The q-analog of higher order Hochschild homology and the Lie derivative

Abhishek Banerjee

Dept. of Mathematics, Indian Institute of Science, Bengaluru - 560012, Karnataka, India. Email: abhishekbanerjee1313@gmail.com

Abstract

Let A be a commutative algebra over \mathbb{C} . Given a pointed simplicial finite set Y and $q \in \mathbb{C}$ a primitive N-th root of unity, we define the q-Hochschild homology groups $\{_{q}HH_{n}^{Y}(A)\}_{n\geq 0}$ of A of order Y. When D is a derivation on A, we construct the corresponding Lie derivative on the groups $\{_{q}HH_{n}^{Y}(A)\}_{n\geq 0}$. We also define the Lie derivative on $\{_{q}HH_{n}^{Y}(A)\}_{n\geq 0}$ for a higher derivation $\{D_{n}\}_{n\geq 0}$ on A. Finally, we describe the morphisms induced on the bivariant q-Hochschild cohomology groups $\{_{q}HH_{Y}^{H}(A,A)\}_{n\in\mathbb{Z}}$ of order Y by a derivation D on A.

MSC(2010) Subj Classification: 16W25

Keywords: Hochschild homology, higher derivations, Lie derivative

1 Introduction

Let A be a commutative algebra over \mathbb{C} . Then, it is well known (see, for instance, [7, § 4.1]) that a derivation $D: A \longrightarrow A$ induces morphisms

$$L_D^n: HH_n(A) \longrightarrow HH_n(A) \qquad \forall \ n \ge 0 \tag{1.1}$$

on the Hochschild homology groups of the algebra A. The morphisms L_D^n , $n \ge 0$ play the role of the Lie derivative in noncommutative geometry. For more on these morphisms and for general properties of Hochschild homology, we refer the reader to [7]. Further, for any pointed simplicial finite set Y, Pirashvili [10] has introduced the Hochschild homology groups $\{HH_n^Y(A)\}_{n\ge 0}$ of A of order Y (see also Loday [6]). In particular, when $Y = S^1$ is the simplicial circle, the groups $\{HH_n^{S^1}(A)\}_{n\ge 0}$ reduce to the usual Hochschild homology groups of the algebra A. Let $q \in \mathbb{C}$ be a primitive N-th root of unity. The purpose of this paper is to introduce the q-analogues $\{qHH_n^Y(A)\}_{n\ge 0}$ of these higher order Hochschild homology groups and study the morphisms induced on them by derivations on A.

More precisely, let Γ denote the category whose objects are the finite sets $[n] = \{0, 1, 2, ..., n\}, n \ge 0$ with basepoint $0 \in [n]$. Then, given the algebra A, we can define a functor $\mathcal{L}(A)$ from Γ to the category *Vect* of complex vector spaces that takes [n] to $A \otimes A^{\otimes n}$ (see Section 2 for details). Then, we can prolong $\mathcal{L}(A)$ by means of colimits to a functor $\mathcal{L}(A) : Fin_* \longrightarrow Vect$ from the category Fin_* of all finite sets with basepoint. Given a pointed simplicial finite set Y, i.e., a functor $Y : \Delta^{op} \longrightarrow Fin_*$ (Δ^{op} being the simplex category), we now have a simplicial vector space

$$\mathcal{L}^{Y}(A): \Delta^{op} \xrightarrow{Y} Fin_{*} \xrightarrow{\mathcal{L}(A)} Vect$$
(1.2)

Let $d_i^j : \mathcal{L}^Y(A)_i \longrightarrow \mathcal{L}^Y(A)_{i-1}, 0 \le j \le i, i \ge 0$ be the face maps of the simplicial vector space $\mathcal{L}^Y(A)$. We then construct the "q-Hochschild differentials":

$${}_{q}b_{i}: \mathcal{L}^{Y}(A)_{i} \longrightarrow \mathcal{L}^{Y}(A)_{i-1} \qquad {}_{q}b_{i}:=\sum_{j=0}^{i} q^{j}d_{i}^{j}$$
(1.3)

Since $q \in \mathbb{C}$ is a primitive N-th root of unity, it follows that ${}_{q}b^{N} = 0$, i.e., $(\mathcal{L}^{Y}(A), {}_{q}b)$ is an N-complex in the sense of Kapranov [5]. We now define the q-Hochschild homology groups $\{{}_{q}HH_{n}^{Y}(A)\}_{n\geq 0}$ of A of order Y to be the homology objects of the N-complex $(\mathcal{L}^{Y}(A), {}_{q}b)$ (see Definitions 2.1 and 2.2). When q = -1 (and hence N = 2), ${}_{q}b$ reduces to the usual differential on the chain complex associated to the simplicial vector space $\mathcal{L}^{Y}(A)$ and we have ${}_{(-1)}HH_{n}^{Y}(A) = HH_{n}^{Y}(A)$, $\forall n \geq 0$. Then, the main result of Section 2 is as follows.

Theorem 1.1. Let $D: A \longrightarrow A$ be a derivation on A. Then, for each $n \ge 0$, the derivation D induces a morphism $L_D^{Y,n}: {}_{q}HH_n^Y(A) \longrightarrow {}_{q}HH_n^Y(A)$ of q-Hochschild homology groups of order Y. Additionally, if $\mathcal{H} = \mathcal{U}(Der(A))$ is the universal enveloping algebra of the Lie algebra Der(A) of derivations on A, each ${}_{q}HH_n^Y(A)$ is a left \mathcal{H} -module, i.e., for any element $h \in \mathcal{H}$, there exist morphisms $L_h^{Y,n}: {}_{q}HH_n^Y(A) \longrightarrow {}_{q}HH_n^Y(A)$ of q-Hochschild homology groups of order Y.

Thereafter, we consider a higher derivation $D = \{D_n\}_{n\geq 0}$ on A. We recall that a higher (or Hasse-Schmidt) derivation $D = \{D_n\}_{n\geq 0}$ on A is a sequence of linear maps $D_n : A \longrightarrow A$ satisfying the following relation (see, for example, [8]):

$$D_n(a \cdot a') = \sum_{i=0}^n D_i(a) \cdot D_{n-i}(a') \qquad \forall \ a, a' \in A, n \ge 0$$
(1.4)

In this paper, we restrict ourselves to normalized higher derivations, i.e., higher derivations $D = \{D_n\}_{n\geq 0}$ such that $D_0 = 1$. Then, in Section 3, we construct the Lie derivative on the q-Hochschild homology groups of order Y corresponding to a higher derivation $D = \{D_n\}_{n\geq 0}$.

Theorem 1.2. Let $D = \{D_n\}_{n\geq 0}$ be a normalized higher derivation on A. Then, for each $k \geq 0$, we have an induced morphism $L_D^{Y,k}: {}_{q}HH_*^Y(A) = \bigoplus_{n=0}^{\infty} {}_{q}HH_n^Y(A) \longrightarrow {}_{q}HH_*^Y(A) = \bigoplus_{n=0}^{\infty} {}_{q}HH_n^Y(A)$ on the q-Hochschild homology groups of A of order Y.

Further, in [9], Mirzavaziri has provided a characterization of normalized higher derivations on algebras over \mathbb{C} from which it follows that if $D = \{D_k\}_{k\geq 0}$ is a higher derivation on A, each D_k is an element of the Hopf algebra $\mathcal{H} = \mathcal{U}(Der(A))$ (see (3.7) for details). It follows therefore from Theorem 1.1 that for each k, the element $D_k \in \mathcal{H}$ induces a morphism $L_{D_k}^Y : {}_qHH_*^Y(A) \longrightarrow {}_qHH_*^Y(A)$. Then, in Section 3, we prove the following result. **Theorem 1.3.** Let $D = \{D_k\}_{k\geq 0}$ be a normalized higher derivation on A. Then, for each $k \geq 1$, we have $L_{D_k}^Y = L_D^{Y,k}$ as an endomorphism of ${}_{q}HH_*^Y(A) = \bigoplus_{n=0}^{\infty} {}_{q}HH_n^Y(A)$.

