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Abstract

Consider the following noncommutative arithmetic-geometric mean inequality: Given
positive-semidefinite matrices A1, . . . ,An, the following holds for each integer m ≤ n:

1

nm

n∑

j1, j2, . . . , jm = 1

|||Aj1Aj2 . . .Ajm ||| ≥ (n−m)!

n!

n∑

j1, j2, . . . , jm = 1
all distinct

|||Aj1Aj2 . . .Ajm |||,

where |||·||| denotes a unitarily invariant norm, including the operator norm and Schatten
p-norms as special cases. While this inequality in full generality remains a conjecture,
we prove that the inequality holds for products of up to three matrices, m ≤ 3. The
proofs for m = 1, 2 are straightforward; to derive the proof for m = 3, we appeal
to a variant of the classic Araki-Lieb-Thirring inequality for permutations of matrix
products.

1 Introduction

The arithmetic-geometric mean (AMGM) inequality says that for any sequence of n
non-negative real numbers x1, x2, . . . , xn, the arithmetic mean is greater than or equal
to the geometric mean:

x1 + x2 + · · ·+ xn

n
≥ (x1x2 . . . xn)

1/n
.

This can be viewed as a special case (m = n) of Maclaurin’s inequality:
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Proposition 1.1. If x1, . . . , xn are positive scalars and m ≥ n then it holds that

1

nm

n∑

j1, j2, . . . , jm = 1

xj1xj2 . . . xjm ≥ 1
(
n
m

)

∑

Λ ⊂ [n];
|Λ| = m

xj1xj2 . . . xjm .

See [8] for more details. With a slight abuse of notation, we will refer to both of the
above inequalities as AMGM inequalities.

Several noncommutative extensions of Proposition 1.1 have been proven for in-
equalities involving the product of two matrices. For an overview of these results,
we refer the reader to [5]. These inequalities are often stated for a general unitarily
invariant (UI) norm. Recall that a norm |||·||| on M(d), the space of complex d× d ma-
trices, is said to be unitarily invariant if for all X,U ∈ M(d) with U unitary, one has
|||UX||| = |||XU ||| = |||X|||. Examples of UI norms are the Schatten p-norms (including
the operator norm and the Hilbert-Schmidt norm) and the Ky Fan k-norms. More
generally, every UI norm is a symmetric gauge function of the singular values [2]. The
first AMGM inequality for products of two matrices appeared in [4]: If A and B are
compact operators on a separable Hilbert space, then

2|||A∗
B||| ≤ |||AA

∗ +BB
∗|||.

The paper [3] extended this result, showing that for arbitrary d× d matrices A,B,X,
and for every unitarily invariant norm,

2|||A∗
XB||| ≤ |||AA

∗
X +XBB

∗|||.

Most closely related to the results here, Kosaki [10] showed that for positive-semidefinite
matrices A and B, and for 1/p+ 1/q = 1,

|||AXB||| ≤ 1

p
|||Ap

X|||+ 1

q
|||XB

q|||.

In the special case X = Id and p = q = 2, applying this inequality and averaging with
respect to the order of A and B, reproduces our result for the case of two matrices.

More recently, certain noncommutative extensions of the AMGM inequality have been
posed for products of (complex-valued) positive-semidefinite matrices. The following
conjecture was posed by Recht and Rè [12]:

Conjecture 1.2. Let A1, . . . ,An be positive-semidefinite matrices. Then the following
inequality holds for each m ≤ n:

∥
∥
∥
∥
∥
∥

1

nm

n∑

j1, j2, . . . , jm = 1

Aj1Aj2 . . .Ajm

∥
∥
∥
∥
∥
∥

≥

∥
∥
∥
∥
∥
∥
∥
∥

(n−m)!

n!

n∑

j1, j2, . . . , jm = 1;
all distinct

Aj1Aj2 . . .Ajm

∥
∥
∥
∥
∥
∥
∥
∥

.

