
ar
X

iv
:1

41
1.

04
57

v2
 [

cs
.L

O
]

 1
2

M
ar

 2
01

5

Parametrised bar recursion: A unifying framework for

realizability interpretations of classical dependent choice

Thomas Powell

Institute of Computer Science, University of Innsbruck∗

October 1, 2021

Abstract

During the last twenty years or so a wide range of realizability interpretations of classical anal-

ysis have been developed. In many cases, these are achieved by extending the base interpreting

system of primitive recursive functionals with some form of bar recursion, which realizes the nega-

tive translation of either countable or countable dependent choice. In this work we present the many

variants of bar recursion used in this context as instantiations of a general, parametrised recursor,

and give a uniform proof that under certain conditions this recursor realizes a corresponding family

of parametrised dependent choice principles. From this proof, the soundness of most of the existing

bar recursive realizability interpretations of choice, including those based on the Berardi-Bezem-

Coquand functional, modified realizability and the more recent products of selection functions of

Escardó and Oliva, follows as a simple corollary. We achieve not only a uniform framework in which

familiar realizability interpretations of choice can be compared, but show that these represent just

simple instances of a large family of potential interpretations of dependent choice principles.

Keywords: Dependent choice, Modified realizability, Open induction, Bar recursion, Continuous

functionals.

1 Introduction

One of the central problems of mathematical logic and computer science is to understand the constructive
meaning of non-constructive proofs. From the early 20th century onwards a rich variety of constructive
interpretations of classical logic have been developed, together with techniques for extracting computa-
tional content from proofs. The majority of these techniques initially deal with proofs in formal systems
of classical predicate logic or weak subsystems of mathematics such as Peano arithmetic. In order
to interpret stronger non-constructive proofs from subsystems of mathematical analysis which contain
principles such as the axiom of dependent choice,

DC : ∀n, xρ∃yρAn(x, y) → ∃fN→ρ∀nAn(f(n), f(n+ 1)),

these techniques must typically be adapted and extended - a process which tends to be highly non-trivial.
In this paper we focus on just one method of giving a computational interpretation to proofs: namely

classical modified realizability. A long established way of extending this technique to deal with choice
principles is to introduce some kind of bar recursion to the usual interpreting system of primitive recursive
functionals. Bar recursive interpretations of choice principles are among the most widely known and
studied methods for giving a computational interpretation to classical analysis, and numerous instances
of this method can be found in the literature. However, both the particular variant of bar recursion used
and the form of choice that it realizes differs from case to case, and it is not well-understood how these
variants compare as realizers. This is compounded by the fact that each variant was typically devised
in a distinct setting, and both their existence and correctness often established using a slightly different
method of proof, obscuring the inherent similarities between them all.

∗Email: Thomas.Powell@uibk.ac.at Tel: +43 512 507 53293

1

http://arxiv.org/abs/1411.0457v2

The main contribution of this paper is to construct a general bar recursive term which contains
several free parameters. We show that whenever these parameters obey certain conditions, the term can
be used to realize the negative translation of a correponding variant of countable dependent choice, and
that moreover essentially all of the known variants of bar recursion used to extend modified realizability
to classical analysis appear as simple instantiations of the parameters.

Our motivation for this is twofold. Firstly, we obtain a clear, unifying framework in which the
differences between existing variants of bar recursion and their correctness proofs are essentially reduced
to simple structures on the natural numbers, and thus their behaviour as realizers is more easily compared.
Secondly, in doing this we greatly generalise the interpretation of classical analysis by giving not one but
a whole class of realizers of choice principles, which can be freely chosen between to suit the problem
at hand. Having a such a wide range of options in front of us means that in concrete instances of
program extraction we are given the potential to tailor our realizer to the situation at hand and extract
computational content which is more efficient and semantically meaningful.

1.1 Realizability interpretations of classical analysis: A brief overview

This work is designed to be as self-contained as possible, and in particular no prior knowledge of bar
recursion is assumed. However, because we are partly motivated by the desire to unify existing interpre-
tations, we provide here a very short summary of some of the best known variants of bar recursion that
we aim to bring together. We simply state without explanation their defining equations: the purpose
here is not to treat in any detail the exact meaning of these objects, but to allow the reader to see certain
key features of the recursion that will be dealt with in a more general setting later.

The idea of interpreting countable choice with bar recursion was first established not for realizability
interpretations, but for Gödel’s slightly more intricate Dialectica interpretation, in a fundamental paper
of Spector in 1962 [27]. Here, bar recursion was given as the schema

SBR(Y,G,H, sX
∗

) =

{
G(s) if Y (ŝ) < |s|

H(s, λx . SBR(Y,G,H, s ∗ x)) otherwise.
(1)

The key details here are that s : X∗ is a finite sequence, s∗x denotes the extension of s with the object x,
ŝ its canonical extension as an infinite sequence, and the output type of Y is a natural number. Spector’s
bar recursion is therefore a form of ‘backward recursion’ in which recursive calls are made on extensions
s ∗ x of the argument s. The parameter Y is responsible for terminating the recursion, based on the
assumption that the underlying tree barred by sequences satisfying Y (t̂) < |t| is well-founded - a fact that
is true in all continuous models and also in non-continuous structures such as the strongly majorizable
functionals [9]. What this means is that for any sequence s ∗ x1, s ∗ 〈x1, x2〉, . . . of recursive calls made

in the computation of SBR(Y,G,H, s), there is always some N such that Y (̂s ∗ 〈x1, . . . , xN 〉) < |s|+N ,
and thus SBR(Y,G,H, s) is a well-defined value.

