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Abstract. In this paper we review the definitions of homoge-
neous and alternative links. We also give two new characteriza-
tions of an alternative link diagram, one within the context of the
enhanced checkerboard graph and another from the labeled Seifert
graph.

1. Introduction

In [5] Kauffman introduced the class of alternative links and con-
jectured that the class of alternative links is identical to the class of
pseudoalternating links introduced by Murasugi and Mayland in [7].
It was known that all alternative links were pseudoalternating, and it
would be shown in [8] that all pseudoalternating links of genus one were
alternative, but not necessarily in cases of higher genera, thus resolving
Kauffman’s conjecture in the negative. This was done by looking at
the intermediary class of homogeneous links which were introduced in
[3]. The remaining question is then:

Question 1. Are the classes of alternative and homogeneous links iden-
tical?

Studying these two classes is interesting because both classes of links
have the interesting property of having a minimal genus Seifert surface
that can be realized by Seifert’s algorithm ([5],[3]). The difficulty in
answering our question lies in the fact that the alternativity of a link is
difficult to determine. In this paper we will review homogeneous and
alternative links and then give two new characterizations of an alter-
native diagram. First, in sections 4 and 5 we explain how to construct
the enhanced checkerboard graph and the labeled Seifert graph, respec-
tively. In section 6 the definition of a homogeneous link is discussed.
The definition of alternative links and our new characterizations of an
alternative diagram are discussed in section 7. We conclude with some
open questions in section 8. A basic knowledge of knot theory and
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graph theory is assumed throughout however some preliminary con-
cepts are covered in sections 2 and 3. To avoid confusion, we will refer
to a regular projection of an oriented link into the plane as a diagram.

2. Preliminaries

The Seifert Algorithm is a procedure by which one can obtain a
surface bounded by a link L from one of its diagrams, [5]. Seifert’s
algorithm proceeds as follows. Given a diagram D we smooth all of
the crossings according to the following scheme.

Following this procedure produces a collection of oriented circles in
the plane bounded by discs. These circles are called Seifert circles. A
diagram of 10138 before and after smoothing the crossings is displayed
below.

Figure 1.

To create a Seifert surface from these circles attach a twisted band
to the discs bounding the circles in place of the crossings. The band
is twisted in accordance with the smoothed crossing between the two
circles. If one circle should be properly contained in another lift the
innermost circle from the plane so that it lies above the plane containing
the circle that properly contained it. If instead of creating a surface
we place the appropriate positive or negative site markers as in [5] we
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acquire a diagram of Seifert circles with site markers between them
instead of crossings. These site markers are shown below.

Figure 2. Top: positive marker Bottom: negative marker

The components of the complement of the union of Seifert circles are
referred to in [5] as spaces. We will refer to the union of circles created
by replacing the crossings of a diagram D with site markers as the
Seifert diagram, denoted Ds. Similarly we will denote the collection of
spaces in the complement of the union of Seifert circles as D̂s. Pictured
below is the Seifert diagram of the diagram previously shown.

Figure 3. Ds

In this paper we will often refer to the height of a Seifert circle as
defined in [6]:

Definition 2. Given a Seifert circle C of a Seifert diagram Ds the
height of C, denoted h(C) is defined as the number of Seifert circles in
Ds that properly contain C.
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We will also, on occasion refer to the height of a space bounded by a
Seifert circle. In this case we are referring to the bounded space in the
plane properly contained between Seifert circles or the large unbounded
space surrounding the diagram, more formally:

Definition 3. Given a Seifert diagram Ds a space A ⊆ D̂s is said to be
of height k if and only if it is bounded by a single Seifert circle of height
k or by a Seifert circle of height k and one or more Seifert circles of
height k + 1. A space of the Seifert diagram is said to be of height −1
if and only if it is unbounded.

A diagram divides the plane into several regions, including the large
outside region surrounding the diagram. We will say that two regions
R1 and R2 of a diagram are touching if they meet at a crossing and we
will say that the crossing is incident to both R1 and R2. For example,
the regions A, B, C and D in the figure below are touching.