Here, ‖ · ‖ denotes the standard operator norm.
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Note that the case m = 1 is trivially true, as both sides of the inequality are equal.
The conjecture is easily seen to be true for n = 2,m = 2, and in this case something
stronger can be said: the symmetrized geometric mean precedes the square of the
arithmetic mean in the positive definite order: for any A,B � 0,

(
1

2
A+

1

2
B)2 − (

1

2
AB +

1

2
BA) � 0.

Recht and Rè also verify that the conjecture holds for general m and n in expectation
for several classes of random matrices [12].

Later, Ducci [7] posed a variant of the noncommutative AMGM conjecture where the
matrix operator norm appears inside the summation on either side:

Conjecture 1.3. Suppose that A1, . . . ,An are positive-semidefinite matrices. The
following inequality holds for each m ≤ n:

1

nm

n∑

j1, j2, . . . , jm = 1

‖Aj1Aj2 . . .Ajm‖ ≥ (n−m)!

n!

n∑

j1, j2, . . . , jm = 1;
all distinct

‖Aj1Aj2 . . .Ajm‖.

(1)

The case m = 1 of Conjecture 1.3 is trivially true, as both sides of the inequality are
the same. For m = 2, as explained above, the conjecture directly follows, for arbitrary
UI norms, from a result of Kosaki [10] (we provide a proof without assuming this
result in Section 3). Given the positive results for the cases m = 1 and m = 2, it is
tempting to believe that a simple inductive proof could be used to prove the general
case. However, the difficulty in this approach, and with the noncommutative AMGM
inequalities in general, is that the product of two positive-semidefinite matrices is not
necessarily positive-semidefinite. The main result of this paper, proved in Section 4, is
a proof of this conjecture for the case m = 3. Again, we prove a more general result
which holds for any unitarily-invariant norm:

Theorem 1.4 (AMGM inequality for three matrices). Suppose that A1,A2, . . . ,An ∈
M(d) are positive-semidefinite. Let |||·||| be a unitarily invariant norm on M(d). Then
the following AMGM inequality holds:

1

n3

n∑

i, j, k = 1

|||AiAjAk||| ≥
(n− 3)!

n!

n∑

i, j, k = 1
all distinct

|||AiAjAk|||. (2)

Remark 1.5. Unitarily invariant norms |||·||| can also be defined in the infinite-dimensional
setting of operators on Hilbert spaces. The subset of compact operators on a Hilbert
space H having finite norm |||·||| defines a self-adjoint ideal J , called the norm ideal
associated to |||·|||. As finite-rank operators are dense in this space, our Theorem 4.3,
and hence Theorem 1.4, extends to this more general setting using a limiting argument
as presented e.g. in Proposition 2.2 of [6].
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To the best of our knowledge, this result represents the first AMGM inequality for
products of three matrices. Our proof uses a variant of the Araki-Lieb-Thirring in-
equality (Theorem 4.3). This inequality is specific to the product of three operators,
and it remains an interesting open question whether the result extends to the case
m ≥ 4.

2 Motivation

One can rephrase Conjecture 1.3 in terms of comparing the expectations of random
matrices formed by sampling with replacement vs. without replacement. Consider a
random variable of the form X = ‖Aj1Aj2 . . .Ajm‖, along with two different proba-
bility distributions over the indices jℓ: with replacement sampling where each index
jℓ is drawn uniformly with replacement from the index set [n], and without replace-
ment sampling where the indices jℓ are drawn sequentially, uniformly and without
replacement from [n]. Then EwrX, the expected value of X corresponding to with-
replacement sampling, is equal to the LHS expression of 1, while EworX, the expected
value of X corresponding to without-replacement sampling, is equal to the RHS. From
this perspective, the noncommutative AMGM conjectures have interesting implica-
tions for stochastic optimization problems. For example, Conjecture 1.3 would imply
that the expected convergence rate of without-replacement sampling is faster than that
of with-replacement sampling for randomized iterative solvers such as the Kaczmarz
method [9]. We repeat the following example from [7, 12] for completeness. The Kacz-
marz method is a simple and fast method for solving overdetermined consistent least
squares problems: solve for x∗ satisfying Φx∗ = y, where Φ ∈ C

n×d with n ≫ d. Let ϕ∗

i

denote the ith row of Φ. Then, starting from some initial x0, the Kaczmarz algorithm
iterates the following recursion until convergence:

xk = xk−1 +
yk − 〈ϕik , xk−1〉

‖ϕik‖22
ϕik .