An early adaptation of this idea to realizability was given by Berardi et al. [3], in which an in-
terpretation for dependent choice broadly similar but somewhat simpler than Spector’s variant of bar
recursion was established. This realizer was later reformulated in the more standard framework of mod-
ified realizability in [6], where it was given its now familiar name modified bar recursion and was defined
as

MBR(Y,H, s) =N Y (s ⊕ λnN.H(s, λx . MBR(Y,H, s ∗ x))). (2)

Here s is again a finite sequence, s ⊕ α denotes the infinite sequence α overwritten by s, and the outcome
type of Y is a natural number. This restriction on the type of Y ensures that in continuous models Y
only looks at a finite amount of information from its input sequence. In other words, given a sequence
of recursive calls s ∗ x1, s ∗ 〈x1, x2〉, . . . in the computation of MBR(Y,H, s), there is some point N such
that the value of q(s ∗ 〈x1, . . . , xN 〉 ⊕ . . .) is determined based only on s ∗ 〈x1, . . . , xN 〉, and so no further
recursive calls are necessary. Thus, like Spector’s variant of bar recursion (1), modified bar recursion is
carried out over some underlying well-founded tree, although unlike Spector’s bar recursion, this tree is
not computable but it implicitly well-founded by some kind of continuity argument.1

1Indeed, a fact closely related to this observation, proved in [7], is that (2) is not S1-S9 computable in the total continuous
functionals and is therefore strictly stronger than (1).

2

In addition to what later became modified bar recursion, [3] contains a striking realizer for (the
negative translation of) countable choice, which took from Spector only the basic idea of backward
recursion, replacing the sequential bar recursive calls s 7→ s∗x of (1) and (2) with a symmetric updating
u 7→ uxn of finite partial functions. This realizer was again put into a standard realizability framework
in [4, 5], and will be referred to here as the Berardi-Bezem-Coquand, or BBC-functional. Its defining
equation (following [4]) is given by

BBC(Y,H, u) =N Y (u ⊕ λn.H(n, λx . BBC(uxn))). (3)

Here, u is a finite partial function and uxn is the domain-theoretic extension of u with value x at input n.
As with modified bar recursion, BBC terminates by continuity of Y , although proving this is somewhat
technical and as shown in [5] is most elegantly done with Zorn’s lemma in the form of open induction.
It has been argued that (3) provides a computational interpretation of countable choice that is superior
to standard bar recursion in that it is ‘demand driven’, in the sense that to compute an approximation
for the nth point in a choice sequence it is not automatically necessary to compute approximations for
1, . . . , n− 1 first [3].

More recently, a family of new variants of bar recursion known as products of selection functions were
developed and explored by Escardó and Oliva, beginning in [13]. One of these, the so-called implicit
product of selection functions, was shown in [15] to realize not only the negative translation of countable
dependent choice but more generally a dependent version of the so called J-shift arising from the Pierce
translation. The product of selection functions is distinguished by the fact that it incorporates course-
of-values recursion into its bar recursive calls. It can be formulated as

IPS(Y,H, s) =N Y (s ⊕ λn.H(tn, λx . IPS(Y,H, tn ∗ x))) (4)

where tn is the sequence of length n primitive recursively defined by

(tn)i = si if i < |s|, else H(ti, λx . IPS(Y,H, ti ∗ x)) for i < n.

In addition to solving the modified realizability interpretation of choice, this form of bar recursion has
deep links to game theory as a functional that computes optimal strategies in a class of higher-type,
continuously well-founded sequential games [14]. This provides a highly illuminating bridge between the
computational content of the axiom of choice and the world of game theory, and is exploited in e.g. [23]
to give a game-theoretic constructive interpretation of Ramsey’s theorem.

Of course, this list is by no means exhaustive, and several further variants of (2)-(4) have been devised
for realizing choice principles. For example, a realizer of the refined A-translation of a seqential variant of
dependent choice is given in [26], and is used in [25] to extract a realizer for Higman’s lemma. Similarly,
forms of bar recursion closely related to (2) have been used for realizing dependent choice in a range of
settings, including Parigot’s λµ-calculus [10] and in the context of realizability toposes [28].

Nevertheless, all of these recursors share two important features in common:

1. they take as input some partial object t, and make recursive calls over extensions of this object;

2. they terminate because the value of Y (α) only depends on a finite portion of the input α.

In fact, one could go as far as to say that (2)-(4) along with their many other variants are essentially the
same realizer, with the single exception that recursive calls are made using slightly different patterns. In
this paper we make this idea precise, and show that the basic recipe used to form the realizers mentioned
above can be used to construct, in a completely uniform way, an infinite class of bar recursive functionals,
each one of which can be used to interpret a particular set of variants of the axiom of dependent choice.

Note that we restrict our attention to interpretations of analysis based on modified realizability, and
in particular bar recursors of the form (1) which arise from the Dialectica interpretation do not fit into
our framework. Nevertheless, we believe that the basic ideas behind this work could be readily lifted to
the Dialectica interpretation (see for example the author’s recent article with P. Oliva [22] on a symmetric
form of (1) which updates partial funtions similarly to the BBC-functional), and may also be helpful
in linking proof interpretations to more direct computational interpretations of analysis, such as the
learning-based realizabilities of e.g. [1, 2].

3

1.2 Outline of the paper

After setting up our basic formal systems in Section 2, we define in Section 3 a general principle of
backward induction which will be used throughout the paper in order to prove the correctness of our
realizers. Backward induction replaces principles such as bar induction or dependent choice which are
more typically used on the meta-level to prove correctness of realizers, and is preferred here due to
its far greater flexibility. We also define an analogous schema of backward recursion which will be
used to construct our parametrised realizers. This section is strongly influenced by Berger [5], and our
formulation of backward induction is similar to but slightly more general than his update induction.

