2σ

4σΓ(σ)

ˆ ∞
0

e−i
t2

4s e−isL
ds

s1+σ
.

The main result of the article is:

Theorem 1. Let 0 < σ < 1. The limit

u(·, t) =
iσt2σ

4σΓ(σ)
lim
ε→0
R→∞

ˆ R

ε
e−i

t2

4s e−isLf
ds

s1+σ
, t > 0,

exists weakly in L2 whenever f ∈ L2 (if σ ≤ 1
2) or f ∈ Dom(L

σ
2
− 1

4 ) (if σ > 1
2). If f ∈ Dom(L

σ
2

+ 3
4 )

then u is a weak solution to equation (10) in the sense that(
∂2
t +

1− 2σ

t
∂t

)
〈u(·, t), h〉 = −〈Lu(·, t), h〉

for all h ∈ L2. Moreover, u converges to the initial data

u(·, 0) = f and ∂σt u(·, 0) = −i2σΓ(1− σ)

σ4σΓ(σ)
Lσf

weakly in L2. Here ∂σt = 1
2σ t

1−2σ∂t.

A solution for any combination of Dirichlet and Neumann initial data can be obtained in terms of
real and imaginary parts:

Corollary 1. Write

Uσt =
iσt2σ

4σΓ(σ)

ˆ ∞
0

e−i
t2

4s e−isL
ds

s1+σ

for the solution operator. Then
• the function

u(·, t) =
1

sin(σπ)
Re(i1−2σUσt (f))

solves equation (10) with real initial data

u(·, 0) = f, ∂σt u(·, 0) = 0,

whenever f ∈ Dom(L
σ
2

+ 3
4 ), and

• the function

u(·, t) = − σ4σΓ(σ)

sin(σπ)Γ(1− σ)
Im(Uσt (L−σg))

solves equation (10) with real initial data

u(·, 0) = 0, ∂σt u(·, 0) = g,

whenever g ∈ Dom(L−
σ
2

+ 3
4 ).

Proof of Corollary 1. To prove the first claim, it suffices to calculate

lim
t→0

Re(i1−2σUσt (f)) = Re(i1−2σ lim
t→0

Uσt (f)) = Re(ii−2σf) = cos((1− 2σ)
π

2
)f = sin(σπ)f

and to note that

lim
t→0

∂σt Re(i
1−2σUσt (f)) = Re(i1−2σ lim

t→0
∂σt U

σ
t (f)) = Re

(
− iΓ(1− σ)

σ4σΓ(σ)
Lσf

)
= 0.
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For the second claim we begin by noting that

lim
t→0

Im(Uσt (L−σg)) = Im(lim
t→0

Uσt (L−σg)) = Im(L−σg) = 0,

and calculate

lim
t→0

∂σt Im(Uσt (L−σg)) = Im(lim
t→0

∂σt U
σ
t (L−σg)) = Im

(
− i2σΓ(1− σ)

σ4σΓ(σ)
g
)

= − sin(σπ)
Γ(1− σ)

σ4σΓ(σ)
g.

�

The rest of the section is devoted to the proof of Theorem 1, and we start with several auxiliary
results. Notice that the following simple lemma is false for σ = 1.

Lemma 1. Let 0 < σ < 1. Then

Γ(σ) = iσ lim
R→∞

ˆ R

0
e−is

ds

s1−σ .

Proof. For 0 < ε < R <∞ we may use Cauchy’s integral theorem to writeˆ R

ε
e−s

ds

s1−σ =
(ˆ

arcε
+

ˆ
rayε,R

+

ˆ
arcR

)
e−z

dz

z1−σ ,

where arcε and arcR are

θ 7→ εeiθ and θ 7→ Rei(
π
2
−θ), 0 ≤ θ ≤ π

2
,

and rayε,R is
s 7→ is, ε ≤ s ≤ R.

Now ∣∣∣ˆ
arcε

e−z
dz

z1−σ

∣∣∣ = εσ
∣∣∣ ˆ π

2

0
e−εe

iθ
eiσθ dθ

∣∣∣ ≤ εσ ˆ π
2

0
e−ε cos θ dθ ≤ π

2
εσ −→ 0,

as ε→ 0.
Similarly, ∣∣∣ ˆ

arcR
e−z

dz

z1−σ

∣∣∣ = Rσ
∣∣∣ˆ π

2

0
e−Re

i(π2−θ)eiσ(π
2
−θ) dθ

∣∣∣ ≤ Rσ ˆ π
2

0
e−R sin θ dθ

≤ Rσ
ˆ ∞

0
e−

2
π
Rθ dθ ≤ Rσ−1

ˆ ∞
0

e−
2
π
θ′ dθ′ −→ 0,

as R→∞, where we used the inequality sin θ ≥ 2
πθ, for 0 < θ < π

2 .
Thus we have

Γ(σ) = lim
ε→0
R→∞

ˆ R

ε
e−s

ds

s1−σ = lim
ε→0
R→∞

ˆ
rayε,R

e−z
dz

z1−σ = iσ lim
R→∞

ˆ R

0
e−is

ds

s1−σ .

�

Proposition 1. Let 0 < σ < 1. For all λ ≥ 0 the limit

Iσ(λ, t) =
iσ

Γ(σ)
lim
ε→0
R→∞

ˆ R

ε
e−ise−i

t2

4s
λ ds

s1−σ , t > 0,

exists and Iσ(λ, ·) satisfies the equation

(11)
(
∂2
t +

1− 2σ

t
∂t

)
Iσ(λ, t) = −λIσ(λ, t),

with the initial value limt→0 Iσ(λ, t) = 1. Moreover,

∂σt Iσ(λ, t) = −i2σΓ(1− σ)

σ4σΓ(σ)
λσI1−σ(λ, t),

where ∂σt = 1
2σ t

1−2σ∂t.
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Proof. The proof is split into four parts.
Part I: We consider the truncated integral

(12)
ˆ R

ε
e−ise−i

t2

4s
λ ds

s1−σ ,

its convergence as ε→ 0 and R →∞, and to what extent it gives a solution to equation (11). Note
first that the integral is absolutely convergent as ε → 0. On the other hand, using integration by
parts, we see thatˆ R

ε
e−ise−i

t2

4s
λ ds

s1−σ = i

ˆ R

ε
∂s(e

−is)e−i
t2

4s
λ ds

s1−σ

= i
[
e−ise−i

t2

4s
λsσ−1

]R
s=ε
− i

ˆ R

ε
e−is∂s(e

−i t
2

4s
λsσ−1) ds.

(13)

Here

(14) ∂s(e
−i t

2

4s
λsσ−1) = (i

t2

4
λsσ−3 − (1− σ)sσ−2)e−i

t2

4s
λ

so that the last integral converges absolutely as R → ∞. Since the integrated term converges as
R→∞, we see that also the integral (12) converges.

We then study the convergence of the integral corresponding to the time derivatives, and calculate:

(15)
(
∂2
t +

1− 2σ

t
∂t

)
e−i

t2

4s
λ =

(
− t2

4s2
λ2 − i1− σ

s
λ
)
e−i

t2

4s
λ,

so thatˆ R

ε
e−is

(
∂2
t +

1− 2σ

t
∂t

)
e−i

t2

4s
λ ds

s1−σ = − t
2

4
λ2

ˆ R

ε
e−ise−i

t2

4s
λ ds

s3−σ − i(1− σ)λ

ˆ R

ε
e−ise−i

t2

4s
λ ds

s2−σ ,

which converges absolutely as R →∞, but appears problematic for ε→ 0 (see Remark 2). In order
to see to what extent the truncated integrals (12) solve equation (11), we note from (14) and (15)
that

(16)
(
∂2
t +

1− 2σ

t
∂t

)
e−i

t2

4s
λsσ−1 = iλ∂s(e

−i t
2

4s
λsσ−1).

