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A LOWER BOUND FOR THE NUMBER OF CONJUGACY
CLASSES OF A FINITE GROUP

ATTILA MAROTI

ABSTRACT. Every finite group whose order is divisible by a prime p has at
least 24/p — 1 conjugacy classes.

1. INTRODUCTION

Let k(G) denote the number of conjugacy classes of a finite group G. This is also the
number of complex irreducible characters of G. Bounding k(G) is a fundamental
problem in group and representation theory.

Concerning Problem 3 of the list of 40 problems of R. Brauer [2], the best known
asymptotic general lower bounds for k(G) in terms of the order of G are almost
logarithmic and are due to L. Pyber [19] and T. M. Keller [14]. In this paper we
consider a slightly different point of view in establishing lower bounds for k(G). We
wish to give a lower bound for k(G) in terms of a prime divisor p of |G|. This is
related to Problem 21 in [2].

Let G be a finite group such that the order of G contains a prime p with exact
exponent 1. Pyber observed that results of Brauer [I] imply that G contains at
least 24/p — 1 conjugacy classes. Motivated by this observation Pyber asked various
questions concerning lower bounds for k(G) in terms of the prime divisors of |G|. In
response to these questions (and motivated by trying to find explicit lower bounds
for the number of complex irreducible characters in a block) L. Héthelyi and B.
Kiilshammer obtained various results [7], [8] for solvable groups. For example they
proved in [7] that every solvable finite group G whose order is divisible by p has
at least 24/p — I conjugacy classes. Later G. Malle [16, Section 2] showed that if
G is a minimal counterexample to the inequality k(G) > 2v/p — 1 with p dividing
|G| then G has the form HV where V is an irreducible faithful H-module for a
finite group H with (|H|,|V|) = 1 where p is the prime dividing |V|. He also
showed that H cannot be an almost quasisimple group. Using these results, Keller
[13] showed that there exists a universal constant C' so that whenever p > C then
k(G) > 24/p — 1. In a later paper Héthelyi, E. Horvéith, Keller and A. Mar6ti [6]
proved that by disregarding at most finitely many non-solvable p-solvable groups
G, we have k(G) > 2y/p—1 with equality if and only if \/p —1 is an integer,
G = Cp x C =1 and Cg(Cp) = Cp. However since the constant C' in Keller’s
theorem was unspecified, there had been no quantitative information on what was
meant by at most finitely many in the afore-mentioned theorem.
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In this paper we answer this question for all primes p.

Theorem 1.1. FEvery finite group G whose order is divisible by a prime p has at
least 2+/p — 1 conjugacy classes. Equality occurs if and only if v/p — 1 is an integer,
G = Cp X O\/pTl and Og(cp) = Op.

2. A REDUCTION

Let G be a minimal counterexample to the statement of Theorem [l By [7] (and
the equality by [6] Theorem 2.1]) we know that G is not solvable. Also, by [6]
Theorem 3.1], we may assume that G is a p-solvable group (whose order is divisible
by p). Now we may proceed as in [6, Page 428]. Let V be a minimal normal
subgroup in G. If |G/V| is divisible by p then, by the minimality of G, we have
k(G) > k(G/V) > 24/p—1, a contradiction. So p divides |V|, and since G is p-
solvable, we see that V is an elementary abelian p-group. By this argument we
see that V' is the unique minimal normal subgroup of G. By the Schur-Zassenhaus
theorem, there is a complement H of V in G. So G has the form HV where V is a
coprime, faithful and irreducible H-module.

In the papers [20] and [21] all non-nilpotent finite groups are classified with at most
14 conjugacy classes. By going through these lists of groups we see that no group
G of the form described in the previous paragraph is a counterexample to Theorem
[LTl So we have k(G) > 15. This means that we can assume that 2¢/p —1 > 15 is
true. In other words, that p > 59.

There is a well-known expression for k(G) = k(HV') which is a consequence of the
so-called Clifford-Gallagher formula. Let n(H, V') denote the number of H-orbits on
V- and let v1, ..., v, v) be representatives of these orbits. Then [22, Proposition
3.1b] says that k(HV) = Z?:(?V) E(Cg(v;)). This is at least k(H) +n(H,V) — 1.

Theorem [[T]is then a consequence of the following result (with the roles of H and
G interchanged).

Theorem 2.1. Let V' be an irreducible and faithful FG-module for some finite
group G and finite field F' of characteristic p at least 59. Suppose that p does not
divide |G|. Then we have k(G) + n(G,V) —1 > 2y/p — T with equality if and only
if vV/p— 1 is an integer, |V| = |F| =p and |G| = v/p — 1.

Theorem 2.1] has implicitly been proved in [7] in case G is solvable, without a
consideration of when equality can occur.

3. BASIC RESULTS, NOTATIONS AND ASSUMPTIONS

In the rest of the paper we are going to prove Theorem 2.1l For this purpose let us
fix some notations and assumptions.

Let V' be an irreducible and faithful F'G-module for some finite group G and finite
field F' of characteristic p. Suppose that p does not divide |G| and it is at least
59. The size of the field F' will be denoted by ¢, the dimension of V over F' by n,
and the center of GL(n,q) by Z. We denote the number of orbits of G on V by
n(G,V). We will use the following trivial observation throughout the paper.

Lemma 3.1. With the notations and assumptions above, |V|/|G| < n(G,V).
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However we will also need a more sophisticated lower bound for n(G, V). For this
we must introduce some more notations (which will also be valid for the rest of the

paper).

