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1 Introduction

The present paper is concerned with new modifications of Besov-type function spaces of variable
smoothness, which are generalizations of the spaces B̃l

p,q(R
n, {tk}) of [35].

The function spaces of variables smoothness (Besov-type and Lizorkin–Triebel-type spaces) and
various generalizations thereof have been extensively studied. We only mention the papers [2], [3],
[4], [24], [25], [26], [28], [29], [36] (and abundant references given therein).

It is interesting to note that the majority of studies on this subject have been concerned with
spaces of variable smoothness consisting of distributions from the space S′(Rn). In this connection,
the Littlewood–Paley theory and the machinery of Fourier analysis become basic research tools.

We say that a weight sequence (defining the variable smoothness) {sk} = {sk(·)}
∞
k=0 lies in

Y α3
α1,α2

if, for α3 ≥ 0, α1, α2 ∈ R,

1) 1
C1

2α1(k−l) ≤ sk(x)
sl(x)

≤ C12
α2(k−l), l ≤ k ∈ N0, x ∈ R

n;
(1.1)

2) sk(x) ≤ C2sk(y)(1 + 2k|x− y|)α3 , k ∈ N0, x, y ∈ R
n,

the constants C1, C2 > 0 in (1.1) are independent of both indexes k, l and points x, y.
In what follows we shall need the standard decomposition of unity. Let Bn be the unit ball

of R
n, Ψ0 ∈ S(Rn), Ψ0(x) = 1 for x ∈ Bn, suppΨ0 ⊂ 2Bn. For j ∈ N, we set Ψj(x) :=

Ψ0(2
−jx)−Ψ0(2

−j+1x), x ∈ R
n.

In [24], [25], [26], [29] the Besov spaces of variable smoothness were defined as follows (here we
indicate only the case of constant integration exponents).

Definition 1.1. Let p, q ∈ (0,∞], α1, α2 ∈ R, α3 ≥ 0, {sk} ∈ Y α3
α1,α2

. By B
{sk}
p,q (Rn) we shall

denote the space of all distributions f ∈ S′(Rn) with finite quasi-norm

‖f |B{sk}
p,q (Rn)‖ := ‖sjF

−1(ΨjF [f ])|lq(Lp(R
n))‖. (1.2)

In (1.2), F and F−1 denote, respectively, the direct and inverse Fourier transform. Formally
replacing in Definition 1.1 the weight sequence {sk} by the sequence {2ksγ} with s > 0, γ ∈ A∞(Rn)
we obtain the definition of the weighted Besov space (see [22], [32]) with Muckenhoupt weight.

Mention also should be made of the works [23], [28], [36], in which the axiomatic approach to
function spaces (of both constant and variable smoothness) was developed. Instead of the base
space Lp(R

n), a study was made of a more general function space equipped with norm (1.2) and
satisfying a certain set of axioms. The spaces examined in [28], [36] include, as a particular case,
the scale of spaces of variable smoothness of [25], [26]

∗Moscow Institute of Physics and Technology (State University). E-mail: tyulenev-math@yandex.ru.

1

http://arxiv.org/abs/1410.8360v2


In our opinion, it is also of interest to study the spaces of variable smoothness whose elements
are not distributions, but rather functions that are locally integrable in some power. Such spaces
were actively studied by O.V. Besov. We only indicate the papers [2], [3], [4] (and the references
given therein). It is worth noting that the aforementioned papers employed the classical methods
of theory of functions and that the norm on a space of functions of variable smoothness was defined
ab initio with the help of classical differences.

Theorems on characterization of various function spaces of variable smoothness (and their gen-
eralizations) were put forward in [24], [28], where the ball means were used; originally the norm
on these spaces was defined using the Littlewood–Paley decomposition ([24]) or with the help of
Peetere maximal functions [28]. It was also assumed that a weight sequence {sk} lies in Y α3

α1,α2
with

the additional assumption
0 < α1 ≤ α2 < l. (1.3)

Besov [3], [4] studied the spaces of variable smoothness with p, q ∈ (1,∞). It was also assumed
that the weight sequence {sk} ∈loc Y α3

α1,α2
under condition (1.3). Y α3

α1,α2
in that condition 2) is

replaced by the condition

2′) sk(x) ≤ 2α3sk(y), k ∈ N0, |x− y| ≤ 2−k. (1.4)

Clearly, Y α3
α1,α2

⊂loc Y α̃3
α1,α2

, where α̃3 depends only on α3 and the constant C2 of (1.1). The

weighted class locY α3
α1,α2

is strictly larger than the class Y α3
α1,α2

, because the former contains functions
of an exponential rate of growth at infinity.

It is also worth mentioning that the methods of [3], [4], [24], [25], [26] [28], [29], [36] utilized to

prove various assertions about the spaces B
{sk}
p,q (Rn) were based on pointwise estimates of the weight

sequence {sk}. This machinery was used in [23], [26], [28], [36] to establish atomic decomposition
theorems (as well as results on molecular and wavelet expansions) provided that the atoms from
such a decomposition have zero high order moments. The number of zero moments for such atoms
is governed by the exponents α1, α2, α3. Unfortunately, it is not possible to check these conditions
in specific problems. For example, if the high-order moments of the atoms from the decomposition
of a function f : Rn → R are zero, then in general we may not assert that the corresponding
moments of traces of these atoms on the hyperplane R

n−1 are zero. In [29] the trace problem for
Besov spaces of various smoothness was solved with the help of the atomic decomposition theorem
under certain constraints on the weight sequence {sk}. These constraints allow one to avoid testing
that the atoms from the trace decompositions have zero moments. It will be demonstrated in § 6
that these conditions can be substantially relaxed.

The analysis of definitions of Besov spaces of variable smoothness used in [3], [4], [24], [28] shows
that in this papers a fairly restrictive condition (1.3) (in the case when these spaces consisted of
functions locally integrable in some power). This constraint is natural in the case when sk ≡ Ck

for all k ∈ N (Ck are positive constants), for otherwise one needs to have recourse to the theory of
distributions. In the case of variable smoothness this condition is quite rough. The constraint l > α2

was used in showing that the norm on a Besov space is independent on the difference order. This
conditions is also fairly rough in the variable smoothness setting. Indeed, in [35] with p, q ∈ (1,∞)
the author has put forward new modifications of Besov spaces of variable smoothness B̃l

p,q(R
d, {tk})

(in [35] these spaces were denoted by B
l
p,q(R

d, {γk})) and showed the space B̃l
p,p(R

d, {γk}) is the

trace of the weighted Sobolev space W̃ l
p(R

n, γ) on the plane of dimension 1 ≤ d < n, provided that

a weight γ ∈ Aloc
p (Rn) . Note that the weight sequence {γk} lies in the weighted class locY α3

α1,α2
.

However condition (1.3) may fail to hold for the sequence {γk} if the weight is “sufficiently bad”
(see Remarks 4.2, 4.4 below).

Clearly this calls for a more sophisticated approach towards the very concept of variable smooth-
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ness. The definition of the weighted class locY α3
α1,α2

requires correction. There is also a need in new

methods that are capable, in particular, of dealing with the space B̃l
p,p(R

d, {γk}), which is the trace

of the weighted Sobolev spaces with weight γ ∈ Aloc
p (Rn). In doing so new methods should not

depend upon the pointwise behaviour of the weight sequence {tk}.
In the present paper we introduce, for p, q, r ∈ (0,∞], the Besov space of variable smoothness

B̃l
p,q,r(R

n, {tk}), which is a subtle modification of the space B̃l
p,q(R

n, {tk}) of [35]. The norm on

this space is defined in terms of the difference relations δlrg (see (2.7)). Here, the weight sequence
{tk} lies in the new weighted class Xα3

α,σ,p (see Definition 2.4). For our purposes the weighted class

Xα3
α,σ,p proves to be more subtle (and altogether more natural!) than the class locY α3

α1,α2
. Necessary

and sufficient conditions for a sequence {tk} to lie in the weighted class Xα3
α,σ,p are expressed in

terms (in a sense) integral estimates, rather than pointwise estimates.
It is worth pointing out that the differences δlr(Q

n)f were used in [23] for the purpose of
construction of equivalent norms on Besov-type and Lizorkin–Triebel-type spaces. However, our
spaces B̃l

p,q,r(R
n, {tk}) do not fit the axiomatics of [23] due to the less restrictive constraints which

we place on a weight sequence {tk}. Such constructions were recently used by O.V. Besov [15],
[16] for the study of spaces of functions of zero smoothness.

For the study of the space B̃l
p,q,r(R

n, {tk}) we shall adjust the methods of nonlinear spline
approximation, which were developed in [20] for the study of classical Besov spaces. It is worth
observing that methods of nonlinear spline approximation have not been used for the study of func-
tion spaces of variable smoothness and hence may be of independent interest. Using these methods
we will be able to put forward certain theorems on equivalent norms on the spaces B̃l

p,q,r(R
n, {tk})

and prove the atomic decomposition theorem for these spaces. We shall also characterize the trace
of the space B̃l

p,q,r(R
n, {tk}). This result extends, for a constant p, the results of [22], [29].

The paper is organized as follows. In § 1 we give auxiliary results to be used in the analysis that
follows. In § 2 we put forward some fundamental properties of the new spaces B̃l

p,q,r(R
n, {tk}) and

compare them with the space B
{sk}
p,q (Rn). In § 3 we extend results of the paper [35] (this section

may be looked upon as a rationale for the further constructions that follow). In § 4 we present
the central results of the paper and, in particular, put forward the atomic decomposition theorem,
which will be used in § § 5 and 6 to derive a few embedding and trace theorems.

2 Definitions and auxiliary results

Throughout the following convention will be adopted. The symbol C will be used to denote
(different) ‘insignificant’ constants in various estimates. Sometimes, if it is required for purposes of
exposition, we shall indicate the parameters on which some or other constant depends.

By definition, a weight function (a weight) is a measurable function γ : Rn → (0,+∞). Given
a measurable set E ⊂ R

n, we define γ(E) :=
∫
E

γ(x) dx.

Next, by Lp(E) we denote the space of all equivalence classes (consisting of functions vanishing
almost everywhere) equipped with the norm

‖f |Lp(E)‖ :=

(∫

E

|f(x)|p dx

) 1
p

, 1 ≤ p <∞,

‖f |L∞(E)‖ := ess sup |f(x)|.

Given a measurable function g : Rn −→ R, a measurable set E, and a weight γ, we denote
by Lp(E, γ) the space of all equivalence classes (consisting of functions that coincide almost every-
where) and equip it with norm ‖g|Lp(E, γ)‖ := ‖γg|Lp(E)‖.
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In what follows, Qn will denote an open cube in the space R
n with sides parallel to coordinate

axes, r(Qn) will denote the side length of a cubeQn, and |Qn| will denote its n-dimensional Lebesgue
measure. For δ > 0, by δQn we shall mean the cube, concentric with a cube Qn, with side length

r(δQn) := δr(Qn). For m = (m1, . . . ,mn) ∈ Z
n, k ∈ Z, we let Qn

k,m :=
n∏

i=1
(mi

2k
, mi+1

2k
) denote the

open dyadic cube of side 2−k, Q̃n
k,m :=

n∏
i=1

[mi

2k
, mi+1

2k
). We also define In :=

n∏
i=1

(−1, 1). Also, δBn

(δSn) is the n-dimensional ball (sphere) of radius δ centred at the origin.
For x ∈ R

n, E ⊂ R
n, we define x+ E := {y ∈ R

n : y = x+ z, z ∈ E}.
V. S. Rychkov [32] introduced the class of weights Aloc

p (Rn), which generalizes the well-known
Muckenhoupt class Ap(R

n) (for 1 < p ≤ ∞).

Definition 2.1. ([32]) Let p ∈ (1,∞), a > 0. Given a weight γ we say that γ ∈ Aloc
p (Rn) if

C loc
γ,p,a := sup

Qn:r(Qn)≤a

1

|Qn|

∫

Qn

γ(x) dx

[
1

|Qn|

∫

Qn

γ−
p′

p (x) dx

] p

p′

< +∞.

Definition 2.2. ([30]) Let a > 0. We say that a weight γ ∈ Aloc
1 (Rn) if there exists a constant

C loc
γ,1,a > 0 independent of Qn such that, for all cubes of side length r(Qn) ≤ a,

1

|Qn|

∫

Qn

γ(x̃) dx̃ ≤ Aγ(x) for a.e. x ∈ Qn.

By C loc
γ,1,a we shall mean the smallest constant A satisfying the above inequality.

Definition 2.3. ([32]) Let a > 0. We say that a weight γ ∈ Aloc
∞ (Rn) if, for some α ∈ (0, 1),

sup
r(Qn)≤a

(
sup

F⊂Qn,|F |≥α|Qn|

γ(Qn)

γ(F )

)
<∞.

Remark 2.1. ([32]) If a weight γ ∈ Aloc
∞ (Rn), then there exists a number p0 ∈ [1,∞) such that

γ ∈ Aloc
p0 (R

n).

Remark 2.2. For p ∈ (1,+∞] the definition of the class Aloc
p (Rn) is independent of the choice

of the parameter a. For various a > 0 the constants C loc
γ,p,a are estimated by each other [32]. One

may show that a similar result also holds for Aloc
1 (Rn).

Given f ∈ Lloc
1 (Rn), a > 0, we let M≤af denote the local version of the Hardy–Littlewood

maximal function,

M≤af(x) := sup
x∈Qn,r(Qn)≤a

1

|Qn|

∫

Qn

|f(y)| dy.

The next theorem generalizes the classical result of Muckenhoupt [33] (see, for example, § 5.3,
Theorem 1).

Theorem 2.1. (see [32]) Let p ∈ (1,∞), γ ∈ Aloc
p (Rn), a > 0. Then there exists a constant

C = C(n, p, a, γ) > 0 such that

∫

Rn

γ(x) {M≤a[f ](x)}
p dx ≤ C

∫

Rn

γ(x)|f(x)|p dx

4



for all f ∈ Lp(R
n, γ

1
p ).

Theorem 2.2. (Hardy’s inequality for sequences) Let 0 < q ≤ ∞, µ ≤ q, β ≥ 0, and let {ak}
be a sequence of real numbers. Then

(
∞∑

k=0

2qkβ|bk|
q

) 1
q

≤ C

(
∞∑

k=0

2qkβ|ak|
q

) 1
q

(2.1)

where

|bk| ≤ C




∞∑

j=k

|ak|
µ




1
µ

, provided that β > 0 or (2.2)

|bk| ≤ C2−kλ




k∑

j=0

2jµλ|ak|
µ




1
µ

, provided that λ > β, (2.3)

the constant C > 0 being independent of the sequence {ak}.
In what follows we shall also need the following elementary fact.