In the light of equations (13) and (16), we infer that(
∂2
t +

1− 2σ

t
∂t

)ˆ R

ε
e−ise−i

t2

4s
λ ds

s1−σ = iλ

ˆ R

ε
e−is∂s(e

−i t
2

4s
λsσ−1) ds

= −λ
ˆ R

ε
e−ise−i

t2

4s
λ ds

s1−σ + iλ
[
e−ise−i

t2

4s
λsσ−1

]R
s=ε

.

At the upper limit R→∞ the integrated term vanishes, but at the lower limit ε→ 0 it diverges and
a careful argument will be needed. For now we record that(

∂2
t +

1− 2σ

t
∂t + λ

)ˆ ∞
1

e−ise−i
t2

4s
λ ds

s1−σ = −iλe−ie−i
t2

4
λ.

Note here that the integral (12) together with its time derivatives converges locally uniformly in t,
which justifies differentiating under the integral sign.

Part II: In order to show that

(17)
(
∂2
t +

1− 2σ

t
∂t + λ

) ˆ 1

0
e−ise−i

t2

4s
λ ds

s1−σ = iλe−ie−i
t2

4
λ,

from which (11) follows, we view the question in terms of complex path integrals:ˆ 1

0
e−ise−i

t2

4s
λ ds

s1−σ = i−σ
ˆ 1

0
e−(is)e

t2

4(is)
λ d(is)

(is)1−σ = i−σ lim
γ

ˆ
γ
e−ze

t2

4z
λ dz

z1−σ ,

where the paths γ approximate the segment [0, i] in a suitable way (which we elaborate on below).
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Let 0 < δ < π
2 be fixed and consider, for 0 < ε < 1, the paths arcε, arc1 and rayε given by

θ 7→ εeiθ and θ 7→ eiθ,
π

2
≤ θ ≤ π

2
+ δ,

and
s 7→ sei(

π
2

+δ), ε ≤ s ≤ 1.

By Cauchy’s integral theorem we may now writeˆ 1

ε
e−ise−i

t2

4s
λ ds

s1−σ = i−σ
(ˆ

arcε
+

ˆ
rayε
−
ˆ

arc1

)
e−ze

t2

4z
λ dz

z1−σ .

To see that the first integral on the right-hand side vanishes as ε → 0, it suffices to observe that
Re(e±iθ) = cos θ ≤ 0 when π

2 ≤ θ ≤
π
2 + δ so that

|e−εeiθe
t2

4ε
λe−iθ | = e−ε cos θe

t2

4ε
λ cos θ ≤ e−ε cos θ . 1.

The second integral on the right-hand side isˆ
rayε

e−ze
t2

4z
λ dz

z1−σ = eiσ(π
2

+δ)

ˆ 1

ε
e−se

i(π2 +δ)

e
t2

4s
λe−i(

π
2 +δ) ds

s1−σ ,

and it converges to a limit Jδ(λ, t) as ε→ 0, again because Re(e−i(
π
2

+δ)) = cos(π2 + δ) < 0.
Lastly, ˆ

arc1
e−ze

t2

4z
λ dz

z1−σ = i

ˆ π
2

+δ

π
2

e−e
iθ
e
t2

4
λe−iθeiσθ dθ =: Eδ(λ, t),

so that altogether we have ˆ 1

0
e−ise−i

t2

4s
λ ds

s1−σ = i−σ(Jδ(λ, t)− Eδ(λ, t)).

Part III: For (17) it suffices to show that(
∂2
t +

1− 2σ

t
∂t + λ

)
Eδ(λ, t) −→ 0, as δ → 0

and that

(18)
(
∂2
t +

1− 2σ

t
∂t + λ

)
Jδ(λ, t) −→ iσ+1λe−ie−i

t2

4
λ, as δ → 0.

It is easy to see that∣∣∣(∂2
t +

1− 2σ

t
∂t + λ

)
Eδ(λ, t)

∣∣∣ . (t2λ2 + λ)

ˆ π
2

+δ

π
2

e− cos θe
t2

4
λ cos θ dθ −→ 0, as δ → 0.

Write θδ = π
2 + δ so that

Jδ(λ, t) = eiσθδ
ˆ 1

0
e−se

iθδ e
t2

4s
λe−iθδ ds

s1−σ .

Replacing λ by iλe−iθδ in (16) and (13), we find that(
∂2
t +

1− 2σ

t
∂t

)
Jδ(λ, t) = −ei(σ−1)θδλ

ˆ 1

0
e−se

iθδ∂s(e
t2

4s
λe−iθδ sσ−1) ds

= −λei(σ−1)θδ
[
e−se

iθδ e
t2

4s
λe−iθδ sσ−1

]1

s=0
− λJδ(λ, t),

where the integrated term poses no problem at s = 0 because Re(e−iθδ) = cos θδ < 0. As δ → 0, the

integrated term therefore tends to λiσ+1e−ie−i
t2

4
λ, and (18) and (17) follow.

Part IV: We address the convergence to the initial value. By Lemma 1,

Iσ(λ, t)− 1 =
iσ

Γ(σ)
lim
ε,R

ˆ R

ε
e−is(e−i

t2

4s
λ − 1)

ds

s1−σ .
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The integral above is absolutely convergent as ε→ 0 and therefore by dominated convergence,ˆ 1

0
e−is(e−i

t2

4s
λ − 1)

ds

s1−σ −→ 0 as t→ 0.

Using integration by parts, we see thatˆ R

1
e−is(e−i

t2

4s
λ − 1)

ds

s1−σ = i

ˆ R

1
∂s(e

−is)(e−i
t2

4s
λ − 1)

ds

s1−σ

= i
[
e−is(e−i

t2

4s
λ − 1)sσ−1

]R
s=1
− i

ˆ R

1
e−is∂s((e

−i t
2

4s
λ − 1)sσ−1) ds,

where

∂s((e
−i t

2

4s
λ − 1)sσ−1) = i

t2

4
λe−i

t2

4s
λsσ−3 − (1− σ)(e−i

t2

4s
λ − 1)sσ−2,

so at the limit R→∞ we haveˆ ∞
1

e−is(e−i
t2

4s
λ − 1)

ds

s1−σ =− ie−i(e−i
t2

4
λ − 1) +

t2

4
λ

ˆ ∞
1

e−ise−i
t2

4s
λ ds

s3−σ

+ i(1− σ)

ˆ ∞
1

e−is(e−i
t2

4s
λ − 1)

ds

s2−σ .

The two integrals on the right-hand side converge absolutely and thus by dominated convergence we
have ˆ ∞

1
e−is(e−i

t2

4s
λ − 1)

ds

s1−σ −→ 0 as t→ 0.

This shows that Iσ(λ, t)→ 1 as t→ 0.
Performing a change of variables t2

4sλ = r in the truncated integral, we obtain

∂t

ˆ R

ε
e−ise−i

t2

4s
λ ds

s1−σ = −i t
2
λ

ˆ R

ε
e−ise−i

t2

4s
λ ds

s2−σ

= −i4
1−σ

2

λσ

t1−2σ

ˆ t2λ/4ε

t2λ/4R
e−i

t2

4r
λ e−ir

dr

r1−(1−σ)
.