Suppose that G transitively permutes a set {V1, ..., V;} of subspaces of V with ¢ an
integer with 1 <t < n as large as possible with the property that V =V, &---®V,.
Let B be the kernel of this action of G on the set of subspaces. Note that G/B
is a transitive permutation group of degree t. The subgroup B is isomorphic to a
subdirect product of ¢ copies of a finite group 7. In other words B is isomorphic
to a subgroup of 77 X --- x T} where for each ¢ with 1 < ¢ < ¢ the vector space V;
is a primitive (faithful) T;-module and T; = T'. Suppose that T; has k orbits on V;
(for each 7). Let Hy be the stabilizer of V7 in G. Then the following is true.

Lemma 3.2. With the above notations and assumptions,
t+k—-1
k—1

n(Hy, Vi) <max{t+1,k} < ( ) <n(G,V).

Proof. For k = n(Hy, V1) this is [4l Lemma 2.6]. For a proof of this slightly stronger
form we may assume that G is as large as possible subject to the restrictions above

(fixed t, T, k). Then G =2 T S; and in this case n(G, V) is precisely (t-;l:l) O

When G is solvable we will also use the following consequence of a result of S. M.
Seager [23, Theorem 1].

Proposition 3.3. Let V' be a faithful primitive FG-module for a finite solvable
group G not contained in TL(1,p™) where F is a field of prime order p > 59 and
|V| =p". Then p™/?/12n < n(G,V).

As is suggested by Lemma [B1] in various situations it will be useful to bound the
size of G from above. A useful tool in doing so is the following result of P. P. Palfy
and Pyber [I7, Proposition 4].

Proposition 3.4. Let X be any subgroup of the symmetric group S,, whose order

is coprime to a prime p. If m > 1 then |X| < p™~ L.

A third means to attack Theorem [ZT]is to bound k(G).
Lemma 3.5. If G has an abelian subgroup of index at most |V|1/2/(2\/p —1) and
n(G,V) <2p—1, then 2¢/p — 1 < k(G).

Proof. If G has an abelian subgroup A with |G : A| < |V|1/2/(2\/p — 1), then

Gl(2v/p=1)/[V]'/* < |A].

Now |A|/|G : A| < k(G), by a result of Ernest [3, page 502] saying that whenever
Y is a subgroup of a finite group X then we have k(Y)/|X : Y| < k(X). This gives
(4(p — 1)|G|)/|V| < k(G). Then, by Lemma 3] we obtain 2¢/p — 1 < k(G). O
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4. THE cLASS Cq

Our first aim in proving Theorem [2] is to describe (as much as possible) the
possibilities for G and V' with the condition that n(G, V) < 24/¢ — 1 where q is the
size of the underlying field F'. For this we need to introduce a class of pairs (G, V)
which we denote by C,.

In this paragraph we define a class of pairs (G, V') where V is an FG-module. Let W
be a not necessarily faithful but coprime @ H-module for some finite field extension
Q@ of F and some finite group H. We write Stabgl(H, W) for the class of pairs
(Hy, W1) with the property that Wy is a Q1 Hi-module with F < @7 < @ where
Wy is just W viewed as a QQ1-vector space and H; is some group with the following
property. If ¢ : Hi — GL(W;) and ¢ : H — GL(W) denote the natural, not
necessarily injective homomorphisms, then ¢(Hy) N GL(W) = ¢(H). We write
Ind(H, W) for the class of pairs (Hy, W;) with the property that Wi = Indp' (W)
for some group Hy with H < H;. Finally, let C; be the class of all pairs (G,V)
with the property that V is a finite, faithful, coprime and irreducible F'G-module
so that (G, V) can be obtained by repeated applications of Stabgf and Ind starting
with (H, W) where W is a 1-dimensional @ H-module with @ a field extension of
F.

If (G, V) € C, then there exist a sequence of field extensions
qun Zqun,I 2 e quO :_F‘7

a normal series 1 < Ng <4 N7 <...<dNagyp—1 = G, and integers ny, ..., Ny, Npt1 = 1
so that the following hold. The normal subgroup Ny of G is a subgroup of the
direct product of log|V|/log g, copies of a cyclic group of order ¢,, — 1. For each
© with 1 <4 < m the factor group Na;—1/Na; is a subgroup of the direct product
of n; < log|V|/loggm—i+1 copies of a cyclic group of order log ¢m—i+1/10g ¢m—i
and the factor group Na;/Na;_1 is a subgroup of a permutation group on n; points
which is a direct power of n; 1 copies of a permutation group on n;/n;1 points.

The main results of this section are Lemmas [£.1] and
Lemma 4.1. Let (G, V) € Cg and n(G,V) < 2\/q—1. Ifq > 59, then |G| < |V|3/2.

Proof. Fix an Fy -vector space V' of dimension n where gy = ¢. Suppose that
(G,V) € Cq with n(G,V) < 2¢/g—1T and G of maximal possible size. Then there
exists a sequence of field extensions Fy, > Fy, , >...> F, so that

m
! ! m 1 1 i _
|G| < (gm — 1) oglV/logam . ( (log q;/log qi—1) og|Vl/loga ) - plog|VI/log am—1

1=

—

where the first factor is equal to the size of the direct product of log |V|/log¢m
copies of a cyclic group of order ¢,, — 1, the second factor is an upper bound for
the product of all the factors with which the sizes of the relevant groups increase
by taking normalizers when viewing the linear groups over smaller fields, and the
third factor is the product of the sizes of all factor groups (viewed as permutation
groups) which arise after inducing smaller modules (this product is at most the
size of a p’-subgroup of the symmetric group on log |V'|/ log ¢, points which we can
bound using Proposition B.4]).