Lemma 2.1. Let r ∈ (0,∞], fj ∈ Lloc
r (Rn) for j ∈ N0. Then, for µ ≤ min{1, r},

‖

∞∑

j=1

fj|Lr(R
n)‖ ≤




∞∑

j=1

‖fj |Lr(R
n)‖µ




1
µ

. (2.4)

The proof easily follows from the monotonicity in q of the lq-norm.
Let l ∈ N, r ∈ (0,∞], Ω be a domain in R

n. For a function g ∈ Lloc
r (Ω), h ∈ R

n, t > 0 and
a cube Qn, we define the differences of order l as follows:

∆l(h,Ω)g(x) :=





l∑
j=0

Cj
l (−1)l+jg(x+ jh), [x, x+ hl] ⊂ Ω,

0, otherwise;

(2.5)

∆
l
r(t,Ω)g(x) :=


 1

tn

∫

tIn

|∆l(h,Ω)g(x)|r dh




1
r

, x ∈ R
n; (2.6)

δlr(Q
n,Ω)g :=




1

[r(Qn)]2n

∫

r(Qn)In

∫

Qn

|∆l(h,Ω)g(x)|r dxdh




1
r

. (2.7)

We set ∆l(h)g := ∆l(h,Rn)g, ∆
l
r(t)g := ∆

l
r(t,R

n)g, δlr(Q
n)g := δlr(Q

n,Rn)g.
For a cube Qn with l ∈ N, r ∈ (0,∞] we let ωl(ϕ,Q

n)r denote the modulus of continuity of
a function ϕ ∈ Lloc

r (Rn) on a cube Qn in the Lr(Q
n)-metric; that is,

ωl(ϕ,Q
n)r := sup

|h|>0
‖∆l(h,Qn)ϕ|Lr(R

n)‖.

The following two-sided estimate is well known (for r ≥ 1 see [6]; for the general setting see [34]).

C1δ
l
r(Q

n, Qn)ϕ ≤ |Qn|−
1
rωl(ϕ,Q

n)r ≤ C2δ
l
r(Q

n, Qn)ϕ, (2.8)

5



the constants C1, C2 in (2.8) being independent of both the function ϕ and the cube Qn.
Let l ∈ N, r ∈ (0,∞]. For a cube Qn we define the local best approximation to a function

ϕ ∈ Lloc
r (Rn) in the Lr(Q

n)-metric by the polynomials of degree < l as follows:

El(ϕ,Q
n)r := inf

deg(P )<l
‖ϕ− P |Lr(Q

n)‖.

Next, for a cube Qn we define the local best approximation to a function ϕ ∈ Lloc
r (Rn) in the

Lr(Q
n)-metric by the polynomials of coordinate degree < l (the total degree of a polynomial is,

clearly, at most n(l − 1)) as

Êl(ϕ,Q
n)r := inf

degi(P )<l
‖ϕ− P |Lr(Q

n)‖,

the infimum being taken over all polynomials P whose degree in the variable xi is smaller than l
for each i ∈ {1, . . . , n}.

From the results of [34] it follows that, for l ∈ N, r ∈ (0,∞],

C3δ
l
r(Q

n, Qn)ϕ ≤ |Qn|−
1
rEl(ϕ,Q

n)r ≤ C4δ
l
r(Q

n, Qn)ϕ. (2.9)

the constants C3, C4 in (2.9) are independent of both the function ϕ and the cube Qn.
Let l ∈ N, r ∈ (0,∞], Qn be a cube. A polynomial PQn will be said to be is a polynomial

of almost best approximation to a function ϕ ∈ Lloc
r (Rn) by polynomials of degree < l in the

Lr(Q
n)-metric with constant A ≥ 1 if

‖ϕ− PQn |Lr(Q
n)‖ ≤ AEl(ϕ,Q

n)r.

The definition a polynomial of almost Lr(Q
n)-best approximation by polynomials of coordinate

degree < l to a function ϕ ∈ Lloc
r (Rn) with constant A ≥ 1 is similar.

Definition 2.4. Let p ∈ (0,∞]. A weight sequence {tk} is called p-admissible if tk ∈ Lloc
p (Rn)

for all k ∈ N0.

Definition 2.5. Let l ∈ N, 0 < p, q, r ≤ ∞, and let {tk} be a p-admissible weight sequence. We
set

B
l
p,q,r(R

n, {tk}) := {ϕ : ϕ ∈ Lloc
r (Rn), ‖ϕ|B

l
p,q,r(R

n, {tk})‖ < +∞}, where

∥∥∥ϕ|Bl
p,q,r(R

n, {tk})
∥∥∥ :=

[
∞∑

k=1

‖tk∆
l
r(2

−k)ϕ|Lp(R
n)‖q

] 1
q

+



∫

Rn

tp0(x)‖ϕ|Lr(x+ In)‖p dx




1
p

;

(2.10)

B̃l
p,q,r(R

n, {tk}) := {ϕ : ϕ ∈ Lloc
r (Rn), ‖ϕ|B̃l

p,q,r(R
n, {tk})‖ < +∞}, where

∥∥∥ϕ|B̃l
p,q,r(R

n, {tk})
∥∥∥ :=

[
∞∑

k=1

‖tkδ
l
r(·+ 2−kIn)ϕ|Lp(R

n)‖q

] 1
q

+



∫

Rn

tp0(x)‖ϕ|Lr(x+ In)‖p dx




1
p

;

(2.11)

the modifications for p = ∞ or q = ∞ are clear.
Let γ − weight, l > s > 0 . We set B̃s

p,q,r(R
n, γ) := B̃l

p,q,r(R
n, {2ksγ}), B

s
p,q,r(R

n, γ) :=

B
l
p,q,r(R

n, {2ksγ}). The corresponding spaces will be called weighted Besov spaces with weight γ.

Remark 2.3. The space B̃l
p,q,r(R

n, {tk}) (B
l
p,q,r(R

n, {tk})) may prove to be trivial, containing
only the functions that vanish almost everywhere We put forward a condition on the parameters

6



l, p, q and a p-admissible sequence {tk} that guarantees that the corresponding space be nontrivial.
Let p, q ∈ (0,∞] and any cube Qn (with corresponding modifications in the case p, q = ∞)




∞∑

k=0



∫

Qn

2−klptpk(x) dx




q
p




1
q

<∞.

Under this condition the set C∞
0 ⊂ B̃l

p,q,r(R
n, {tk}) (B

l
p,q,r(R

n, {tk})). This easily follows from
the expansion of ϕ in a Taylor formula with remainder in the Lagrange form.

Remark 2.4. The space B̃l
p,q,1(R

n, {tk}) was introduced in [35] for p, q ∈ (1,∞) for weight

sequences {tk} ∈loc Y α3
α1,α2

without restrictions on the parameters α1, α2. The space B
l
p,q,1(R

n, {tk})
was studied by H. Kempka and J. Vybiral [24] for weight sequences {tk} ∈ Y α3

α1,α2
for p, q ∈ (0,∞]

under condition (1.3). The space close to the space B
l
p,q,1(R

n, {tk}) (but different from it!) was

studied by Besov [3],[4] with p, q ∈ (1,∞), {tk} ∈loc Y α3
α1,α2

under condition (1.3).

Definition 2.6. Let p ∈ (0,∞]. For a p-admissible weight sequence {tk} we set (in the case
p = ∞ we assume that kn

p = 0)

tk,m := ‖tk|Lp(Q
n
k,m)‖ for k ∈ N0,m ∈ Z

n, (2.12)

tk(x) := 2
kn
p

∑

m∈Zn

tk,mχQ̃n
k,m

(x) for k ∈ N0, x ∈ R
n. (2.13)

In what follows, the multiple sequence {tk,m} (the weight sequence {tk}) defined by formula
(2.12) ((2.13)) will be called multiple sequence (weight sequence) p-associated with the weight
sequence {tk}.

Definition 2.7. Let α3 ≥ 0, α1, α2 ∈ R, σ1, σ2 ∈ (0,+∞], α = (α1, α2), σ = (σ1, σ2). By
Xα3

α,σ,p = Xα3
α,σ,p(R

n) we will denote the set of p-admissible weight sequences {tk}, satisfying the
following conditions:

1) There exist numbers c1, c2 > 0 such that


2kn

∫

Qn
k,m

t
p
k(x)




1
p

2kn

∫

Qn
k,m

(tj)
−σ1(x)




1
σ1

≤ C12
α1(k−j), 0 ≤ k ≤ j,m ∈ Z

n, (2.14)


2kn

∫

Qn
k,m

t
p
k(x)




− 1
p

2kn

∫

Qn
k,m

t
σ2
j (x)




1
σ2

≤ C22
α2(j−k), 0 ≤ k ≤ j,m ∈ Z

n, (2.15)

(the modifications of (2.6) and (2.7) for σ1 = ∞ and σ2 = ∞ are clear).
2) For all k ∈ N0

0 < tk,m ≤ 2α3tk,m̃, for m, m̃ ∈ Z
n, |mi − m̃i| ≤ 1, i = 1, .., n, (2.16)

Remark 2.5. We denote by X̃α3
α,σ,p subset of Xα3

α,σ,p consisting of only p-admissible weight

sequences {tk} = {tk}. It is clear that X̃α3
α,σ,p =loc Y α3

α1,α2
for p ∈ (0,∞], −∞ < α1 ≤ α2 < ∞,

α3 ≥ 0 and σ1 = σ2 = ∞.
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Given fixed −∞ < αi
1 ≤ αi

2 < ∞, α3 ≥ 0, σi1, σ
i
2 ∈ (0,∞], i = 1, 2, we set αi := (αi

1, α
i
2), σ

i =
(σi1, σ

i
2) for i = 1, 2. Elementary arguments based on Hölder’s inequality and the monotonicity of the

lq-norm (in q) prove the embedding X̃α3

α1,σ1,p
⊂ X̃α3

α2,σ2,p
, provided that α2

1 = α1
1+nmin{ 1

σ2
1
− 1

σ1
1
, 0},

α2
2 = α1

2 + nmax{ 1
σ1
2
− 1

σ2
2
, 0}.

Remark 2.6. Clearly, it may happen that a multiple sequence {tk,m} is p-associated with
several weight sequences. However, this will not be an impediment for further constructions if
{tk} ∈ Xα3

α,σ,p . Indeed, using (2.16) and elementary arguments we have

∥∥∥ϕ|B̃l
p,q,r(R

n, {tk})
∥∥∥ ∼

∥∥∥ϕ|B̃l
p,q,r(R

n, {tk})
∥∥∥ ∼

∥∥∥ϕ|B̃l
p,q,r(R

n, {tk,m})
∥∥∥
(1)

:=

=

∥∥∥∥∥∥

(
∑

m∈Zn

tpk,m

[
δlr(Q

n
k,m)ϕ

]p
) 1

p

| lq

∥∥∥∥∥∥
+

(
∑

m∈Zn

tp0,m‖ϕ|Lr(Q
n
0,m)‖p

) 1
p (2.17)

(with corresponding modifications in the case p = ∞).
Here, the constant through which one norm is estimated in terms of the other one in (2.17) will

depend only on α3, l, p, n.
For a fixed p ∈ (0,∞], it is clear that there exists a bijection between the multiple sequences

{tk,m} and the sets of weight sequences {tk} ∈ Xα3
α,σ,p, for which the multiple sequence {tk,m} is

p-associated with the weight sequence {tk}.
Considering (2.17), in what follows the space B̃l

p,q,r(R
n, {tk}) will also be denoted by the symbol

B̃l
p,q,r(R

n, {tk,m}).

Definition 2.8. Let p ∈ (0,∞), d ∈ N0, and let a weight γp ∈ Aloc
∞ (Rn+d). We set Ξd,n

k,m :=

Qn
k,m ×

(
2−kBd \ 2−k−1Bd

)
for k ∈ N0, m ∈ Zn. The multiple sequence γ̂k,m defined by

γ̂k,m := ‖γ|Lp(Ξ
d,n
k,m)‖ for k ∈ N0,m ∈ Z

n

will be called the multiple sequence generated by the weight γ.
The following important properties of the sequence {γ̂k,m} will be required in what follows.

Lemma 2.2. Let p ∈ (0,∞), d ∈ N0, a weight γp ∈ Aloc
∞ (Rn+d), and let the multiple sequence

γ̂k,m be generated by the weight γ. Also let m ∈ Z
n, k, j ∈ N0, j ≥ k, Gj,k,m be an arbitrary set of

cubes Qn
j,m̃ ⊂ Qn

k,m. Then
1) the inequality holds ∑

Qn
j,m̃

⊂Qn
k,m

γ̂pj,m̃ ≤ C2(k−j)dδγ̂pk,m, (2.18)

in which the constant C > 0 and the number δ(γ) > 0 is independent of k, j, m̃;
2) the inequality holds

∑

Qn
j,m̃

∈Gj,k,m

γ̂pj,m̃ ≤ C



|

⋃
Qn

j,m̃
∈Gj,k,m

Qn
j,m̃|

|Qn
k,m|




δ′

∑

Qn
j,m̃

⊂Qn
k,m

γ̂pj,m̃, (2.19)

in which the constants C > 0 and δ′ > 0 dependent only on γ, n, d;
3) for a ≥ 1, |m− m̃| ≤ a, k ≥ 0,

2−δ3 γ̂k,m ≤ γ̂k,m̃ ≤ 2δ3 γ̂k,m,

8



where the number δ3(γ) ≥ 0 depends only on γ, n, p, d;
4) for any cube Qn

k,m and any cube Qn
k+1,m̃ ⊂ Qn

k,m,

γ̂k,m ≤ Cγ̂k+1,m̃,

for k ≥ 0, m ∈ Z
n, where the constant C > 0 depends only on γ, n, d, p.

Proof. To prove 3) it suffices to take some cube Qn+d containing both sets Ξd,n
k,m and Ξd,n

k,m̃

and use the fact that γp satisfies the doubling condition on the cube Qn+d with doubling constant
depending only on the constant C loc

γ,p,r(Qn+d)
(the proof of the last fact is similar to the proof of the

corresponding result in [33], Ch. 5). The proof of property 4) is similar to that of property 3).
Let us prove property 1); property 2) is dealt with similarly. It is easily seen that

|
⋃

Qn
j,m̃

⊂Qn
k,m

Ξd,n
j,m̃|

|Ξd,n
k,m|

≤ C2(k−j)d. (2.20)

Using Definition 2.3 and Remark 2.1 one may easily prove that for some δ(γ) > 0, for any cube
Qn, r(Qn) ≤ a, and any measurable set F ⊂ Qn,

γp(F )

γp(Qn)
≤ C

(
|F |

|Qn|

)δ(γ)

, (2.21)

the constant C > 0 being independent of both the cube Qn and the set F .
From (2.20), (2.21) we get (2.18), completing the proof of the lemma.
We let δ1(γ) := δ1(γ, n, d) denote the supremum over all δ for which (2.18) holds. Similarly,

δ2(γ) := δ2(γ, n, d) will denote the supremum over all δ′ satisfying (2.11).

Note that in general δ1 6= δ2. Indeed, let γp(x1, x2) := xβ1 with (x1, x2) ∈ R
2, β > 0. Clearly,

γp ∈ A∞(R2). Also, δ1(γ) =
1
2 for any β > 0, whereas δ2(γ) depends on β > 0.