Since the convergence of the last integral here is locally uniform in t, it is easy to verify that

∂σt Iσ(λ, t) =
t1−2σ

2σ
∂tIσ(λ, t)

= − i
σ+1

Γ(σ)

λσ

σ4σ
lim
ε′,R′

ˆ R′

ε′
e−i

t2

4r
λ e−ir

dr

r1−(1−σ)

= −i2σΓ(1− σ)

σ4σΓ(σ)
λσI1−σ(λ, t).

�

Remark. As ε→ 0, the integral ˆ R

ε
e−ise−i

t2

4s
λ ds

sk−σ

converges for k = 2 but diverges for k = 3. In both cases, this can be seen by means of the change of
variable r = t2

4sλ. For k = 2, we also get bounds for the integral by means of Lemma 2.

Lemma 2. Let 0 < σ < 1. For every t > 0 we have

(19)
∣∣∣ˆ R

ε
e−ise−i

t2

4s
λ ds

s1−σ

∣∣∣ . {1, σ ≤ 1
2 ,

1 + λ
σ
2
− 1

4 , σ > 1
2 ,

uniformly in ε and R.
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Proof. We denote A = t
√
λ

2 and show that∣∣∣ˆ R

ε
e−i(s+

A2

s
) ds

s1−σ

∣∣∣ . {1, A < 1,

1 +Aσ−
1
2 , A ≥ 1.

Observe that the phase ϕ(s) = s+ A2

s has its critical point where 0 = ϕ′(s) = 1− A2

s2
at s = A.

Consider first the case A < 1. We write(ˆ 2

ε
+

ˆ R

2

)
e−i(s+

A2

s
) ds

s1−σ =: I1 + I2,

and note that |I1| . 1. Using integration by parts, we see that

I2 = i

ˆ R

2
∂s(e

−iϕ(s))
ds

ϕ′(s)s1−σ = i
[
e−iϕ(s) sσ+1

s2 −A2

]R
s=2
− i

ˆ R

2
e−iϕ(s)∂s

( sσ+1

s2 −A2

)
ds.

Since A2 ≤ 1, we have ∣∣∣[e−iϕ(s) sσ+1

s2 −A2

]R
s=2

∣∣∣ ≤ 2σ+1

3
+

Rσ+1

R2 − 1
. 1

and upon calculating the derivative

∂s

( sσ+1

s2 −A2

)
=

(σ + 1)sσ

s2 −A2
− 2sσ+2

(s2 −A2)2

we get ∣∣∣ˆ R

2
e−iϕ(s)∂s

( sσ+1

s2 −A2

)
ds
∣∣∣ . ˆ ∞

2

sσ

s2 −A2
ds+

ˆ ∞
2

sσ+2

(s2 −A2)2
ds . 1,

so that |I2| . 1.
Consider then the case A ≥ 1. We follow the principle of stationary phase and decompose the

integral into three pieces( ˆ A− 1
2

√
A

ε
+

ˆ A+ 1
2

√
A

A− 1
2

√
A

+

ˆ R

A+ 1
2

√
A

)
e−i(s+

A2

s
) ds

s1−σ =: I1 + I2 + I3;

observe that A± 1
2

√
A ∼ A.

Note first that

|I2| ≤
ˆ A+ 1

2

√
A

A− 1
2

√
A

ds

s1−σ ≤
√
A

(A− 1
2

√
A)1−σ

. Aσ−
1
2 .

For I1 + I3 we use integration by parts:

I1 + I3 =
(ˆ A− 1

2

√
A

ε
+

ˆ R

A+ 1
2

√
A

)
e−iϕ(s) ds

s1−σ

= i
(ˆ A− 1

2

√
A

ε
+

ˆ R

A+ 1
2

√
A

)
∂s(e

−iϕ(s))
ds

ϕ′(s)s1−σ

= i
[
e−iϕ(s) sσ+1

s2 −A2

]A− 1
2

√
A

s=ε
+ i
[
e−iϕ(s) sσ+1

s2 −A2

]R
s=A+ 1

2

√
A

− i
(ˆ A− 1

2

√
A

ε
+

ˆ R

A+ 1
2

√
A

)
e−iϕ(s)∂s

( s1+σ

s2 −A2

)
ds.

Here ∣∣∣[e−iϕ(s) sσ+1

s2 −A2

]A− 1
2

√
A

s=ε

∣∣∣ ≤ (A− 1
2

√
A)σ+1

A2 − (A− 1
2

√
A)2

+
εσ+1

A2 − ε2
. 1 +Aσ−

1
2 .



WAVE EXTENSION PROBLEM 10

and similarly ∣∣∣[e−iϕ(s) sσ+1

s2 −A2

]R
s=A+ 1

2

√
A

∣∣∣ ≤ (A+ 1
2

√
A)σ+1

(A+ 1
2

√
A)2 −A2

+
Rσ+1

R2 −A2
. 1 +Aσ−

1
2 .

Moreover, because

∂s

( s1+σ

s2 −A2

)
=

(s2 −A2)(1 + σ)sσ − 2sσ+2

(s2 −A2)2
=
sσ+2(σ − 1)−A2(1 + σ)sσ

(s2 −A2)2
< 0,

we have∣∣∣( ˆ A− 1
2

√
A

ε
+

ˆ R

A+ 1
2

√
A

)
e−iϕ(s)∂s

( s1+σ

s2 −A2

)
ds
∣∣∣ ≤ −(ˆ A− 1

2

√
A

ε
+

ˆ R

A+ 1
2

√
A

)
∂s

( s1+σ

s2 −A2

)
ds

= −
[ s1+σ

s2 −A2

]A− 1
2

√
A

s=ε
−
[ s1+σ

s2 −A2

]R
s=A+ 1

2

√
A

. 1 +Aσ−
1
2 ,

as before. Therefore
|I1 + I3| . 1 +Aσ−

1
2 .

�

Lemma 3. Let 0 < σ < 1. For every t > 0 we have

(20)
∣∣∣(∂2

t +
1− 2σ

t
∂t

)
Iσ(λ, t)

∣∣∣ . max{1, λ
σ
2

+ 3
4 }.

Proof. In order to obtain estimates for the derivatives(
∂2
t +

1− 2σ

t
∂t

)ˆ ∞
0

e−i(s+
t2

4s
λ) ds

s1−σ ,

we now split the interval of integration in a way which does not depend on t. We shall prove the
estimate for t in a small neighbourhood of a fixed point t0 > 0, by moving the differentiations
into the integrals. This will be uniform in t0 > 0. With A = t

√
λ/2 as before, we write A0 for

the value corresponding to t0. Let d = min(A0,
√
A0)/2. The integral will be split at the points

a = A0 − d and b = A0 + d. We consider only values of t so close to t0 that |A − A0| < d/2. Thus
|s−A| > d/2 ∼ min(A,

√
A) as soon as s /∈ (a, b).