A LOWER BOUND FOR THE NUMBER OF CLASSES 5

We now proceed to bound the three factors in the product above. The first factor
is clearly less than |V]. Let us consider the second factor. Define the positive
integers ki, ..., km,kmy1 so that ¢ = ¢*, @2 = ¢"*,... qn = ¢"F>Fn and
|V| = gFrkzkmkm+1 We may assume that all the k;’s are at least 2 for 1 < i <m
(while we allow ky,+1 to be 1). Then we can write the second factor as

m m
Hkiki+1...km+1 < Hkin/(kl...ki)
i=1 i=1

where n = log|V|/logq. But by taking logarithms it is easy to see that
o0
Hnll/(nlnl) < 32/3
=1

for any sequence ni,ns, ... of integers at least 2. Thus the second factor is at most
320/3 < |V|018 gince ¢ > 59.

Suppose first that g, > ¢*. Then we can show that |G| < [V|"*. This is clear

for gm > ¢'° since the second factor considered above is less than V|98 while the
third factor is less than |V|1/ 9 By bounding the second factor more carefully in
cases ¢, = ¢' (4 < i <9), we see that it is less than |[V/[0-39-1/7,

Thus we may assume that ¢, = ¢3,¢? or ¢q. In the first two cases m = 1 while in
the third, m = 0.

Suppose that the first case holds. Then we can bound the second factor by 3%/3 <
|V|9-99. By Lemma [3.2] and by using the fact that n(G, V) < 24/q — 1, we certainly
have n/3 < £ :=2,/q — 1. So the third factor is at most

(n/3)! < "3 < (4. )" < |V |/
since ¢ > 59. So we get |G| < [V[1-34,
Suppose that the second case holds. Then we can bound the second factor by
27/2 < |V|%99. By Lemma 3.2l and by using the fact that n(G,V) < 2v/q — 1, we
certainly have n/2 < £ := 2,/¢g — 1. So the third factor is at most

(n/2)! < 0% < (4-q)™* < |V|*3.
So we get |G| < V|43,

Suppose that the third case holds. Then the second factor is 1. Also, by Lemma
B2l we can replace the third factor by n! where n < 24/q — 1. Here 24/g — 1 > 15.

This gives n! < (vg—1)" < ¢"/% = [V|'/*. We get |G| < [V]*/*. O

The following can be considered as a refined version of Lemma [4.1]

Lemma 4.2. Let (G,V) € Cq and n(G, V) < 2+/q—1. If p > 59, then at least one
of the following holds.

(1) G has an abelian subgroup of index at most |V|"/?/(2y/p = 1).

(2) |F| = p, the module V is induced from a 1-dimensional module, and G has
a factor group isomorphic to A, or S, where n = dimp(V). In this case
we either have n =1, or 15 < n < 180 and p < 8192.
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Proof. If G <TL(1,q"), then the result is clear, since n < |V|1/2/(2\/p —1) ((1) is
satisfied).

Let us consider the proof (and the notations) of Lemma Il Clearly, an upper
bound for the index of an abelian (subnormal) subgroup of G is the product of
the second and third factors. For g, > ¢* this was |V| 3 for gm = ¢° this was
V>3 and for ¢ = ¢2 this was |[V|**®. These are at most VY2 /(2v/p=1)
unless n < 6 (in the first case), n = 3 (in the second case), and n < 8 (in the
third case). In all these exceptional cases we have G <T'L(1,¢") (the case treated
in the previous paragraph) unless ¢,, = ¢?> and n = 4, 6, or 8. But in all these
exceptional cases there exists an abelian (subnormal) subgroup of index at most
2"(n/2)! < q"/?/(24/p — 1) where this latter inequality follows from ¢ > p > 59
and n < 8. Thus (1) is satisfied in all these cases, and we may assume that ¢, = ¢
in case (G, V) € C,.

Now let ¢ and B be defined for G as in Section Bl By Lemma [3.2] we may assume
that ¢t < 24/p — 1—1. Put £ to be the integer part of 24/p — 1—1. Then it is easy to
see that |G/B| < 01"/ < (£/2.2549)" since p > 59. This gives |G/B| < 0.89" - pt/2.

Suppose that ¢ = n. Then G contains an abelian (normal) subgroup of index less
than 0.89" - p*/2 < ¢"/2/(2/p — 1) unless 1.27" < 4(p — 1) (in which case this
previous inequality fails). By taking logarithms of both sides we get n < 10log p.
But then |G/B]| < ((10/2.2549) logp)™ < (4.5logp)™.

Suppose for a contradiction that part (1) fails. Then

q""?)(2\/p < |G/B]| < (4.51logp)".
This gives (y/q/(4.5logp))" < 2\/pTl. But on the other hand we also have
|G/B| < n! which, together with our assumption, gives the inequality p"~1 <
4(n!)2. Since p > 59, we certainly have 59”1 < 4(n!)®>. From this we get
n > 15. Then (\/ﬁ/(él.Slogp))15 < 24/p—1, which forces ¢ = p < 8192 and
thus n =¢ < 180.