Example 2.1. For future purposes we give an important example of a weight sequence {tk} ∈
X̃α3

α,σ,p. We note that this example is the main impetus for practical applications of the classes
Xα3

α,σ,p.

Let d ∈ N0, p ∈ (0,∞), a weight γp ∈ Aloc
∞ (Rn+d), and let a multiple sequence {γ̂k,m} be

generated by the weight γ. By Remark 2.1 we have γp ∈ Aloc
p0 (R

n) for some p0 ∈ [1,∞). Assume

that a weight sequence {sk} ∈loc Y
α′
3

α′
1,α

′
2
. We set {sk,m} = ‖sk|Lp(Q

n
k,m)‖, tk,m := γ̂k,m(2

kn
p sk,m)

for k ∈ N0, m ∈ Z
n. Then the weight sequence {tk} = {tk} ∈ X̃α3

α,σ,p for α3 = α′
3 + δ3(γ),

α2 = α′
2 −

d(δ1(γ)−ε)
p , α1 = α′

1 +
n
σ1

+ n
p − (n+d)p0

p + dp0
pp′0

(
δ1(γ

−
pp′0
p0 , n, d)− ε

)
, σ2 = p, and σ1 = p

p′0
p0

for any ε > 0. Indeed, (2.15) and (2.16) easily follow from assertions 1) and 3) of Lemma 2.1. Let
us verify (2.14) with p0 > 1, the case p0 = 1 is dealt with similarly. By Definition 2.2,


2kn

∫

Qn
k,m

t
p
k(x)




1
p

2kn

∫

Qn
k,m

(tj)
−σ1(x)




1
σ1

≤ C12
(k−j)(α′

1+
n
σ1

+n
p
)
γ̂k,m




∑

m̃∈Zn

Qn
j,m̃

⊂Qn
k,m

1

(γ̂j,m̃)
p
p′
0

p0




p0
pp′0

≤

≤ C22
(k−j)(α′

1+
n
σ1

+n
p
)
γ̂k,m2

j(n+d)
p0
p




∑

m̃∈Zn

Qn
j,m̃

⊂Qn
k,m

∫

Ξd,n
j,m̃

γ
−p

p′0
p0 (x) dx




p0
pp′0

≤

9



≤ C32
(k−j)(α′

1+
n
σ1

+n
p
+

dp0
pp′0

(δ1(γ
−

pp′0
p0 ,n,d)−ε))

γ̂k,m2
j(n+d)

p0
p



∫

Ξd,n
k,m

γ
−p

p′0
p0 (x) dx




p0
pp′

0

≤ C42
(k−j)α1 .

It is worth pointing out that αi = α′
i (i = 1, 2) in the case d = 0.

Let p, q ∈ (0,∞], r ∈ (0, p], α1, α2 ∈ R, α3 ≥ 0, σ1, σ2 ∈ (0,∞], and let {tk,m} be the p-
associated multiple sequence with a p-admissible weight sequence {tk} ∈ Xα3

α,σ,p, c > 1. In the

space B̃l
p,q,r(R

n, {tk}), we consider the quasi-norms generated by the multiple sequence {tk,m}:

‖ϕ|B̃l
p,q,r(R

n, {tk,m}, c)‖(2) :=

∥∥∥∥∥∥

(
∑

m∈Zn

tpk,m

[
δlr(cQ

n
k,m, cQ

n
k,m)ϕ

]p
) 1

p

|lq

∥∥∥∥∥∥
+

(
∑

m∈Zn

tp0,m‖ϕ|Lr(Q
n
0,m)‖p

) 1
p

,

(2.22)

‖ϕ|B̃l
p,q,r(R

n, {tk,m}, c)‖(3) :=

∥∥∥∥∥∥

(
∑

m∈Zn

tpk,m

[
2

kn
r El(ϕ, cQ

n
k,m)r

]p
) 1

p

|lq

∥∥∥∥∥∥
+

(
∑

m∈Zn

tp0,m‖ϕ|Lr(Q
n
0,m)‖p

) 1
p

,

(2.23)

‖ϕ|B̃l
p,q,r(R

n, {tk,m}, c)‖(4) :=

∥∥∥∥∥∥∥


∑

m∈Zd

tpk,m

[
2

kn
r ωl(ϕ, cQ

n
k,m)r

]p



1
p

|lq

∥∥∥∥∥∥∥
+

(
∑

m∈Zn

tp0,m‖ϕ|Lr(Q
n
0,m)‖p

) 1
p

.

(2.24)

Theorem 2.3. Let p, q, r ∈ (0,∞], α3 ≥ 0, α1, α2 ∈ R, σ1, σ2 ∈ (0,+∞], {tk} ∈ Xα3
α,σ,p be

a p-admissible sequence, and {tk,m} be the associated multiple sequence. Then, for i = 1, 2, 3, 4, the

quasi-norms ‖ · |B̃l
p,q,r(R

n, {tk,m}, c)‖(i) are equivalent on the space B̃l
p,q,r(R

n, {tk}).

Proof. This theorem was proved in [35] with r = 1, p, q ∈ (1,∞), {tk} ∈loc Y α3
α1,α2

. In the
general setting the proof is similar if we take into account (2.8), (2.9), (2.17), Remark (2.5) and
use the estimate

δlr(cQ
n
k,m, cQ

n
k,m)ϕ ≤ C

∑

m̃∈Zn

Qn
k−j(c),m̃

⋂
cQn

k,m
6=∅

δlr(Q
n
k−j(c),m̃)ϕ, where (2.25)

where c > 1 is from the hypotheses of the theorem, and j(c) ≥ 1 is the smallest natural number
such that 2k−j(c) > c2k. The constant C in (2.25) depends only on n, r, l, c.

We set B̃l
p,q(R

n, {tk}) := B̃l
p,q,1(R

n, {tk}), B̃
l
p(R

n, {tk}) := B̃l
p,p,1(R

n, {tk}).

Theorem 2.4. Let p, q, r ∈ (0,∞], l ∈ N, α3 ≥ 0, α1, α2 ∈ R, σ1, σ2 ∈ (0,+∞], {tk} ∈ Xα3
α,σ,p

be a p-admissible weight sequence. Then the space B̃l
p,q,r(R

n, {tk}) is complete.
The proof, which is close in spirit to that of the completeness of the classical Besov space

[1], depends on the completeness of the space Lr(Q
n) for any cube Qn, uses Remark 2.5 and the

equivalent norm (2.17). We suppress the details, which are quite standard.

Lemma 2.3. Let p, q ∈ (0,∞], r ∈ (0, p], l ∈ N, α3 ≥ 0, α1, α2 ∈ R, σ1, σ2 ∈ (0,+∞],

{tk} ∈ X̃α3
α,σ,p be a p-admissible weight sequence. Then B

l
p,q,r(R

n, {tk}) ⊂ B̃l
p,q,r(R

n, {tk}).
Proof. We shall consider only the case p, q ∈ (0,∞), the arguments in the case p = ∞ or q = ∞

are similar. We compare the first terms in norms (2.14) and (2.15). Applying Hölder’s inequality
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to the integral in y and using (2.18), we have, for k ∈ N,

∑

m∈Zn

tpk,m

[
δlr(Q

n
k,m)ϕ

]p
≤
∑

m∈Zn

tpk,m2
npk
r

+nk

∫

Qn
k,m



∫

1

2k
In

|∆l(h)ϕ(y)|r dh




p
r

dy =

=

∫

Rn

tpk(y)[∆
l
r(2

−k)ϕ(y)]p dy.

(2.26)

The proof of the embedding will be completed if we raise the both parts of (2.26) to the power
q
p and sum over all k.

Theorem 2.5. Let p, q ∈ (0,∞], p 6= ∞ , p0 ∈ [1,∞), 0 < r1 ≤ r2 ≤
p
p0
, l ∈ N, γp ∈ Aloc

p0 (R
n).

Let α3 ≥ 0, 0 < α1 ≤ α2 < l and let a weight sequence {sk} ∈loc Y α3
α1,α2

. Also let tk(x) = γ(x)sk(x)

for k ∈ N0, x ∈ R
n. Then B

l
p,q,r1(R

n, {tk}) = B̃l
p,q,r2(R

n, {tk}), the corresponding norms being
equivalent.

The proof of Theorem 2.5 depends on the atomic decomposition theorem for the space
B̃l

p,q,r2(R
n, {tk}), and so we defer it to the end of § 4.

Remark 2.7. For γ ≡ 1 the conclusion of Theorem 2.5 may be extended also to the case
p = ∞.

The following result, which was proved in [24], will be given in a simplified form with constant
p and q.

Theorem 2.6. Let p, q ∈ (0,∞], α1 > n
(

1
min{p,1} − 1

) [
1 + α3

n p
]
, l > α2, {sk} ∈ Y α3

α1,α2
. Then

B
{sk}
p,q (Rn) = B

l
p,q,1(R

n, {sk}), the corresponding quasi-norms being equivalent.
Combining Theorems 2.5, 2.6 and Remark 2.7 we obtain

Corollary 2.1. Let p, q ∈ [1,∞], r1, r2 ∈ [1, p], α3 ≥ 0, α1 > 0, l > α2, {sk} ∈ Y α3
α1,α2

. Then

B
{sk}
p,q (Rn) = B

l
p,q,r1(R

n, {sk}) = B̃l
p,q,r2(R

n, {sk}), the corresponding norms being equivalent.

Remark 2.8. The question of the coincidence (or noncoincidence) of the spaces B̃l
p,q,r(R

n, {sk}),

B
l
p,q,r(R

n, {sk}) and B
{sk}
p,q (Rn) for weaker (in comparison with (Theorems 2.5, 2.6 or 2.1)) con-

straints on the variable smoothness {sk} is a matter for the future.

Remark 2.9. Combining Theorem 2.5 with Theorem 3.14 of [23] with p ∈ (0,∞), 0 < r ≤ p,
q ∈ (0,∞], s > 0, l > s, γp ∈ A p

r
(Rn) we obtain B

s
p,q,r(R

n, γ) = B̃s
p,q,r(R

n, γ) = Bs
p,q(R

n, γ), the
corresponding norms being equivalent

3 Trace space of weighted Sobolev space

As was pointed out in the introduction, the main impetus for the study of the spaces B̃l
p,q,r(R

n, {tk})
stems from their application in the problem of traces of weighted Sobolev spaces.

For a brief overview of the available literature on traces of weighted Sobolev spaces we refer
to [35]; we do not dwell on this here.

For a brief overview of the available literature on traces of weighted Sobolev spaces we refer
to [35]; we do not dwell on this here.

Let p ∈ [1,∞], l ∈ N, γ be a weight. We fix n, d ∈ N. A point of the (n + d)-dimensional
Euclidean space R

n+d := R
n × R

d will be written as a pair (x, y). The plane given in R
n+d by the

equation y = 0 will be identified with the space R
n. For a > 0, we set nRd

a := R
n+d \ (Rn × aBd)

and put Ξd,n
k,m := Qn

k,m × (B
d

2k
\ Bd

2k+1 ) for k ∈ N0, m ∈ Z
n.
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By W l
p(R

n+d, γ) we shall denote the linear space of classes of equivalent functions having on R
n

all (Sobolev) generalized derivatives up to order l inclusively. We equip this space with the norm

‖f |W l
p(R

n+d, γ)‖ =
∑

|α|≤l

‖Dαf |Lp(R
n+d, γ)‖.

In [35] the trace problem was solved for the spaces W̃ l
p(R

n, γ), which slightly differ from the

spaces W l
p(R

n, γ) in terms of the norm form. More precisely, the norm of the space W̃ l
p(R

n, γ) does
not include some mixed derivatives.

In what follows we shall require a certain averaging operator, which was constructed in [35].
We shall not give the details of the construction of this operator. For a function ϕ ∈ Lloc

1 (Rn) we
set

Eε[ϕ](x) :=
1

ε2n

l∑

j=1

µj

∫

Rn

Θ

(
y − x

ε

)∫

Rn

Θ

(
z − y

jε

)
ϕ(z) dzdy, for x ∈ R

n. (3.1)

In (3.1) function Θ ∈ C∞
0 is chosen appropriately,

∫
Rn

Θ(x) dx = 1, and µj are specially chosen

constants (see [35]). Given k ∈ N0 we define Ek[g] := E2−k [g].

Lemma 3.1. Let a function ϕ ∈ Lloc
1 (Rn). Then, for any number ε > 0 and a multi-index

α, |α| = l for x ∈ R
n

|Dα
xEε[ϕ](x)| ≤

1

εl
δl(x+ εIn)ϕ. (3.2)

Moreover, for any numbers 0 < ε1 < ε2, a multi-index β, and x ∈ R
n,

∣∣∣DβEε1 [ϕ](x) −DβEε2 [ϕ](x)
∣∣∣ ≤ C

ε2∫

ε1

1

t1+|β|
δl(x+ tIn)ϕdt. (3.3)

Proof. For β = 0 the proof is given in [35]. The general case is dealt with similarly.

In this section we are not going to give a precise definition of the trace of a function f ∈
Lloc
1 (Rn+d) on the plane y = 0. This is a standard definition and may be found, for example, in

Chapter 5 of the book [17].
Assume that a multiple sequence {γ̂k,m} is generated by a weight γ ∈ Aloc

∞ (Rn+d). Next, assume

that parameters l ∈ N and p ∈ (1,∞) are fixed. We set γlk(x) := γk(x) := 2
k(l+n

p
) ∑
m∈Zn

χQ̃n
k,m

(x)γ̂k,m

for k ∈ N0, x ∈ R
n, γk,m := 2klγ̂k,m for k ∈ N0,m ∈ Z

n.
The main result of the present section is the following

Theorem 3.1. Let p ∈ (1,∞), r ∈ [1, p), γp ∈ Aloc
p
r

(Rn+d), f ∈W l
p(R

n+d, γ), l > d
r . Then there

exists the trace ϕ ∈ B̃l
p,p,r(R

n, {γk}) of the function f , and moreover,

∥∥∥ϕ|B̃l
p,p,r(R

n, {γk})
∥∥∥ ≤ C1‖f |W

l
p(R

n+d, γ)‖. (3.4)

The constant C1 in (3.4) is independent of the function f .
Conversely, if a function ϕ ∈ B̃l

p,p,r(R
n, {γk}), then there exists a function f ∈ W l

p(R
n+d, γ)

such that ϕ is the trace of f on R
n, and moreover,

‖f |W l
p(R

n+d, γ)‖ ≤ C2

∥∥∥ϕ|B̃l
p,p,r(R

n, {γk})
∥∥∥ , (3.5)
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the constant C2 in (3.5) being independent of the function ϕ.
The following result in an important step in the proof of Theorem 3.1.