In Section 4, we start by defining bivariant q-Hochschild cohomology groups $\{qHH_Y^n(A,A)\}_{n\in\mathbb{Z}}$ of order Y. For this we consider the modules $\underline{Hom}(\mathcal{L}^Y(A), \mathcal{L}^Y(A))_n, n \in \mathbb{Z}$ where an element $f \in$ $\underline{Hom}(\mathcal{L}^Y(A), \mathcal{L}^Y(A))_n$ is given by a family of morphisms $f = \{f_i : \mathcal{L}^Y(A)_i \longrightarrow \mathcal{L}^Y(A)_{i+n}\}_{i\in\mathbb{Z}}$. Further, we define a differential $_q\partial_n : \underline{Hom}(\mathcal{L}^Y(A), \mathcal{L}^Y(A))_n \longrightarrow \underline{Hom}(\mathcal{L}^Y(A), \mathcal{L}^Y(A))_{n-1}$ (see Definition 4.1). Then, $(\underline{Hom}(\mathcal{L}^Y(A), \mathcal{L}^Y(A)), _q\partial)$ is an N-complex and we let $_qHH_Y^n(A, A)$ be the (-n)-th homology object of $(\underline{Hom}(\mathcal{L}^Y(A), \mathcal{L}^Y(A)), _q\partial)$. We end with the following result.

Theorem 1.4. Let $D: A \longrightarrow A$ be a derivation on A. Then, for each $n \in \mathbb{Z}$, the derivation D induces a morphism $\underline{L}_D^{Y,n}: {}_{q}HH^n_Y(A, A) \longrightarrow {}_{q}HH^n_Y(A, A)$ on the bivariant q-Hochschild cohomology groups of order Y.

2 Lie Derivative on higher order q-Hochschild homology

Let *Vect* denote the category of vector spaces over \mathbb{C} . Let *A* be a commutative \mathbb{C} -algebra. We recall here the definition of higher order Hochschild homology groups of a commutative algebra *A* as introduced by Pirashvili [10] (see also Loday [6]). Let Γ denote the category whose objects are the pointed sets $[n] = \{0, 1, 2, ..., n\}$ with $0 \in [n]$ as base point for each $n \geq 0$. Then, a morphism $\phi : [m] \longrightarrow [n]$ in Γ is a map $\phi : \{0, 1, 2, ..., m\} \longrightarrow \{0, 1, 2, ..., n\}$ of sets such that $\phi(0) = 0$. We now define a functor:

$$\mathcal{L}(A): \Gamma \longrightarrow Vect \qquad [n] \mapsto A \otimes A^{\otimes n} \tag{2.1}$$

Given a morphism $\phi : [m] \longrightarrow [n]$ in Γ , we have an induced map in Vect:

$$\mathcal{L}(A)(\phi) : A \otimes A^{\otimes m} \longrightarrow A \otimes A^{\otimes n}$$
$$\mathcal{L}(A)(\phi)(a_0 \otimes a_1 \otimes \dots \otimes a_m) = (b_0 \otimes b_1 \otimes \dots \otimes b_n) \qquad b_j := \prod_{\phi(i)=j} a_i$$
(2.2)

We now consider the category Fin_* of finite pointed sets. There is a natural inclusion $\Gamma \hookrightarrow Fin_*$ of categories. Then, $\mathcal{L}(A) : \Gamma \longrightarrow Vect$ can be extended to a functor $\mathcal{L}(A) : Fin_* \longrightarrow Vect$ by setting:

$$\mathcal{L}(A): Fin_* \longrightarrow Vect \qquad T \mapsto \underset{\Gamma \ni T' \longrightarrow T}{colim} \mathcal{L}(A)(T')$$
 (2.3)

where the colimit in (2.3) is taken over all morphisms $T' \longrightarrow T$ in Fin_* such that $T' \in \Gamma$. Let Δ be the simplex category, i.e., the category whose objects are sets $[n] = \{0, 1, 2, ..., n\}, n \ge 0$ and whose morphisms are order preserving maps. Then, given a pointed simplicial finite set Y corresponding to a functor $Y : \Delta^{op} \longrightarrow Fin_*$, we have a simplicial vector space $\mathcal{L}^Y(A)$ determined by the composition of functors:

$$\mathcal{L}^{Y}(A): \Delta^{op} \xrightarrow{Y} Fin_{*} \xrightarrow{\mathcal{L}(A)} Vect$$
(2.4)

For any $n \geq 0$, let $HH_n^Y(A)$ denote the *n*-th homology group of the chain complex associated to the simplicial vector space $\mathcal{L}^Y(A)$. Following Pirashvili [10], when $Y = S^p$ (S^p being the sphere of dimension $p \geq 1$), we say that the homology groups $\{HH_n^{S^p}(A)\}_{n\geq 0}$ are the Hochschild homology groups of A of order p. When p = 1, i.e., $Y = S^1$ is the simplicial circle, the Hochschild homology groups $\{HH_n^{S^1}(A)\}_{n\geq 0}$ are identical to the usual Hochschild homology groups of A.

Our objective is to introduce a q-analog of the groups $HH^Y_*(A)$, where $q \in \mathbb{C}$ is a primitive N-th root of unity. For this, we consider the face maps $d_n^i : \mathcal{L}^Y(A)_n \longrightarrow \mathcal{L}^Y(A)_{n-1}, 0 \le i \le n, n \ge 0$, of the simplicial vector space $\mathcal{L}^Y(A)$ defined in (2.4). We set:

$${}_{q}b_{n}: \mathcal{L}^{Y}(A)_{n} \longrightarrow \mathcal{L}^{Y}(A)_{n-1} \qquad {}_{q}b_{n}:=\sum_{i=0}^{n} q^{i}d_{n}^{i}$$

$$(2.5)$$

For the sake of convenience, we will often write ${}_{q}b_{n}$ simply as ${}_{q}b$. Then, it is well known that the morphism ${}_{q}b$ satisfies ${}_{q}b^{N} = 0$ (this is true in general for any simplicial vector space; see, for instance, Kapranov [5, Proposition 0.2]). In particular, if q = -1, i.e., N = 2, we have ${}_{(-1)}b^{2} = 0$ and ${}_{(-1)}b$ is the standard differential on the chain complex corresponding to the simplicial vector space $\mathcal{L}^{Y}(A)$. In general, the pair $(\mathcal{L}^{Y}(A), {}_{q}b)$, i.e., the simplicial vector space $\mathcal{L}^{Y}(A)$ equipped with the morphism ${}_{q}b$ is an "N-complex" in the sense defined below.