It is easy to see that a transitive subgroup of S,, not containing A,, has index at least
3n for n > 15. (This is clear for a primitive subgroup by the bound of Praeger and
Saxl [18], while for imprimitive groups a more direct calculation is necessary.) So if
G/ B does not contain the alternating group A,,, then we can refine our upper bound
above for |G /B| by multiplying the result by 1/3n. But then 9-n%-1.27" < 4(p—1)
follows. However since n > 15 we also get 73026 < n?-1.27" < 4(p—1) which forces
18257 < p. But this is a contradiction because we already deduced that p < 8192.
This proves the result in case t = n. ([

5. SOME ABSOLUTELY IRREDUCIBLE REPRESENTATIONS

As mentioned earlier we will be interested in pairs (G, V') for which n(G,V) <
24/q — 1. In this section we consider two special cases, the case when G is a central
product of an almost quasisimple group H and Z and the case when G is the
normalizer of a group of symplectic type. We will also make some more assumptions
on the FFG-module V.

Proposition 5.1. Suppose that p is a prime at least 59. Let H be a finite subgroup
of GL(n, q) with generalized Fitting subgroup a quasisimple group where q is a power
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of p. Put G = ZoH where Z is the multiplicative group of F'. Furthermore suppose
that V is an absolutely irreducible F'T -module for every non-central normal subgroup
T of G. Suppose also that |G| is not divisible by p. Then n(G,V) > 2y/q— 1 unless
possibly if n = 2, q is in the range 59 < q < 14389, it is congruent to £1 modulo
10, and G = Z 0 2. As.

Proof. First suppose that H cannot be realized over a proper subfield of F.

In this paragraph suppose also that (n, H) is different from (2,2.45), (3,3.4¢),
(3, La(7)), or (4,2.54(3)). Let P(V) denote the set of 1-dimensional subspaces of
V. Since |H| is not divisible by p and p > 59, we see by [16, Satz 3.4], that all
orbits of G on P(V') have lengths less than (¢"~! —1)/(¢—1). Thus the number of
orbits of G on P(V) is larger than (¢" —1)/(¢" "' —1). But then n(G,V) is larger
than (¢" —1)/(¢" "' —1) > 2y/g — L.

Suppose that n = 2 and G = Z 0 2.A5. We may assume that n(G,V) < 2y/q — 1.
From this we get |V|/|G| < 2y/¢ — 1. Tt readily follows that ¢ < 14400. Since ¢
must be a prime power, we must have 59 < ¢ < 14389. According to Dickson’s
theorem [I1] Kapitel IT, 8.27] ¢ must be congruent to =1 modulo 10. This accounts
for the exception in the statement of the proposition.

Suppose that n = 3 and G = Z 0 3.4g. From the inequality |V|/|G| < 2¢/g—1 it
follows that ¢ < 80. Since ¢ is a prime power, we must have 59 < g < 79. However
only p = 61 is to be considered since v/—3 and also /5 must lie in F. In this case
a direct computation shows that there are 21 > 2v/60 orbits of G on P(V).

Suppose that n = 3 and G = Z x La(7). From the inequality |V|/|G] < 2v/q —1 it
follows that ¢ < 48. A contradiction.

Suppose that n = 4 and G = Z02.54(3). From the inequality |V|/|G| < 2v/g—T1 it
follows that ¢ < 76. Since ¢ is a prime power, we must have 59 < g < 73. However
only the cases p = 61, 67, and 73 are to be considered since v/—3 must lie in F. In
these cases there are 30, 33, and 43 orbits of G on P(V'), respectively. These are
all greater than 2/72.

Now suppose that H can be realized over a proper subfield of F. Then clearly
g > 592. Let S be the generalized Fitting subgroup of H which by assumption is
quasisimple. We now discuss the possibilities for .S according to the classification.

If n = 2 then, by Dickson’s theorem [11] Kapitel II, 8.27], S is a covering group of
As and H = S. This is an exception in the statement of the proposition since as
before we get ¢ < 14389 and g = £1 (mod 10). From now on assume that n > 3.

Since ¢ > 592, it can easily be checked, just by order considerations and using the
fact that |G| is coprime to p, that none of the (generic examples of) groups G with S
appearing in Table 2 of [9] have fewer than 21/¢ — T orbits on V. Then, using Table
3 of [10] together with the condition that ¢ > 592, one can check, essentially just
by comparing log;,(¢"2) and log;,(|G|), that no group G has fewer than 2v/q — 1
orbits on V with n < 250.

So assume that n > 250. We can rule out S being a covering group of a sporadic
simple group since |G| is much smaller than 59498, For a similar reason as when
considering Table 2 of [9], we see that S cannot be a covering group of an alternating
group A,, (for we can assume that m > 9 and so n > m — 2 by [15, Proposition
5.3.7 (1)]).



8 ATTILA MAROTI

Suppose that S is a covering group of a classical group Cl(d,r) where r is a prime
power and d is chosen as small as possible (here d is the dimension of the vector
space naturally associated to the classical group). If d > 6 then

n > max{251, (r¥/2 — 1)/2}

by [15, Corollary 5.3.10 (iv)] and by n > 250. But then ¢" 3 > r?* follows by using
the fact that ¢ > 592. This implies that we must have d < 5.

So suppose that d < 5. Then [I5, Table 5.3.A] shows that n > max{251, (r—1)/2}.
But then ¢"=3 > rd” certainly follows for r > 32. So suppose that r < 32. Then
q" 3 > 59496 > 3225 > 74° . This finishes the treatment of the case when S is a
covering group of a classical group.