Lemma 3.2. Let p ∈ (1,∞), r ∈ [1, p), γp ∈ Aloc
p
r

(Rn+d), f ∈ W l
p(R

n+d, γ), l > d
r . Then there

exists the trace ϕ of the function f on R
n. Moreover, for an arbitrary cube Qn

k,m,

δlr(Q
n
k,m)ϕ ≤

C3

2k(l−
n+d
r

)

{∥∥∥∥D
α
xf |Lr

(
C4Q

n
k,m ×

C5

2k
Bd

)∥∥∥∥+
∥∥∥∥D

β
y f |Lr

(
C4Q

n
k,m ×

C5

2k
Bd

)∥∥∥∥
}
. (3.6)

The constants C3, C4, C5 in (3.6) are independent of both the function f and the cube Qn
k,m.

The proof of the lemma is a straightforward modification of that of Lemma 3.1 of [35].
Proof of Theorem 3.1.
Step 1. Let f ∈W l

p(R
n+d, γ). Then by Lemma 3.2 there exists the trace ϕ of the function f on

the plane Rn, and so it suffices to prove estimate (3.4). In turn, this estimate follows by an obvious
modification of the argument made in the proof of Theorem 3.1 of [35] (one needs only to recourse
to estimate (3.6) in an appropriate place).

Step 2. We shall carry out this part of the proof in detail. As distinct from [35], we shall need
to estimate all mixed derivatives. So let {ψk}

∞
k=0 be a partition of unity for the ball Bd. Note that

ψ0 ∈ C∞(Bd \ 1
2B

d), ψk ∈ C∞
0 ( 1

2k−1B
d \ 1

2k+1B
d) for k ∈ N and |Dβψk(y)| ≤

C1

(δk)|β| for y ∈ Bd,

k ∈ N0. Assume that, for any k ∈ N0, only two functions ψk and ψk+1 do not vanish on the set
2−kBd \ 2−k−1Bd. Hence, Dβψk(y) = −Dβψk+1(y) for y ∈ 2−kBd \ 2−k−1Bd.

The existence of a sequence {ψk}
∞
k=0 with the above properties may be proved as it was done,

for example, in § 4.5 of the book [17] in the proof of the trace theorem for unweighted Sobolev
spaces.

We set

f(x, y) :=

∞∑

k=1

ψk(y)E2−k [ϕ](x), (x, y) ∈ R
n ×Bd,

where, the operator Eε (with ε > 0) is defined in (2.26). We extend the function f by zero on the
set n

R
d
1.

A multi-index α will be written as (α1, α2) = (α1
1, . . . , α

1
n, α

2
1, . . . , α

2
d).

Clearly,

∫∫

Rn× 1
2
Bd

γp(x, y){
∑

|α|=l,α2=0

|Dαf(x, y)|p +
∑

|α|=l,|α2|>0

|Dαf(x, y)|p} dxdy =

=

∞∑

k=1

∑

m∈Zn

∫∫

Ξd,n
k,m

γp(x, y){
∑

|α|=l,α2=0

|Dαf(x, y)|p +
∑

|α|=l,|α2|>0

|Dαf(x, y)|p} dxdy.

Taking into account properties of the functions ψk and applying estimate (??), we see that

∑

|α|=l,α2>0

∫∫

Ξd,n
k,m

γp(x, y)|Dαf(x, y)|p dxdy =

=
∑

|α|=l,α2>0

∫∫

Ξd,n
k,m

γp(x, y)|Dα2

y ψk(y)D
α1

x E2−kϕ(x) +Dα2

y ψk+1(y)D
α1

x E2−(k+1)ϕ(x)|p dxdy ≤

13



≤
∑

|α1|=l−|α2|

2k|α
2|p

∫∫

Ξd,n
k,m

γp(x, y)|Dα1

x E2−kϕ(x)−Dα1

x E2−(k+1)ϕ(x)|p dxdy ≤

≤ C22nkpγpk,m

[ ∫

C̃Qn
k,m

∫

1

2k
In

|∆l(h)ϕ(z)| dhdz

]p
dxdy for k ∈ N,m ∈ Z

n.
(3.7)

The constant C̃ ≥ 1, which is the dilation coefficients of the cubes Qn
k,m, depends only on the

diameter of the support of the function Θ from (3.1).
Similarly, it follows from (3.2) that

∑

|α1|=l

∫∫

Ξd,n
k,m

γp(x, y)|Dα1

x f(x, y)|p dxdy ≤

≤ C
∑

|α1|=l

∫∫

Ξd,n
k,m

γp(x, y)max{|Dα1

x E2−kϕ(x)|p, |Dα1

x E2−k−1ϕ(x)|p} dxdy ≤

≤ C22npkγpk,m

[ ∫

C̃Qn
k,m

∫

1

2k
In

|∆l(h)ϕ(z)| dhdz

]p
, k ∈ N,m ∈ Z

n.

(3.8)

Using the definition of the function f and employing Hölder’s inequality with exponents r, r′,
we have, for |α| = l

∑

|α|=l

∫∫

nRd
1
2

γp(x, y)|Dαf(x, y)|p dxdy ≤ C
∑

m∈Zn

γp0,m‖ϕ|L1(C̃Q
n
0,m)‖p ≤ C

∑

m∈Zn

γp0,m‖ϕ|Lr(C̃Q
n
0,m)‖p ≤

≤ C
∑

m∈Zn

γp0,m‖ϕ|Lr(Q
n
0,m)‖p, (3.9)

since the cubes C̃Qn
k,m have finite overlapping multiplicity (the constant C̃ is the same as in (3.7)).

Hence, summing up estimates (3.7), (3.8) in k and m, taking into that the cubes nQn
k,m have

finite overlapping multiplicity (for n ∈ N), and employing estimate (3.9), this gives

∑

|α|=l

‖Dαf |Lp(R
n+d, γ)‖ ≤ C‖ϕ|B̃l

p,p,r(R
n, {γk,m})‖. (3.10)

To estimate the generalized derivatives Dαf for |α| < l we write, for each (x, y) ∈
R
n × Bd, the integral representation of the function Dαf in a cone (see § 3.4, [17]), V (x, y) =

{(x, y)(1 − t) + t(x′, y′)|t ∈ [0, 1], (x′, y′) ∈ 1
2B

n+d(x, y + 3)} (here, 1
2B

n+d(x, y + 3) is the ball of
radius 1

2 centred at (x, y + 3)), and use Remark 16 of § 3.5 in [17].
Let |α| < l. Since f(x, y) = 0 for |y| > 1, we have

|Dαf(x, y)| ≤ C
∑

|β|=l

∫∫

(x,0)+(In×Bd)

|Dβf(x̃, ỹ)| dx̃dỹ, (x, y) ∈ R
n ×Bd.
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Hence, using the obvious inclusion Aloc
p
r

(Rn+d) ⊂ Aloc
p (Rn+d), and employing Hölder’s inequality,

we obtain, for m ∈ Zn, |α| < l,

∫∫

Qn
0,m×Bd

γp(x, y)|Dαf(x, y)|p dxdy ≤

≤ C
∑

|β|=l

[
γp(C̃Qn

0,m ×Bd)
] [
γ−p′(C̃Qn

0,m ×Bd)
] p

p′
∫∫

C̃Qn
0,m×Bd

γp(x, y)|Dβf(x, y)|p dxdy

≤ C
∑

|β|=l

∫∫

C̃Qn
0,m×Bd

γp(x, y)|Dβf(x, y)|p dxdy.

(3.11)

Summing up estimate (3.11) over m ∈ Z
n and taking into account the finite multiplicity of the

cubes C̃Qn
k,m we obtain (3.5) in view of (3.10).

It remains to show that ϕ = tr |y=0 f . We fix an arbitrary cube Qn. Almost every
point x ∈ R

n is a Lebesgue point of the function ϕ, because ϕ ∈ Lloc
1 (Rn). Hence gδ(x) :=

lim
δ→0

1
δn

∫
x+δIn

|ϕ(x′) − ϕ(x)| dx′ = 0 for almost all x ∈ R
n. Consequently, by the Lebesgue conver-

gence theorem, ∫

Qn

|ϕ(x)− Eδ[ϕ](x)| dx ≤ C

∫

Qn

gδ(x)dx→ 0asδ → 0. (3.12)

From (3.12) and the definition of the function f it easily follows that ϕ is the trace of the
function f on the plane y = 0.

The proof of the theorem is complete.

4 Atomic decomposition of functions from the spaces

B̃l
p,q,r(R

n, {tk,m})

Our aim in this section is to prove the atomic decomposition theorem for functions ϕ from the
space B̃l

p,q,r(R
n, {tk}). This theorem is one of the principal tools in establishing various embedding

and trace theorems (see §§ 5 and 6 below).
We shall also put forward conditions on a p-admissible weight sequence {tk,m} securing the

coincidence of the spaces B̃l
p,q,r(R

n, {tk}) for various l ∈ N with equivalence of the corresponding
norms.

Our arguments will depend to a large extent on the methods of the paper [20].

We fix numbers n, d ∈ N and define Ξd,n
k,m := Qn

k,m × (B
d

2k
\ Bd

2k+1 ) for k ∈ N0,m ∈ Z
n. A point of

an (n+ d)-dimensional Euclidean space will be written as a pair (x, y) := (x1, . . . , xn, y1, . . . , yd).
Let l ∈ N, N l−1 be a B-spline of degree l − 1 with knots at the points ti = i, i ∈ {0, 1, .., l}.

More precisely,
N l−1(t) := [0, 1, .., l](t − ·)l−1

+ .

Here, we use the standard notation for the divided difference (see [7, Ch. 1]).
For k ∈ N0, m ∈ Z

n, we set

N l−1
k,m(x) :=

n∏

i=1

N l−1(2k(xi −
mi

2k
)), for x ∈ R

n.
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The functions N l−1
k,m were first introduced by Curry and Schoenberg [19].

We list some properties of the B-splines N l−1
k,m that will be required in what follows. The

corresponding proofs may be found, for example, in [19], [18].
1) The B-splines N l−1

k,m form a partition of unity on R
n for each fixed k ∈ N0. That is,

∑

m∈Zn

N l−1
k,m(x) = 1, for x ∈ R

n. (4.1)

Here, the overlapping multiplicity of the supports of splines N l−1
k,m is finite and is independent of

both k andm. We also note that suppN l−1
k,m ⊂ m

2k
+[0, l

2k
]n and N l−1

k,m(x) ∈ (0, 1] for x ∈ m
2k
+(0, l

2k
)n.

2) On each cube Qn
k,m the function N l−1

k,m is a polynomial of degree ≤ l − 1 in each variable.

3) The spline N l−1 has continuous derivative of order l − 2. At knots ti = i, i ∈ {0, 1, . . . , l},
the spline N l−1 has finite one-sided derivatives of order l − 1. Hence,

∆l(h)N l−1
k,m(x) ≤ C(2k|h|)l−1, x, h ∈ R

n. (4.2)

4) Any spline S =
∑

m∈Zn

βk,mN
l−1
k,m may be expanded into a series in splines N l−1

j,m for j ≥ k; that

is, S =
∑

m∈Zn

β̂k,m(S)N l−1
j,m .

We let Σl−1
k denote the set of all splines S of the form

S(x) :=
∑

m∈Zn

βk,mN
l−1
k,m(x) for x ∈ R

n.

For future purposes we shall require the concept of a quasi-interpolant, which was first intro-
duced in [18]. Quasi-interpolants were also used in the papers [20], [7] for constructing equivalent
norms on unweighted dyadic Besov-type spaces and on classical Besov spaces.

Definition 4.1. ([18]) Given k ∈ N0, m ∈ Z
n, we let ξk,m = (ξk,m1 , . . . , ξk,mn) denote the

centre of the cube Qn
k,m. Assume that all partial derivatives Dνf , νj ≤ l − 1, j ∈ {1, . . . , n} of f

are continuous at each point ξk,m. For k ∈ N0, m ∈ Z
n, we set

Ql−1
k (f) :=

∑

m∈Zn

αk,m(f)N l−1
k,m, where

αk,m(f) :=
∑

0≤νj≤l−1
j∈{1,..,n}

ak,ν,mD
νf(ξk,m),

ak,m,ν :=

n∏

i=1

ak,mi,νi , ak,mi,νi :=
(−1)l−1−νi

(l − 1)!
Dl−1−νiψmi

(ξk,mi
),

ψmi
(t) :=

l−1∏

j=1

(
mi + j

2k
− t) for t ∈ R.

The operator Ql−1
k is called a quasi-interpolant.

Throughout this section we fix a constant A ≥ 1.
Let PQn

k,m
be a polynomial of almost best approximation in the Lr(Q

n
k,m)-metric to a function

ϕ ∈ Lloc
r (Rn) (for r ∈ (0,∞]) by polynomials of coordinate degree < l on the cube Qn

k,m with
constant A.
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We set gk(x) :=
∑

m∈Zn

PQn
k,m

(x)χQn
k,m

(x) for x ∈ R
n, k ∈ N0. Finally, following [20] we define,

for r ∈ (0,∞],

T l−1
k (ϕ, r)(x) := Ql−1

k (gk)(x), for x ∈ R
n, k ∈ N0,

T l−1
−1 (ϕ, r)(x) := ϕ(x), for x ∈ R

n.
(4.3)

We note that in [20] the operator T l−1
k acts on functions ϕ defined on the unit cube.

Remark 4.1. The operatorQl−1
k is a projection operator from the space of piecewise-polynomial

functions to the space Σl−1
k (for the proof we refer to [18]), and hence

T l−1
k (ϕ, r)(x) =

∑

m∈Zn

αk,m(T l−1
k (ϕ, r))N l−1

k,m(x) for x ∈ R
n.

Lemma 4.1. Let r ∈ (0,∞]. Then for any function ϕ ∈ Lloc
r (Rn) and k ∈ N0 the following

estimate holds:

‖ϕ− T l−1
k (ϕ, r)|Lr(Q

n
k,m)‖ ≤ CÊl(ϕ, (1 + l)Qn

k,m)r ≤ CEl(ϕ, (1 + l)Qn
k,m)r. (4.4)

The constant C in (4.4) depends only on l, n, r,A.
Proof. The first inequality in (4.4) follows from estimate (4.25) of [20], the second inequality

is clear.
Let p, r ∈ (0,∞], ϕ ∈ Lloc

r (Rn), α3 ≥ 0, αi ∈ R, σi ∈ (0,∞] (i = 1, 2). For a multiple sequence
{tk,m} which is p-associated with p-admissible weight sequence {tk} ∈ Xα3

α,σ,p, we set

slk := slk(ϕ, {tk,m})r,p := inf
S∈Σl−1

k

(
∑

m∈Zn

tpk,m‖ϕ− S|Lr(Q
n
k,m)‖p

) 1
p

for k ∈ N0,

sl−1 := sl−1(ϕ, {t0,m})r,p =

(
∑

m∈Zn

tp0,m‖ϕ|Lr(Q
n
k,m)‖p

) 1
p

.