Definition 2.1. (see [3, § 2] and [5, Definition 0.1]) Let \mathcal{A} be an abelian category and $N \geq 2$ a positive integer. An N-complex in \mathcal{A} is a sequence of objects and morphisms of \mathcal{A}

$$C_* = \{\dots \longrightarrow C_1 \xrightarrow{b_1} C_0 \xrightarrow{b_0} C_{-1} \longrightarrow \dots\}$$
(2.6)

such that the composition of any N consecutive morphisms in (2.6) is 0. For any $n \in \mathbb{Z}$, the homology object $H_{\{n\}}(C_*, b)$ of the N-complex (C_*, b) is defined as:

$$H_{\{n\}}(C_*,b) := \bigoplus_{i=1}^{N-1} H_{\{i,n\}}(C_*,b) \qquad H_{\{i,n\}}(C_*,b) := \frac{Ker(b^i : C_n \longrightarrow C_{n-i})}{Im(b^{N-i} : C_{N-i+n} \longrightarrow C_n)}$$
(2.7)

Definition 2.2. Let A be a commutative algebra over \mathbb{C} and let Y be a pointed simplicial finite set. Let $q \in \mathbb{C}$ be a primitive N-th root of unity. Then, the q-Hochschild homology groups ${}_{q}HH_{n}^{Y}(A)$, $n \geq 0$ of A of order Y are defined to be the homology objects of the N-complex ($\mathcal{L}^{Y}(A), qb$) associated to the simplicial vector space $\mathcal{L}^{Y}(A)$; in other words, we define:

$${}_{q}HH_{n}^{Y}(A) := H_{\{n\}}(\mathcal{L}^{Y}(A), {}_{q}b)$$
(2.8)

As with the ordinary Hochschild homology of an algebra (see, for instance, $[7, \S 4.1]$), given a derivation $D: A \longrightarrow A$, we want to construct the Lie derivative $L_D^Y: HH_*^Y(A) \longrightarrow HH_*^Y(A)$ on the Hochschild homology of order Y. For this, we start with the following lemma.

Lemma 2.3. Let A be a commutative \mathbb{C} -algebra and let $D : A \longrightarrow A$ be a derivation on A. Then, the derivation D induces an endomorphism $L_D : \mathcal{L}(A) \longrightarrow \mathcal{L}(A)$ of the functor $\mathcal{L}(A) : Fin_* \longrightarrow Vect$.

Proof. We first consider the functor $\mathcal{L}(A)$ restricted to the subcategory Γ of Fin_* , defined as in (2.1) and (2.2):

$$\mathcal{L}(A): \Gamma \longrightarrow Vect \qquad [n] \mapsto A \otimes A^{\otimes n} \tag{2.9}$$

Given the derivation D on A, we define morphisms (for all $n \ge 0$):

$$L_D([n]): \mathcal{L}(A)([n]) \longrightarrow \mathcal{L}(A)([n]) \qquad (a_0 \otimes a_1 \otimes \dots \otimes a_n) \mapsto \sum_{i=0}^n (a_0 \otimes a_1 \otimes \dots \otimes D(a_i) \otimes \dots \otimes a_n) \quad (2.10)$$

Further, for any morphism $\phi : [m] \longrightarrow [n]$ in Γ , we have, for any $(a_0 \otimes a_1 \otimes ... \otimes a_m) \in A \otimes A^{\otimes m}$:

$$L_{D}([n]) \circ \mathcal{L}(A)(\phi)(a_{0} \otimes a_{1} \otimes ... \otimes a_{m}) = L_{D}([n]) \left(\bigotimes_{j=0}^{n} \prod_{\phi(i)=j} a_{i} \right)$$
$$= \sum_{k=0}^{n} \left(\bigotimes_{j=0}^{k-1} \prod_{\phi(i)=j} a_{i} \right) \otimes D \left(\prod_{\phi(i)=k} a_{i} \right) \otimes \left(\bigotimes_{j=k+1}^{n} \prod_{\phi(i)=j} a_{i} \right)$$
$$= \sum_{k=0}^{n} \sum_{i \in \phi^{-1}(k)} \mathcal{L}(A)(\phi)(a_{0} \otimes ... \otimes D(a_{i}) \otimes ... \otimes a_{m})$$
$$= \sum_{i=0}^{m} \mathcal{L}(A)(\phi)(a_{0} \otimes ... \otimes D(a_{i}) \otimes ... \otimes a_{m})$$
$$= \mathcal{L}(A)(\phi) \circ L_{D}([m])(a_{0} \otimes a_{1} \otimes ... \otimes a_{m})$$

It follows that the derivation D induces an endomorphism L_D of the functor $\mathcal{L}(A) : \Gamma \longrightarrow Vect$. More generally, for any object $T \in Fin_*$ and a morphism $T' \longrightarrow T$ in Fin_* such that $T' \in \Gamma$, we have a morphism $L_D(T') : \mathcal{L}(A)(T') \longrightarrow \mathcal{L}(A)(T')$ as defined in (2.10). By definition, we know that $\mathcal{L}(A)(T) = \underset{\Gamma \ni T' \longrightarrow T}{colim} \mathcal{L}(A)(T')$ and hence we have an induced morphism

$$L_D(T): \mathcal{L}(A)(T) = \underset{\Gamma \ni T' \longrightarrow T}{colim} \mathcal{L}(A)(T') \longrightarrow \mathcal{L}(A)(T) = \underset{\Gamma \ni T' \longrightarrow T}{colim} \mathcal{L}(A)(T')$$
(2.11)

From (2.11) it follows that the derivation D induces an endomorphism $L_D : \mathcal{L}(A) \longrightarrow \mathcal{L}(A)$ of the functor $\mathcal{L}(A) : Fin_* \longrightarrow Vect$. This proves the claim.

Proposition 2.4. Let A be a commutative \mathbb{C} -algebra and let $D : A \longrightarrow A$ be a derivation on A. Let Y be a pointed simplicial finite set. Then, for each $n \ge 0$, the derivation D induces a morphism $L_D^{Y,n} : {}_{q}HH_n^Y(A) \longrightarrow {}_{q}HH_n^Y(A)$ of q-Hochschild homology groups of order Y, where $q \in \mathbb{C}$ is a primitive N-th root of unity.

Proof. From Lemma 2.3, we know that the derivation D induces an endomorphism $L_D : \mathcal{L}(A) \longrightarrow \mathcal{L}(A)$ of the functor $\mathcal{L}(A) : Fin_* \longrightarrow Vect$. Given the pointed simplicial finite set Y, the endomorphism $L_D : \mathcal{L}(A) \longrightarrow \mathcal{L}(A)$ of functors induces an endomorphism of the functor

$$\mathcal{L}^{Y}(A): \Delta^{op} \xrightarrow{Y} Fin_{*} \xrightarrow{\mathcal{L}(A)} Vect$$

$$(2.12)$$

From (2.12), it follows that we have an endomorphism $L_D^Y : \mathcal{L}^Y(A) \longrightarrow \mathcal{L}^Y(A)$ of the simplicial vector space $\mathcal{L}^Y(A)$. Hence, we have induced morphisms $L_D^{Y,n} : {}_{q}HH_n^Y(A) \longrightarrow {}_{q}HH_n^Y(A)$ on the homology objects of the *N*-complex ($\mathcal{L}^Y(A), {}_{q}b$) associated to the simplicial vector space $\mathcal{L}^Y(A)$ as in (2.5). \Box

We now let Der(A) denote the vector space of all derivations on the commutative \mathbb{C} -algebra A. Then, Der(A) is a Lie algebra, endowed with the Lie bracket $[D, D'] := D \circ D' - D' \circ D, \forall D, D' \in Der(A)$. Let $\mathcal{H} := \mathcal{U}(Der(A))$ denote the universal enveloping algebra of Der(A). We will now show that for any pointed simplicial finite set Y, the operators $L_D^{Y,n}$, $D \in Der(A)$ on the q-Hochschild homology group of A of order Y make $_{q}HH_n^Y(A)$ into a module over the Hopf algebra $\mathcal{H} = \mathcal{U}(Der(A))$.