Suppose that S is a covering group of an exceptional simple group of Lie type.
Then [15, Tables 5.1.B and 5.3.A] can be used to show that G must have at least

2y/q — 1 orbits on V. (Il

Let us now turn to our second important case of an absolutely irreducible F'G-
module V. Suppose that the group G has a unique normal subgroup R which is
minimal subject to being non-central. Suppose that R is an r-group of symplectic
type for some prime r (this is an r-group all of whose characteristic abelian sub-
groups are cyclic). Suppose that V' is an absolutely irreducible F'R-module. Let
|R/Z(R)| = 72 for some positive integer a. Then the dimension of the module is
n = r®. Suppose that Z < G. The group G/(RZ) can be considered as a subgroup
of the symplectic group Sp,,(r). As always, we assume that g > p > 59.

Proposition 5.2. Suppose that V' and G satisfy the assumptions of the previous
paragraph. If n(G,V) < 2/q—1, thenn =2, 59 < qg=p < 2297, and |G/Z| < 24.

Proof. Suppose that V and G satisfy the assumptions of the paragraph preceding
the statement of the proposition. Then |V|/|G] < 2v/q — 1.

Suppose first that (r,a) is different from any of the pairs (2,1), (3,1), and (2, 2).
Then |G| < q-12% - |Spy, (r)| < q- r2° 3¢ We wish to show that this is less than
q"" 7' < |V|/(2y/q — 1). By taking logarithms of both sides, it is sufficient to see the
inequality (2a%+3a)logr < (r® —2)logq. But this is true by using the assumption
that ¢ > p > 59. This is a contradiction to the fact that |[V|/|G| < 24/q — 1.

If (r,a) = (2,2) then a more careful but similar computation as in the previous
paragraph yields a contradiction. For (r,a) = (3,1) we do the same and get a
contradiction whenever ¢ > 61. Also, ¢ cannot be 59 in this case since 3 does not
divide 58.

So only (r,a) = (2,1) can occur. In this case we must have n = 2, |G/Z| < 24, and
thus ¢ is in the range 59 < g = p < 2297.

6. BounDING n(G,V)

The purpose of this section is to describe as much as possible pairs (G, V') for which

n(G,V) < 2/g—1.
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Theorem 6.1. Let V' be a finite, faithful, coprime and irreducible FG-module.
Suppose that the characteristic p of the underlying field F is at least 59. Put ¢ = |F|
and |V| = q"™. Let the center of GL(n,q) be Z. Then n(G,V) > 2,/¢ — 1 unless
possibly if one of the following cases holds.

(1) (G, V) eCy;

(2) V =Tnd$ (W) for some 2-dimensional FH-module W where H is as G in
Proposition [51] or Proposition [5.2 satisfying one of the following.
(a) 59 < q < 14389, ¢ = £1 (mod 10), and 2.A5 < H/Cy(W) < Z02.As;
(b) 59 < q = p < 2297 and |(H/Cu(W))/Z(H/Cpy(W))| < 24.

In order to prove Theorem [6.1] we need a bound on the orders of groups among the
exceptions in the statement of the theorem. The following extends Lemma (.11

Lemma 6.2. Let (G,V) be a pair among the exceptions in Theorem[G1l, satisfying
n(G,V) < 2\/q—1. Then |G| < |V|*/2.

Proof. Tf (G, V) is of type (1) then Lemma E.T] gives the result. If (G, V) is of type
(2/a) or (2/b) then it is easy to see that |G| < |[V[*/? by using Proposition B.4] and
the fact that p > 59. O

We can now turn to the proof of Theorem In this we follow the reduction
argument found in [5], Section 6].

Let G be a counterexample to Theorem with n minimal.

Suppose that V' is an imprimitive F'G-module which is induced from a primitive
FH-module W for some proper subgroup H of G. If n(H,W) > 2,/q —1 then
n(G,V) > 24/q¢—1, by Lemma B2l So assume that n(H,W) < 2y/¢ — 1. By the
minimality of n, the pair (H/Cg (W), W) must be of type (1) or (2) of the statement
of the theorem. But then (G, V) is also of type (1) or (2). A contradiction.

So we may assume that V' is a primitive F'G-module.

We first claim that we can assume that every irreducible F'N-submodule of V is
absolutely irreducible for any normal subgroup IV of G. For this purpose let N be a
normal subgroup of G. Then V is a homogeneous FN-module, so V = Vi ®- - - @V,
where the V;’s are isomorphic irreducible FN-modules. Let K ~ Endpy (V7).
Assuming that the V;’s are not absolutely irreducible, K is a proper field extension
of F'; and Cgrvy(N) = Endpn (V) NGL(V) ~ GL(r, K) for some r. Furthermore,
L = Z(Cqrv)(N)) ~ Z(GL(r,K)) ~ K*. Now, by using L, we can extend
V to a K-vector space of dimension ¢ := dimg V < n. As G < Ngrv)(L), in
this way we get an inclusion G < T'L(¢, K). Now G contains the normal subgroup
H = GNGLY, K) of index at most n. Clearly V' is a homogeneous and faithful K H-
module. Let W be a simple K H-submodule of V. Then, by the minimality of n, we
get n(H,V) >n(H,W) > 2,/|K| — 1 unless (H, W) is one of the examples listed in
the statement of the theorem. If H is none of the possibilities listed in the statement
of the theorem, then n(G,V) > n(H,V)/n > 2,/q — 1, a contradiction, since we are
assuming p > 59. If (H, W) is of possibility (1) then so is (G, V) of possibility (1)
unless W < V. If W < V and W is not of dimension 1 over K then Lemma.Tlshows
that n(H,V) > |V|/|H| > 2+/|K|—1, and so n(G,V) > n(H,V)/n > 2y/q—1,

as before. If W is of dimension 1 over K then a more careful consideration is
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necessary to obtain the same conclusion. If H is of possibility (2) of the statement
of the theorem, then H is of index 2 in G and so |G| < 120(¢?> — 1). But then
n(G,V) > |V|/|G| > ¢*/120 > 2,/q — 1 since ¢ > 59. This shows the claim.