Sections 4 and 5 form the core of the paper, in which we define our parametrised realizer and use it to
realize dependent choice. In Section 4 we restrict ourselves to the simpler double negation shift: While
this section’s main result, Theorem 4.6, is eventually subsumed by the later Theorem 5.3, it is instructive
to first focus on the double negation shift so that the main ideas of Section 5 can be appreciated. In
the sequel we introduce a family of dependent choice principles parametrised by a well-founded ordering
⊳ on the natural numbers, and show that the negative translation of each of these priniciples can be
realized by our parametrised bar recursor under certain conditions. Theorem 5.3 gives essentially all the
results listed in Section 1.1 as a Corollary, and vastly generalises all of them.

We conclude on a more informal level, and in Section 6 discuss a potential semantic interpretation
of our parametrised realizer, inspired by the game-theoretic semantic reading of the Berardi-Bezem-
Coquand functional in [3].

2 Preliminaries

Throughout this paper we work in variant of extensional Heyting/Peano arithmetic in all finite types,
which will be essentially the E-HAω/E-PAω as defined in e.g. [17, 29], but based on a slightly richer type
system.

2.1 The finite types

For us, the finite types consist of base types N and B for natural numbers and booleans, and are build
from the formation of function types ρ → τ , product types ρ × τ , and finite sequence types ρ∗. We
sometimes use the abbreviation τρ for ρ→ τ .

A discrete type is any type τ which can be encoded in N, and so in all standard models B, N, B×N,
N∗ etc. are discrete types but N → N is not.

2.2 The theory E-HAω

Terms of E-HAω are typed lambda terms formed by application and abstraction, and include variables
for each type, the usual constructors and deconstructors for product and sequence types, the arithmetic
constants 0 : N and s : N → N, and finally recursors Rρ : ρ→ (N → ρ→ ρ) → N → ρ of each type.

Equations in E-HAω are formed using basic symbols =B and =N for equality of type B and N, while
formulas of E-HAω are built from =N and =B together with the usual logical connectives and quantifiers
for all types. Equality at arbitrary types is defined inductively, so for example f =ρ→τ g abbreviates
∀xρ(fx =τ gx).

The axioms and rules of E-HAω are the standard axioms and rules of classical logic in all finite types,
along with those of the typed lambda calculus, defining equations for all the constants, induction for
arbitrary formulas, and finally full extensionality:

∀fρ→τ∀xρ, yρ(x =ρ y → fx =τ fy).

In what follows we often consider extensions of E-HAω with new recursively defined functionals F, in
which case by E-HAω + F we mean the extension of E-HAω with new constants F and their associated
defining axioms.

We use, throughout, the following notation and abbreviations.

• 0ρ is the inductively defined 0 term of type ρ.

4

• πi and 〈 , 〉 denote the projection and pairing operations. For a sequence α : (ρ0×ρ1)N we sometimes
write αi : ρ

N for λn.πi(α(n)).

• For a finite sequence s : ρ∗, |s| denotes the length of s, while s ∗ t := 〈s0, . . . , sm−1, t0, . . . , tn−1〉
denotes the concatenation s and t. We also use s∗x to denote s∗〈x〉, and s∗α for the concatenation
of s with the infinite sequence α.

• s ⊕ α : ρN denotes the overwriting of α with the finite sequence s i.e.

(s ⊕ α)(n) :=

{
sn if n < |s|

α(n) if n ≥ |s|
.

• [α](n) := 〈α(0), . . . , α(n−1)〉 denotes the finite initial segment of length n of α : ρN, while ŝ denotes
the canonical extension s⊕ 0ρN of the finite sequence s : ρ∗.

• For a decidable predicate P (x), the term ‘yρ if P (x)
′
of type ρ is shorthand for

{
y if P (x)

0ρ otherwise
.

• For a decidable predicate P (n) on N, the term µi ≤ n.P (i) : N is the least i ≤ n satisfying P (i),
and just n if no such i exists.

In addition to all this, throughout the article we work with a type of partial sequences with potentially
infinite domain. These can be encoded, for example, by total sequences of type N → B × ρ, where
defined values are represented as (1, x), and undefined values as (0, 0ρ). Accordingly, for an object u of
this type we say that n is in the domain of u, or n ∈ dom(u), if π0u(n) = 1, and n /∈ dom(u) otherwise.
Membership of dom(u) is a decidable property.

We imagine B×ρ as simulating a type ρ̄ ≡ ρ+1, and we write u(n) =ρ̄ x instead of u(n) =B×ρ (1, x),
and u(n) =ρ̄ ⊥ whenever n is not in the domain of u. Similarly, u =ρ̄ v if for all n we have either
π0u(n) = π1u(n) = 0 or π0u(n), π0v(n) = 1 and π1u(n) = π1v(n).

• We use the symbol ∅ to denote the partial function with empty domain.

• We extend the overwrite operation ⊕ given for finite sequences above to partial functions by
defining u ⊕ v : ρ̄N by

(u ⊕ v)(n) =

{
u(n) if n ∈ dom(u)

v(n) if n /∈ dom(u).

We define u ⊕ α : ρN for total sequence αN analogously. It will always be clear from the context
which types the operator ⊕ takes as input.

• We isolate as a special case the addition of a single value to u: For nN and xρ we define uxn =
u ⊕ (n, x) where (n, x) is the partial function taking defined value x at point n, and undefined
elsewhere. When n /∈ dom(u) we say that uxn is an update of u.

• Finally, we write u ⊒ v whenever ∀i ∈ dom(v)(u(i) = v(i)). Note that we have u ⊕ v ⊒ u for any
v, and u ⊕ v ⊐ u whenever there is some n /∈ dom(u) such that n ∈ dom(v). We also have uxn ⊐ u
when n /∈ dom(u).

For us, the system E-HAω together with its classical variant E-PAω acts as a standard lambda calculus
equipped with a robust meta-theory for reasoning about terms. However, the exact details of our formal
system are not particularly important as everything which follows can be easily lifted to alternative
settings. For example, a slightly different approach would be to work a weaker, quantifier-free term
calculus T and to do all the reasoning in an unspecified meta-theory, as in [3]. Alternatively we could
work in a theory of partial continuous functionals as in [4], taking our base type to represent the flat
domain N⊥.