Lemma 2.5. Let $q \in \mathbb{C}$ be a primitive N-th root of unity. Let A be a commutative \mathbb{C} -algebra and let D, $D' \in Der(A)$ be derivations on A. Let Y be a pointed simplicial finite set. Then, for each $n \geq 0$, the operators $L_D^{Y,n}$, $L_{D'}^{Y,n}$: $_{q}HH_n^Y(A) \longrightarrow _{q}HH_n^Y(A)$ satisfy $[L_D^{Y,n}, L_{D'}^{Y,n}] = L_D^{Y,n} \circ L_{D'}^{Y,n} - L_{D'}^{Y,n} \circ L_D^{Y,n} = L_{[D,D']}^{Y,n}$.

Proof. For $D, D' \in Der(A)$, we consider the respective endomorphisms $L_D, L_{D'}$ of the functor $\mathcal{L}(A) : \Gamma \longrightarrow Vect$. By definition, for any object $[n] \in \Gamma$, we have morphisms:

$$L_D([n]) : \mathcal{L}(A)([n]) \longrightarrow \mathcal{L}(A)([n]) \qquad (a_0 \otimes \dots \otimes a_n) \mapsto \sum_{i=0}^n (a_0 \otimes \dots \otimes D(a_i) \otimes \dots \otimes a_n)$$

$$L_{D'}([n]) : \mathcal{L}(A)([n]) \longrightarrow \mathcal{L}(A)([n]) \qquad (a_0 \otimes \dots \otimes a_n) \mapsto \sum_{i=0}^n (a_0 \otimes \dots \otimes D'(a_i) \otimes \dots \otimes a_n) \qquad (2.13)$$

From (2.13), it may be verified easily that we have

$$(L_D \circ L_{D'} - L_{D'} \circ L_D)([n]) = L_{[D,D']}([n]) : \mathcal{L}(A)([n]) \longrightarrow \mathcal{L}(A)([n]) \qquad \forall \ n \ge 0$$

$$(2.14)$$

and it follows that $L_D \circ L_{D'} - L_{D'} \circ L_D = L_{[D,D']}$ as endomorphisms of the functor $\mathcal{L}(A) : \Gamma \longrightarrow Vect$. More generally, for any object $T \in Fin_*$, we have $\mathcal{L}(A)(T) = \underset{\Gamma \ni T' \longrightarrow T}{colim} \mathcal{L}(A)(T')$ and hence $L_D \circ L_{D'} - L_{D'} \circ L_D = L_{[D,D']}$ as endomorphisms of the functor $\mathcal{L}(A) : Fin_* \longrightarrow Vect$. Finally, considering the composition of $\mathcal{L}(A) : Fin_* \longrightarrow Vect$ with the functor $Y : \Delta^{op} \longrightarrow Fin_*$ corresponding to the pointed simplicial finite set Y, it follows that $L_D^Y \circ L_{D'}^Y - L_D^Y \circ L_D^Y = L_{[D,D']}^Y$ as endomorphisms of the functor $\mathcal{L}^Y(A) : \Delta^{op} \longrightarrow Vect$. Hence, we have $[L_D^{Y,n}, L_{D'}^{Y,n}] = L_D^{Y,n} \circ L_{D'}^{Y,n} - L_{D'}^{Y,n} \circ L_D^{Y,n} = L_{[D,D']}^{Y,n}$ on the homology objects ${}_{q}HH_n^Y(A)$, $n \ge 0$ of the N-complex ($\mathcal{L}^Y(A), {}_{q}b$) associated to the simplicial vector space $\mathcal{L}^Y(A) : \Delta^{op} \longrightarrow Vect$ as in (2.5).

Proposition 2.6. Let $q \in \mathbb{C}$ be a primitive N-th root of unity. Let A be a commutative algebra over \mathbb{C} and let Der(A) denote the Lie algebra of derivations on A. Let $\mathcal{H} = \mathcal{U}(Der(A))$ denote the universal enveloping algebra of Der(A). Then, for any pointed simplicial finite set Y and any $n \geq 0$, the q-Hochschild homology group $_{q}HH_{n}^{Y}(A)$ of order Y is a left module over the Hopf algebra \mathcal{H} .

Proof. From Lemma 2.5, it follows that Der(A) has a Lie algebra action on each ${}_{q}HH_{n}^{Y}(A)$, i.e., $[L_{D}^{Y,n}, L_{D'}^{Y,n}] = L_{D}^{Y,n} \circ L_{D'}^{Y,n} - L_{D'}^{Y,n} \circ L_{D}^{Y,n} = L_{[D,D']}^{Y,n}$ for any $D, D' \in Der(A)$. Since \mathcal{H} is the universal enveloping algebra of Der(A), it follows that this Lie algebra action of Der(A) on ${}_{q}HH_{n}^{Y}(A)$ makes ${}_{q}HH_{n}^{Y}(A)$ into a left \mathcal{H} -module.

3 Higher derivations and the Lie derivative

As before, we work with a commutative algebra A over \mathbb{C} , a pointed simplicial finite set Y and $q \in \mathbb{C}$ a primitive N-th root of unity. In this section, we will describe the Lie derivative on the q-Hochschild homology groups $_{q}HH_{*}^{Y}(A)$ corresponding to a higher derivation D on A. Given an ordinary derivation d on A, it is easy to verify that the sequence $\{D_{n} := d^{n}/n!\}_{n\geq 0}$ satisfies the following identity:

$$D_n(a \cdot a') = \sum_{i=0}^n D_i(a) \cdot D_{n-i}(a') \qquad \forall \ n \ge 0, \ a, a' \in A$$
(3.1)

More generally, we have the notion of a higher (or Hasse-Schmidt) derivation on A.

Definition 3.1. (see, for instance, [8]) Let A be a commutative algebra over \mathbb{C} . A sequence $D = \{D_n\}_{n\geq 0}$ of \mathbb{C} -linear maps on A is said to be a higher (or Hasse-Schmidt) derivation on A if it satisfies:

$$D_n(a \cdot a') = \sum_{i=0}^n D_i(a) \cdot D_{n-i}(a') \qquad \forall \ n \ge 0, \ a, a' \in A$$
(3.2)

In this paper, we will only work with higher derivations $D = \{D_n\}_{n\geq 0}$ that are normalized, i.e., those higher derivations $D = \{D_n\}_{n\geq 0}$ which satisfy $D_0 = 1$. For a normalized higher derivation $D = \{D_n\}_{n\geq 0}$ it is easy to verify from relation (3.2) that $D_n(1) = 0$ for all n > 0. For more on the structure of higher derivations on an algebra, we refer the reader to [9], [11] and [12]. For a higher derivation on A, we have already described in [2] the corresponding Lie derivative on the ordinary Hochschild homology; we are now ready to introduce the action of a higher derivation on the q-Hochschild homology groups of order Y of the algebra A.

Lemma 3.2. Let A be a commutative algebra over \mathbb{C} and let $D = \{D_n\}_{n\geq 0}$ be a (normalized) higher derivation on A. Then, for any given $k \geq 0$, the higher derivation D induces an endomorphism $L_D^k : \mathcal{L}(A) \longrightarrow \mathcal{L}(A)$ of the functor $\mathcal{L}(A) : Fin_* \longrightarrow Vect$.