Let N be a normal subgroup of G and let V=V, & --- ® V,. be a direct sum de-
composition of V' into isomorphic absolutely irreducible F'N-modules. By choosing
a suitable basis in V1, V5, ..., V., we can assume that G < GL(n, F') such that any
element of N is of the form A ® I, for some A € Ny, < GL(n/r, F). By using [15,
Lemma 4.4.3(ii)] we get

NGL(n,F)(N) = {B ®C|B € NGL(n/r,F)(NVH)a Ce GL(Ta F)}
Let
G1={g1 € GL(n/r,F)|3g € G,g2 € GL(r, F) such that g = ¢1 ® ga}.

We define G3 < GL(r, F) in an analogous way. Then G < G1®G5. Here G; and G
are not homomorphic images of G, since g = g1 ® g2 = A\g1 @ A~ !gs for any A € F*,
so the map g = g1 ® g2 > g1 is not well-defined. However, they both have orders
coprime to p. Since G; ® G2 preserves a tensor product structure V = W; ® W,
so does G.

We claim that G does not preserve a proper tensor product structure. For a proof
suppose that G preserves a tensor product structure V= W7 ® Wy with r =
dimW; > 1 and ro = dim W5 > 1. Without loss of generality assume that r1 < ro
and n = riry. Then G < G; ® G2 for some groups G; and G acting on W7 and
Wy respectively. Assume also that these groups have orders coprime to p. We also
assume that G acts primitively and irreducibly on V and Z < G. Notice that the
G,’s act irreducibly on the W;’s (for if 0 < Uy < W; would be a G1-submodule then
Uy ® W5 would be a G; ® Go-submodule). Also, the G;’s act primitively on the
Vi’s. (For if Gy would act imprimitively on W7y, say, then there would be a proper
subspace Uy in W7 whose stabilizer has index |[W7|/|U;|. But then U; ® Ws would be
a subspace of V' whose stabilizer in G; ® G2 has the same index. But then, by [24]
Theorem 3, page 105], we see that G; ® G2, and in particular G, acts imprimitively
on V, a contradiction.) If n(G;, W;) > 24/q — 1 for any of the 4’s, then we are done.
(For if n(Gq,Wh) > 2y/q — 1, say, and v1,...,vs are representatives of f orbits of
Gy on Wy with f > 2/g —1, then v; ® w,...,vy ® w will be representatives of f
orbits of G on V where w is a non-zero vector in Ws.) So by the minimality of n
we know that both G; and G2 are exceptions in the statement of the theorem. If
G is solvable, then Proposition B3] gives a contradiction (since n > 4). So we may
assume that G is non-solvable. Notice that |G| < (|G1| - |G2|)/(q¢ — 1).

Let 1 = 2. Then |G| < 2- q®3/m2+1 by Lemma But then if 7o > 5 then
[V]/|G| > 2¢/q — 1, a contradiction. We get the same conclusion when r; > 3 and
ro > 5 (apply Lemma [62)). So we conclude that 2 < r; <79 < 4. In fact, since G
is non-solvable, this forces r; = 2 and G; of type (2/a).

Let ro = 2. To maximize |G| we may assume that Gs is of type (1) or (2/a). But
then we again have 2y/q — 1 < |V|/|G], a contradiction. So r2 = 3 or 4. But then
G4 is of type (1). In both cases G2 must be solvable. Let ro = 4. If G5 is not a
semilinear group of order dividing 4(¢* — 1), then Proposition gives what we
want. Otherwise 2/¢g — 1 < ¢%/|G|. So let ro = 3. Then |G2| < 3(¢® — 1) (since Ga
is primitive) and so 2v/g — 1 < ¢%/|G].
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We conclude that G does not preserve a proper tensor product structure.

From now on assume that N is a normal subgroup of G which is minimal with
respect to being non-central. Then N/Z(N) is a direct product of isomorphic
simple groups.

If N is abelian then it is central in GG. A contradiction.

If N/Z(N) is elementary abelian of rank at least 2, then G is of symplectic type
and Proposition gives us a contradiction.

Now let N/Z(N) be a direct product of m > 2 isomorphic non-abelian simple
groups. Then N = Ly x Lo *---% Ly, is a central product of isomorphic groups such
that for every 1 < i < m we have Z < L;, L;/Z is simple. Furthermore, conjugation
by elements of G permutes the subgroups L1, Lo, ..., L,, in a transitive way. By
choosing an irreducible F'Li-module Vi < V, and a set of coset representatives
g1 = 1,92,...,9m € G of Gi = Ng(V7) such that L; = gingi_l, we get that
Vi = g;V1 is an absolutely irreducible F'L;-module for each 1 < ¢ < m. Now,
VeVl ---®V, and G permutes the factors of this tensor product. It
follows that G is embedded into the central wreath product G 1. S;, and that G
is non-solvable. Now (1 acts irreducibly on V; for otherwise there are proper G-
submodules W; of V; for each i with 1 <i <m, sothat W =W; ® ---Q W, is a
proper G-submodule of V. If n(G1,V;) > 24/q — 1, then so is n(G, V) > 2y/q — 1.
(For let wv1,...,v, be members of n(G1,V1) — 2 non-trivial orbits of Gy on V.
Clearly r > 2 and these vectors are non-zero and pairwise not multiples of each
other. Let v,41 be a fixed non-zero vector not in an orbit of any of the vectors
listed above. Then the vectors w; = v; @ Vp41 ® ... Q@ Upyq for 1 <i <r+1 are all
non-zero and are all in different G-orbits.) So G is a group among the exceptions
in Theorem So we have |G1| < |V1|3/2 by Lemma[6:2] Using this we can show
that |V|/|G| > 2+/q — 1 provided that dim V; > 4. So assume that dim V; = 2 or 3.
Since Gy is non-solvable, we must then have dimV; = 2 and Gy, = Z 0 2.45. But
then |G| < (¢ — 1)60™p™~! where the last factor follows from Proposition [3.4] and
n = 2™. However when m = 2 then by using just a factor of 2 in place of p™~!, we
get 2¢/¢ — 1 < |V|/|G|. We get the same conclusion in case m > 3, by Proposition