For such t we write(
∂2
t +

1− 2σ

t
∂t

)(ˆ a

0
+

ˆ b

a
+

ˆ ∞
b

)
e−i(s+

t2

4s
λ) ds

s1−σ = I1 + I2 + I3,

say. In I2 and I3, it is clear that the derivatives can be taken inside the integrals:(
∂2
t +

1− 2σ

t
∂t

)( ˆ b

a
+

ˆ ∞
b

)
e−i(s+

t2

4s
λ) ds

s1−σ

= −i(1− σ)λ
( ˆ b

a
+

ˆ ∞
b

)
e−i(s+

A2

s
) ds

s2−σ −
t2λ2

4

(ˆ b

a
+

ˆ ∞
b

)
e−i(s+

A2

s
) ds

s3−σ .

To estimate I2, we observe that s ∼ A for a ≤ s ≤ b and that b− a = 2d .
√
A ∼ λ1/4. Thus

|I2| ≤ λ
ˆ b

a

ds

s2−σ + t2λ2

ˆ b

a

ds

s3−σ ≤ λ
b− a
A2−σ + t2λ2 b− a

A3−σ . λ
σ
2

+ 1
4 + λ

σ
2

+ 3
4 .

For I3 the estimate is clear when A ≤ 1:

|I3| ≤ λ
ˆ ∞
b

ds

s2−σ + t2λ2

ˆ ∞
b

ds

s3−σ

. λAσ−1 + λ2Aσ−2 ≤ λAσ−
3
2 + λ2Aσ−

5
2

. λ
σ
2

+ 1
4 + λ

σ
2

+ 3
4 . max(1, λ

σ
2

+ 3
4 ).



WAVE EXTENSION PROBLEM 11

When A > 1 we integrate by parts, with k = 2, 3:ˆ ∞
b

e−iϕ(s) ds

sk−σ
= i

ˆ ∞
b

∂s(e
−iϕ(s))

ds

ϕ′(s)sk−σ

= i
[
e−iϕ(s) s

σ−k+2

s2 −A2

]∞
s=b
− i

ˆ ∞
b

e−iϕ(s)∂s

( sσ−k+2

s2 −A2

)
ds.

Here ∣∣∣[e−iϕ(s) s
σ−k+2

s2 −A2

]∞
s=b

∣∣∣ =
bσ−k+2

b2 −A2
∼ Aσ−k+2

A
√
A
. Aσ−k+ 1

2 .

Moreover, since by simple calculus,

∂s

( sσ−k+2

s2 −A2

)
=

(s2 −A2)(σ − k + 2)sσ−k+1 − 2sσ−k+3

(s2 −A2)2

=
(σ − k)sσ−k+3 −A2(σ − k + 2)sσ−k+1

(s2 −A2)2
< 0

for all s > A, we have

∣∣∣ ˆ ∞
b

e−iϕ(s)∂s

( sσ−k+2

s2 −A2

)
ds
∣∣∣ ≤ −ˆ ∞

b
∂s

( sσ−k+2

s2 −A2

)
ds = −

[ sσ−k+2

s2 −A2

]∞
s=b
. Aσ−k+ 1

2 ,

as before. Therefore

|I3| ≤ λ
∣∣∣ˆ ∞

b
e−iϕ(s) ds

s2−σ

∣∣∣+ t2λ2
∣∣∣ˆ ∞

b
e−iϕ(s) ds

s3−σ

∣∣∣
. λAσ−

3
2 + λ2Aσ−

5
2 . max(1, λ

σ
2

+ 3
4 ),

as before.
We handle I1 by switching to complex path integrals as in the proof of Proposition 1, namelyˆ a

0
e−i(s+

t2

4s
λ) ds

s1−σ = i−σ
ˆ

[0,ia]
e−z+

A2

z
dz

z1−σ = i−σ
(ˆ

raya
−
ˆ

arca

)
e−z+

A2

z
dz

z1−σ ,

where
raya : s 7→ sei

2π
3 , 0 < s ≤ a,

and
arca : θ 7→ aei(θ+

π
2 ), 0 ≤ θ ≤ π

6
.

In the integrals over raya and arca, we shall take the derivatives of the integrand and verify con-
vergence of the resulting integrals. Observe first that for 0 ≤ θ ≤ π/6

|e−aei(θ+π/2)+
A2

a
e−i(θ+π/2) | = e

−
(
−a+A2

a

)
sin θ

,

and here

−s+
A2

s
= 2(A− s) +

(A− s)2

s
& d+

d2

s
.

For θ = π/6 this implies that

|e−sei2π/3+A2

s
e−i2π/3 | = e−

1
2

(−s+A2

s
) . e−c

√
A e−c

min(A2,A)
s .

With k = 2, 3, we get for A ≤ 1ˆ
raya

∣∣∣e−z+A2

z
1

zk−σ

∣∣∣ dz . ˆ a

0
e−c

A2

s
ds

sk−σ
. A2σ−2k+2;

and for A > 1 ˆ
raya

∣∣∣e−z+A2

z
1

zk−σ

∣∣∣ dz ≤ e−c√A ˆ a

0
e−c

A
s

ds

sk−σ
. A−M ,

for any M .
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We also get ∣∣∣ ˆ
arca

e−z+
A2

z
dz

zk−σ

∣∣∣ . Aσ−k+1

ˆ π
6

0
e−c
√
Aθ dθ . Aσ−k+ 1

2 ,

for all A.
Altogether, this implies that

|I1| ≤ λ
∣∣∣(ˆ

raya
−
ˆ

arca

)
e−z+

A2

z
dz

z2−σ

∣∣∣+ t2λ2
∣∣∣( ˆ

raya
−
ˆ

arca

)
e−z+

A2

z
dz

z3−σ

∣∣∣
. λmax(A2σ−2, Aσ−

3
2 ) + λ2 max(A2σ−4, Aσ−

5
2 )

. max(1, λ
σ
2

+ 3
4 ).

�

Proof of Theorem 1. Assume first that

f ∈

{
L2, σ ≤ 1

2 ,

Dom(L
σ
2
− 1

4 ), σ > 1
2 ,

and denote by E the spectral measure of L. In order to see that the family

uε,R(·, t) =
iσt2σ

4σΓ(σ)

ˆ R

ε
e−i

t2

4s e−isLf
ds

s1+σ

converges weakly in L2 as ε→ 0 and R→∞ note first that for any h ∈ L2,

〈uε,R(·, t), h〉 =
iσt2σ

4σΓ(σ)

ˆ R

ε
e−i

t2

4s

ˆ ∞
0

e−isλ dEf,h(λ)
ds

s1+σ

=
iσt2σ

4σΓ(σ)

ˆ ∞
0

ˆ R

ε
e−i

t2

4s e−isλ
ds

s1+σ
dEf,h(λ)

=
iσ

Γ(σ)

ˆ ∞
0

ˆ t2/4ε

t2/4R
e−ise−i

t2

4s
λ ds

s1−σ dEf,h(λ).

Here, by Lemma 2, ∣∣∣ˆ t2/4ε

t2/4R
e−ise−i

t2

4s
λ ds

s1−σ

∣∣∣ . {1, σ ≤ 1
2 ,

1 + λ
σ
2
− 1

4 , σ > 1
2 ,

from which the convergence follows.
Assume then that f ∈ Dom(L

σ
2

+ 3
4 ). By Lemma 3 and Proposition 1, we have(

∂2
t +

1− 2σ

t
∂t

)
〈u(·, t), h〉 =

ˆ ∞
0

(
∂2
t +

1− 2σ

t
∂t

)
Iσ(λ, t) dEf,h(λ)

= −
ˆ ∞

0
λIσ(λ, t) dEf,h(λ)

= −〈Lu(·, t), h〉.