Proof. It suffices to prove that for each $k \ge 0$, we have an endomorphism $L_D^k : \mathcal{L}(A) \longrightarrow \mathcal{L}(A)$ of the functor $\mathcal{L}(A) : Fin_* \longrightarrow Vect$ restricted to the subcategory Γ of Fin_* . Given the higher derivation $D = \{D_n\}_{n\ge 0}$ and the integer $k \ge 0$, we define morphisms $(\forall n \ge 0)$

$$(a_0 \otimes a_1 \otimes \ldots \otimes a_n) \mapsto \sum_{\substack{(p_0, p_1, \ldots, p_n)\\p_0 + p_1 + \ldots + p_n = k}}^{L_D^k([n])} (D_{p_0}(a_0) \otimes D_{p_1}(a_1) \otimes \ldots \otimes D_{p_n}(a_n))$$
(3.3)

For the sake of convenience, we will often denote a sum as in (3.3) taken over all ordered tuples $(p_0, p_1, ..., p_n)$ of non-negative integers such that $p_0 + p_1 + ... + p_n = k$ simply as

$$(a_0 \otimes a_1 \otimes \dots \otimes a_n) \mapsto \sum_{p_0 + p_1 + \dots + p_n = k} (D_{p_0}(a_0) \otimes D_{p_1}(a_1) \otimes \dots \otimes D_{p_n}(a_n))$$
(3.4)

Let $\phi : [m] \longrightarrow [n]$ be a morphism in Γ . We let N(j) denote the cardinality of the set $\phi^{-1}(j) \subseteq [m]$ for any $0 \leq j \leq n$. Then, we have, for any $(a_0 \otimes a_1 \otimes \ldots \otimes a_m) \in A \otimes A^{\otimes m}$:

$$L_{D}^{k}([n]) \circ \mathcal{L}(A)(\phi)(a_{0} \otimes a_{1} \otimes ... \otimes a_{m}) = L_{D}^{k}([n]) \left(\bigotimes_{j=0}^{n} \prod_{\phi(i)=j} a_{i} \right)$$

$$= \sum_{p_{0}+p_{1}+...+p_{n}=k} \left(\bigotimes_{j=0}^{n} D_{p_{j}} \left(\prod_{\phi(i)=j} a_{i} \right) \right)$$

$$= \sum_{p_{0}+p_{1}+...+p_{n}=k} \left(\bigotimes_{j=0}^{n} \sum_{q_{1}+...+q_{N(j)}=p_{j}} \prod_{\phi(i)=j} D_{q_{i}}(a_{i}) \right)$$

$$= \sum_{r_{0}+r_{1}+...+r_{m}=k} \left(\bigotimes_{j=0}^{n} \prod_{\phi(i)=j} D_{r_{i}}(a_{i}) \right)$$

$$= \sum_{r_{0}+r_{1}+...+r_{m}=k} \mathcal{L}(A)(\phi) \left(\bigotimes_{i=0}^{m} D_{r_{i}}(a_{i}) \right)$$

$$= \mathcal{L}(A)(\phi) \circ L_{D}^{k}([m])(a_{0} \otimes a_{1} \otimes ... \otimes a_{m})$$

$$(3.5)$$

From (3.5), it follows that for each $k \ge 0$, $L_D^k : \mathcal{L}(A) \longrightarrow \mathcal{L}(A)$ is an endomorphism of the functor $\mathcal{L}(A)$ restricted to Γ and hence, taking colimits as in the proof of Lemma 2.3, L_D^k induces an endomorphism of the functor $\mathcal{L}(A) : Fin_* \longrightarrow Vect$.

Proposition 3.3. Let $q \in \mathbb{C}$ be a primitive N-th root of unity. Let A be a commutative algebra over \mathbb{C} and let Y be a pointed simplicial finite set. Then, given a higher derivation $D = \{D_n\}_{n\geq 0}$ on A, for each $k \geq 0$, we have an induced morphism:

$$L_D^{Y,k}: {}_qHH^Y_*(A) = \bigoplus_{n=0}^{\infty} {}_qHH^Y_n(A) \longrightarrow {}_qHH^Y_*(A) = \bigoplus_{n=0}^{\infty} {}_qHH^Y_n(A)$$
(3.6)

on the q-Hochschild homology groups of A of order Y.

Proof. From Lemma 3.2, we know that for any $k \ge 0$, we have an endomorphism $L_D^k : \mathcal{L}(A) \longrightarrow \mathcal{L}(A)$ of the functor $\mathcal{L}(A) : Fin_* \longrightarrow Vect$. Composing with the functor $Y : \Delta^{op} \longrightarrow Fin_*$ corresponding to the pointed simplicial finite set Y, we have an induced endomorphism $L_D^{Y,k} : \mathcal{L}^Y(A) \longrightarrow \mathcal{L}^Y(A)$ of the functor $\mathcal{L}^Y(A) = \mathcal{L}(A) \circ Y : \Delta^{op} \xrightarrow{Y} Fin_* \xrightarrow{\mathcal{L}(A)} Vect$. Accordingly, $L_D^{Y,k}$ induces an endomorphism on the homology objects of the N-complex $(\mathcal{L}^Y(A), qb)$ associated to the simplicial vector space $\mathcal{L}^Y(A)$ as in (2.5). Hence, we have induced morphisms $L_D^{Y,k} : {}_{q}HH^Y_*(A) \longrightarrow {}_{q}HH^Y_*(A)$ on the q-Hochschild homology groups of order Y.

We have already shown in the last section that ${}_{q}HH^{Y}_{*}(A)$ is a left module over the universal enveloping algebra $\mathcal{H} = \mathcal{U}(Der(A))$ of the Lie algebra of derivations on A. Given a higher derivation $D = \{D_k\}_{k>0}$

on a \mathbb{C} -algebra A, Mirzavaziri [9] has shown that the higher derivation D may be expressed as follows: there exists a sequence of ordinary derivations $\{d_n\}_{n\geq 0}, d_n \in Der(A)$ such that:

$$D_k = \sum_{i=1}^k \left(\sum_{\sum_{j=1}^i r_j = k} \left(\prod_{j=1}^i \frac{1}{r_j + \dots + r_i} \right) d_{r_1} \dots d_{r_i} \right)$$
(3.7)

From (3.7), it is clear that given a higher derivation $D = \{D_k\}_{k\geq 0}$ on A, each D_k is an element of the Hopf algebra $\mathcal{H} = \mathcal{U}(Der(A))$. Hence, it follows from Proposition 2.6 that each operator $D_k \in \mathcal{H}$ induces a morphism $L_{D_k}^Y : {}_{q}HH_*^Y(A) \longrightarrow {}_{q}HH_*^Y(A)$ on the q-Hochschild homology groups of order Y. We will now show that the morphisms $L_{D_k}^Y$, $k \geq 1$ are identical to the morphisms $L_D^{Y,k} : {}_{q}HH_*^Y(A) \longrightarrow {}_{q}HH_*^Y(A)$ described in Proposition 3.3.

Proposition 3.4. Let $q \in \mathbb{C}$ be a primitive N-th root of unity. Let A be a commutative algebra over \mathbb{C} and let Y be a pointed simplicial finite set. Let $D = \{D_k\}_{k\geq 0}$ denote a higher derivation on A. For any $k \geq 1$, let $L_{D_k}^Y : {}_{q}HH_*^Y(A) \longrightarrow {}_{q}HH_*^Y(A)$ be the morphism induced by $D_k \in \mathcal{H}$ as in Proposition 2.6 and let $L_D^{Y,k} : {}_{q}HH_*^Y(A) \longrightarrow {}_{q}HH_*^Y(A)$ be the morphism induced by D as in Proposition 3.3. Then, we have $L_{D_k}^Y = L_D^{Y,k} : {}_{q}HH_*^Y(A) \longrightarrow {}_{q}HH_*^Y(A)$.