The remaining case is when N/Z(N) is a non-abelian finite simple group. But
then the generalized Fitting subgroup of G is a central product of the center of G
with a quasisimple group (by the above reductions) and Proposition 5] yields a
contradiction.

This proves Theorem

7. BouNDING k(G)

In order to prove Theorem 2.1] we now also have to take k(@) into account.

Theorem 7.1. Let V be an irreducible and faithful FG-module for some finite
group G and finite field F' of characteristic p at least 59. Suppose that p does not
divide |G|. Then we have at least one of the following.

(1) n(G,V) > 2p—1.
(2) k(G) > 2yp—1.
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(8) /p—1 is an integer, |V| = |F| =p and |G| = /p— 1.

(4) Case (2/a) of Theorem [61] holds with p =59 and 1 <t < 14, or p = 61
andt=1, or61 <p <119 and t < 4.

(5) Case (2/b) of Theorem [61l holds with t < 4.

Proof. Let V be an irreducible and faithful F'G-module as in the statement of the
theorem. Suppose that n(G,V) < 24/p—1. Suppose also that case (3) is not
satisfied. More in general, suppose that |V| = |F| = p is not satisfied.

We are then in one of the two exceptional cases of Theorem[G.Il First suppose that
(G,V) € C;4. Then case (1) or case (2) of Lemma holds. In case (1) we may
apply Lemma So suppose that case (2) of Lemma holds.

Suppose that G/B contains A,,. Then

K(G) > k(G/B) > k(Sn)/2 > 385/2 > 2\/p — 1,
for n > 18 and p < 8192. So we must have n = 15, 16, or 17.

Since k(G) > k(G/B) > k(A1) = 94, we may assume that 94 < 2,/p — 1, that
is, 2210 < p. We may assume that p"~! < 4(n!)® (otherwise we are in case (1) of
Lemma ). By the fact that 2210 < p, we get 22107~ < 4(n!)>. But this is a
contradiction for n = 15, 16, or 17.

We are now in case (2) of Theorem [G.1]
First we consider case (2/a) of Theorem [6.11

Let us first assume that V is a primitive F'G-module. Let C be the center of G.
Then G contains at least (|C|/2) - k(As) = (5/2)|C| conjugacy classes. Thus we
may assume that |C] < (4/5)y/p — 1. But we also have |V|/(2y/p — 1|G/C|) < |C|.
From this we have |V| < (8/5)(p—1)-60, that is ¢> < 96(p — 1). Thus we certainly
have p < 96 but also ¢ = p. Thus we are left with the cases ¢ = p =59, 71, 79, and
89 (note that we are excluding 61 here).

Let ¢ = 59. Then |C] < 6 by the previous paragraph. But since |C| must divide
g —1 = 58 and is even, we have |C| = 2. So G has at least (if not exactly) 29
non-trivial orbits on V', which is larger than 2+/58.

Let ¢ = 71. Then |C| < 6. But since |C| must divide ¢ — 1 = 70 and is even, we
have |C| = 2. So G has at least 42 non-trivial orbits on V, which is larger than

24/70.

Let ¢ = 79. Then |C| < 7. But since |C| must divide ¢ — 1 = 78, we have |C| < 6.
So G has at least 18 non-trivial orbits on V', which is larger than 21/78.

Let ¢ = 89. Then |C| < 7. But since |C| must divide ¢ — 1 = 88, we have |C] < 4.
So G has at least 33 non-trivial orbits on V', which is larger than 2+/88.

Now assume that V' is an imprimitive F'G-module. Let T, t, n, B and k be as
above. Son >4 and t > 2.

Suppose that p > 1000. Then the number of orbits of T on V; is at least 3 (since
T cannot be a transitive linear group by Hering’s theorem (see [12, Chapter XII])).
But then n(G, V) > (tf) by Lemma 32l So we may assume that 2¢/p — 1 > (tf),
which forces 2p/4 > t. From this we get |G/B| < 2'p!/4. Since t = n/2, we have
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|G/B| < 27?pn/8 < p0176n (for p > 1000). There exists a central subgroup
A = Z(B) in B of index at most 60™/2. So

k(G) > k(B)/|G : B| > |A|/|G : B| > |A|/p*175".
We have |G| > |V[/(2y/p — 1) from which

|A] > |G1/(60™/2p%17) > V[ /(60" - p*1T0" . 2¢/p 1),

This gives k(G) > |V|/(60"/2 - p0-3527 . 2, /p—T1). But this is larger than 2v/p — 1
for n > 4.