Observe that in the above diagram two arcs begin bordering A and
stop bordering D at the crossing according to the orientation. Similarly
one arc begins bordering B and C and stops bordering B and C. We
will say that if an arc begins bordering a region R at a crossing c then
that arc is going into R. Similarly, if an arc ceases to border a region
R at a crossing c then the arc is said to be going out of R. We then
define the following:

Definition 4. Let c be a crossing incident to a region R then c is:

a. Crossing into R if and only if two arcs begin bordering R according
to the orientation at c.

b. Crossing out of R if and only if two arcs stop bordering R according
to the orientation at c.

c. Sideswiping R if and only if one arc begins bordering R and one arc
stops bordering R according to the orientation at c.

In the previous diagram the crossing show is crossing into A, out of
D and sideswiping B and C.
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Lemma 5. The number of arcs going into a region R is equal to the
number of arcs leaving R.

Proof. Every arc into a region R must connect to a unique arc going out
of R. If not then we could have a single arc into R attaching to multiple
arcs leaving R which is impossible or we could have two arcs into R
connecting to a single arc going out of R which is also impossible. It
then must be that every arc going into a region R must connect to one
and only on arc going out of R and similarly every arc going out of R
must have come from one and only one arc coming into R. We then
have that the number of arcs going into R is equal to the number going
out of R. �

Note that if R1 and R2 are two regions of a link diagram with a
crossing c that is going out of R1 and into R2 then, upon smoothing
the crossings of the diagram according to the Seifert algorithm R1 and
R2 will be joined in the same space of the Seifert diagram. Similarly if
there is a crossing out of R2 into a region distinct from R1, say R3, then
upon smoothing the crossings R1,R2, and R3 will also all be joined in
the same space of the Seifert diagram. We then introduce the following
relation:

Definition 6. Given a diagram D with regions R0, R1, . . . , Rn we will
say that two regions R and R′ are spatially connected, denoted R ∼ R′,
if and only if there is a sequence of regions R1, . . . , Rn with R = R1

and R′ = Rn such that for every pair of regions Ri and Ri+1 there is a
crossing c that is either crossing out of Ri and into Ri+1 or otherwise
crossing into Ri and out of Ri+1.

3. Graph Theory

A basic knowledge of Graph Theory is assumed throughout this pa-
per, however some terms are used frequently enough to merit a restate-
ment of their definitions as taken from [1]:

Definition 7. Given a graph G with vertex set V a vertex v ∈ V is a
cut vertex if G \ v is has more connected components than G.

Definition 8. A separation of a connected graph is a decomposition of
the graph into two nonempty connected subgraphs which have just one
vertex in common. This common vertex is called a separating vertex
of the graph. A graph is said to be separable if it contains a separating
vertex.

Pictured below is a graph and it’s smallest nontrivial nonseparable
subgraphs:
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Definition 9. A block B of a finite graph G is a subgraph which is
nonseparable and is maximal with respect to this property.

An example of a graph and it’s blocks is displayed below:

Given a digraph G we denote the in degree of a vertex v as δ−(v),
the outdegree of v as δ+(v) and the degree of v as d(v) = δ−(v)+δ+(v).
We will also the use the following theorem from section 2.4 of [1]:

Theorem 10. A graph G has a cycle decomposition if and only if it is
an even graph.

4. The Enhanced Checkerboard Graph

Let D be a diagram. Checkerboard color the diagram as in [5].
We can construct a signed planar digraph Φ(D) called the enhanced
checkerboard graph from this diagram in the following way. Assign
a black vertex to each black region and a white vertex to each white
region including the large “outside” region of the diagram. Two vertices
are connected by a directed edge labeled either + or − according to
the scheme shown below. A clarification of how loops are handled is
also shown.
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To more clearly illustrate how Φ(D) is constructed a colored diagram
and the corresponding Φ(D) of 10138 are shown below. Note that, by
construction Φ(D) is necessarily planar. This is due to the fact that
our diagrams come from regular projections which only admit single
and double points.