Proof. From the proofs of Lemma 2.3 and Lemma 2.5, it follows that the element $D_k \in \mathcal{H} = \mathcal{U}(Der(A))$ of the universal enveloping algebra \mathcal{H} defines an endomorphism $L_{D_k} : \mathcal{L}(A) \longrightarrow \mathcal{L}(A)$ of the functor $\mathcal{L}(A) : Fin_* \longrightarrow Vect$. From the proofs of Proposition 2.4 and Proposition 2.6, it is clear that the morphism $L_{D_k}^Y : {}_{q}HH_*^Y(A) \longrightarrow {}_{q}HH_*^Y(A)$ is obtained from the endomorphism $L_{D_k}^Y : \mathcal{L}^Y(A) \longrightarrow \mathcal{L}^Y(A) \longrightarrow \mathcal{L}^Y(A) = \mathcal{L}(A) \circ Y$ induced by $L_{D_k} : \mathcal{L}(A) \longrightarrow \mathcal{L}(A)$.

Similarly, from Lemma 3.2, it follows that the higher derivation D induces an endomorphism L_D^k : $\mathcal{L}(A) \longrightarrow \mathcal{L}(A)$ of the functor $\mathcal{L}(A) : Fin_* \longrightarrow Vect$. From the proof of Proposition 3.3, it follows that the morphism $L_D^{Y,k} : {}_{q}HH_*^Y(A) \longrightarrow {}_{q}HH_*^Y(A)$ is obtained from the endomorphism $L_D^{Y,k} : \mathcal{L}^Y(A) \longrightarrow \mathcal{L}^Y(A)$ of the functor $\mathcal{L}^Y(A) = \mathcal{L}(A) \circ Y$ induced by $L_D^k : \mathcal{L}(A) \longrightarrow \mathcal{L}(A)$. Hence, in order to prove the result, we need to show that $L_D^k = L_{D_k}$ as endomorphisms of the functor $\mathcal{L}(A) : Fin_* \longrightarrow Vect$. As before, it suffices to show that $L_D^k = L_{D_k}$ as endomorphisms of the functor $\mathcal{L}(A)$ restricted to the subcategory Γ of Fin_* .

Let $\Delta : \mathcal{H} \longrightarrow \mathcal{H} \otimes \mathcal{H}$ denote the coproduct on \mathcal{H} . For any $h \in \mathcal{H}$ and any $n \geq 0$, we write $\Delta^n(h) = \sum h_{(1)} \otimes h_{(2)} \otimes \ldots \otimes h_{(n+1)}$. Then, we have an induced endomorphism $L_h : \mathcal{L}(A) \longrightarrow \mathcal{L}(A)$ of the functor $\mathcal{L}(A) : Fin_* \longrightarrow Vect$. Further, we note that the equation

$$L_{h}([n])(a_{0} \otimes a_{1} \otimes ... \otimes a_{n}) = \sum (h_{(1)}(a_{0}) \otimes h_{(2)}(a_{1}) \otimes ... h_{(n+1)}(a_{n})) \quad \forall (a_{0} \otimes ... \otimes a_{n}) \in \mathcal{L}(A)([n]) \quad (3.8)$$

holds for all $h \in Der(A) \subseteq \mathcal{H}$ and hence for all $h \in \mathcal{H} = \mathcal{U}(Der(A))$. From the definition of L_D^k in Lemma 3.2, we now see that in order to show that $L_D^k = L_{D_k}$, it suffices to show that

$$\Delta^{n}(D_{k}) = \sum_{\sum_{i=0}^{n} p_{i}=k} D_{p_{0}} \otimes D_{p_{1}} \otimes \dots \otimes D_{p_{n}} \quad \forall \ n \ge 0$$
(3.9)

We will prove (3.9) by induction on k. For any given $n \ge 0$, it is clear that the equation (3.9) holds for k = 0 and k = 1. We now suppose that its holds for any $0 \le k \le K$. From [9, Proposition 2.1], we know that

$$D_{M+1} = \frac{1}{M+1} \sum_{m=0}^{M} d_{m+1} D_{M-m} \qquad \forall M \ge 0$$
(3.10)

where the d_{m+1} are the derivations corresponding to the higher derivation $D = \{D_n\}_{n\geq 0}$ as described in (3.7). From (3.10), it follows that $\Delta^n(D_{K+1}) = \frac{1}{K+1} \sum_{m=0}^K \Delta^n(d_{m+1}) \Delta^n(D_{K-m})$ and hence

$$\Delta^{n}(D_{K+1}) = \frac{1}{K+1} \sum_{m=0}^{K} \left(\sum_{j=0}^{n} d_{m+1}^{j} \right) \left(\sum_{\sum_{i=0}^{n} p_{i} = K-m}^{N} D_{p_{0}} \otimes D_{p_{1}} \otimes \dots \otimes D_{p_{n}} \right)$$
(3.11)

where d_{m+1}^j denotes the term $1 \otimes 1 \otimes ... \otimes d_{m+1} \otimes ... \otimes 1$ (i.e., d_{m+1} at the *j*-th position) appearing in the expression for $\Delta^n(d_{m+1})$. We now consider ordered tuples $(p'_0, p'_1, ..., p'_n)$ of non-negative integers such that $p'_0 + p'_1 + ... + p'_n = K + 1$. Then, we can write:

$$\sum_{m=0}^{K} \left(\sum_{j=0}^{n} d_{m+1}^{j} \right) \left(\sum_{\substack{\sum_{i=0}^{n} p_{i} = K-m}} D_{p_{0}} \otimes D_{p_{1}} \otimes \dots \otimes D_{p_{n}} \right)$$

$$= \sum_{\substack{\sum_{i=0}^{n} p_{i}' = K+1}} \sum_{j=0, p_{j}' \ge 1}^{n} \sum_{m=0}^{p_{j}'-1} d_{m+1}^{j} \cdot (D_{p_{0}'} \otimes \dots \otimes D_{p_{j}'-m-1} \otimes \dots \otimes D_{p_{n}'})$$

$$= \sum_{\substack{\sum_{i=0}^{n} p_{i}' = K+1}} \sum_{j=0, p_{j}' \ge 1}^{n} \sum_{m=0}^{p_{j}'-1} (D_{p_{0}'} \otimes \dots \otimes d_{m+1} D_{p_{j}'-m-1} \otimes \dots \otimes D_{p_{n}'})$$
(3.12)

From (3.10), it follows that $\sum_{m=0}^{p'_j-1} d_{m+1} D_{p'_j-m-1} = p'_j \cdot D_{p'_j}$ and hence:

$$\sum_{m=0}^{p'_j-1} \left(D_{p'_0} \otimes \ldots \otimes d_{m+1} D_{p'_j-m-1} \otimes \ldots \otimes D_{p'_n} \right) = p'_j \cdot \left(D_{p'_0} \otimes \ldots \otimes D_{p'_j} \otimes \ldots \otimes D_{p'_n} \right)$$
(3.13)

Combining (3.11), (3.12) and (3.13), it follows that:

$$\Delta^{n}(D_{K+1}) = \frac{1}{K+1} \left(\sum_{\substack{\sum_{i=0}^{n} p'_{i}=K+1 \\ j=0,p'_{j}\geq 1}} \sum_{j=0,p'_{j}\geq 1}^{n} p'_{j} \cdot (D_{p'_{0}}\otimes \ldots \otimes D_{p'_{j}}\otimes \ldots \otimes D_{p'_{n}}) \right)$$

$$= \frac{1}{K+1} \left(\sum_{\substack{\sum_{i=0}^{n} p'_{i}=K+1 \\ \sum_{i=0}^{n} p'_{i}=K+1}} (K+1) \cdot (D_{p'_{0}}\otimes \ldots \otimes D_{p'_{j}}\otimes \ldots \otimes D_{p'_{n}}) \right)$$

$$= \sum_{\substack{\sum_{i=0}^{n} p'_{i}=K+1 \\ \sum_{i=0}^{n} p'_{i}=K+1}} (D_{p'_{0}}\otimes \ldots \otimes D_{p'_{n}}\otimes \ldots \otimes D_{p'_{n}})$$

$$(3.14)$$

This proves the result of (3.9) for K + 1.