Set Ai = Id−ϕ∗

iϕi/‖ϕi‖22. Then since 〈ϕi, x∗〉 = yi, we may express the residual after
k steps of the Kaczmarz algorithm in terms of the matrix product

xk − x∗ =

k∏

j=1

Aij (x0 − x∗).

The residual error can then bounded by

‖Ai1Ai2 . . .Aik(x0 − x∗)‖2 ≤ ‖Ai1Ai2 . . .Aik‖‖x0 − x∗‖2.

Nonasymptotic convergence rates for the Kaczmarz algorithm have been derived [13,
11] in case each row update ik is selected according to a random update rule, in partic-
ular, independently and identically distributed over [n]. At the same time, numerical
evidence [12] suggest that the convergence rate can be improved by sampling rows
independently without replacement. Conjecture 1.3 would provide theoretical justifi-
cation to these observations, showing that with-replacement sampling cannot outper-
form without-replacement sampling, in expectation with respect to the draw of the row
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indices. Since the randomized Kaczmarz algorithm can be viewed as a special case of
stochastic gradient descent [11], similar remarks about with-replacement vs. without
replacement sampling could likely be made for stochastic gradient descent algorithms
more generally.

3 AMGM inequality for products of two matrices

As a warm up to the main result, we first prove the analog of Theorem 1.4 for products
of two positive-semidefinite matrices. Throughout the section, we fix a unitarily invari-
ant norm |||·||| on M(d). In the proof, we will use several basic results about unitarily
invariant norms. First, a variant of Hölder’s inequality:

Lemma 3.1 (Exercise IV.2.7 of [2]). Suppose that p, q, r > 0 satisfy 1

p + 1

q = 1

r . Then

for all A,B ∈ M(d) it holds that

||||AB|r|||1/r ≤ ||||A|p|||1/p||||B|q|||1/q.

Here, we have used the standard notation |A| := (A∗A)1/2. It follows from Lemma
3.1 that for all A,B ∈ M(d) one has

|||AB||| = ||||AB|||| ≤
∣
∣
∣
∣
∣
∣|A|2

∣
∣
∣
∣
∣
∣
1/2 ·

∣
∣
∣
∣
∣
∣|B|2

∣
∣
∣
∣
∣
∣
1/2 ≤ 1

2

∣
∣
∣
∣
∣
∣|A|2

∣
∣
∣
∣
∣
∣+ 1

2

∣
∣
∣
∣
∣
∣|B|2

∣
∣
∣
∣
∣
∣, (3)

where in the first equality we used the polar decomposition and the unitary invariance
of |||·|||, and in the last inequality we used the scalar AMGM inequality. Similarly, by
a repeated application of Lemma 3.1, for all X1,X2,X3 ∈ M(d) we have

|||X1X2X3||| ≤
∣
∣
∣
∣
∣
∣|X1|3

∣
∣
∣
∣
∣
∣
1/3 ·

∣
∣
∣

∣
∣
∣

∣
∣
∣|X2X3|3/2

∣
∣
∣

∣
∣
∣

∣
∣
∣

2/3

≤
∣
∣
∣
∣
∣
∣|X1|3

∣
∣
∣
∣
∣
∣
1/3 ·

∣
∣
∣
∣
∣
∣|X2|3

∣
∣
∣
∣
∣
∣
1/3 ·

∣
∣
∣
∣
∣
∣|X3|3

∣
∣
∣
∣
∣
∣
1/3

≤ 1

3

∣
∣
∣
∣
∣
∣|X1|3

∣
∣
∣
∣
∣
∣+ 1

3

∣
∣
∣
∣
∣
∣|X2|3

∣
∣
∣
∣
∣
∣+ 1

3

∣
∣
∣
∣
∣
∣|X3|3

∣
∣
∣
∣
∣
∣. (4)

Alternatively, if X2 � 0 then we obtain

|||X1X2X3||| ≤ 1

2
|||X1X2X1|||+ 1

2
|||X3X2X3||| (5)

by applying (3) to A = X1X
1/2
2 and B = X

1/2
2 X3.