5

2.3 Models of E-HAω

In order to prove both the existence and correctness of bar recursive realizers, it is typically necessary
to work in a constructive interpretation T :≡ (Tρ) of E-HAω which satisfies some form of the following
two properties:

1. (Tρ) contains arbitrary choice sequences, in other words TN→ρ contains all sequences N → Tρ and
so in particular (Tρ) validates dependent choice;

2. Whenever τ is a discrete type, functionals of type F : ρN → τ satisfy the following continuity
principle:

Cont : ∀αρ
N

∃n∀β([α](n) =ρ∗ [β](n) → Fα =τ Fβ).

Both of these principles are satisfied automatically by the Kleene-Kreisel continuous functionals C ω

[16, 18], whereas for term models such as the theory P of [3], (1) is obtained by adding infinite choice
sequences explicitly. Here we do not choose any particular intepretation of E-HAω, rather we simply add
principles such as Cont and dependent choice to our meta-theory whenever they are required.

3 Backward induction and recursion

We now develop some of the crucial background theory that will be required in order to prove our main
results. In particular, we formulate a general principle of backward induction and define an associated
backward recursor, both of which will be used to construct and verify the correctness of our parametrised
realizer. In simple terms, backward induction is induction over domain-theoretic extensions of partial
sequences, and should be seen as a generalisation of bar induction. Analogously, backward recursion is a
generalisation of the implicit forms of bar recursion used to give realizability interpretations to countable
choice. This section is largely inspired by [5] in that we formulate backward induction as an instance of
the still more general principle of open induction.

3.1 Open induction

Open induction, first considered by Raoult in [24], is an extension of well-founded (or Noetherian)
induction to chain-complete partial orders. Recall that a partial order (X,≤) is chain-complete if every
non-empty chain γ in X has a least upper bound

∨
γ. A predicate B on X is open if it satisfies the

property

B(
∨
γ) → ∃x ∈ γB(x)

for every non-empty chain γ in X , and the principle of open induction over X is given by

OI(X,≤) : ∀x(∀y > xB(y) → B(x)) → ∀xB(x)

where B ranges over open predicates. Note that open induction implies well-founded induction since
whenever > is well-founded (X,≤) is trivially chain-complete and all predicates are automatically open.
However, in general > need not be well-founded, in which case openness becomes a non-trivial property.

Theorem 3.1 (Raoult [24]). Any chain-complete partial order satisfies open induction.

Proof. This is a direct consequence of Zorn’s lemma. Suppose that the open predicate B satisfies the
premise of open induction, which is classically equivalent to

∀x(¬B(x) → ∃y > x¬B(y)), (5)

and suppose for contradiction that the set

S = {x ∈ X | ¬B(x)}

is non-empty. We show that every chain in S has an upper bound in S. For the empty chain this is
trivial since S contains at least one element. On the other hand, if γ is non-empty, then it has an upper
bound

∨
γ in X by completeness, and moreover

∨
γ ∈ S since ∀x ∈ γ¬B(x) → ¬B(

∨
γ) by openness of

B. Therefore by Zorn’s lemma S contains a maximal element, which contradicts (5). Thus S must be
empty.

6

3.2 Backward induction

We are now ready to define backward induction, which we simply take to be open induction over the
partial order (N → ρ̄,⊑), where ⊑ is the extension relation on partial sequences defined in Section 2.2.
In other words, backward induction is the schema

BkI : ∀uN→ρ̄(∀v ⊐ uB(v) → B(u)) → ∀uB(u)

where B ranges over open predicates. This formulation of backward induction makes sense and is valid
in any interpretation T of E-PAω that admits arbitrary sequences, since for any chain γ in TN→ρ̄,

(
∨
γ)(n) :=

{
u(n) if n ∈ dom(u) for some u ∈ γ

⊥ otherwise.

is a perfectly well-defined object of N → Tρ̄ ≡ TN→ρ̄ and is the least upper bound of γ with respect to ⊑.
It will be convenient to isolate the following syntactic notion of an open formula, which will be sufficient
for everything that follows.

Proposition 3.2. Suppose that the formula B(u) on partial sequences is of the form

B(u) :≡ ∀n[n ∈ dom(u) → A(n, u)] → ∃nP ([u](n))

where P is an arbitrary predicate on ρ̄∗, and A is monotone in the following sense

n ∈ dom(u) ∧ u ⊑ v ∧A(n, u) → A(n, v). (6)

Then B(u) is open with respect to ⊑.

Proof. Given some chain γ let v =
∨
γ and assume that B(v) holds. We must show that B(u) holds for

some u ∈ γ. If B(v) holds, then by classical logic we either have P ([v](n)) for some n, in which case
B(u) holds for e.g. the least u ∈ γ satisfying [u](n) = [v](n), or we have

n ∈ dom(v) ∧ ¬A(n, v)

for some n. In this latter case pick the least u ∈ γ satisfying n ∈ dom(u). Then since u ⊑ v, we have
A(n, u) → A(n, v) by the monotonicity condition, which is a contradiction. Therefore ¬A(n, u) and B(u)
holds.

Remark 3.3. Note that Berger [5] generally studies formulas which are open with respect to the lex-
icographic ordering on infinite sequences, which are not necessarily open with respect to ⊑ (which is
strictly contained in a lexicographic ordering). However, any formula equivalent to one of the form
B(u) :≡ ∃nP ([u](n)) is open in both senses.

3.3 Some additional remarks on backward induction

We take the opportunity to explore backward induction in more detail and relate it to other well-known
principles in logic, including the minimal bad sequence argument and bar induction. This section is not
strictly necessary for the remainder of the paper, so if the reader prefers they can proceed directly to
the definition of backward recursion given in Setion 3.4.