Weak convergence to the initial data,

〈u(·, t), h〉 =

ˆ ∞
0

Iσ(λ, t) dEf,h(λ) −→ 〈f, h〉, as t→ 0,

holds by Proposition 1 and Lemma 2.
Moreover, taking into account that

|I1−σ(λ, t)| .

{
1, σ ≥ 1

2 ,

1 + λ
1
4
−σ

2 , σ < 1
2 ,
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we have, by Proposition 1, that

∂σt 〈u(·, t), h〉 =

ˆ ∞
0

∂σt Iσ(λ, t) dEf,h(λ)

= −i2σΓ(1− σ)

σ4σΓ(σ)

ˆ ∞
0

λσI1−σ(λ, t) dEf,h(λ)

−→ −i2σΓ(1− σ)

σ4σΓ(σ)
〈Lσf, h〉,

as t→ 0. �

Remark. Note that the proof of Theorem 1 entails the fixed-time norm estimate

‖u(·, t)‖2 .

{
‖f‖2, σ ≤ 1

2 ,

‖f‖2 + ‖L
σ
2
− 1

4 f‖2, σ > 1
2 ;

cf. Theorem 6.

3. Kernel representations in the case of the Laplacian

Let 0 < σ < 1 and consider the Neumann problem

(21)

{
∂2
t u+ 1−2σ

t ∂tu = ∆u

u(·, 0) = 0, ∂σt u(·, 0) = g,

for Schwartz initial data g on Rd. In this section we prove the following three results:

Theorem 2. Suppose that d ∈ {1, 2, 3} and let 0 < σ < 1 be such that 0 < d
2 − σ < 1. A solution to

the Neumann problem (21) with Schwartz initial data g is given by

u(x, t) =
σ sin((d2 − σ)π)Γ(d2 − σ)

π
d
2 sin(σπ)Γ(1− σ)

ˆ
B(x,t)

g(y)

(t2 − |x− y|2)
d
2
−σ

dy.

Theorem 3. Suppose that d ∈ {3, 4, 5} and let 0 < σ < 1 be such that 1 < d
2 − σ < 2. A solution to

the Neumann problem (21) with Schwartz initial data g is given by

u(x, t) =
σ sin((d2 − σ − 1)π)Γ(d2 − σ − 1)

2π
d
2 sin(σπ)Γ(1− σ)

1

t2

ˆ
B(x,t)

2(σ + 1)g(y) + (y − x) · ∇g(y)

(t2 − |x− y|2)
d
2
−σ−1

dy.

This can be continued to higher dimensions, but the formulas will be more complicated.

Theorem 4. The solution uσ of the Neumann problem (21) with Schwartz initial data g has the limit

lim
σ
uσ(x, t) =

1

cdt

ˆ
∂B(x,t)

g(y) dS(y)

when
• d = 2 and σ ↘ 0, in which case cd = 2π,
• d = 3 and σ → 1

2 , in which case cd = 4π,
• d = 4 and σ ↗ 1, in which case cd = 2π2.

Before the proofs, we use the Schrödinger kernel to rewrite the solution formulas. According to
Corollary 1, a solution to (21) is given by

u(·, t) = − σ4σΓ(σ)

sin(σπ)Γ(1− σ)
Im(Uσt ((−∆)−σg)),

where

Uσt ((−∆)−σg) =
iσt2σ

4σΓ(σ)

ˆ ∞
0

e−i
t2

4s eis∆(−∆)−σg
ds

s1+σ
=

iσ

Γ(σ)

ˆ ∞
0

e−i
t2

4s eis∆g
ds

s1−σ ,
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by change of variable. Hence u(·, t) is the imaginary part of the integral

(22) − σ4σiσ

sin(σπ)Γ(1− σ)

ˆ ∞
0

e−i
t2

4s eis∆g
ds

s1−σ .

The Schrödinger group is given, for Schwartz functions g, by

eis∆g(x) =
1

(4πis)
d
2

ˆ
Rd
ei
|x−y|2

4s g(y) dy

and inˆ ∞
0

e−i
t2

4s eis∆g(x)
ds

s1−σ =
1

(4πi)
d
2

( ˆ 1

0
+

ˆ ∞
1

)
e−i

t2

4s

ˆ
Rd
ei
|x−y|2

4s g(y) dy
ds

s1+ d
2
−σ

=: I1(x) + I2(x),

the left-hand side converges absolutely and uniformly in x for all d and σ (restricting to σ < 1
2 for

d = 1). Indeed,

|I2(x)| ≤ ‖g‖1
ˆ ∞

1

ds

s1+ d
2
−σ

<∞,

and
sup

0<s<1
‖eis∆g‖∞ ≤ sup

0<s<1
‖êis∆g‖1 = ‖ĝ‖1

so that

|I1(x)| . ‖ĝ‖1
ˆ 1

0

ds

s1−σ <∞.

Now the expression (22) is

− σ4σiσ−
d
2

(4π)
d
2 sin(σπ)Γ(1− σ)

ˆ ∞
0

e−i
t2

4s

ˆ
Rd
ei
|x−y|2

4s g(y) dy
ds

s1+ d
2
−σ
,

and we define
Vγg(x, t) = i−γ

ˆ ∞
0

e−i
t2

4s

ˆ
Rd
ei
|x−y|2

4s g(y) dy
ds

s1+γ

for a free parameter γ > 0. Thus

(23) u(x, t) = − σ4σ−
d
2

π
d
2 sin(σπ)Γ(1− σ)

ImVγg(x, t).

Observe that

(24) ∂tVγg(x, t) =
t

2
Vγ+1g(x, t)

which after iteration gives, for any n ≥ 1, that

Vγ+ng(x, t) =
(2

t
∂t

)n
Vγg(x, t).

Cases 0 < γ < 1 and 1 < γ < 2. When 0 < γ < 1, the kernel can be computed from

Vγg(x, t) = i−γ lim
ε→0

ˆ
Rd

ˆ ∞
ε

e−i
t2−|x−y|2

4s
ds

s1+γ
g(y) dy.

In the inner integral here, we make a change of variable t2−|x−y|2
4s = ±r, separating the cases t > |x−y|

and t < |x− y|. Doing so we obtain, respectively,
ˆ ∞
ε

e−i
t2−|x−y|2

4s
ds

s1+γ
=

4γ

(t2 − |x− y|2)γ

ˆ t2−|x−y|2
4ε

0
e−ir

dr

r1−γ −→
4γi−γΓ(γ)

(t2 − |x− y|2)γ

and ˆ ∞
ε

e−i
t2−|x−y|2

4s
ds

s1+γ
=

4γ

(|x− y|2 − t2)γ

ˆ |x−y|2−t2
4ε

0
eir

dr

r1−γ −→
4γiγΓ(γ)

(|x− y|2 − t2)γ
,
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where we also used Lemma 1. Consequently, we have by dominated convergence

(25) Vγg(x, t) = 4γΓ(γ)

ˆ
Rd

i−2γ1B(x,t)(y) + 1Rd\B(x,t)
(y)

|t2 − |x− y|2|γ
g(y) dy.