A similar graph construction is explained in [6] from which we borrow
the Φ notation.

Theorem 11. For every vertex v ∈ Φ(D), δ+(v) = δ−(v).

Proof. Let v be an arbitrary vertex of Φ(D). Assume for the sake of
contradiction that δ−(v) 6= δ+(v) We then have that the number of
crossings into the region corresponding to v, say Rv, is not equal to the
number of crossings out of Rv. This would imply that the number of
arcs into Rv is not equal to the number of arcs leaving Rv because the
only other crossings with arcs going into Rv are sideswiping which con-
tribute one arc into Rv and one arc out. We know that the number of



8 JEREMY SIEGERT

arcs going into Rv must equal those leaving so we have a contradiction
from which we can conclude that δ−(v) = δ+(v). �

In other words, Φ(D) is an even graph and has a cycle decomposition
that is to say every edge is a part of a cycle.

Theorem 12. Two regions R1 and Rn of a diagram D are part of
the same space in the Seifert diagram D̂s if and only if their is a (not
necessarily directed) path between their corresponding vertices in Φ(D).

Proof. (⇒) Let R1 and Rn be two regions that are part of the same
space in the Seifert diagram. Then R1 and R2 are spatially connected
which means there is a sequence of regions R1, . . . , Rn such that for
1 ≤ i ≤ n there is a crossing c in D that is crossing out of Ri and
into Ri+1 or otherwise into Ri and out of Ri+1. In either case, the
vertices corresponding to Ri and Ri+1 are joined by an edge in Φ(D).
We may then conclude that there will be a path in Φ(D) from the
vertex corresponding to R1 to that of Rn.
(⇐) Let v0 and vn be distinct vertices of Φ(D) such that there is a (not
necessarily directed path) path P = v0, v1, v2, . . . , vn between them.
Then we have that there is a crossing c in D that is either crossing out
of Ri and into Ri+1 or vice versa for 0 ≤ i ≤ n which gives us that R0

and Rn are spatially connected and are therefore in the same space of
D̂s. This completes the proof.

�

We can then view a component of Φ(D) as a characterization of the

site markers in a particular space of a given D̂s.

5. The Seifert Graph and the Labelled Seifert Graph

As shown in [3] we can construct the Seifert graph of a diagram
from it’s corresponding Seifert diagram. This is done by assigning a
vertex to each Seifert circle and a signed edge labeled either + or −
between two vertices for every site marker between their corresponding
Seifert circles. The sign of these edges is determined by the marker it
corresponds to. Edges with the same label correspond to markers of
the same type. More precisely, a negative site marker corresponds to
a negatively signed edge and positive site markers a positively signed
edge. For clarity we will represent positive edges as solid and negative
edges as hashed. We will say that two edges are of the same type if
they are both solid or are both hashed. An example of a Seifert graph
from the same diagram of 10138 that we have used in previous sections
is displayed below.
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Figure 4.

Here we define an extension of the Seifert graph that we call the
labeled Seifert graph defined in the following way,

Definition 13. The class of labeled Seifert graphs LS is the class con-
taining the graphs G that meet the following conditions:
i. The vertices of G are labeled with nonnegative integers.
ii. The edges of G are labeled + or −.

When we consider a labeled Seifert graph constructed from a partic-
ular diagram D we denote that graph as G(D). G(D) is constructed in
the same way as the original Seifert graph with the only addition being
that the vertices are labeled with the height of the Seifert circle that
they correspond to. This is to say if C is a Seifert circle with h(C) = i
then the corresponding vertex in G(D) is labeled with an i. Displayed
below is the same Seifert graph as before only now as a labeled Seifert
graph:

Figure 5.