We first point out that, analogously to [5], backward induction does not require the full strength of
Zorn’s lemma, and is provable from just dependent choice, using a version of the minimal-bad-sequence
argument due to Nash-Williams [19].

Proposition 3.4. The principle of backward induction is provable in E-PAω + DC.

Proof. Take some open formula B(u), which for simplicity we assume is open in the sense of Proposition
3.2. Suppose for contradiction that we have ∀u(¬B(u) → ∃v ⊐ u¬B(v)) but there exists some partial
sequence u0 such that ¬B(u0). Using dependent choice construct the sequence (un) as follows: Supposing
that we have already constructed 〈u0, . . . , un〉 for n ≥ 0, define

7

(i) un+1 := w if n /∈ dom(un) and w is such that the following four properties are satisfied: ¬B(w);
w ⊐ un; [w](n) = [un](n) and n ∈ dom(w),

(ii) un+1 := un if either n ∈ dom(un) or n /∈ dom(un) and no w in the sense of (i) exists.

First, it is clear by a simple induction that for all n we have

(a) ¬B(un),

(b) [un](n) = [un+1](n), and

(c) un ⊑ un+1.

Define ũ := λn.un+1(n). Then it follows that for all n we have

(d) [ũ](n) = [un](n) and

(e) un ⊑ ũ.

The first of these is done by a simple induction using (b). For the latter, take i ∈ dom(un). Then either
i < n in which it is clear by (e) that ũ(i) = un(i), or i ≥ n and we obtain ũ(i) = ui+1(i) = un(i) by
un ⊑ . . . ⊑ ui+1.

Now we prove that ¬B(ũ), which is classically equivalent to

∀i([i ∈ dom(u) → A(i, u)] ∧ ¬P ([u](i))).

Taking some arbitrary n, and setting u = un+1 and i = n we get, by ¬B(un+1) (true by (a)),

(∗) [n ∈ dom(un+1) → A(n, un+1)] ∧ ¬P ([un+1](n)).

But ¬P ([un+1](n)) → ¬P ([ũ](n)) by (b) and (d), and furthermore n ∈ dom(ũ) is equivalent to n ∈
dom(un+1) and hence by (∗) implies A(n, un+1), so using monotonicity of A and the fact that un+1 ⊑ ũ
we have A(n, ũ) and have therefore established

n ∈ dom(ũ) → A(n, ũ).

Taken together and bearing in mind that n is arbitrary, this implies ¬B(ũ). But now we know by the
backward induction hypothesis that there exists some v ⊐ ũ such that ¬B(v) holds.

We can show that this contradicts the construction of (un), and therefore there cannot exists any
initial sequence u0 satisfying ¬B(u0), and we’re done. Letm be the least point such thatm ∈ dom(v) but
m /∈ dom(ũ). Then firstly by (e) we have um ⊑ ũ ⊏ v and thus um ⊏ v, and secondly [v](m) = [ũ](m) =
[um](m), the first equality by minimality ofm and the second by (d), and therefore v satisfies the required
properties of w in (i) at point m. In addition we know that m /∈ dom(um) else we’d have m ∈ dom(ũ) by
(e), and therefore um+1 must be constructed using (i) and thus m ∈ dom(um+1) ⊆ dom(ũ), contradicting
the assumption that m /∈ dom(ũ).

As we will see in Sections 4 and 5, one of the key ideas in this paper is construct forms of recursion
based on restricted, or relativised variants of backward recursion which take as input partial functions
that are downward closed with respect to some relation on N. These will be closely related to the
following form of relativised backward induction.

Proposition 3.5. Let ⊳ be some decidable relation on N, and define the predicate u ∈ D⊳ by

u ∈ D⊳ :≡ ∀n ∈ dom(u)[∀i⊳ n(i ∈ dom(u))].

Equivalently, we say that dom(u) is ⊳-closed. Then for any relation ⊏
′ on ρ̄N such that u ⊏

′ v → u ⊏ v,
the following principle of relativised backward induction is provable from BkI:

∀u ∈ D⊳(∀v ⊐
′ u[v ∈ D⊳ → B(v)] → B(u)) → ∀u ∈ D⊳ B(u).

8

Proof. First note that u ∈ D⊳ is of the form ∀n ∈ dom(u)D0(n, u) with D0(n, u) monotone in the sense
of (6), therefore the predicate B′(u) :≡ u ∈ D⊳ → B(u) is open for any open B(u). Thus we obtain

∀u(∀v ⊐
′ uB′(v) → B′(u)) → ∀u(∀v ⊐ uB′(v) → B′(u)) → ∀uB′(u)

the first implication following from the inclusion ⊏
′⊆⊏ and the second from normal backward induction

applied to B′(u). Rearranging this gives us relativised backward induction.

We can now instantiate ⊳ and ⊏
′ to obtain certain well-known instances of backward induction.

Example 3.6 (Update induction). If we define u ⊏
′ v iff v is an update of u, and let ⊳ just be the empty

relation, then relativised backward induction just becomes update induction in the sense of [5].

Example 3.7 (Bar induction). Now consider the case ⊳ =<. By classical logic, if u ∈ D< then either
u = α for some total sequence α or u = ŝ where s is some finite sequence and ŝ its embedding as a
partial function. Therefore relativised backward induction is equivalent in E-PAω to

∀αB(α) ∧ ∀s(∀v ⊐
′ ŝ[v ∈ D< → B(v)] → B(ŝ)) → ∀sB(ŝ) (7)

In addition, if we define u ⊏
′ v iff v is an update of u, then (7) becomes equivalent to

∀αB(α) ∧ ∀s(∀xB(ŝ ∗ x) → B(ŝ)) → ∀sB(ŝ) (8)

which is just a variant of bar induction. It is not too difficult to show that this is equivalent over E-PAω

to the more standard formulations of bar induction found in e.g. [29].