Proof of Theorem 2. The formula for the solution u follows from (23) and (25) with γ = d
2 − σ. �

In order to calculate ∂tImVβg(x, t) for 0 < β < 1 we argue by change of variables y′ = y−x
t :

∂t

( ˆ
B(x,t)

g(y)

(t2 − |x− y|2)β
dy
)

= ∂t

(
td−2β

ˆ
B(0,1)

g(x+ ty′)

(1− |y′|2)β
dy′
)

= td−2β−1

ˆ
B(0,1)

(d− 2β)g(x+ ty′) + ty′ · ∇g(x+ ty′)

(1− |y′|2)β
dy′

=
1

t

ˆ
B(x,t)

(d− 2β)g(y) + (y − x) · ∇g(y)

(t2 − |x− y|2)β
dy.

Now (25) implies

(26) ∂tImVβg(x, t) = − sin(βπ)4βΓ(β)
1

t

ˆ
B(x,t)

(d− 2β)g(y) + (y − x) · ∇g(y)

(t2 − |x− y|2)β
dy.

Proof of Theorem 3. The formula for the solution follows by means of (24) from (23) with γ = d
2 − σ

and (26) with β = γ − 1, so that

u(x, t) = − σ4σ−
d
2

π
d
2 sin(σπ)Γ(1− σ)

2

t
∂tImVγ−1g(x, t)

= 2cd,σ
1

t2

ˆ
B(x,t)

2(σ + 1)g(y) + (y − x) · ∇g(y)

(t2 − |x− y|2)
d
2
−σ−1

dy,

where

cd,σ =
σ4σ−

d
2 sin((γ − 1)π)4γ−1Γ(γ − 1)

π
d
2 sin(σπ)Γ(1− σ)

=
σ sin((d2 − σ − 1)π)Γ(d2 − σ − 1)

4π
d
2 sin(σπ)Γ(1− σ)

.

�

Limiting cases γ ↗ 1 and γ ↘ 1. For the case γ ↗ 1, recall first that

ImVγg(x, t) = −4γΓ(γ) sin(γπ)

ˆ
B(x,t)

g(y)

(t2 − |x− y|2)γ
dy.

By the change of variable z = y − x and writing z′ = tz
|z| , the integral can be written

ˆ
B(0,t)

g(x+ z)

(t2 − |z|2)γ
dz =

ˆ
B(0,t)

g(x+ z)− g(x+ z′)

(t2 − |z|2)γ
dz +

ˆ
B(0,t)

g(x+ z′)

(t2 − |z|2)γ
dz =: I + II.

Here

|I| ≤ ‖∇g‖∞
ˆ
B(0,t)

t− |z|
(t2 − |z|2)γ

dz ≤ ‖∇g‖∞
ˆ
B(0,t)

(t− |z|)1−γ

(t+ |z|)γ
dz . ‖∇g‖∞

and, with polar coordinates,

II =

ˆ
|ω|=1

g(x+ tω) dS(ω)

ˆ t

0

rd−1

(t2 − r2)γ
dr.

After the transformation ρ = r2/t2, the inner integral here will be

td−2γ

2

ˆ 1

0

ρ
d
2
−1

(1− ρ)γ
dρ =

td−2γ

2

Γ(d2)Γ(1− γ)

Γ(d2 + 1− γ)
.



WAVE EXTENSION PROBLEM 16

Since Γ(1− γ) = 1
1−γ +O(1) and sin(γπ) = (1− γ)π +O((1− γ)2) as γ → 1, we conclude that

ImVγg(x, t)→ −4π
td−2

2

ˆ
|ω|=1

g(x+ tω) dS(ω) = −2π

t

ˆ
∂B(x,t)

g(y) dS(y),

as γ ↗ 1.
Consider then the case γ ↘ 1 and begin by recalling that

ImVγg(x, t) =
2

t
∂tImVγ−1g(x, t)

= − 2

t2
4γ−1Γ(γ − 1) sin((γ − 1)π)

ˆ
B(0,t)

(d− 2(γ − 1))g(x+ y) + y · ∇g(x+ y)

(t2 − |y|2)γ−1
dy.

Since Γ(γ − 1) sin((γ − 1)π) −→ π as γ → 1,

lim
γ↘1

ImVγg(x, t) = −2π

t2

ˆ
B(0,t)

(
dg(x+ y) + y · ∇g(x+ y)

)
dy.

Noting that

d = ∆h and y = ∇h for h(y) =
|y|2

2
,

we make use of Green’s formulaˆ
B(0,t)

(
(∆h)g +∇h · ∇g

)
dy =

ˆ
∂B(0,t)

(∇h · y
t
)g dS(y)

to see that also

(27) lim
γ↘1

ImVγg(x, t) = −2π

t

ˆ
∂B(x,t)

g(y) dS(y).

Proof of Theorem 4. Note first that γ = d
2 − σ → 1 is possible in dimensions d = 2, 3 and 4 when

σ ↘ 0, σ → 1
2 and σ ↗ 1, respectively. Since

uσ(x, t) = − σ4σ−
d
2

π
d
2 sin(σπ)Γ(1− σ)

ImV d
2
−σg(x, t),

together with the limits (3) and (27) it suffices to note that

σ4σ−
d
2

π
d
2 sin(σπ)Γ(1− σ)

−→


1

4π2 , when d = 2 and σ ↘ 0,
1

8π2 , when d = 3 and σ → 1
2 ,

1
4π3 , when d = 4 and σ ↗ 1.

�

Remark. The one-dimensional problem

(28)

{
∂2
t u+ 1−2σ

t ∂tu = ∂2
xu

u(·, 0) = 0, ∂σt u(·, 0) = g

is not covered by Theorem 2 when σ > 1
2 . A solution formula can be derived by the method of descent

by viewing u and g with an additional spatial variable and using Theorem 2 for d = 2. Doing so we
obtain

u(x, t) =
σ

π
t2σ

¨
y21+y22<1

g(x+ ty1)

(1− y2
1 − y2

2)1−σ dy1dy2.

Here the double integral can be calculated as follows:ˆ 1

−1

g(x+ ty1)

(1− y2
1)1−σ

ˆ
y22<1−y21

(
1− y2

2

1− y2
1

)σ−1
dy2 dy1 =

ˆ 1

−1

g(x+ ty1)

(1− y2
1)

1
2
−σ

ˆ 1

−1
(1− s2)σ−1 ds dy1,
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where ˆ 1

−1
(1− s2)σ−1 ds =

ˆ 1

0
(1− r)σ−1r−

1
2 dr =

Γ(σ)Γ(1
2)

Γ(σ + 1
2)
.

Therefore

u(x, t) =
σΓ(σ)

π
1
2 Γ(σ + 1

2)

ˆ x+t

x−t

g(y)

(t2 − |x− y|2)
1
2
−σ

dy,

which converges to
1

2

ˆ x+t

x−t
g(y) dy,

as σ ↘ 1
2 . This coincides with the limit as σ ↗ 1

2 .

Remark. In a similar vein one may consider the modified Klein–Gordon equation arising from L =
−∆ +m2 with m > 0. The solution to (21) is then given by

u(x, t) = − σ4σ−
d
2

π
d
2 sin(σπ)Γ(1− σ)

Im
(
iσ−

d
2

ˆ ∞
0

e−i
t2

4s

ˆ
Rd
ei
|x−y|2

4s
−im2sg(y) dy

ds

s1+ d
2
−σ

)
,

where the quantity inside Im coincides with

V m
γ g(x, t) = i−γ lim

ε→0

ˆ
Rd

ˆ ∞
ε

ei
|x−y|2−t2

4s
−im2s ds

s1+γ
g(y) dy,

with γ = d
2 − σ. Assuming that 0 < γ < 1, we may use the formula (cf. Lemma 1)ˆ ∞

0
e−

A
is
−im2s ds

s1+γ
= i γ

ˆ ∞
0

e−
A
s
−m2s ds

s1+γ

when A = |x−y|2−t2
4 > 0 to deduce finite speed of propagation:

u(x, t) = − σ4σ−
d
2

π
d
2 sin(σπ)Γ(1− σ)

Im
(
iσ−

d
2 lim
ε→0

ˆ
B(x,t)

ˆ ∞
ε

ei
|x−y|2−t2

4s
−im2s ds

s1+ d
2
−σ

g(y) dy
)
.