(4.5)

We note that slk(ϕ, {tk,m})r,p < ∞ for ϕ ∈ B̃l
p,q,r(R

n, {tk,m}). Indeed, in view of (4.4) and
Theorem 2.3, we have, for k ∈ N0,

inf
S∈Σl−1

k

(
∑

m∈Zn

tpk,m‖ϕ− S|Lr(Q
n
k,m)‖p

) 1
p

≤

(
∑

m∈Zn

tpk,m‖ϕ− T l−1
k (ϕ)|Lr(Q

n
k,m)‖p

) 1
p

≤

≤ C‖ϕ|B̃l
p,q,r(R

n, {tk})‖ <∞.

(4.6)

Definition 4.2. Let p, r ∈ (0,+∞], slk(ϕ, {tk,m})r,p < ∞. We say that U l−1
k :=

U l−1
k (ϕ, {tk,m}, p) ∈ Σl−1

k is a spline of almost best approximation with constant A to a function
ϕ ∈ Lloc

r (Rn) if (
∑

m∈Zn

tpk,m‖ϕ− U l−1
k |Lr(Q

n
k,m)‖p

) 1
p

≤ Aslk(ϕ, {tk,m})r,p. (4.7)
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Lemma 4.2. ([20]) Assume that a spline S ∈ Σl−1
k . Then, for any r ∈ (0,+∞] and any cube

Qn
k,m,

C1‖S|Lr(Q
n
k,m)‖ ≤




∑

m̃∈Zn

Qn
k,m

⋂
suppN l−1

k,m̃
6=∅

|αk,m̃(S)|r2−kn




1
r

≤ C2‖S|Lr(C3Q
n
k,m)‖, (4.8)

the constants C1, C2, C3 > 0 being independent of both the cube Qn
k,m and the spline S. The

corresponding modifications in the case r = ∞ are clear.
The next theorem is an extension of Theorem 4.8 of [20] (which was concerned with classical

Besov spaces) to the case of Besov spaces of variable smoothness.
We recall that the symbols δi(γ, n, d) (i = 1, 2) were introduced right after the completion of

the proof of Lemma 2.2.

Theorem 4.1. Let p, r ∈ (0,∞), ϕ ∈ Lloc
r (Rn), α3 ≥ 0, 0 < α1 ≤ α2, a weight sequence

{sk} ∈loc Y α3
α1,α2

. Assume that a weight γp ∈ Aloc
∞ (Rn+d) and a multiple sequence {γ̂k,m} is generated

by the weight γ. Next, let tk,m := 2
kn
p sk,mγ̂k,m for k ∈ N0, m ∈ Z

n.
Then, for any sufficiently small ε > 0,

(
∑

m∈Zn

tpk,m[δlr(Q
n
k,m)ϕ]

p

) 1
p

≤

≤ C2−k(λ̃+
d(δ1(γ,n,d)−ε)

p
−α2)




k∑

j=−1

2jµ(λ̃+
d(δ1(γ,n,d)−ε)

p
−α2)

(
slj(ϕ, {tk,m})r,p

)µ



1
µ

,

(4.9)

where λ̃ := min{l, l−1+ δ2(γ,n,d)−ε
p }, µ ≤ min{1, r, p}, and the constant C > 0 depends on α1, α2, α3,

r, l and the weight γ, but is independent of the function ϕ.
Proof. The main idea of the proof of Theorem 3.1 follows that of Theorem 4.8 in [20]. However,

certain modifications of the proof of [20] are required to account for the properties of the multiple
sequence {γ̂k,m}, which were indicated in Lemma 2.1.

We fix ε ∈ [0,min{δ1(γ, n, d), δ2(γ, n, d}) and define δ̃1 := δ̃1(γ, n, d) := δ1(γ, n, d) − ε, δ̃2 :=
δ̃2(γ, n, d) := δ2(γ, n, d) − ε.

Let U l−1
j := U l−1

j (ϕ, {tk,m}, p) be a spline of almost best approximation with constant A ≥ 1

to a function ϕ ∈ Lloc
r (Rn). Given j ∈ N0, we set ul−1

j := U l−1
j − U l−1

j−1 (U l−1
−1 ≡ 0). Then, clearly,

∆l(h)ϕ(x) = ∆l(h)[ϕ − U l−1
k ](x) +

k∑

j=0

∆l(h)ul−1
j (x), x, h ∈ R

n. (4.10)

The inequality

δlr(Q
n
k,m)ϕ ≤


[δlr(Q

n
k,m)(ϕ− U l−1

k )]µ +

k∑

j=0

[δlr(Q
n
k,m)ul−1

j ]µ




1
µ
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is an easy consequence of (4.10) and Lemma 2.1 with µ ≤ min{1, r, p}. Hence, since p
µ ≥ 1 and

using Minkowski’s inequality,

(
∑

m∈Zn

tpk,m[δlr(Q
n
k,m)ϕ]

p

) 1
p

≤

≤



∑

m∈Zn

tpk,m


[δlr(Q

n
k,m)(ϕ− U l−1

k )]µ +

k∑

j=0

[δlr(Q
n
k,m)ul−1

j ]µ




p
µ




µ
p

1
µ

≤



(
∑

m∈Zn

tpk,m[δ
l
r(Q

n
k,m)(ϕ− U l−1

k )]p

)µ
p

+
k∑

j=0

(
∑

m∈Zn

tpk,m[δlr(Q
n
k,m)ul−1

j ]p

)µ
p




1
µ

=


(R1)

µ
p +

k∑

j=0

(R2
j )

µ
p




1
µ

.

(4.11)

Since the cubes (1 + l)Qn
k,m have finite overlapping multiplicity (which is independent of k

and m) and using Remark 2.2, it is easily seen that

(R1)
µ
p ≤ C

(
∑

m∈Zn

tpk,m2
knp
r ‖ϕ− U l−1

k |Lr((1 + l)Qn
k,m)‖p

)µ
p

≤ C
(
slk(ϕ, {tk,m})r,p

)µ
. (4.12)

It is worth noting that the differences δlr (rather than ∆
l
r) were crucial in obtaining esti-

mate (4.12) .
Next, for each j ∈ N0 the function ul−1

j may be expanded into a series in B-splines N l−1
j,m (by

property 4), see above); that is,

ul−1
j (x) =

∑

m∈Zn

αj,m(ul−1
j )N l−1

j,m (x), for x ∈ R
n. (4.13)

Since, for any point x ∈ R
n, only a finite number (independent of j and m) of splines N l−1

j,m are
nonzero, we have

|∆l(h)ul−1
j (x)|r ≤ C

∑

x∈ supp N l−1
j,m

|αj,m|r|∆l(h)N l−1
j,m (x)|r. (4.14)

For k ≥ j ∈ N0, m̃ ∈ Z
n, we let Γj,m̃ denote the set of all cubes Qn

k,m ⊂ Qn
j,m̃. Next, let

Γ1
j,m̃ denote the set of all cubes Qn

k,m ⊂ Qn
j,m̃ for which (1 + l)Qn

k,m ⊂ Qn
j,m̃. We also define

Γ2
j,m̃ := Γj,m̃ \ Γ1

j,m̃.
For further purposes, we shall require the following estimate of the measure of the set Fj,m̃ :=

∪Qn
k,m∈Γ2

j,m̃
Qn

k,m (the proof is similar to that of the corresponding estimate in [20]).

|F
j,m̃

|

|Qn
j,m̃|

≤ C2j−k. (4.15)

Using (4.15) and (2.11), we obtain

∑

Qn
k,m∈Γ2

j,m̃

γ̂pk,m ≤ C2(j−k)δ̃2(γ,n,d)
∑

Qn
k,m

∈Γj,m̃

γ̂pk,m. (4.16)
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For the cubes Qn
k,m ∈ Γ1

j,m̃ we have

δlr(Q
n
k,m)N

l−1
j,m̃ ≤ C2(j−k)l, (4.17)

inasmuch as N l−1
j,m̃ is a polynomial on the cube Qn

j,m̃.

For the cubes Qn
k,m ∈ Γ2

j,m̃, we have by (4.2)

δlr(Q
n
k,m)N l−1

j,m̃ ≤ C2(j−k)(l−1). (4.18)

Next, since {sk} ∈loc Y α3
α1,α2

it clearly follows that

sk,m ≤ C2
(α2−

n
p
)(k−j)

sj,m̃, (4.19)

provided that Qn
k,m ⊂ Qn

j,m̃, k ≥ j ∈ N0, m, m̃ ∈ Z
n (the constant C > 0 depends only on the

weight sequence {sk}).
Combining estimates (4.8), (4.14), (4.17), (4.18), and using properties (2.10), (4.16) and (4.19)

of the multiple sequences {γ̂k,m} and {sk,m}, this establishes

R2
j ≤ C

∑

m̃∈Zn

∑

Qn
k,m∈Γ1

j,m̃

2p(k−j)α22
jn
p spj,m̃γ̂

p
k,m2(j−k)lp

[ ∑

m∈Zn

Qn
j,m̃

⋂
suppN l−1

j,m 6=∅

[αj,m]r
] p

r

+

+C
∑

m̃∈Zn

∑

Qn
k,m

∈Γ2
j,m̃

2p(k−j)α22
jn
p spj,m̃γ̂

p
k,m2(j−k)(l−1)p

[ ∑

m∈Zn

Qn
j,m̃

⋂
suppN l−1

j,m 6=∅

[αj,m]r
] p

r

≤

≤ C
∑

m∈Zn

2p(k−j)α22
jn
p spj,mγ̂

p
j,m2

(j−k)dδ̃12(j−k)pl2
jnp
r ‖ul−1

j |Lr(CQ
n
j,m)‖p+

+C
∑

m∈Zn

2p(k−j)α22
jn
p spj,mγ̂

p
j,m2(j−k)(δ̃2+dδ̃1)2(j−k)p(l−1)2

jnp
r ‖ul−1

j |Lr(CQ
n
j,m)‖p ≤

≤ C2(λ̃+
dδ̃1
p

−α2)p(j−k)
∑

m∈Zn

tpj,m2
jnp
r ‖ul−1

j |Lr(Q
n
j,m)‖p ≤

≤ C2(λ̃+
dδ̃1
p

−α2)p(j−k)(slj(ϕ, {tk,m})r,p)
p + (slj−1(ϕ, {tk,m})r,p)

p.

(4.20)

Substituting estimates (4.12) and (4.20) into (4.11) completes the proof of the theorem.
We now prove a theorem similar to Theorem 4.1, but under weaker constraints on a multiple

sequence {tk,m}. However, in doing so we increase the order of splines approximating a given
function.

Theorem 4.2. Let p, r ∈ (0,∞], α1, α2 ∈ R, α3 ≥ 0, σ1 ∈ (0,∞], σ2 = p, and let a multiple
sequence {tk,m} be p-associated with p-admissible weight sequence {tk} ∈ Xα3

α,σ,p. Then, for µ ≤
min{1, r, p},

(
∑

m∈Zn

tpk,m[δlr(Q
n
k,m)ϕ]p

) 1
p

≤ C2−k(l−α2)




k∑

j=−1

2jµ(l−α2)
(
sl+1
j (ϕ, {tk,m})r,p

)µ



1
µ

(4.21)
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(with obvious modifications for p = ∞ or µ = ∞). Here, the constant C > 0 depends on α1, α, σ,
r, l, but is independent of the function ϕ.

Proof. To a large extent we shall follow the proof of Theorem 4.1. We only indicate the
differences.

Clearly, for all j ∈ N0, m̃ ∈ Z
n and for all cubes Qn

k,m ⊂ Qn
j,m̃, we have

δlr(Q
n
k,m)N l

j,m̃ ≤ C2(j−k)l (4.22)

with constant C > 0 independent of k, j,m, m̃.
Using this fact, as well as (2.15) instead of (4.16), (4.19), (4.19), we proceed step by step in

the same manner as in the proof of Theorem 4.1, replacing all the splines U l−1
k in the proof of

Theorem 4.1 by the splines U l
k. In view of (4.22), we clearly need not resort to deal with the

sets Γ1
j,m̃ and Γ2

j,m̃, and so estimate (4.20) is substantially simplified. Eventually, we obtain the
conclusion of Theorem 4.1.

The following result is a corollary to Theorem 4.1.

Corollary 4.1. Let p, q, r ∈ (0,∞], p 6= ∞, ϕ ∈ Lloc
r (Rn), a weight sequence {sk} ∈loc Y α3

α1,α2
,

and a multiple sequence {sk,m} be p-associated with the weight sequence {sk}. Next, let d ∈ N0,
a weight γp ∈ Aloc

∞ (Rn+d) and a multiple sequence {γ̂k,m} be generated by the weight γ. Let α2 <

λ+ dδ1(γ)
p for λ := min{l, l − 1 + δ2(γ)

p }. We set tk,m := sk,mγ̂k,m for k ∈ N0, m ∈ Z
n.

Then a necessary a sufficient condition that a function ϕ be in B̃l
p,q,r(R

n, {tk,m}) is that

N1(ϕ, l) :=




∞∑

j=−1

(slk(ϕ, {tk})r,p)
q




1
q

<∞. (4.23)

Moreover,

N1(ϕ, l) ∼ N2(ϕ, l) ∼ ‖ϕ|B̃l
p,q,r(R

n, {tk,m})‖, where

N2(ϕ, l) :=




∞∑

k=0

(
∑

m∈Zn

tpk,m‖ϕ− T l−1
k (ϕ, r)|Lr(Q

n
k,m)‖p

) q
p




1
q

+

(
∑

m∈Zn

tp0,m‖ϕ|Lr(Q
n
0,m)‖p

) 1
p

.

(4.24)

Proof. We consider the case q < ∞, because the case q = ∞ is dealt with similarly. Let ϕ ∈
B̃l

p,q,r(R
n, {tk,m}). The estimate N1(ϕ, l) ≤ N2(ϕ, l) ≤ C‖ϕ|B̃l

p,q,r(R
n, {tk,m})‖ follows from (4.6).

Assume now that N1(ϕ, l) < ∞. We choose ε ≥ 0 so small that α2 − n < λ̃ + dδ̃1
p . Applying

Theorem 4.1 with µ ≤ min{1, q, r} and next using Theorem 2.2, this gives

‖ϕ|B̃l
p,q,r(R

n, {tk,m})‖q ≤

≤

∞∑

k=0

2
−kq(λ̃+

dδ̃1
p

−(α2−
n
p
))




k∑

j=−1

2
jµ(λ̃+

dδ̃1
p

−(α2−
n
p
))
(
slj(ϕ, {tk})r,p

)µ



q
µ

≤ C[N1(ϕ, l)]
q,

(4.25)

proving the corollary.
In a similar manner Theorem 4.2 applies to obtain the following result.