3.4 Backward recursion

The purpose of introducing backward induction was to give us a way to reason about backward recursion,
which we define and discuss in this section. In the same way that backward induction is a special case
of open induction, backward recursion is closely related (and in fact definable from) open recursion as
defined in [5].

To begin with, in order to motivate what follows let us consider as a comparison the entirely standard
concept of well-founded recursion over some decidable well-founded relation ≺ on ρ. Assuming we are
working in a structure such as PCF or the Scott continuous functionals, we can define a well-founded
recusor wR≺ as the fixpoint of the following recursive equation

wR
ψ
≺(x) =σ ψx(λy . wR

g
≺(y) if y ≺ x),

and prove that the recursor defines a total functional for any outcome type σ using well-founded induction
over ≺:

wI : ∀x(∀y ≺ xA(y) → A(x)) → ∀xA(x).

We want to define a backward recursor in a similar way - although we have two problems: firstly the
relation u ⊏ v is not decidable, and secondly backward induction is only valid for open formulas. We
avoid these issues by defining backward recursion to be the fixpoint of the following recursive equation

BkRψρ,τ (u) =τ ψu(λn, v . BkR
ψ(u ⊕ v) if n ∈ dom(v)\dom(u)),

where τ is restricted to being a discrete type, while n ∈ dom(v)\dom(u) denotes the decidable predicate
n ∈ dom(v)∧n /∈ dom(u). Observe that any w ⊐ u is of the form w = u ⊕ v for some v which is defined
at at least one point n /∈ dom(u), and so BkR makes recursive calls over all w ⊐ u, although crucially it
must always have access to a point n ∈ dom(w) such that n /∈ dom(u). The necessity of the restriction
on τ is to ensure that totality of BkRψ(u) is an open property on total input u (here we are referring
to total elements of the model of partial continuous functionals as opposed to the type ρ̄). Indeed for
discrete τ and total u we have

BkRψ(u) is total ↔ ∃n∀w(BkRψ([u](n) ⊕ w) is total)

assuming sequential continuity Cont for functionals with total output. Therefore totality of BkR is
provable using backward induction. Note that alternatively, a direct proof via Zorn’s lemma that BkR

9

exists as a total element of the Scott partial continuous functionals can be carried out using the same
manner as the proof of totality of the Berardi-Bezem-Coquand functional in [4].

Alternatively, one can justify the existence of backward recursion in continuous models by showing
that backward recursion is definable from the slightly more general schema of open recursion on the
lexicographic ordering considered in [5]. Open recursion is defined to be the fixpoint of the following
recursive equation:

Openψρ,τ (u) =τ ψu(λn, v . Open
ψ([u](n) ⊕ v) if n ∈ dom(v)\dom(u))

where once again τ is discrete, and lexicographically open recursive functionals of the above form are
shown to be total in [5, Proposition 5.1].

Proposition 3.8. BkR is instance-wise primitive recursively definable from Open.

Proof. Primitive recursively define

mn,u,v := least i ≤ n s.t. i ∈ dom(v)\dom(u), else n,

and set BkRψρ,τ (u) = Openψ̃ρ,τ (u) where

ψ̃u(f
N×ρ̄N→τ) := ψu(λn, v . f(mn,u,v, u ⊕ v) if n ∈ dom(v)\dom(u)).

Then expanding definitions we have

BkRψ(u) = ψ̃u(λn, v . BkR
ψ̃([u](n) ⊕ v) if n ∈ dom(v)\dom(u))

(a)
= ψu(λn, v . BkR([u](mn,u,v) ⊕ (u ⊕ v)) if n ∈ dom(v)\dom(u))

(b)
= ψu(λn, v . BkR(u ⊕ v) if n ∈ dom(v)\dom(u))

where for (a) we use n ∈ dom(v)\dom(u) → mn,u,v ∈ dom(u ⊕ v)\dom(u), and (b) follows by minimality
of mn,u,v.

Remark 3.9 (Update recursion). It is a fairly easy observation that update recursion as defined in [5] -

UpRH(u) = Hu(λn, x
ρ . UpRH(uxn) if n /∈ dom(u)),

is a simple instance of backward recursion obtained by setting

ψu(f
N×ρ̄N→τ) := Hu(λn, x . f(n, u

x
n) if n /∈ dom(u)).

Remark 3.10 (Bar recursion). For those readers interested in the computability theory of bar recursion,
it might be instructive to pause for a moment to consider a natural instance of bar recursion that arises
from backward recursion. Let us define BarR(H, sρ

∗

) := BkRψ(ŝ) where

ψu(f
N×ρ̄N→τ) :=τ H(u, λt . f(|t| − 1, t̂)).

Then it is not too hard to show that BarR satisfies

BarR(H, s) = H(ŝ, λt . BarR(H, s ⊕ t) if |t| > |s|),

and this can be viewed as a ‘implicitly well-founded’ variant of Spector’s bar recursion (1). The reason
we highlight this is that while several such implicit variants of Spector’s so-called ‘special’ instance of
bar recursion2 have been studied, including both modified bar recursion and the implicit product of
selection functions, constructing a direct analogue to the general form is more complicated (for example,
an implicit form of the so-called product of quantifiers is known not to exist [14]).

The subtle reason for this is that such variants of bar recursion must not be allowed to access the
length of the input sequence s. For example, no object Φ can satisfy the slightly altered equation

Φ(H, s) = H(s, λt . Φ(H, s ⊕ t) if |t| > |s|)

2See [21] for the distinction between the special and generals forms of Spector’s bar recursor.