Consider an arbitrary labeled Seifert graph G. Let Gi be the sub-
graph of G constructed in the following way. Delete all vertices v such
that h(v) < i − 1 or h(v) > i. Then delete all edges between vertices
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of height i− 1. This potentially disconnected subgraph is Gi. We will
refer to all Gi’s as height subgraphs. Observe that G =

⋃n
i=0Gi where

n is the maximum height of a circle in the Seifert diagram. For clarity,
when discussing a labeled Seifert graph constructed from a diagram D
we will denote the height subgraphs as Gi(D). For example, in the
figure below are the Gi(D)’s for the same projection of 10138 we have
been using.

Figure 6. G0(D) and G1(D)

6. Homogeneous Links

Homogeneous Links were defined in [3] in the following way.

Definition 14. Given a diagram D and Seifert graph G we say that a
block Bi of G is homogeneous if all edges in Bi are of the same type.
We say that D is homogeneous if all blocks in G are homogeneous. We
say that L is homogeneous if it has a homogeneous diagram.

Note the following result from [6]:

Theorem 15. Let D be a diagram, F it’s corresponding Seifert surface
and G the corresponding Seifert Graph. Then all the Seifert circles
associated to a block of G have the same height, except possibly one of
them which contains all the other being its height one less.

Given that our labelled Seifert graph is an extension of the Seifert
graph this result will hold for labelled Seifert graphs as well. From this
we may conclude the following:

Corollary 16. Let B be a block of some labelled Seifert graph G(D),
then there is some i such that B ⊂ Gi(D).

7. Alternative Links

Recall that in the construction of the Seifert diagram crossings are
replaced with positive or negative site markers. Two markers are said
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to be of the same type if they are both positive or are both negative.
A space in the Seifert diagram may contain one, two or zero marker
types. We then have the following definition from [5]:

Definition 17. A diagram D is alternative if and only if each space
in it’s corresponding Seifert diagram Ds contains at most one marker
type. L is said to be alternative if it has an alternative diagram.

We can recharacterize this definition in the context of the spatial
graph of a diagram, but first we will need the following definition.

Definition 18. Given a spatial graph Φ(D) we will say that Φ(D) is
alternative if and only if it does not contain a walk with both positive
and negative edges.

Theorem 19. Let D be a diagram, then D is alternative if and only
if Φ(D) is alternative.

Proof. (⇒) Let D be an alternative diagram. Consider Φ(D). Each
crossing of D corresponds to an edge in Φ(D). Recall that two edges
in a connected component of Φ(D) correspond to markers in the same
space of the Seifert diagram of D. Because D is alternative we know
that each space contains only one marker type we then have that each
connected component of Φ(D) has only one edge type which is to say
there is no walk in Φ(D) which contains both negative and positive
edges.
(⇐) Let Φ(D) be the spatial graph of the oriented link diagram D.
Assume also that Φ(D) is alternative. Then there is no walk in Φ(D)
which contains both negative and positive crossings. As we have noted,
the edges of a connected component of Φ(D) corresponds to the edges in
a space of the Seifert diagram of D. Because there is no walk containing
both edge types in Φ(D) we then know that there is no space in the
Seifert diagram of D that has more than one edge type which is to say
that D is alternative. This completes the proof. �

We can also recharacterize the definition of an alternative diagram
in terms of the labeled Seifert graph.

Definition 20. Given a labeled Seifert graph G we will say that a
subgraph Gi is alternative if and only if each connected component of
Gi has at most one edge type. The graph G is alternative if and only
if each Gi is alternative.

We may then present our main theorem, a recharacterization of an
alternative diagram in the context of labeled Seifert graphs.
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Theorem 21. Let D be a diagram and G(D) the labeled Seifert graph
of D, then D is alternative if and only if G(D) is alternative.