Corollary 4.2. Let p, q, r ∈ (0,∞], α1, α2 ∈ R, α3 ≥ 0, σ1 ∈ (0,∞],σ2 = p, a multiple sequence
{tk,m} be p-associated with a p-admissible weight sequence {tk} ∈ Xα3

α,σ,p. If l > α2, then a function

ϕ ∈ B̃l
p,q,r(R

n, {tk,m}) if and only if
N1(ϕ, l + 1) <∞. (4.26)
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Moreover,

N1(ϕ, l + 1) ∼ N2(ϕ, l + 1) ∼ ‖ϕ|B̃l
p,q,r(R

n, {tk,m})‖. (4.27)

Theorem 4.2 can be used to obtain a result on equivalent norms in the space B̃l
p,q,r(R

n, {tk})
for different (sufficiently large) l.

Corollary 4.3. Let p, q, r ∈ (0,∞], α1, α2 ∈ R, α3 ≥ 0, σ1 ∈ (0,∞], σ2 = p, {tk} ∈ Xα3
α,σ,p and

l > α2. Then, for l′ > l,

‖ϕ|B̃l′
p,q,r(R

n, {tk})‖ ∼ ‖ϕ|B̃l
p,q,r(R

n, {tk})‖.

Proof. To obtain the the estimate

‖ϕ|B̃l
p,q,r(R

n, {tk})‖ ≤ CN2(ϕ, l
′) ≤ C‖ϕ|B̃l′

p,q,r(R
n, {tk})‖

it suffices to employ Corollary 4.2 and Lemma 4.1. The reverse estimate is clear.

Remark 4.2. As was pointed out in the introduction, the methods of [4] ([24]) enable us to

obtain a result similar to Corollary 4.3 for the space B
l
p,q,1(R

n, {tk}), provided that {tk} ∈loc Y α3
α1,α2

({tk} ∈ Y α3
α1,α2

) and l > α2.
The following simple example shows that Corollary 4.3 applies for weaker assumptions on the

variable smoothness.
Let p ∈ (1,∞). We claim that there exists a weight sequence {γ1k} such that {γ1k} ∈ X̃α3

α,σ,p, α2 <

l, σ2 = p and {γ1k} ∈loc Y α3

α′
1,α

′
2
for l < α′

2, but {γ
1
k} /∈

loc Y α3

α′′
1 ,α

′′
2
for any α′′

2 ≤ l. Indeed, let ε ∈ (0, n)

be a sufficiently small number that will be chosen later. We define (γ1)p(x, xn+1) :=
n+1∏
i=1

1
|xi|1−ε for

(x, xn+1) ∈ R
n+1 \ {0}. Note that (γ1)p ∈ A1(R

n+1). Consider the multiple sequence (γ1k,m)p :=

2klp
∫∫

Ξ1,n
k,m

(γ1)p(x, xn+1) dxdxn+1 for k ∈ N0, m ∈ Z
n. We set (γ1)p(x) :=

∑
m∈Zn

χ
Q̃n

k,m
(x)2kn(γ1k,m)p

for x ∈ R
n, k ∈ N0.

Clearly, the inequality

(γ1k+1)
p(0)

(γ1k)
p(0)

= 2pl+n

∫∫

Ξ1,n
k+1,0

(γ1)p(x, xn+1) dxdxn+1

∫∫

Ξ1,n
k,0

(γ1)p(x, xn+1) dxdxn+1
≥ 2pl+

n
2

is satisfied for sufficiently small ε ∈ (0, 1). Hence, {γ1k} ∈ Y α3
α1,α2

only if α2 ≥ l + n
2p > l.

However, by Example 2.1 we have {γ1k} ∈ X̃α3
α,σ,p for σ2 = p, α2 = l − δ1(γ)

p < l, and hence all
the hypotheses of Corollary 4.3 are satisfied.

We note that by Remark 2.3 the space B̃l
p,p,r(R

n, {γ1k}) is nontrivial for any p ∈ (1,∞), r ∈

[1, p]. Moreover, the space B̃l
p,p,r(R

n, {γ1k}) (by Theorem 3.1) is the trace of the Sobolev space

W l
p(R

n+1, γ).
The following theorem is an important step in the proof of the atomic decomposition theorem.

However, the estimate obtained here may be of independent interest.
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Given p ∈ (0,∞], θ ∈ (0, p], we set pθ := p
θ , provided that p and θ are not simultaneously

infinite. For θ = p = ∞ we set pθ := 1. For 0 < θ < p = ∞ we assume pθ = ∞.

Theorem 4.3. Let p, q, r ∈ (0,∞], θ ∈ (0,min{p, r}], be a p-admissible weight sequence {tk} ∈
Xα3

α,σ,p with σ1 = θp′θ, α1 > n(1θ − 1
r ), σ2 ∈ (0,∞], α3 ≥ 0, a multiple sequence {tk,m} be a p-

associated with weight sequence {tk}. Assume that functions Vk ∈ Lloc
r (Rn) (with k ∈ N0) and

( ∞∑

k=0

( ∑

m∈Zn

tpk,m2
knp
r ‖vk|Lr(Q

n
k,m)‖p

) q
p
) 1

q

<∞,

where vk := Vk − Vk−1(V−1 ≡ 0) for k ∈ N0.

Then the series
∞∑
k=0

vk converges in Lloc
r (Rn) to some function ϕ ∈ Lloc

r (Rn), and moreover,

( ∞∑

k=0

( ∑

m∈Zn

tpk,m2
knp
r ‖ϕ− Vk|Lr(Q

n
k,m)‖p

) q
p
) 1

q

+

( ∑

m∈Zn

tp0,m‖ϕ|Lr(Q
n
0,m)‖p

) 1
p

≤

≤ C

( ∞∑

k=0

( ∑

m∈Zn

tpk,m2
knp
θ ‖vk|Lr(Q

n
k,m)‖p

) q
p
) 1

q

,

(4.28)

in which the constant C > 0 depends on α1, α, σ, r, but is independent of the function sequence
{Vk}.

Proof.We consider only the case p, q 6= ∞.

We claim that the series
∞∑
k=0

vk converges in Lloc
r (Rn) to some function ϕ ∈ Lloc

r (Rn). Indeed, it

suffices to show that the series
∞∑
k=0

vk converges in Lr(Q
n
0,m) for any cube Qn

0,m.

For any j1 ≤ j2 ∈ N0 and µ ≤ min{1, θ} it follows from Lemma 2.1 that

‖Vj1 − Vj2 |Lr(Q
n
0,m)‖ ≤

( ∞∑

j=j1

‖vj |Lr(Q
n
0,m)‖µ

) 1
µ

=

=

( ∞∑

j=j1

( ∑

m̃∈Zn

Qn
j,m̃

⊂Qn
0,m

‖vj |Lr(Q
n
j,m̃)‖θ

)µ
θ
) 1

µ

= Kj1,m.

(4.29)

Applying Hölder’s inequality to the inner sum (in m̃) with exponents τ and τ ′ and using (2.6),
we have, for any µ ≤ min{1, θ}

(
Kj1,m

)µ

=
∞∑

j=j1

( ∑

m̃∈Zn

Qn
j,m̃

⊂Qn
0,m

tθj,m̃

tθj,m̃
‖vj |Lr(Q

n
j,m̃)‖

θ

)µ
θ

≤

≤ C
∞∑

j=j1

1

2
jnµ
r

tµ0,m
tµ0,m

( ∑

m̃∈Zn

Qn
j,m̃

⊂Qn
0,m

[
1

tj,m̃

]θp′θ) µ

θp′
θ

( ∑

m̃∈Zn

Qn
j,m̃

⊂Qn
0,m

2
jnp
r tpj,m̃‖vj |Lr(Q

n
j,m̃)‖p

)µ
p

≤

≤ C

∞∑

j=j1

2jµn(
1
θ
− 1

r
)

2jµα1

( ∑

m̃∈Zn

Qn
j,m̃

⊂Qn
0,m

2
jnp
r tpj,m̃‖vj |Lr(Q

n
j,m̃)‖p

)µ
p

.

(4.30)
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We choose µ ≤ min{1, q, r} and take qµ := q
µ ≥ 1. An application of Hölder’s inequality with

exponents qµ and q′µ to the right-hand side of (4.30) shows that

Kj1,m ≤ C

( ∞∑

j=j1

1

2jµq
′
µ(α1−(n

θ
−n

r
))

) 1
µq′µ

( ∞∑

j=j1

( ∑

m̃∈Zn

Qn
j,m̃

⊂Qn
0,m

2
jnp
r tpj,m̃‖vj |Lr(Q

n
j,m̃)‖p

) q
p
) 1

q

(4.31)

Note that for a fixed j1 the right-hand side of inequalities (4.31) tends to infinity as α1 tends
to n

θ − n
r .

From (4.29), (4.31) and since the space Lr(Q
n
0,m) is complete, we obtain the required convergence

of the series
∞∑
k=0

vk in Lr(Q
n
0,m) to some function ϕm ∈ Lr(Q

n
0,m).

Let us prove (4.28). Applying Lemma 2.1 with fj = 0 with j < k and fj := vjχQn
k,m

with j ≥ k,

and then using Minkowski’s inequality (because p
µ ≥ 1), this gives

( ∑

m∈Zn

2
nkp
r tpk,m‖ϕ− Vk|Lr(Q

n
k,m)‖p

) 1
p

≤ 2
nk
r

( ∑

m∈Zn

tpk,m

[ ∞∑

j=k

‖vj |Lr(Q
n
k,m)‖µ

] p
µ
) 1

p

≤

≤ 2
nk
r

( ∞∑

j=k

( ∑

m∈Zn

tpk,m‖vj |Lr(Q
n
k,m)‖p

)µ
p
) 1

µ

≤

≤ 2
nk
r

( ∞∑

j=k

( ∑

m∈Zn

tpk,m

[ ∑

m̃∈Zn

Qn
j,m̃

⊂Qn
k,m

‖vj |Lr(Q
n
j,m̃)‖θ

] p
θ
)µ

p
) 1

µ

=: Rk.

(4.32)

Arguing as in the proof of estimate (4.30), we obtain for j ≥ k + 1

2
nkp
r

∑

m∈Zn

tpk,m

[ ∑

m̃∈Zn

Qn
j,m̃

⊂Qn
k,m

‖vj |Lr(Q
n
j,m̃)‖θ

] p
θ

≤

≤ 2
nkp
r

∑

m∈Zn

tpk,m

( ∑

m̃∈Zn

Qn
j,m̃

⊂Qn
k,m

[
1

tj,m̃

]θp′θ) p

θp′
θ

[ ∑

m̃∈Zn

Qn
j,m̃

⊂Qn
k,m

tpj,m̃‖vj |Lr(Q
n
j,m̃)‖p

]
≤

≤ C2(k−j)p(α1−(n
θ
−n

r
))
∑

m∈Zn

tpj,m2
njp
r ‖vj |Lr(Q

n
j,m̃)‖p

(4.33)

We take µ ≤ min{1, θ, q}. Since α1 >
n
θ − n

r by the hypothesis of the lemma, it follows by
Hardy’s inequality and (4.32), (4.33) that

( ∞∑

k=0

Rq
k

) 1
q

≤ C

( ∞∑

k=0

( ∑

m∈Zn

tpj,m2
jnp
r ‖vj |Lr(Q

n
j,m)‖p

) q
p
) 1

q

. (4.34)

Now the required estimate for the first term on the left of (4.27) follows from (4.30) and (4.33).
Let us estimate the second term in the left-hand side of (4.28). Similarly to (4.29),

‖ϕ|Lr(Q
n
0,m)‖ ≤ CK1,m. Hence, using (4.31) we easily obtain the estimate

( ∑

m∈Zn

tp0,m‖ϕ|Lr(Q
n
0,m)‖p

) 1
p

≤ C

[ ∞∑

j=0

( ∑

m∈Zn

tpj,m2
jnp
r ‖vj |Lr(Q

n
j,m)‖p

) q
p
] 1

q

. (4.35)
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The proof of Theorem 4.3 is complete.
For ϕ ∈ Lloc

r (Rn) we assume that

ϕ =

∞∑

k=0

vlk in Lloc
r (Rn), where vlk(x) :=

∑

m∈Zn

βk,mN
l
k,m(x), k ∈ N0, x ∈ R

n.

Given p, q, r ∈ (0,∞], we define (with corresponding modifications for p = ∞ or q = ∞)

N3(ϕ, l + 1) := inf

( ∞∑

k=0

( ∑

m∈Zn

tpk,m|βk,m|p
) q

p
) 1

q

, (4.36)

where the infimum in (4.36) is taken over all series
∞∑
k=0

vlk convening in Lloc
r (Rn) to the function ϕ.

For ϕ ∈ Lloc
r (Rn) we also set (with corresponding modifications in the case p = ∞ or q = ∞)

N4(ϕ, l + 1) :=

( ∞∑

k=0

( ∑

m∈Zn

tpk,m|αk,m(T l
k(ϕ, r))|

p

) q
p
) 1

q

.

The next result extends Theorem 5.1 of [20] to the case of Besov spaces of variable smoothness
B̃l

p,q,r(R
n, {tk}).

Corollary 4.4. (the atomic decomposition) Let p, q, r ∈ (0,∞], θ ∈ (0,min{r, p}]. Next,
{tk} ∈ Xα3

α,σ,p be a p-admissible weight sequence with α1 > n(1θ − 1
r ), l > α2, σ1 = θp′θ, σ2 = p,

a multiple sequence {tk,m} be p-associated with the weight sequence {tk}. Then

1) each function ϕ ∈ B̃l
p,q,r(R

n, {tk}) may be expanded into an Lloc
r (Rn)-convergent series of

splines N l
k,m; that is,

ϕ =
∞∑

k=0

vlk(ϕ) in the sense of Lloc
r (Rn), where

vlk(ϕ)(x) =
∑

m∈Zn

βk,m(ϕ)N l
k,m(x) for x ∈ R

n.

(4.37)

Moreover, for some constant C > 0

N3(ϕ, l + 1) ≤ N4(ϕ, l + 1) ≤ C‖ϕ|B̃l
p,q,r(R

n, {tk})‖;

2) if, for some multiple sequence {βk,m},

( ∞∑

k=0

( ∑

m∈Zn

tpk,m|βk,m|p
) q

p
) 1

q

<∞,

then the series
∞∑
k=0

∑
m∈Zn

βk,mN
l
k,m converges in Lloc

r (Rn) to some function ϕ ∈ B̃l
p,q,r(R

n, {tk}) and

there exist constants C1, C2 > 0 such that

‖ϕ|B̃l
p,q,r(R

n, {tk})‖ ≤ C1N3(ϕ, l + 1) ≤ C2N4(ϕ, l + 1).
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The proof is similar to those of Theorem 5.1 and Corollary 5.3 of [20], one only needs to
appropriately use Theorem 4.3, Corollary 4.2, Lemma 4.2 and the clear estimate

( ∑

m̃∈Zn

Qn
k,m

⋂
suppN l−1

k,m̃
6=∅

|βk,m̃|p
) 1

p

≤

( ∑

m̃∈Zn

Qn
k,m

⋂
suppN l−1

k,m̃
6=∅

|βk,m̃|r
) 1

r

≤ C

( ∑

m̃∈Zn

Qn
k,m

⋂
suppN l−1

k,m̃
6=∅

|βk,m̃|p
) 1

p

,

(4.38)
the modifications in (4.38) for p = ∞ and r = ∞ are straightforward.