Now let 121 < p < 1000. Then it is easy to see that n(T1,V;) > 4. So we have
n(G,V) > (t‘§3) by Lemma 3.2 So we may assume that 24/p —1 > (tgg) > t3/6.
From this 121/3p/6 > t. Since p < 1000, we get t < 7. In fact by looking more
closely at the bound using the binomial coefficient, we get ¢ < 5. Consider the
stabilizer H of V;. We claim that H/Cy(V;) has center of order at most (¢ —1)/4.
Otherwise k(H) > ((¢g —1)/4) - k(As) > q — 1. But then

k(G) > k(H)/5> (¢—1)/5>2/q—1

since ¢ > 121. But then T has center of size at most (¢ — 1)/4. But then going
back to the place where we calculated orbits, we see that n(7y,V;) > 10. So
n(G,V)> ("5°) > () =220 > 64 > 2y/p — I (for t > 3 and p < 1000), by Lemma
So t = 2. We claim that H/Cg (V1) has center of order at most (¢ — 1)/8.
Otherwise k(G) > k(H)/2 > ((q—1)/8-k(A5))/2 > 24/p — 1. But then T has center
of size at most (¢ — 1)/8. But then going back to the place where we calculated
orbits, we see that n(Ty, V1) > 18. So n(G,V) > (1) =171 > 64 > 2y/p — 1 (for
p < 1000), by Lemma

So the only remaining cases are: ¢ > 2, and p = 59, 61, 71, 79, 89, 91, 101, 109, or

119. If p = 59 then it can happen that n(T7, V1) = 2, so in this case we can only
say that ¢ < 14. In all other cases n(Ty,V;) > 3, s0 t < 4.

Finally we consider (2/b) of Theorem

Let T < GL(2,p) be as above. T is solvable (and primitive) and |T/Z(T)| < 24.
We may assume that ¢ > 5. But then, by Lemma B2 n(G,V) > (k;)r4) where
k is the number of orbits of T on the corresponding module of size p?. Thus we
can assume that (k?) < n(G,V) < 2y/p—1. Since we may also assume that
k > 3 by order considerations, from this previous inequality we get 113 < p. But
then, by Proposition B3] we have k > p/24. However, since 113 < p, we also have
k > max{5,p/24}. Just by using the bound k > 5 we can conclude that p > 3970.
But then applying k > p/24 to the inequality above we get a contradiction. O

8. BOUNDING n(G,V) AND k(G)

We prove Theorem [Z1] by going through the five cases of Theorem [71]

Since both k(G) and n(G, V) are at least 2, there is nothing to do in cases (1) and
(2). Groups in cases (3) and (5) are solvable, so the argument of [7] applies. Let
us assume then that case (4) of Theorem [l is satisfied.

Suppose first that p = 59 and ¢ is an integer with 2 <t < 14. In this case we need
kE(G) 4+ n(G,V) —1 > 16. If the center of T has size 58 then k(H) > 29-5 = 145
where H is the stabilizer in G of V1. So k(G) > 145/t. But n(G,V) >t + 1, so
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E(G)+n(G,V)—1> 145/t +t > 16. (This also works for ¢t = 1.) So we know that
T has at least 3 orbits on Vi by Hering’s theorem (see [12, Chapter XII]). But then
n(G,V) > (tf) by Lemma 3.2l This is at least 16 unless ¢ < 4.

Let t = 4. Then n(G,V) > 15 by Lemma 321 The result follows from k(G) > 2.
In what follows let C be the center of H/Cp(V1).

Let t = 3. Then n(G,V) > 10 by Lemma B2l So we would need k(G) > 7. Then
k(G) > (k(A5)|C])/2t = (5/2)|C|/3. If |C| > 9 then we are finished. Otherwise the
center of T has also at most 8 elements. Then n(T1,V1) > 9. Son(G,V) > (131) > 22
by Lemma B.2

Let t = 2. Then n(G,V) > 6 by Lemma [321 So we would need k(G) > 11. Then
k(G) > (k(45)|C])/2t = (5/2)|C|/2. If |C| > 9 then we are finished. Otherwise the
center of T has also at most 8 elements. Then n(7T1, V1) > 9. So n(G,V) is at least
(') =45 > 11 by Lemma

Let ¢ =61 and t = 1. Then |C] < 6. So G has at least 11 non-trivial orbits on V.
So n(G,V) + k(G) —1 > 11+ k(G) > 16 > 21/60, a contradiction.

Suppose that 61 < p < 119. Then k > 3 by Hering’s theorem (see [I12, Chapter
XI1)).

Let t = 4. Then n(G,V) > 15 by Lemma B2 So we would need k(G) > 8 (since
2¢/118 is a bit smaller than 22). Then k(G) > (k(45)|C))/2t = (5/2)|C|/4. If
|C| > 13 then we are finished. Otherwise the center of T has also at most 12
elements. Then n(Ty, Vi) > 7. So n(G,V) > (') > 22 by Lemma B2

Let t = 3. Then n(G,V) > 10 by Lemma B2l So we would need k(G) > 13. Then
kE(G) > (k(A5)|C))/2t = (5/2)|C|/3. If |C| > 16 then we are finished. Otherwise
the center of T has also at most 15 elements. Then n(T1, V1) > 6. So n(G,V) is at
least (g) = 56 > 22 by Lemma [3.2]

Let t = 2. Then n(G,V) > 6 by Lemma [321 So we would need k(G) > 17. Then
k(G) > (k(A5)|C|)/2t = (5/2)|C|/2. If |C| > 14 then we are finished. Otherwise
the center of T has also at most 13 elements. Then n(Ty,V;) > 6. So n(G,V) is at
least (;) =21 by Lemma[32 But k(G) > 2.

This proves Theorem [2.1] which in turn establishes Theorem [I.1]
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