Proposition 3.2. Let n ≥ 2 and d ≥ 1, and suppose that A1,A2, . . . ,An ∈ M(d) are
positive-semidefinite. Then the following arithmetic-geometric mean inequality holds:

1

n2

n∑

j, k = 1

|||AjAk||| ≥
1

n(n− 1)

n∑

j, k = 1
j 6= k

|||AjAk|||.

Proof. Rearranging and canceling like terms, the inequality reduces to

(n− 1)

n∑

j = 1

∣
∣
∣
∣
∣
∣A

2
j

∣
∣
∣
∣
∣
∣ ≥

n∑

j, k = 1
j 6= k

|||AjAk|||,
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which is equivalent to

n∑

j = 1

n∑

k = j + 1

(∣
∣
∣
∣
∣
∣A

2
j

∣
∣
∣
∣
∣
∣+

∣
∣
∣
∣
∣
∣A

2
k

∣
∣
∣
∣
∣
∣− |||AjAk||| − |||AkAj |||

)
≥ 0.

To show that each of the summands is nonnegative, we apply (3) both for |||AiAj |||
and for |||AjAi|||, obtaining

∣
∣
∣
∣
∣
∣A

2
i

∣
∣
∣
∣
∣
∣+

∣
∣
∣
∣
∣
∣A

2
j

∣
∣
∣
∣
∣
∣ ≥ |||AiAj |||+ |||AjAi|||.

This proves the proposition.

4 AMGM inequality for products of three matrices

Before proving the main result, Theorem 1.4, we will need to establish an ALT-type
inequality for unitarily invariant norms. The classic version of this inequality states:
Theorem 4.1 (Araki-Lieb-Thirring [1]). For all r ≥ 1 and q > 0 one has

Tr [(Br
A

r
B

r)q] ≥ Tr [(BAB)rq] .

A similar statement holds for the matrix operator norm:

Lemma 4.2. For all r ≥ 1 and s > 0 one has

‖(Br
A

r
B

r)s‖ ≤ ‖(BAB)rs‖ .

Proof. We apply the ALT inequality with q = st, for t > 0, to obtain

Tr
[
(Br

A
r
B

r)st
]1/t ≥ Tr

[
(BAB)rst

]1/t
.

Take the limit as t → +∞. The desired inequality follows as lim
t→+∞

Tr[Xt]1/t = ‖X‖
for any X � 0.

In fact, we can generalize Lemma 4.2 to any unitarily invariant norm using a stan-
dard trick in matrix analysis known as the “antisymmetric tensor power” trick. We
defer the proof to the appendix.

Theorem 4.3. For any unitarily invariant norm |||·||| on M(d), and for any r ≥ 1
and s > 0, the following holds for any two positive-semidefinite matrices A and B in
M(d):

|||(Br
A

r
B

r)s||| ≤ |||(BAB)rs|||.
In particular, we will use the following corollary:

Corollary 4.4. For any two positive-semidefinite matrices A,B ∈ M(d), and for any
unitarily invariant norm,

∣
∣
∣
∣
∣
∣B

2
A
∣
∣
∣
∣
∣
∣ ≥ |||BAB|||.

6



Proof. Apply Theorem 4.3 with r = 2 and s = 1/2 to obtain

∣
∣
∣

∣
∣
∣

∣
∣
∣

√
B2A2B2

∣
∣
∣

∣
∣
∣

∣
∣
∣ ≤ |||BAB||| for any A,B ∈ M(d), A,B � 0.