The constant C in (4.38) depends only on n, l, p, r.

Remark 4.3. Under the hypotheses of Corollary 4.4 the set Σl is dense in the space
B̃l

p,q,r(R
n, {tk}), p, q ∈ (0,∞). Indeed, let ϕ ∈ B̃l

p,q,r(R
n, {tk}). Then, by Corollary 4.4,

ϕ =
∞∑

k=0

∑

m∈Zn

αk,m(ϕ)N l
k,m in the sense of Lloc

r (Rn)

and, for any ε > 0,

( ∞∑

k=0

( ∑

m∈Zn

tpk,m|αk,m(ϕ)|p
) q

p
) 1

q

≤ (1 + ε) inf

( ∞∑

k=0

( ∑

m∈Zn

tpk,m|βk,m|p
) q

p
) 1

q

≤

≤ C‖ϕ|B̃l
p,q,r(R

n, {tk})‖.

Hence, taking ϕn :=
n∑

k=0

∑
m∈Zn

αk,m(ϕ)N l
k,m, it follows from Corollary 4.4 that

‖ϕn − ϕ|B̃l
p,q,r(R

n, {tk})‖ ≤ C

( ∞∑

k=n+1

( ∑

m∈Zn

tpk,m|βk,m|p
) q

p
) 1

q

→ 0, n → ∞.

Remark 4.4. Let p ∈ (1,∞). We claim that one may choose parameters r ∈ (1, p), α3 , α, σ
and a weight sequence {γ2k} ∈ X̃α3

α,σ,p so as to satisfy all the hypotheses of Corollary 4.4. Besides,
{γ2k} ∈ Y α3

α′
1,α

′
2
for some α′

1 < 0, but {γ2k} /∈ Y α3

α′′
1 ,α

′
2
for any α′′

1 ≥ 0.

Indeed, let ε ∈ (0, p − 1) be a sufficiently small number, which will be specified later. We set

(γ2)p(x1, . . . , xn+1) :=
n+1∏
i=1

|xi|
p−1−ε. Note that (γ2)p ∈ A p

θ
(Rn+1) for some θ ∈ (1, p). For l ∈ N

consider the multiple sequence (γ2k,m)p := 2klp
∫∫

Ξ1,n
k,m

(γ2)p(x, xn+1) dxdxn+1 for k ∈ N0, m ∈ Z
n. Let

(γ2k)
p(x) = 2nk

∑
m∈Zn

χQ̃n
k,m

(x)(γ2k,m)p for k ∈ N0, x ∈ R
n.

The inequality

(γ2k+1)
p(0)

(γ2k)
p(0)

= 2pl+n

∫∫

Ξ1,n
k+1,0

(γ2)p(x, xn+1) dxdxn+1dxn+1

∫∫

Ξ1,n
k,0

(γ2)p(x, xn+1) dxdxn+1
= C(p)2pl+n−(p−ε)(n+1)

is clear.
If p > n, l ≤ n, then one easily checks that sup{α1|{γ

2
k} ∈ Y α3

α1,α2
} < 0 for sufficiently small

ε > 0. On the other hand, from 2.1 it easily follows that the weight sequence {γ2k} ∈ X̃α3
α,σ,p with
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σ1 = p
p′0
p0

(p0 = p
θ ), σ2 = p, α1 = l + n

p + n
σ1

− (n+1)p0
p = l − 1

θ > 0 (because in our setting d = 1,

p0 =
p
θ , θ > 1) α2 = l − δ1(γ2,n,1)

p < l. Hence, all the hypotheses of Corollary 4.4 are satisfied.

Remark 4.5. Let p, q ∈ (0,∞], p 6= ∞, r ∈ (0, p], γp ∈ Aloc
p
r

(Rn), s > 0. We set

tk,m = 2ks
∫

Qn
k,m

γp(x) dx for k ∈ N0,m ∈ Z
n. Arguing as in Example 2.1, we conclude that the

sequence {tk,m} satisfies the hypotheses of Corollary 4.4. Hence, an application of Theorem 2.5

gives the atomic decomposition theorem for the weighted Besov space B̃s
p,q,r(R

n, γ) = B
s
p,q,r(R

n, γ)
as a particular case of Corollary 4.4. Problems on atomic decomposition of the spaces Bs

p,q(R
n, γ)

(and their generalizations) were studied in the papers [23], [30] by different methods (see also the
references given therein).

Proof of Theorem 2.5.
Step 1. We prove the embedding B

l
p,q,r(R

n, {tk}) ⊂ B̃l
p,q,r(R

n, {tk}) for any 0 < r ≤ p
p0
. By

the definition of the class Aloc
p0 (R

n) and from the conditions r ≤ p
p0
, we have γ ∈ Aloc

p/r(R
n). Hence,

using Hölder’s inequality and properties of the sequence {sk},

∫

Rn

γp(x)spk(x)[δ
l
r(x+

In

2k
)ϕ]p dx ≤ C1

∑

m∈Zn

∫

Qn
k,m

γp(x)spk(x)[δ
l
r(Q

n
k,m)ϕ]p dx ≤

≤ C2

∑

m∈Zn

∫

Qn
k,m

γp(x)spk(x)

( ∫

Qn
k,m

22kn
γr(y)

γr(y)

∫

In

2k

|∆l(h)ϕ(y)|r dhdy

) p
r

dx ≤ C3

∫

Rn

tpk(y)[∆
l
r(2

−k)ϕ(y)]p dy.

(4.39)
The required embedding follows from estimate (4.39).
Step 2. Using the arguments employed in Example 2.1, we conclude that the sequence {tk} sat-

isfies the hypotheses of Corollary 4.4 with 0 < r ≤ p
p0
. Hence, B̃l

p,q,r1(R
n, {tk}) = B̃l

p,q,r2(R
n, {tk}),

the norms being equivalent for 0 < r1 ≤ r2 ≤ p
p0
. So the theorem will be proved if we check the

embedding B̃l
p,q,r(R

n, {tk}) ⊂ B
l
p,q,r(R

n, {tk}) for any 0 < r ≤ p
p0
.

Let t
p
k(x) :=

∑
m∈Zn

χQn
k,m

(x)2kn‖tk|Lp(Q
n
k,m)‖p :=

∑
m∈Zn

χQn
k,m

(x)2kntk,m for k ∈ N0, x ∈ R
n.

Let ϕ ∈ B̃l
p,q,r(R

n, {tk}), then by Corollary 4.4 ϕ =
∞∑
j=0

vlj(ϕ) in the sense of Lloc
r (Rn), where

vlj(x) =
∑

m∈Zn

βj,mN
l
j,m(x) for x ∈ R

n, j ∈ N0.

We set ϕ1,k :=
k∑

i=0
vli, ϕ2,k := ϕ− ϕ1. Clearly, for k ∈ N0,

1

C
‖tk∆

l
r(2

−k)ϕ|Lp(R
n)‖ ≤ ‖tk∆

l
r(2

−k)ϕ1,k|Lp(R
n)‖+ ‖tk∆

l
r(2

−k)ϕ2,k|Lp(R
n)‖ =: S1,k + S2,k.

(4.40)
Arguing as in the proof of Theorem 4.1 and using Example 2.1 and estimate (4.38), we obtain,

for µ ≤ min{1, r, q},

S1,k ≤ C

( k∑

j=0

2(l−α2)p(j−k)

( ∑

m∈Zn

tpj,m2
jnp
r ‖vlj |Lr(Q

n
j,m)‖p

)µ
p
) 1

µ

≤

≤ C

( k∑

j=0

2(l−α2)p(j−k)

( ∑

m∈Zn

tpj,m|βj,m|p
)µ

p
) 1

µ

.

(4.41)
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To estimate S2,k we first note that

[
∆

l
r(2

−k)vlj(x)

]p
≤ C

(
|vlj(x)|

r +
l∑

i=1

(
2kn

∫

In

2k

|vlj(x+ ih)|r dh

)) p
r

≤

≤

(
|vlj(x)|

r +

∫

2(l+1)Qn
k,m

|vlj(y)|
r dy

) p
r

.

(4.42)

Next, employing property 2) from (1.1), (1.4), the (local) doubling property of the weight γp,
and using properties of the functions N l

k,m, we have, for µ ≤ min{1, r, q},

∫

Rn

γp(x)spk(x)|v
l
j(x)|

p dx ≤ C2(k−j)pα1

∫

Rn

γp(x)spj (x)|v
l
j(x)|

p dx ≤

≤ C2(k−j)pα1
∑

m∈Zn

∫

Qn
k,m

γp(x)spj (x)

( ∑

m̃∈Zn

x∈suppN l
j,m̃

βpj,m̃

)
≤ C2(k−j)pα1

∑

m̃∈Zn

2knγ̂pj,m̃s
p
j,m̃|βj,m̃|p ≤

≤ C2(k−j)pα1
∑

m∈Zn

tpj,m|βj,m|p. (4.43)

Using Example 2.1, estimate (2.16), property 1) of (1.1), Lemma 4.2, we have, for j ≥ k,

∑

m∈Zn

∫

Qn
k,m

tpk(x)2
knp
r ‖vlj |Lr(2(1 + l)Qn

k,m)‖p dx ≤ C
∑

m∈Zn

tpk,m2
knp
r ‖vlj |Lr(Q

n
k,m)‖p ≤

≤ C2(k−j)pα1
∑

m∈Zn

tpj,m2
jnp
r ‖vlj |Lr(Q

n
j,m)‖p ≤ C2(k−j)pα1

∑

m∈Zn

tpj,m|βj,m|p.

(4.44)

Combining estimates (4.41), (4.42), (4.43), (4.44), and arguing as in the proof of (4.32),

S2,k ≤ C2kα1




∞∑

j=k

2−jµα1

(
∑

m∈Zn

tpj,m|βj,m|p

)µ
p


 . (4.45)

Substituting estimates (4.41), (4.45) in (4.40) and taking into account Hardy’s inequality, we
obtain

( ∞∑

k=1

‖tk∆
l
r(2

−k)ϕ|Lp(R
n)‖q

) 1
q

≤ C

(( ∑

m∈Zn

tpj,m|βj,m|p
) q

p
) 1

q

. (4.46)

Using estimate (4.46) in combination with Corollary 4.4 completes the proof of Theorem 2.5.

5 Embedding theorems for the spaces B̃l
p,q,r(R

n, {tk})

Let β = {βj}
∞
j=1 be a sequence of nonnegative numbers, w = {wj,m}j∈N,m∈Zn be a multiple sequence

of nonnegative numbers.

28



For 0 < p, q ≤ ∞, we set (with corresponding modifications in the case p, q = ∞)

lq(βlp(w)) := {a = aj,m : aj,m ∈ R, ‖a|lq(βlp(w))‖ <∞}, where

‖a|lq(βlp(w))‖ =


βqj

(
∑

m∈Zn

wp
j,m|aj,m|p

) q
p




1
q

.
(5.1)

Theorem 5.1. ([27]) Let 0 < pi, qi ≤ ∞ for i = 1, 2.
1) The space lq(β

1lp(w
1)) is continuously embedded into lq(β

2lp(w
2)) if and only if

∞∑

j=1

(
β2j
β1j

)q∗( ∑

m∈Zn

(
w2
j,m

w1
j,m

)p∗) q∗

p∗

<∞, where

1

p∗
:= max{0,

1

p2
−

1

p1
},

1

q∗
:= max{0,

1

q2
−

1

q1
}

(5.2)

2) The space lq(β
1lp(w

1)) is compactly embedded into lq(β
2lp(w

2)) if and only if condition (5.2)
is satisfied, and moreover,

lim
j→∞

β2j
β1j

( ∑

m∈Zn

(
w2
j,m

w1
j,m

)p∗) 1
p∗

= 0 if q∗ = ∞ (5.3)

and

lim
|m|→∞

w1
j,m

w2
j,m

= ∞ for all j ∈ N if p∗ = ∞. (5.4)

As a direct corollary to Theorem 5.1 and Corollary 4.4 we obtain

Corollary 5.1. Let i = 1, 2 and let 0 < pi, qi, ri ≤ ∞, θi ∈ (0,min{pi, ri}], piθi = pi

θi
. Next,

for i = 1, 2, let {tik} ∈ X
αi
3

αi,σi,pi
be a p-admissible weight sequence, αi

1 > n( 1
θi

− 1
ri
), σi1 = ri(piθi)

′,

σi2 = pi, l > αi
2. Then

1) the space B̃l
p1,q1,r1(R

n, {t1k}) is continuously embedded into B̃l
p2,q2,r2(R

n, {t2k}) if

∞∑

j=0

( ∑

m∈Zn

(
t2j,m
t1j,m

)p∗) q∗

p∗

<∞, where

1

p∗
:= max{0,

1

p2
−

1

p1
},

1

q∗
:= max{0,

1

q2
−

1

q1
};

(5.5)

2) the space B̃l
p1,q1,r1(R

n, {t1k}) is compactly embedded into B̃l
p2,q2,r2(R

n, {t2k}) if condition (4.5)
is satisfied and, moreover,

lim
j→∞

( ∑

m∈Zn

(
t2j,m
t1j,m

)p∗) 1
p∗

= 0 if q∗ = ∞ (5.6)

and

lim
|m|→∞

t1j,m
t2j,m

= ∞ for all j ∈ N0 if p∗ = ∞. (5.7)
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6 Traces of the spaces B̃l
p,q,r(R

n, {tk}) on planes

In this section we assume that n ≥ 2. Throughout the section we fix a natural number n′ <
n and define n′′ := n − n′. The point x = (x1, . . . , xn) ∈ R

n will be denoted by (x′, x′′) =
(x′1, . . . , x

′
n′ , x′′n′+1, . . . , x

′′
n) (similarly, we put m := (m′,m′′) for m ∈ Z

n). We identify the space

R
n′

with the plane given in the space R
n by the equation x′′ = 0.

Let {tk} ∈ Xα3
α,σ,p be a p-admissible weight sequence and let {tk,m} be the p-associated

multiple sequence. Given k ∈ N0, m
′ ∈ Z

n′
, we set t′k,m′ = tk,(m′,0). Next, let t′k(x

′) :=

2
kn′

p
∑

m∈Zn′

χQ̃n′

k,m′
(x′)t′k,m′ for k ∈ N0, x

′ ∈ R
n′
. So, we have t′k(x

′) = 2
−kn′′

p tk(x
′, 0) for k ∈ N0,

x′ ∈ R
n′
.

For p, r ∈ (0,∞], p 6= ∞, θ ∈ (0,min{p, r}] we define pθ := p
θ (as in § 4). In this section it will

be convenient to denote by pθ the dual exponent to pθ. In other words, 1
pθ

+ 1
pθ

= 1.