10

even for discrete output type, since we could just take τ = N and define H(s, g) := 1+ f(s ∗ 0), and then
Φ(〈〉) = n + 1 + Φ(H, [0](n + 1)) > n for all n, which cannot hold in any model of arithmetic. Indeed,
trying to define this from BkR with continuous ψu is impossible, since we’d require a non-continuous
unbounded search (and thus totality of the underlying instance of BkR would no longer be an open
predicate). Thus we overcome the difficulty with implicit variants of bar recursion by removing access
to the length of the input. Note that this problem is not a feature of modified bar recursion and implicit
products of selection functions (or indeed any of the realizers we define in the following sections), since
these are defined ‘pointwise’, and make recursive calls only when we are accessing points already greater
than the length of the input sequence.

4 A computational interpretation of the double negation shift

Now that we have completed the mathematical groundwork we come to the core of the paper. In this
section we give a new, general realizability interpretation to the double negation shift. Ultimately, this
will form a special case of the interpretation of full dependent choice given in the next section. However,
by focusing first on the double negation shift we have an opportunity to present our main ideas in a
slightly simplified setting, then the extension to full dependent choice will mostly be a matter of taking
care of some additional technical details.

4.1 Modified realizability intepretation of extensions of PAω

We begin by very briefly recalling how Kreisel’s modified realizability can be used in conjunction with the
so-called Friedman trick to extract programs from classical proofs of Π0

2-formulas. This is all completely
standard, so we omit most of the details. For every formula in the language of HAω the realizability
relation x mr A is inductively defined by

() mr A ≡ A if A is an atomic formula,

x, y mr (A ∧B) ≡ x mr A ∧ y mr B,

nN, x, y mr (A ∨B) ≡ (n = 0 → x mr A) ∧ (n 6= 0 → y mr B),

f mr (A→ B) ≡ ∀x(x mr A→ fx mr B),

x mr ∀zA(z) ≡ ∀z(xz mr A(z)),

x, y mr ∃zA(x) ≡ y mr A(x).

It is well-known that whenever HA
ω ⊢ A then HA

ω ⊢ t mr A where t is some primitive recursive term
extracted from the proof of A. The interpretation of classical logic, on the other hand, is more subtle. A
simple combination of the negative translation with modified realizability fails to work since the atomic
formula ⊥ is realized by () and therefore all negated formulas are trivially interpreted. In particular, this
method gives us no way of extracting realizers from Π0

2-formulas ∀xN∃yNA(x, y).
One well established way of overcoming this problem is to slightly alter the definition of modified

realizability by regarding xN mr ⊥ as an uninterpreted formula. Then, as discussed in e.g. [6, 8], from a
classical derivation PAω ⊢ ∀yN∃xNA(y, x) one can extract a term t such that HAω ⊢ ∀yA(y, ty), utilising
the aforementioned Friedman trick of replacing the formula x mr ⊥ by the quantifier-free formula A(y, x).
This idea can be smoothly expanded to extensions of PAω with some additional axiom(s) Γ. Provided
that HAω + ∆ ⊢ Φ mr ΓN , where ΓN denotes the negative translation of Γ, ∆ is some set of axioms
satisfying some natural closure properties with respect to ⊥, and Φ is some closed term in the language
of HAω +∆, then from a classical proof PAω +Γ ⊢ ∀y∃xNA(y, x) one can extract a term t in Φ such that
HAω +∆ ⊢ ∀yA(y, ty).

Thus we have a method that allows us to extract realizers for Π0
2 formulas from any extension Γ

of Peano arithmetic whenever we can realize the negative interpretation ΓN of Γ. In the remainder of
this paper we develop this idea and focus on constructing terms Φ such that Φ mr ΓN where Γ is either
countable or countable dependent choice, and ΓN is the adapted realizability interpretation which treats
x mr ⊥ as a new predicate in x. In fact, following [15] we generalise slightly and replace ⊥ by some
arbitrary formula R whose type of realizers is a discrete type, emphasising the fact that ⊥ acts as some
undefined object to be realized. However, if the reader prefers they can just treat this as a relabelling
and imagine R = ⊥ throughout.

11

4.2 The J-shift and its variants

The axiom of countable choice is given by

AC : ∀n∃xρBn(x) → ∃αN→ρ∀nBn(α(n)).

It is well-known that the negative translation of AC,

∀n((∃xBNn (x) → R) → R) → (∃α∀nBNn (α(n)) → R) → R,

(here with an arbitrary discretely-realized R in place of ⊥) is provable using the (trivially realized)
intuitionistic axiom of choice from the simpler double-negation shift,

DNS : ∀n((A(n) → R) → R) → (∀nA(n) → R) → R,

by setting A(n) := ∃xBNn (x). Thus a realizability interpretation of countable choice follows directly from
that of DNS. Note that this version of DNS for arbitrary R is also called the K-shift in [15].

In order to successfully realize DNS one typically relies on a term h realizing ex-falso-quodlibet in
the form ∀n(R → A(n)), and so in practice one must work with a restricted class of formulas A(n) that
admit such a realizer, such as any formula in the image of the negative translation (for which one can
trivially construct such a h even uniformly in n). This need for additional realizers and a corresonding
restriction on formulas can seem slightly inelegant, and so a reformulation of DNS is given in [15] which,
rather than separately assuming R → A(n), adds this positive information directly to the premise of
DNS, yielding

∀n((A(n) → R) → A(n)) → (∀nA(n) → R) → R.

In [15] this is actually written in a equivalent form called the J-shift:

J-shift : ∀n((A(n) → R) → A(n)) → (∀nA(n) → R) → ∀nA(n),

and this is given a realizability interpretation using the product of selection functions, an interpretation
which is valid for arbitrary formulas A(n). Then, in the case that R → A(n) is realizable, one easily
reobtains an interpretation of the double negation shift:

Proposition 4.1 ([15]). J-shift implies DNS over minimal logic, whenever R → A(n) holds.