4. A Bessel function approach

In this section we study the wave extension problem for the Laplacian L = −∆ on Rd by means
of Bessel functions and obtain some elementary estimates for the solutions. In order to simplify the
presentation, we make stronger decay and regularity assumptions than necessary.

For a given σ ∈ (0, 1) we consider the problem

(29)

{
∂2
t u+ 1−2σ

t ∂tu = ∆u

u(·, 0) = f, ∂σt u(·, 0) = g,

where f and g are Schwartz functions whose Fourier transforms vanish in a neighbourhood of the
origin, and ∂σt = 1

2σ t
1−2σ∂t.

We interpret the problem as an evolution equation in L2(Rd), and call u a Schwartz solution if the
map (0,∞) → L2(Rd) : t 7→ u(·, t) is C2 (in the norm topology), and u(·, t), ∂tu(·, t), and ∂2

t u(·, t)
are Schwartz functions for every t > 0. The Fourier transform of such a solution u then satisfies for
every ξ ∈ Rd the equation

(30) ∂2
t û(ξ, t) +

1− 2σ

t
∂tû(ξ, t) = −|ξ|2û(ξ, t), t > 0.

Writing û(ξ, t) = (t|ξ|)σw(t|ξ|) we get for w

r2w′′(r) + rw′(r) + (r2 − σ2)w(r) = 0,

which is Bessel’s differential equation. Thus two linearly independent solutions to (30) are û(ξ, t) =
(t|ξ|)σJ±σ(t|ξ|); see [Leb65, Sections 5.1 and 5.3].
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Let us then find the coefficients that give convergence to the correct initial values. The Bessel
functions satisfy for 0 < σ < 1 and r > 0

Jσ(r) =
1

Γ(1 + σ)

(r
2

)σ
+O(rσ+2) and J−σ(r) =

1

Γ(1− σ)

(r
2

)−σ
+O(r−σ+2)

as r ↘ 0, as seen from the power series expansion. Further,
d

dr
(rσJ±σ(r)) = ±rσJ±(σ−1)(r);

see [Leb65, Formula (5.3.5)]. This implies

(t|ξ|)σJσ(t|ξ|) −→ 0 and (t|ξ|)σJ−σ(t|ξ|) −→ 2σ

Γ(1− σ)

as t→ 0. Moreover,

∂σt

(
(t|ξ|)σJσ(t|ξ|)

)
−→ |ξ|2σ

σ2σΓ(σ)
and ∂σt

(
(t|ξ|)σJ−σ(t|ξ|)

)
−→ 0

as t→ 0.
Therefore the solution to (30) given by

(31) û(ξ, t) =
Γ(1− σ)

2σ
(t|ξ|)σJ−σ(t|ξ|)f̂(ξ) + σ2σΓ(σ)(t|ξ|)σJσ(t|ξ|) |ξ|−2σ ĝ(ξ)

satisfies
û(ξ, t) −→ f̂(ξ) and ∂σt û(ξ, t) −→ ĝ(ξ) as t→ 0.

Since f̂ and ĝ were assumed to vanish in a neighbourhood of the origin, the next result follows
immediately by dominated convergence:

Theorem 5. Let 0 < σ < 1. The unique Schwartz solution u to the problem{
∂2
t u+ 1−2σ

t ∂tu = ∆u

u(·, 0) = f, ∂σt u(·, 0) = g,

with Schwartz initial data f and g whose Fourier transforms vanish in a neighbourhood of the origin,
is given by

u(·, t) =
Γ(1− σ)

2σ
(t
√
−∆)σJ−σ(t

√
−∆)f + σ2σΓ(σ)(t

√
−∆)σJσ(t

√
−∆)(−∆)−σg,

which convergences to the initial data in L2(Rd).

Remark. The same method can be used to prove uniqueness of solutions also in other settings, say
for non-negative self-adjoint operators L with discrete spectrum (such as the Hermite operator L =

−∆ + |x|2 on Rd), by replacing |ξ| =
√
λ. In such a case the solution u of{

∂2
t u+ 1−2σ

t ∂tu = −Lu
u(·, 0) = f, ∂σt u(·, 0) = g,

is unique under the assumption that u, f and g all consist of a finite number of eigenfunctions.

Fixed-time norm estimates. For any order of smoothness s ∈ R we define the Sobolev norm of a
Schwartz function f on Rd by

‖f‖2,s =
(ˆ

Rd
|〈ξ〉sf̂(ξ)|2 dξ

) 1
2
,

where 〈ξ〉 = (1 + |ξ|2)
1
2 . As a consequence of Theorem 5, we derive the following fixed-time norm

estimates for solutions u in the spirit of [Str70, Theorem 2]:

Theorem 6. Let s ≥ 0 and let u, f and g be as in Theorem 5.
• If σ ≤ 1

2 then ‖u(·, t)‖2,s . ‖f‖2,s + t2σ‖g‖2 + ‖g‖2,s−2σ for all t > 0.
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• If σ ≥ 1
2 then ‖u(·, t)‖2,s . (1 + t)σ−

1
2 ‖f‖2,s+σ− 1

2
+ t2σ‖g‖2 + tσ−

1
2 ‖g‖2,s−σ− 1

2
for all t > 0.

Proof. Let χ be a frequency cut-off with 1B(0,1) ≤ χ ≤ 1B(0,2) and recall the standard estimates for
Bessel functions:

(32) |J±σ(r)| .

{
r±σ, 0 < r < 1,

r−
1
2 , r ≥ 1.

Consider first the case 0 < σ ≤ 1
2 . By (32) we have

(t|ξ|)σ|J−σ(t|ξ|)| . 1

and therefore
‖(t
√
−∆)σJ−σ(t

√
−∆)f‖2,s . ‖f‖2,s.

On the other hand, according to (32) we have (t|ξ|)σ|Jσ(t|ξ|)| . min{(t|ξ|)2σ, 1}, which implies that

〈ξ〉s(t|ξ|)σ|Jσ(t|ξ|)| |ξ|−2σ . χ(ξ)〈ξ〉s(t|ξ|)2σ|ξ|−2σ + (1− χ(ξ))〈ξ〉s|ξ|−2σ

. t2σχ(ξ) + (1− χ(ξ))〈ξ〉s−2σ,

and thus
‖(t
√
−∆)σJσ(t

√
−∆)(−∆)−σg‖2,s . t2σ‖g‖2 + ‖g‖2,s−2σ.