In defining the trace of the space B̃l
p,q,r(R

n, {tk}) we shall follow the idea of [29]. (where the

trace of the space B
{sk}
p(·),q(R

n) was considered).

Given l ∈ N we set Σl :=
∞⋃
k=0

Σl
k (for the definition of Σl

k see § 4). Clearly, Σl ⊂ C(Rn). Hence,

it makes sense to talk about the pointwise trace for a function f ∈ Σl
⋂
B̃l

p,q,r(R
n, {tk}).

In other words, the function tr |x′′=0f := f(x′, 0) is well-defined.
In order to define the trace of an arbitrary function ϕ ∈ B̃l

p,q,r(R
n, {tk}) we shall require the

following simple result.

Lemma 6.1. Let p, q ∈ (0,∞), r ∈ (0,∞], θ ∈ (0,min{r, p}], α3 ≥ 0, α1 > n(1θ − 1
r ), l > α2,

σ1 = θpθ, σ2 = p and let {tk} ∈ Xα3
α,σ,p be a p-admissible weight sequence. Next, assume that, for

some l′ ≥ l, r′ ∈ (0,∞], θ′ ∈ (0,min{r′, p}], α′
3 ≥ 0, α′

1 > n( 1
θ′ −

1
r ), α

′
2 < l′ σ′1 = θ′pθ′, σ

′
2 = p and

{t′k} ∈ X
α′
3

α′,σ′,p and any function f ∈ Σl
⋂
B̃l

p,q,r(R
n, {tk}), the following estimate holds

‖f(·, 0)|B̃l′

p,q,r′(R
n′
, {t′k})‖ ≤ C‖f |B̃l

p,q,r(R
n, {tk})‖.

in which the constant C > 0 is independent of the function f .
Then, for any function ϕ ∈ B̃l

p,q,r(R
n, {tk}), here exists a unique (up to a nullset with

respect to the n′-dimensional Lebesgue measure) function ϕ′ ∈ B̃l′

p,q,r′(R
n′
, {t′k}) such that if

‖ϕ − ϕj |B̃
l
p,q,r(R

n, {tk})‖ → 0 as j → ∞ for some sequence {ϕj} ∈ Σl
⋂
B̃l

p,q,r(R
n, {tk}), then

‖ϕ′ − ϕj(·, 0)|B̃
l′

p,q,r′(R
n′
, {t′k})‖ → 0 as j → ∞, and moreover,

‖ϕ′|B̃l′

p,q,r′(R
n′
, {t′k})‖ ≤ C‖ϕ|B̃l

p,q,r(R
n, {tk})‖.

The proof of this lemma repeats the corresponding arguments in [29] with due account of
Theorem 2.4 and Remark 4.3.

Definition 6.1. Under the hypotheses of Lemma 6.1 let ϕ ∈ B̃l
p,q,r(R

n, {tk}). The function ϕ′

constructed in Lemma 6.1 will be called the trace of the function ϕ and denoted by tr |x′′=0ϕ. By
the trace of the space B̃l

p,q,r(R
n, {tk}) on the plane, as given in the space Rn by the equation x′′ = 0,

we shall mean the set of classes of equivalent functions ϕ′ ∈ B̃l′

p,q,r′(R
n′
, {t′k}) of which each is the

trace of some function ϕ ∈ B̃l
p,q,r(R

n, {tk}). The corresponding linear space will be denoted by

Tr |x′′=0B̃
l
p,q,r(R

n, {tk}); the norm on this space is defined as

‖ϕ′ | Tr |x′′=0B̃
l
p,q,r(R

n, {tk})‖ := inf
ϕ′=tr |x′′=0ϕ

‖ϕ|B̃l
p,q,r(R

n, {tk})‖.
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In what follows under the conditions of Lemma 6.1 we shall also denote by Tr the linear operator
Tr : B̃l

p,q,r(R
n, {tk}) → B̃l′

p,q,r′(R
n′
, {t′k}) defined by Tr[ϕ](x′) = tr |x′′=0ϕ(x

′) for x′ ∈ R
n′
.

Recall that in § 4 we defined, for k ∈ N0, m = (m′,m′′) ∈ Z
n,

N l
k,m(x) :=

n∏

i=1

N l(2k(xi −
mi

2k
)) for x ∈ R

n,

and hence
N l

k,m(x) := N l
k,m′(x′)N l

k,m′′(x′′) for x = (x′, x′′) ∈ R
n.

We note that for any k ∈ N0, m
′ ∈ Z

n′
,

N l
k,m′(x′) =

∑

m′′∈Zn′′

N l
k,(m′,m′′)(x

′, 0) for x′ ∈ R
n′
. (6.1)

The number of terms on the right of (6.1) is in fact finite and is bounded by some number
independent of m′ and x′. This follows from the fact that the splines N l

k,m form a partition of

unity and that the multiplicity of intersections of the supports of splines N l
k,m is finite (and is

independent of m).
Corollary 4.4 enables one to obtain necessary and sufficient conditions for the trace of the space

B̃l
p,q,r(R

n, {tk}).

Theorem 6.1. Let p, q ∈ (0,∞), r ∈ (0,∞], θ ∈ (0,min{r, p}], α3 ≥ 0, α1 > n(1θ −
1
r ), l > α2,

σ1 = θpθ, σ2 = p and let {tk} ∈ Xα3
α,σ,p be a p-admissible weight sequence such that the weight

sequence {t′k} ∈ X̃α3
α′,σ′,p with l′ ≥ l, r′ ∈ (0,∞], θ′ ∈ (0,min{r′, p}], α′

3 ≥ 0, α′
1 > n( 1

θ′ −
1
r ),

α′
2 < l′ σ′1 = θ′pθ′, σ

′
2 = p. Then the operator Tr : B̃l

p,q,r(R
n, {tk}) → B̃l′

p,q,r′(R
n′
, {t′k}) is bounded

and there exists a (nonlinear) bounded operator Ext : B̃l′

p,q,r′(R
n′
, {t′k}) → B̃l

p,q,r(R
n, {tk}) such that

Tr ◦Ext = Id on the space B̃l′

p,q,r′(R
n′
, {t′k}). In particular,

Tr |x′′=0B̃
l
p,q,r(R

n, {tk}) = B̃l′

p,q,r′(R
n′
, {t′k}),

the corresponding norms being equivalent.
Proof. Note that under the hypotheses of Theorem 6.1 one may apply Corollaries 4.3 and 4.4

to the spaces B̃l
p,q,r(R

n, {tk}) and B̃
l′

p,q,r′(R
n′
, {t′k}).

The proof is naturally split into two parts.
1. Let ϕ ∈ B̃l

p,q,r(R
n, {tk})

⋂
Σl. Then ϕ ∈ B̃l′

p,q,r(R
n, {tk})

⋂
Σl by Corollary 4.3, the corre-

sponding norms being equivalent. Using Corollary 4.4,

ϕ =

∞∑

k=0

vl
′

k (ϕ) in the sense of Lloc
r (Rn), where vl

′

k (ϕ)(x) =
∑

m∈Zn

αk,m(ϕ)N l′

k,m(x) for x ∈ R
n.

(6.2)

Moreover,

( ∞∑

k=0

( ∑

m∈Zn

tpk,m|αk,m(ϕ)|p
) q

p
) 1

q

≤ C‖ϕ|B̃l′

p,q,r(R
n, {tk})‖ ≤ C‖ϕ|B̃l

p,q,r(R
n, {tk})‖. (6.3)

We set
α′
k,m′ :=

∑

m′′∈Zn′′

αk,(m′,m′′)(ϕ)N
l
k,m′′(0) for k ∈ N0,m

′ ∈ Z
n′
.
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Hence,

v′l
′

k (x′) := tr |x′′=0v
l′

k (x). =
∑

m∈Zn

αk,m(ϕ)N l′

k,m(x′, 0) =
∑

m′∈Zn′

α′
k,m′N l′

k,m′(x′) for x′ ∈ R
n′
. (6.4)

In view of (2.16) and (6.2)

|α′
k,m′ |t′k,m′ ≤ C

∑

m′′∈Zn′′

suppN l
k,m

⋂
Rn′

6=∅

|αk,(m′,m′′)(ϕ)|tk,(m′,m′′), k ∈ N0,m
′ ∈ Z

n′
. (6.5)

Next, we easily obtain

( ∞∑

k=0

( ∑

m′∈Zn′

t′pk,m′|α
′
k,m′ |p

) q
p
) 1

q

≤ C

( ∞∑

k=0

( ∑

m∈Zn

tpk,m|αk,m(ϕ)|p
) q

p
) 1

q

. (6.6)

where the constant C > 0 is independent of of the function ϕ.
Using (6.3), (6.6) it is found by Corollary 4.4 that

‖

N∑

k=0

vl
′

k (·, 0)|B̃
l′

p,q,r′(R
n′
, {t′k,m′})‖ ≤ C

( ∞∑

k=0

( ∑

m′∈Zn′

t′pk,m′ |α
′
k,m′ |p

) q
p
) 1

q

≤ C‖ϕ|B̃l
p,q,r(R

n, {tk,m})‖.

(6.7)

From (6.7) and Lemma 6.1 it follows that there exists the trance ϕ′ of the function ϕ on the
plane x′′ = 0. Besides,

‖ϕ′|B̃l′

p,q,r′(R
n′
, {t′k})‖ ≤ C‖ϕ|B̃l

p,q,r(R
n, {tk})‖ (6.8)

the constant C > 0 being independent of the function ϕ. This proves proves the boundedness of
the trace operator Tr : B̃l

p,q,r(R
n, {tk}) → B̃l′

p,q,r′(R
n′
, {t′k}).

2. Let ϕ′ ∈ B̃l′

p,q,r′(R
n′
, {t′k}). By the hypotheses of the theorem and using Corollary 4.4

ϕ′ =

∞∑

k=0

v′l
′

k (ϕ′) in the sense of Lloc
r (Rn′

), where v′l
′

k (ϕ)(x′) =
∑

m′∈Zn′

α′
k,m′(ϕ)N l′

k,m′(x′), x′ ∈ R
n′
.

(6.9)

We set
αk,m = α′

k,m′ for m′ ∈ Z
n′
,m′′ ∈ Z

n′′
and N l′

k,m′′(0) 6= 0

αk,(m′,m′′) = 0 for m′ ∈ Z
n′

and N l′

k,m′′(0) = 0,

vl
′

k (x) :=
∑

m∈Zn′

αk,m(ϕ)N
l′

k,m(x) for x ∈ R
n.

(6.10)

Hence, using Corollaries 4.3, 4.4, one easily shows that the series
∞∑
k=0

vl
′

k converges in Lloc
r (Rn)

to some function ϕ ∈ B̃l
p,q,r(R

n, {tk}), and moreover,

‖ϕ | |B̃l
p,q,r(R

n, {tk})‖ ≤ C1‖ϕ | |B̃l′
p,q,r(R

n, {tk})‖ ≤ C2‖ϕ
′ | B̃l′

p,q,r′(R
n′
, {t′k})‖ (6.11)

where the constants C1, C2 > 0 are independent of the function ϕ′.
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We set Ext[ϕ′] := ϕ for ϕ′ ∈ B̃l′

p,q,r′(R
n′
, {t′k}). Then by (6.11) the operator Ext :

B̃l′

p,q,r′(R
n′
, {t′k}) → B̃l

p,q,r(R
n, {tk}) is bounded. As an immediate consequence of the construction

of the function ϕ we see that ϕ′ = tr |x′′=0ϕ, and hence Tr ◦Ext = Id on the space B̃l′

p,q,r′(R
n′
, {t′k}).

This proves the theorem.
We illustrate Theorem 6.1 on several examples.

Example 6.1. Let p, q ∈ [1,∞), r ∈ [1, p], a weight sequence {sk} ∈loc Y α3
α1,α2

= X̃α3
α,∞,p for

α1 >
n′′

p , l > α2. Then

Tr |x′′=0B̃
l
p,q,r(R

n, {sk,m}) = B̃l
p,q,r(R

n′
, {s′k,m′}). (6.12)

If now {sk} ∈ Y α3
α1,α2

, then for α1 >
n′′

p , l > α2 it follows by Corollary 2.1 that

Tr |x′′=0B
{sk}
p,q (Rn) = B

{s′k}
p,q (Rn′

). (6.13)

For constant exponents p, q ∈ [1,∞) equality (6.13) coincides with that from [29].
For p, q ∈ [1,∞), r = p, sk = 2ks, α > n′′

p , l > s we obtain the classical result of O.V. Besov
(a characterization of the trace of the classical Besov space on the plane; see [1], Theorems 1.1,
2.1, 2.2).

Example 6.2. Let p ∈ (1,∞), q ∈ [1,∞), r ∈ [1, p) and a weight γ ∈ Aloc
p
r

(Rn). We set

tk(x
′) = γk(x

′) := 2k(s+
n′

p
) ∑
m′∈Zn′

χ
Q̃n′

k,m′
(x′)‖γ|Lp(Σ

n′′,n′

k,m )‖ for k ∈ N0, x
′ ∈ R

n′
. As a particular

case of Theorem 6.1 we obtain a characterization of the trace of the weighted Besov spaceBs
p,q(R

n, γ)
on the hyperplane.

Indeed, the arguments used in Example 2.1 we obtain {γk} ∈ Xα3
α,σ,p for σ1 = rpr, σ2 = p,

α1 = α2 = s. Hence, using Remark 2.9 with s > 1
r , l > s

Tr |xn=0B
s
p,q(R

n, γ) = B̃l
p,q,r(R

n−1, {γk}). (6.14)

It is worth noting that this assertion is new and may not be derived using the available atomic
decomposition machinery. Indeed, the number of zero moments for the atoms from the trace
decomposition is governed by the exponent α1 for {γk} ∈ Y α3

α1,α2
. The moment condition needs

not be tested for α1 > 0. In a much lesser generality an analogue of (6.14) was obtained in [22],
where a model weight depending only on the distance to the origin was examined. More precisely,
γp(x) = |x|α in a small neighbourhood of the origin with −n + 1 < α < (n − 1)(p − 1). Such
a choice of the weight has enabled the authors to skip testing the zero moment condition for the
corresponding atoms from the trace decomposition.

Concluding remarks. Consideration of the principal results obtained in this paper shows
that the differences δlr may be looked upon as the most natural replacements of the differences

∆
l
r and ∆l in the definition of weighted Besov spaces (with fairly complicated weight) and Besov

spaces of variable smoothness. The exponent r proves closely related with the exponents α1, σ1.
Speaking informally, it may be stated that the worth is the behaviour in the integral sense of the

variable smoothness {tk} (the exponents α1, σ1 are small) the smaller exponent r should be taken
in the differences δlr in order to reveal the meaningful properties of the corresponding Besov spaces
of variable smoothness. It is worth noting that in essence this idea is contained in the book [23].

However, the methods of [23] are capable of dealing with weighted Besov and Lizorkin–Triebel
spaces with Muckenhoupt weights, but they do not apply in the case of spaces of variable smooth-
ness.
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