Note that
√
B2A2B2 =

√

(B2A)(B2A)∗ = |B2A|. By the unitary invariance of the
norm |||·||| we thus obtain that

∣
∣
∣
∣
∣
∣B

2
A
∣
∣
∣
∣
∣
∣ =

∣
∣
∣
∣
∣
∣|B2

A|
∣
∣
∣
∣
∣
∣ ≤ |||BAB|||,

as desired.

With Corollary 4.4 in hand, we are now ready to prove the main result, Theorem 1.4.

Proof of Theorem 1.4. Rearranging and canceling like terms, the desired inequality (2)
is equivalent to

(n− 2)(n− 1)

n∑

i, j, k = 1
not all distinct

|||AiAjAk||| ≥ (3n− 2)

n∑

i, j, k = 1
all distinct

|||AiAjAk|||. (6)

By appeal to Corollary 4.4, we obtain the bounds

∣
∣
∣
∣
∣
∣A

2
iAj

∣
∣
∣
∣
∣
∣ ≥ |||AiAjAi|||.

By the unitary invariance of |||·||| we know that |||X||| = |||X∗||| for all X ∈ M(d).
Thus, by the same reasoning as above, we have

∣
∣
∣
∣
∣
∣AiA

2
j

∣
∣
∣
∣
∣
∣ =

∣
∣
∣
∣
∣
∣A2

jAi

∣
∣
∣
∣
∣
∣ ≥ |||AjAiAj |||.

Applying these lower bounds to the LHS of (6) gives:

LHS of (6)

= (n− 2)(n− 1)








n∑

j = 1

∣
∣
∣
∣
∣
∣A

3
j

∣
∣
∣
∣
∣
∣+

n∑

i, j = 1
i 6= j

(∣
∣
∣
∣
∣
∣A

2
iAj

∣
∣
∣
∣
∣
∣+

∣
∣
∣
∣
∣
∣AiA

2
j

∣
∣
∣
∣
∣
∣
)
+

n∑

i, j = 1
i 6= j

|||AiAjAi|||








≥ (n− 2)(n− 1)

n∑

j = 1

∣
∣
∣
∣
∣
∣A

3
j

∣
∣
∣
∣
∣
∣+ 3(n− 2)(n− 1)

n∑

i, j = 1
i 6= j

|||AiAjAi|||. (7)

We apply (5) to bound the expressions |||AiAjAk||| and |||AkAjAi|||, thus obtaining

|||AiAjAi|||+ |||AkAjAk||| ≥ |||AiAjAk|||+ |||AkAjAi|||.

Summing this estimate over pairwise distinct i,j,k gives

2(n− 2)

n∑

i, j = 1
i 6= j

|||AiAjAi||| ≥ 2

n∑

i, j, k = 1
all distinct

|||AiAjAk|||.
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Continuing the bound from (7), we have

LHS of (6) ≥ (n− 2)(n− 1)

n∑

j = 1

∣
∣
∣
∣
∣
∣A

3
j

∣
∣
∣
∣
∣
∣+ 3(n− 1)

n∑

i, j, k = 1
all distinct

|||AiAjAk|||.

The desired inequality (6) will follow if the RHS above is greater or equal to the RHS
of (6). Rearranging and canceling like terms, this is equivalent to asking whether

(n− 2)(n− 1)

n∑

j = 1

∣
∣
∣
∣
∣
∣A

3
j

∣
∣
∣
∣
∣
∣ ≥

n∑

i, j, k = 1
all distinct

|||AiAjAk|||.

But indeed this inequality follows directly from averaging (4) with (X1,X2,X3) =
(Ai,Aj ,Ak) over all choices of pairwise distinct i, j, k. This finishes the proof.