_	

4 Action on bivariant q-Hochschild cohomology groups

Let A be a commutative algebra over \mathbb{C} and let $q \in \mathbb{C}$ be a primitive N-th root of unity. Let Y be a pointed simplicial finite set. In this section, we will define the bivariant q-Hochschild cohomology groups $\{HH_Y^n(A,A)\}_{n\in\mathbb{Z}}$ of A of order Y and show that a derivation D on A induces a morphism $\underline{L}_D^{Y,n}(A,A): {}_{q}HH_Y^n(A,A) \longrightarrow {}_{q}HH_Y^n(A,A)$. For the ordinary bivariant Hochschild cohomology groups $\{HH^n(A,A)\}_{n\in\mathbb{Z}}$, we have already studied this morphism in [1]. For the definition and properties of ordinary bivariant Hochschild cohomology, we refer the reader to [7, § 5.1] (see also the original paper of Jones and Kassel [4]). We start by defining the bivariant q-Hochschild cohomology groups of order Y.

Definition 4.1. Let $(\mathcal{L}^{Y}(A), _{q}b)$ be the N-complex corresponding to the simplicial vector space $\mathcal{L}^{Y}(A)$ as defined in (2.5). We consider the q-Hom complex $\underline{Hom}(\mathcal{L}^{Y}(A), \mathcal{L}^{Y}(A))$ of these N-complexes which is defined as follows:

$$\underline{Hom}(\mathcal{L}^{Y}(A), \mathcal{L}^{Y}(A))_{n} := \prod_{i \in \mathbb{Z}} Hom_{Vect}(\mathcal{L}^{Y}(A)_{i}, \mathcal{L}^{Y}(A)_{i+n})$$
(4.1)

Further, if the family $f = \{f_i : \mathcal{L}^Y(A)_i \longrightarrow \mathcal{L}^Y(A)_{i+n}\}_{i \in \mathbb{Z}}$ is an element of $\underline{Hom}(\mathcal{L}^Y(A), \mathcal{L}^Y(A))_n$, then the differential $_q\partial_n : \underline{Hom}(\mathcal{L}^Y(A), \mathcal{L}^Y(A))_n \longrightarrow \underline{Hom}(\mathcal{L}^Y(A), \mathcal{L}^Y(A))_{n-1}$ is defined by setting:

$${}_{q}\partial_{n}(f) := \{{}_{q}\partial_{n}(f)_{i} : \mathcal{L}^{Y}(A)_{i} \longrightarrow \mathcal{L}^{Y}(A)_{i+n-1}\}_{i \in \mathbb{Z}}$$
$${}_{q}\partial_{n}(f)_{i} = {}_{q}b_{i+n} \circ f_{i} - {}_{q}{}^{n}f_{i-1} \circ {}_{q}b_{i}$$
(4.2)

For any given $n \in \mathbb{Z}$, we define the bivariant q-Hochschild cohomology group $_{q}HH^{n}_{Y}(A, A)$ of A of order Y to be the homology object

$${}_{q}HH^{n}_{Y}(A,A) := H_{\{-n\}}(\underline{Hom}(\mathcal{L}^{Y}(A),\mathcal{L}^{Y}(A)),{}_{q}\partial)$$

$$(4.3)$$

of the N-complex $(\underline{Hom}(\mathcal{L}^{Y}(A), \mathcal{L}^{Y}(A)), _{q}\partial).$

We mention that it follows from [5, Proposition 1.8] that the q-Hom complex $(\underline{Hom}(\mathcal{L}^{Y}(A), \mathcal{L}^{Y}(A)), q\partial)$ as defined in (4.1) and (4.2) is also an N-complex. We now make the convention that if $M = \bigoplus_{i \in \mathbb{Z}} M_i$ is a graded vector space and $f = \{f_i : M_i \longrightarrow M_{i+m}\}_{i \in \mathbb{Z}}$ and $g = \{g_i : M_i \longrightarrow M_{i+n}\}_{i \in \mathbb{Z}}$ are two morphisms of homogenous degree m and n respectively, we will write $[f,g] := f \circ g - q^{mn}g \circ f$ for their graded q-commutator.

Lemma 4.2. Let $L^m = \{L_i^m\}_{i \in \mathbb{Z}}$ denote a collection of maps $L_i^m : \mathcal{L}^Y(A)_i \longrightarrow \mathcal{L}^Y(A)_{i+m}$. Given an element $f = \{f_i\}_{i \in \mathbb{Z}}$ in $\underline{Hom}(\mathcal{L}^Y(A), \mathcal{L}^Y(A))_n$, we define $\underline{L}^m(f) \in \underline{Hom}(\mathcal{L}^Y(A), \mathcal{L}^Y(A))_{m+n}$ by setting:

$$\underline{L}^{m}(f)_{i}: \mathcal{L}^{Y}(A)_{i} \longrightarrow \mathcal{L}^{Y}(A)_{i+m+n} \qquad \underline{L}^{m}(f)_{i}:= L^{m}_{i+n} \circ f_{i} - q^{mn} f_{i+m} \circ L^{m}_{i}$$
(4.4)

Then, if $q^{2m} = 1$, the endomorphism $\underline{L}^m : \underline{Hom}(\mathcal{L}^Y(A), \mathcal{L}^Y(A)) \longrightarrow \underline{Hom}(\mathcal{L}^Y(A), \mathcal{L}^Y(A))$ of homogeneous degree *m* satisfies the following relation:

$$[_{q}\partial, \underline{L}^{m}](f) = [_{q}b, L^{m}]f + q^{mn+m+n}f[L^{m}, _{q}b] \qquad \forall \ f \in \underline{Hom}(\mathcal{L}^{Y}(A), \mathcal{L}^{Y}(A))_{n}, n \in \mathbb{Z}$$
(4.5)

Proof. We consider:

$$\begin{array}{rcl} ((_{q}\partial \circ \underline{L}^{m})(f))_{i} &= _{q}b_{i+m+n} \circ \underline{L}^{m}(f)_{i} - q^{m+n}\underline{L}^{m}(f)_{i-1} \circ _{q}b_{i} \\ &= _{q}b_{i+m+n} \circ L^{m}_{i+n} \circ f_{i} - q^{mn}_{q}b_{i+m+n} \circ f_{i+m} \circ L^{m}_{i} \\ &- q^{m+n}L^{m}_{i+n-1} \circ f_{i-1} \circ _{q}b_{i} + q^{mn+m+n}f_{i+m-1} \circ L^{m}_{i-1} \circ _{q}b_{i} \\ ((\underline{L}^{m} \circ _{q}\partial)(f))_{i} &= L^{m}_{i+n-1} \circ _{q}\partial(f)_{i} - q^{m(n-1)}_{q}\partial(f)_{i+m} \circ L^{m}_{i} \\ &= L^{m}_{i+n-1} \circ _{q}b_{i+n} \circ f_{i} - q^{n}L^{m}_{i+n-1} \circ f_{i-1} \circ _{q}b_{i} \\ &- q^{m(n-1)}_{q}b_{i+m+n} \circ f_{i+m} \circ L^{m}_{i} + q^{mn-m+n}f_{i+m-1} \circ _{q}b_{i+m} \circ L^{m}_{i} \end{array}$$

$$\tag{4.6}$$

From (4.6), it follows that:

$$\begin{array}{l} ([_{q}\partial,\underline{L}^{m}](f))_{i} = ((_{q}\partial\circ\underline{L}^{m})(f))_{i} - q^{-m}((\underline{L}^{m}\circ_{q}\partial)(f))_{i} \\ = (_{q}b_{i+m+n}\circ L_{i+n}^{m} - q^{-m}L_{i+n-1}^{m}\circ_{q}b_{i+n})\circ f_{i} + f_{i+m-1}\circ q^{mn+m+n}(L_{i-1}^{m}\circ_{q}b_{i} - q^{-2m}(q^{-m}_{q}b_{i+m}\circ L_{i}^{m})) \\ - q^{mn}(1 - q^{-2m})_{q}b_{i+m+n}\circ f_{i+m}\circ L_{i}^{m} - q^{m+n}(1 - q^{-2m})L_{i+n-1}^{m}\circ f_{i-1}\circ_{q}b_{i} \end{array}$$