Proof. (⇒). Let D be an alternative diagram. Consider G(D). Assume
for the sake of contradiction that G(D) is not alternative. Then there
is some i such that Gi(D) is not alternative. This is to say there is some
connected component in Gi(D) that has two edges of different types.
Let this component be denoted H. Let v0 be the single vertex in H
that is at height i and let all other vertices be denoted by w1, . . . , wn.
There are then three cases to check. In the first case there are two
edges incident to v0 that are of different types. In this case it is easy
to see that these edges correspond to crossings of different types in the
space corresponding to v0 which would give that D is not alternative.
In the second case two edges between wj , wk, and wl are of different
types. All edges between these wi’s correspond to crossings in the space
associated to v0. If any two of these are of different types then we have
that D is not alternative. In the final case there is an edge incident to
v0 that is a different type than an edge between two wi’s. We know
that edges incident to v0 in Gi(D) correspond to crossings in the space
associated to v0 and similarly, edges amongst the wi’s correspond to
crossing in the space corresponding to v0. We then have that if there
are differing types between these edges then D must not be alternative.
This is our final contradiction. We then must have that all Gi(D) are
alternative thereby making G(D) alternative by definition.
(⇐) Let G(D) be an alternative labeled Seifert graph for some diagram
D. We wish to show that there is no space in the Seifert diagram
of D that has more than one type of site marker. Assume for the
sake of contradiction that there is such a space. If this space is the
larger outside space then this would imply that there is a Seifert circle
of height 0 that is connected to other distinct circles of height 0 by
different site markers. This would imply that there are edges of differing
types in the subgraph G0(D) which is a contradiction. Then consider
a space between circles of height k and height k + 1. If this space has
differing site markers then the circle of height k must contain circles of
height k + 1. If these circles have crossings of different types amongst
them then these crossings will show as different types of edges inGk(D).
Similarly for the other 2 possible cases. These would all contradict
G(D) being alternative, so it must be that D is alternative. �

It was noted in [3] that all alternative link diagrams are homoge-
neous. This is easy to see because if a labeled Seifert graph is alter-
native then all of its Gi(D)’s are alternative which would imply that
the blocks contained in each Gi(D) are homogeneous. However, not all
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homogeneous diagrams are alternative. Below are two diagrams of a
943 with their respective labeled Seifert graphs. The second diagram is
alternative and homogeneous while the first diagram is homogeneous,
but not alternative.

Figure 7. A homogeneous diagram that is not alternative

Figure 8. A diagram that is both homogeneous and alternative

Similarly, it is not the case that all minimal crossing diagrams of a ho-
mogeneous link are homogeneous as can be seen in the infamous “Perko
Pair” which answers question 1 from [3]. This example also shows that
minimal crossing diagrams of alternative links are not necessarily al-
ternative. Note that 10161 might not the smallest homogeneous link
that has a nonhomogeneous minimal crossing diagram. All minimal
crossing diagrams of alternating links are alternating and therefore
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homogeneous and alternating. It must then be that such a minimal
example is nonalternating. The smallest nonalternating homogeneous
link is 819, [3]. The sequence of Reidemeister moves between the two
diagrams of 10161 with the corresponding spatial and labeled Seifert
graphs are included in the appendix.

Figure 9. A minimal crossing homogeneous diagram
and a minimal crossing nonhomogeneous diagram of
10161

8. Questions

In [3] the question was asked as to whether or not every homogeneous
link has a homogeneous minimal crossing diagram. It is then natural
to ask the same of alternative links.

Question 22. Does every alternative link have an alternative minimal
crossing diagram?

Question 23. Given a labeled Seifert graph G(D) of a diagram D is
there a sequence of Reidemeister moves that can be done on D to get a
diagram D′ where the labeled Seifert graph, G(D′) has different heights,
but is isomorphic to G(D) otherwise?
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Figure 10. G(D) and G(D′)

Question 24. Is there a homogeneous link that is not alternative?

There is a complete classification of homogeneous knots up to 9
crossings in [3]. All homogeneous links up to 10134 can be seen to
be alternative from their minimal crossing diagrams given on [2]. The
first homogeneous knot listed that is not immediately identifiable as
alternative is 10138.

Figure 11. Does 10138 admit an alternative diagram?
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9. Appendix

Presented here is the Reidemeister sequence between the two dia-
grams of the Perko Pair. At each step the knot diagram is on the left
and the corresponding spatial and labeled Seifert graph are on the cen-
ter and right respectively.

http://arxiv.org/abs/1402.4599
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