Discussion

There are certain difficulties that arise in the case m = 4 which prevent us from
extending the proof technique of Theorem 1.4, even in the setting of matrices. “Loopy”
terms such as |||A1A2A3A2||| start to appear at m = 4, and it is not clear how to pair
these terms together to obtain a lower bound of distinct-term products, |||A1A2A3A4|||.
Simple inductive arguments building on the cases m = 1, 2, 3 are also difficult as the
product of two positive-semidefinite operators is not necessarily positive-semidefinite,
and there are not many inequalities concerning products of four positive-semidefinite
operators. This remains a very compelling open problem.
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[12] B. Recht and C. Ré. Beneath the valley of the noncommutative arithmetic-
geometric mean inequality: conjectures, case-studies, and consequences. arXiv
preprint arXiv:1202.4184, 2012.

[13] T. Strohmer and R. Vershynin. A randomized Kaczmarz algorithm with expo-
nential convergence. J. Fourier Anal. Appl., 15(2):262–278, 2009.

5 Appendix: Proof of Theorem 4.3

GivenA,B ∈ M(d) withA,B � 0, and given r ≥ 1 and s > 0, our aim in this section is
to verify the ALT-type inequality |||(BrArBr)s||| ≤ |||(BAB)rs||| for a general unitarily
invariant norm |||·||| on M(d). The proof uses techniques from matrix analysis and we
will make frequent use of results in [2]. For the rest of this section, all matrices are
assumed to be positive-semidefinite.

5.1 Antisymmetric tensorization

In what follows, we write λ1(X) ≥ λ2(X) ≥ λ3(X) ≥ · · · , to denote the sequence of
eigenvalues of a matrix X, written in non-increasing arrangement.

For 1 ≤ k ≤ d, we denote the space Hk = ∧kRd for the order-k antisymmetric
tensor power of Rd, which consists of all formal real linear combinations of symbols of
the form

x1 ∧ x2 ∧ · · · ∧ xk,
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where x1, · · · , xk ∈ Rd. We regard Hk as a vector space in such a way that addition
and scalar multiplication are multilinear in the variables (x1, · · · , xk). Namely,
{

x1 ∧ · · · ∧ xl ∧ · · · ∧ xk + x1 ∧ · · · ∧ x′

l ∧ · · · ∧ xk = x1 ∧ · · · ∧ (xl + x′

l) ∧ · · · ∧ xk.

c · (x1 ∧ · · · ∧ xl ∧ · · · ∧ xk) = x1 ∧ · · · ∧ (cxl) ∧ · · · ∧ xk.

We also require that the wedge product ∧ is antisymmetric with respect to coordinate
interchanges. Namely, for all 1 ≤ i < j ≤ k we have

x1 ∧ · · · ∧ xi ∧ · · · ∧ xj ∧ · · · ∧ xk = −x1 ∧ · · · ∧ xj ∧ · · · ∧ xi ∧ · · · ∧ xk.

From this definition one sees that the dimension of Hk is
(
d
k

)
.

Given a sequence of matrices A1, · · · ,Ak ∈ M(d) – which we regard as linear
operators on Rd – we form the antisymmetric tensor matrix A1 ∧ · · · ∧ Ak, which
represents a linear operator on the tensor space Hk defined by

(A1 ∧ · · · ∧Ak)(x1 ∧ · · · ∧ xk) = (A1x1) ∧ · · · ∧ (Akxk) for x1 ∧ · · · ∧ xk ∈ Hk.

Given a matrix A ∈ M(d), we denote

∧k
A :=

k times
︷ ︸︸ ︷

A ∧A ∧ · · · ∧A, a linear operator on Hk.

We present a few basic properties of antisymmetric tensorization. Proofs of properties
1-5, along with a further discussion, are found in Section I.5 of [2].

1. (∧kA)(∧kB) = ∧k(AB).

2. (∧kA)∗ = ∧kA∗.

3. (∧kA)−1 = ∧kA−1 if A is invertible.