Combining with the fact that $q^{2m} = 1$, it follows from the above expression that:

$$[_{q}\partial, \underline{L}^{m}](f) = [_{q}b, L^{m}]f + q^{mn+m+n}f[L^{m}, _{q}b]$$

$$(4.7)$$

Proposition 4.3. Let $q \in \mathbb{C}$ be a primitive N-th root of unity. Let A be a commutative algebra over \mathbb{C} and let $D : A \longrightarrow A$ be a derivation on A. Let Y be a pointed simplicial finite set. Then, for each $n \in \mathbb{Z}$, the derivation D on A induces a morphism

$$\underline{L}_{D}^{Y,n}: {}_{q}HH^{n}_{Y}(A,A) \longrightarrow {}_{q}HH^{n}_{Y}(A,A)$$

$$(4.8)$$

on the bivariant q-Hochschild cohomology groups of order Y.

Proof. From the proof of Proposition 2.6, we know that the derivation D induces an endomorphism $L_D^Y : \mathcal{L}^Y(A) \longrightarrow \mathcal{L}^Y(A)$ of the simplicial vector space $\mathcal{L}^Y(A)$. Accordingly, we have a collection of maps $L_D^Y = \{L_{D,i}^Y : \mathcal{L}^Y(A)_i \longrightarrow \mathcal{L}^Y(A)_i\}_{i \in \mathbb{Z}}$ determined by the endomorphism L_D^Y . Applying Lemma 4.2 with m = 0 (and hence $q^{2m} = 1$), it follows that L_D^Y determines a morphism

$$\underline{L}_D^Y : \underline{Hom}(\mathcal{L}^Y(A), \mathcal{L}^Y(A)) \longrightarrow \underline{Hom}(\mathcal{L}^Y(A), \mathcal{L}^Y(A))$$
(4.9)

of homogeneous degree m = 0 satisfying:

$$[_{q}\partial, \underline{L}_{D}^{Y}](f) = [_{q}b, L_{D}^{Y}]f + q^{n}f[L_{D}^{Y}, _{q}b] \qquad \forall f \in \underline{Hom}(\mathcal{L}^{Y}(A), \mathcal{L}^{Y}(A))_{n}, n \in \mathbb{Z}$$
(4.10)

Again, since $L_D^Y : \mathcal{L}^Y(A) \longrightarrow \mathcal{L}^Y(A)$ is a morphism of simplicial vector spaces, the morphisms $\{L_{D,i}^Y : \mathcal{L}^Y(A)_i \longrightarrow \mathcal{L}^Y(A)_i\}_{i \in \mathbb{Z}}$ commute with the face maps $d_i^j : \mathcal{L}^Y(A)_i \longrightarrow \mathcal{L}^Y(A)_{i-1}, 0 \le j \le i, i \ge 0$ of the simplicial vector space $\mathcal{L}^Y(A)$. By definition, ${}_{q}b_i := \sum_{j=0}^{i} q^j d_i^j$ and hence we have:

$$[_{q}b, L_{D}^{Y}] = [L_{D}^{Y}, _{q}b] = 0$$
(4.11)

Applying this to (4.10), it follows that:

$$[_{q}\partial, \underline{L}_{D}^{Y}] = {}_{q}\partial \circ \underline{L}_{D}^{Y} - q^{-m}\underline{L}_{D}^{Y} \circ {}_{q}\partial = {}_{q}\partial \circ \underline{L}_{D}^{Y} - \underline{L}_{D}^{Y} \circ {}_{q}\partial = 0$$
(4.12)

From (4.12), it follows that the endomorphism $\underline{L}_D^Y : \underline{Hom}(\mathcal{L}^Y(A), \mathcal{L}^Y(A)) \longrightarrow \underline{Hom}(\mathcal{L}^Y(A), \mathcal{L}^Y(A))$ of degree zero commutes with the differential $_q\partial$ on the *N*-complex $\underline{Hom}(\mathcal{L}^Y(A), \mathcal{L}^Y(A))$. This induces morphisms ($\forall n \in \mathbb{Z}$):

$${}_{q}HH^{n}_{Y}(A,A) = H_{\{-n\}}(\underline{Hom}(\mathcal{L}^{Y}(A),\mathcal{L}^{Y}(A)),{}_{q}\partial)$$

$$\underline{L}^{Y,n}_{D} \downarrow \qquad (4.13)$$

$${}_{q}HH^{n}_{Y}(A,A) = H_{\{-n\}}(\underline{Hom}(\mathcal{L}^{Y}(A),\mathcal{L}^{Y}(A)),{}_{q}\partial)$$

on the bivariant q-Hochschild cohomology groups of order Y.

References

- A. Banerjee, Cartan homotopy formulae and the bivariant Hochschild complex, C. R. Math. Acad. Sci. Paris. Ser I, Vol 347, (2009), 997–1000.
- [2] A. Banerjee, Higher derivations and Hochschild homology, C. R. Math. Rep. Acad. Sci. Canada Vol. 33 (2) (2011), pp. 33–43.
- [3] M. Dubois-Violette, $d^N = 0$: generalized homology, K-Theory 14 (1998), no. 4, 371–404.
- [4] J. D. S. Jones, C. Kassel, Bivariant cyclic theory, *K-Theory* **3** (4) (1989) 339–365.
- [5] M. M. Kapranov, On the q-analog of homological algebra, Preprint (1996), arXiv: q-alg/9611005.
- [6] J.-L. Loday, Opérations sur l'homologie cyclique des algèbres commutatives. Invent. Math. Vol. 96 (1989), no. 1, 205–230.
- [7] J.-L. Loday, Cyclic homology. Appendix E by Maria O. Ronco. Second edition. Chapter 13 by the author in collaboration with Teimuraz Pirashvili. *Grundlehren der Mathematischen Wis*senschaften, **301**. Springer-Verlag, Berlin, 1998.
- [8] H. Matsumura, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, Vol. 8, Cambridge University Press, Cambridge, 1986.
- [9] M. Mirzavaziri, Characterization of higher derivations on algebras. Comm. Algebra, Vol. 38 (2010), 981–987.
- [10] T. Pirashvili, Hodge decomposition for higher order Hochschild homology. Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 2, 151–179.
- [11] A. Roy, R. Sridharan, Higher derivations and central simple algebras, Nagoya Math. J., Vol. 32 (1968), 21–30.
- [12] R. M. Skjelnes, Computing Hasse-Schmidt derivations and Weil restrictions over jets, Journal of Algebra, Vol. 411 (2014), 114–128.