Assume then that 1
2 ≤ σ < 1. By (32) we have (t|ξ|)σ|J−σ(t|ξ|)| . max{1, (t|ξ|)σ−

1
2 } so that

〈ξ〉s(t|ξ|)σ|J−σ(t|ξ|)| . χ(tξ)〈ξ〉s + (1− χ(tξ))〈ξ〉s(t|ξ|)σ−
1
2 ,

where 〈ξ〉s(t|ξ|)σ−
1
2 ≤ tσ−

1
2 〈ξ〉s+σ−

1
2 . Consequently,

‖(t
√
−∆)σJ−σ(t

√
−∆)f‖2,s . ‖f‖2,s + tσ−

1
2 ‖f‖2,s+σ− 1

2
. (1 + t)σ−

1
2 ‖f‖2,s+σ− 1

2
.

Moreover, from (32) we see that (t|ξ|)σ|Jσ(t|ξ|)| . min{(t|ξ|)2σ, (t|ξ|)σ−
1
2 } and so

〈ξ〉s(t|ξ|)σ|Jσ(t|ξ|)| |ξ|−2σ . χ(ξ)〈ξ〉s(t|ξ|)2σ|ξ|−2σ + (1− χ(ξ))(t|ξ|)σ−
1
2 〈ξ〉s|ξ|−2σ

. t2σχ(ξ) + (1− χ(ξ))tσ−
1
2 〈ξ〉s−σ−

1
2 ,

from which infer that

‖(t
√
−∆)σJσ(t

√
−∆)(−∆)−σg‖2,s . t2σ‖g‖2 + tσ−

1
2 ‖g‖2,s−σ− 1

2
.

�

An integral formula. We finish by deriving the oscillatory subordination formula of Theorem 1
from a classical integral representation for modified Bessel functions

Kσ(z) =
π

2

I−σ(z)− Iσ(z)

sin(σπ)
, | arg z| < π,

(see [Leb65, Section 5.7]). Noting that

Kσ(ir) =
π

2

i−σJ−σ(r)− iσJσ(r)

sin(σπ)
, r > 0,

we see that the solution u in Theorem 5 for real initial data can be written as

u(·, t) =
2

π

Γ(1− σ)

2σ
Re
(
i1−2σ(it

√
−∆)σKσ(it

√
−∆)f

)
− 2

π
σ2σΓ(σ) Im

(
(it
√
−∆)σKσ(it

√
−∆)(−∆)−σg

)
.

Proposition 2. Let 0 < σ < 1. We have

(it
√
−∆)σKσ(it

√
−∆)f =

iσt2σ

21+σ

ˆ ∞
0

e−i
t2

4s eis∆f
ds

s1+σ

for Schwartz functions f .
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Proof. We first show that

Kσ(ir) =
rσ

21+σ

ˆ ∞
0

e−i
r2

4s e−is
ds

s1+σ
, r > 0.

By [Leb65, Eq. (5.10.25)] we have the integral representation

Kσ(z) =
zσ

21+σ

ˆ ∞
0

e−
z2

4s e−s
ds

s1+σ
, | arg z| < π

4
.

Note that when | arg z| > π
4 , this integral diverges at zero because Re e−

z2

4s & 1.
If we introduce the bianalytic function

(33) F (z, w) = e−
z2

4w e−w w−1−σ, | arg z| < π

2
, | argw| < π,

the integral above can be written
´∞

0 F (z, s) ds.
Integrating instead w 7→ F (z, w) along the imaginary half-axis, we obtain the analytic function

z 7→ i−σ
ˆ ∞

0
ei
z2

4s e−is
ds

s1+σ
, 0 < arg z <

π

2
.

Indeed, for such z the integral is absolutely convergent since |ei
z2

4s | = e−c
|z|2
4s , where c = sin(2 arg z) >

0. We claim that

(34)
ˆ ∞

0
F (z, s) ds = i

ˆ ∞
0

F (z, is) ds, 0 < arg z <
π

4
.

To see this, we let ε > 0 and R <∞, and use Cauchy’s integral theorem to writeˆ R

ε
F (z, s) ds =

(ˆ
arcε
−
ˆ

arcR

)
F (z, w) dw + i

ˆ R

ε
F (z, is) ds,

where arcε and arcR are the paths

θ 7→ εeiθ and θ 7→ Reiθ, 0 ≤ θ ≤ π

2
.

Then ˆ
arcε

F (z, w) dw = i

ˆ π
2

0
e−

z2

4ε
e−iθe−εe

iθ
ε−σe−iσθ dθ,

and with φ = arg z ∈ (0, π4 ) we have

|e−
z2

4ε
e−iθ | = e−|z|

2 cos(2φ−θ)/4ε = e−|z|
2 sin(π

2
−2φ+θ)/4ε.

Since sinα > cmin(α, π − α) for 0 < α < π, it follows that

sin
(π

2
− 2φ+ θ

)
> cmin(θ, π/2− θ).

As a consequence,∣∣∣ˆ
arcε

F (z, w) dw
∣∣∣ . ε−σ ˆ π

2

0
e−

c|z|2 min(θ,π/2−θ)
4ε dθ . ε1−σ −→ 0, as ε→ 0.

Likewise, ˆ
arcR

F (z, w) dw = i

ˆ π
2

0
e−

z2

4R
e−iθe−Re

iθ
R−σe−iσθ dθ −→ 0, as R→∞,

and (34) follows.
Now since the functions

z 7→ zσ

21+σ
i

ˆ ∞
0

F (z, is) ds
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and Kσ(z) are both analytic for 0 < arg z < π
2 and agree for 0 < arg z < π

4 because of (34), they
must coincide, so that

Kσ(z) =
i−σzσ

21+σ

ˆ ∞
0

ei
z2

4s e−is
ds

s1+σ
, 0 < arg z <

π

2
.

Finally,

Kσ(ir) = lim
δ→0

Kσ(ir + δ) =
rσ

21+σ
lim
δ→0

ˆ ∞
0

ei
(ir+δ)2

4s e−is
ds

s1+σ
=

rσ

21+σ
lim
ε,R

ˆ R

ε
e−i

r2

4s e−is
ds

s1+σ
,

where the swapping of the limits in the last equality is justified since the arguments above show that
the limit in ε and R is uniform in δ.

The proposition now follows by Fourier transform from the identity

(it|ξ|)σKσ(it|ξ|) =
iσ(t|ξ|)2σ

21+σ
lim
ε,R

ˆ R

ε
e−i

t2

4s
|ξ|2e−is

ds

s1+σ
=
iσt2σ

21+σ
lim
ε,R

ˆ R

ε
e−i

t2

4s e−is|ξ|
2 ds

s1+σ
.

Indeed, after a change of variables s′ = t2

4s the last integral is amenable to Lemma 2 which gives

∣∣∣ ˆ R

ε
e−i

t2

4s e−is|ξ|
2 ds

s1+σ

∣∣∣ . {1, σ ≤ 1
2 ,

1 + |ξ|σ−
1
2 , σ > 1

2 .

The functions

ξ 7→ iσt2σ

21+σ

ˆ R

ε
e−i

t2

4s e−is|ξ|
2
f̂(ξ)

ds

s1+σ

therefore converge in L2(Rd), as ε → 0 and R → ∞, which justifies the exchange of limits with the
Fourier transform. �

Remark. It is clear that Proposition 2 holds for any non-negative self-adjoint operator L in place of
−∆ when f is suitably chosen (cf. Theorem 1). Moreover, recalling that

√
irK1/2(ir) =

√
π

2
e−ir, r > 0,

we see that in the classical case σ = 1
2 the formula reads

e−it
√
Lf =

√
it

2
√
π

ˆ ∞
0

e−i
t2

4s e−isLf
ds

s3/2
.
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