4. If A is unitary or positive-semidefinite then so is ∧kA.

5. If λi1 , λi2 , · · · , λik are eigenvalues of A associated to linearly independent eigen-
vectors ui1 , ui2 , · · · , uik , and if i1 > i2 > · · · > ik, then λi1 · λi2 · · ·λik is an
eigenvalue of ∧kA associated to the eigenvector ui1 ∧ui2 ∧· · ·∧uik . In particular,
if A is diagonalizable with eigenvalues λj , 1 ≤ j ≤ d, then ∧k

A is diagonalizable
with eigenvalues λi1 · · ·λik , 1 ≤ i1 < · · · < ik ≤ d.

6. If A is positive-semidefinite then (∧kA)s = ∧kAs for all s > 0.

Proof of property 6: Fix a complete set of eigenvalues λ1 ≥ · · · ≥ λd ≥ 0 and eigenvec-
tors u1, · · · , ud for A. The eigenvalues of As are given by λs

1, · · · , λs
d and the eigenvec-

tors are unchanged. According to property 5 we know that the eigenvalues/eigenvectors
for ∧kAs are given by λs

i1
· · ·λs

ik
and ui1 ∧ · · · ∧ uik , where 1 ≤ i1 < · · · < ik ≤ d. On

the other hand, by property 5 we know the eigenvalues of ∧kA are λi1 · · ·λik associ-
ated to the eigenvectors ui1 ∧ · · · ∧ uik ; hence the eigenvalues of (∧kA)s are λs

i1 · · ·λs
ik

associated to the same eigenvectors. Therefore, it holds that (∧kA)s = ∧kAs.

Lemma 5.1. For all r ≥ 1 and s > 0 one has

k∏

i=1

λi ((B
r
A

r
B

r)s) ≤
k∏

i=1

λi (BAB)rs) for all k = 1, 2, · · · , d.
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Proof. We apply the norm inequality in Lemma 4.2 to the tensor matrices ∧kA and
∧kB. Thus, ‖

(
(∧kB)r(∧kA)r(∧kB)r

)s ‖ ≤ ‖
(
(∧kB) · (∧kA) · (∧kB)

)rs ‖. Applying
subsequently properties 1 and 6, we obtain ‖ ∧k (Br

A
r
B

r)s‖ ≤ ‖ ∧k (BAB)rs‖. Re-
call that the eigenvalues of (BrArBr)s are ordered in non-increasing arrangement:
λ1((B

rArBr)s) ≥ λ2((B
rArBr)s) ≥ · · · ≥ λd((B

rArBr)s). Therefore, due to
property 5, the operator norm of ∧k(BrArBr)s, which is the largest eigenvalue of
∧k(BrArBr)s is

λ1((B
r
A

r
B

r)s) · · ·λk((B
r
A

r
B

r)s).

By similar reasoning, the operator norm of ∧k(BAB)rs is

λ1((BAB)rs) · · ·λk((BAB)rs).

This establishes the desired inequality.

5.2 Weak Majorization

Recall that α = (α1, α2, · · · , αd) ∈ Rd is weakly majorized by β = (β1, β2, · · · , βd) ∈ Rd

– written in shorthand as α ≺
w
β – if for all k = 1, 2, · · · , d it holds that

k∑

i=1

αi ≤
k∑

i=1

βi.

We borrow the following lemma from [2]; see Exercise II.3.5.

Lemma 5.2. Assume that x = (xi)
d
i=1 and y = (yi)

d
i=1 satisfy x1 ≥ x2 ≥ · · · ≥ xd ≥ 0

and y1 ≥ y2 ≥ · · · ≥ yd ≥ 0. If additionally

k∏

i=1

xi ≤
k∏

i=1

yi for all k = 1, · · · , d,

then x ≺
w
y.

From Lemma 5.1 and Lemma 5.2 we obtain a weak-majorization inequality between
the eigenvalues of the matrices of interest. Namely, for any r ≥ 1 and s > 0 we have

(λj((B
r
A

r
B

r)s))dj=1 ≺
w
(λj(BAB)rs)dj=1. (8)

By the Fan Dominance Theorem (see Theorem IV.2.2 in [2]), the weak majorization
in (8) implies the desired estimate, Theorem 4.3.
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