Here, we adopt the convention of [15] in adding the positive information we need directly to the
premise of the double negation shift, so that our interpretation is valid for all A(n), and as in [15], and
as we show in our examples in Section 5.2, we can always convert our realizer to one of DNS for negated
formulas A(n), which in turn is sufficient to realize the axiom of countable choice.

For notational reasons we interpret a pair of syntactically more flexible variants of the J-shift, designed
to match the family of realizers we construct.

Definition 4.2. We define the J∗
i -shifts for i = 1, 2 by

J∗
1 -shift : ∀m,n((A(m) → R) → A(n)) → (∀nA(n) → R) → R

J∗
2 -shift : ∀m,n((A(m) → R) → A(n)) → (∀nA(n) → R) → ∀nA(n)

where R has discrete realizing type.

The following result confirms that our J∗
i -shift principles are nothing more than simple rephrasings

of the original J-shift.

Proposition 4.3. J∗
1 -shift ⇔ J∗

2 -shift ⇔ J-shift over minimal logic.

Proof. J∗
1 -shift ⇒ J∗

2 -shift follows from the observation that

∀m,n((A(m) → R) → A(n)) → (R → ∀nA(n)),

which is true because for arbitrary n we have

R → (A(n) → R)

12

and thus
((A(n) → R) → A(n)) → (R → A(n)).

The implication J∗
2 -shift ⇒ J-shift follows from

∀n((A(n) → R) → A(n)) → ∀m,n((A(m) → R) → A(n)),

which is true because firstly

((A(m) → R) → A(m)) → ((A(m) → R) → R),

and since R → (A(n) → R) this yields

((A(m) → R) → A(m)) → ((A(m) → R) → (A(n) → R))

and so finally

((A(n) → R) → A(n)) ∧ ((A(m) → R) → A(m)) → ((A(m) → R) → A(n))

The remaining direction J-shift ⇒ J∗
1 -shift is straightforward.

The reasons that we highlight these variants of the J-shift is that we want versions of the J-shift that
are directly realized by our variants of bar recursion. As we will see, in most cases each variant will only
use the premise of J∗

i -shift for (m,n) ∈ I ⊆ N× N for some I.

4.3 Realizing the J
∗

i
-shift

We focus on constructing a realizer for the J∗
1 -shift, then a realizer of the J∗

2 -shift comes out immediately
Suppose that the realizing types of A(n) and R are ρ and τ respectively, where we assume that τ is
discrete. The J∗

1 -shift is realized by a term Φ of type (N → N → (ρ → τ) → ρ) → (ρN → τ) → τ , which,
given terms ε : N → N → (ρ→ τ) → ρ and q : ρN → τ that satisfy

∀m,n, pρ→τ (∀xρ(x mr A(m) → p(x) mr R) → εm,n(p) mr A(n))

∀αρ
N

(∀n(α(n) mr A(n)) → q(α) mr R)

returns a term Φεq : τ satisfying Φεq mr R.
The basic idea that unites all such existing realizers of double-negation shift principles is to form an

auxiliary functional Ψ which performs a backward recursive loop, which builds increasingly large partial
realizers of ∀nA(n).

More precisely, suppose that ε and q satisfy the premise of the J∗
1 shift as above, and imagine we

are given a partial realizer u : ρ̄N which satisfies ∀n ∈ dom(u)(u(n) mr A(n)). Then let us somewhat
informally define Ψε,qu := q(u ⊕ c(u)), where c is some as yet unspecified function on partial sequences,
but the aim is that it forms a completion of the partial realizer of u and that therefore Ψε,qu mr R for
all u. This completion c(u) can be constructed by backward recursion using ε. For n /∈ dom(u) we define

c(u)(n) := εmnu,n(λx . Ψ
ε,q(vnuxm))

for some index mnu and partial realizer vnu of ∀nA(n). Again, both mnu and vnu are left unspecified
for now, but note that if at the very least

(i) vnu is a partial realizer of ∀nA(n) satisfying u ⊑ vnu and

(ii) mnu /∈ dom(u) whenever n /∈ dom(u),

then u ⊏ vnuxmnu and vnuxmnu is a partial realizer whenever x mr A(mnu). Therefore λx.Ψε,q(vnuxmnu)
is a realizer of A(mnu) → R under the assumption that Ψ is correct for all extensions of u. The idea now
is that we can admit this assumption as a backward induction hypothesis, and so by backward induction
we can prove that Ψε,qu mr R for all u. Then setting Φεq := Ψε,q∅ gives us a realizer for the J∗

1 -shift,
since ∅ is trivially a partial realizer of ∀nA(n).

13

What remains is to formalise this idea and make some sensible choice of mnu and vnu satisfying (i)
and (ii) above. The most natural might be to set mnu = n and vnu = u - in this case, as we will see
below, is precisely the idea behind the Berardi-Bezem-Coquand functional of [3]. However, more intricate
choices lead to other realizers, including modified bar recursion and the product of selection functions.
Our aim now is to make this intuition precise, and provide a sufficiently rich general construction of m
and v which captures all of these realizers and much more.

Proposition 4.4. Suppose that ρ and τ are the realizing types of A(n) and R, with τ discrete, and that
were are given a computable relation ≺ : ρ̄N → (N× N → B) and an index m : N× ρ̄N → N such that

(i) ≺u is well-founded,

(ii) n /∈ dom(u) → mnu /∈ dom(u) ∪ {k | k ≺u n}

for all u and n. Then there is a term Ψε,q(≺,m) : ρ̄
N → τ with parameters of type ε : N → N → (ρ → τ) → ρ

and q : ρN → τ which is primitive recursively definable in BkR + λu.wR≺u , and satisfies the recursive
equation

Ψε,q(u) = q(u ⊕ λn . εmnu,n(λx . Ψ
ε,q(u ⊕ 〈αu〉(n)

x
mnu)︸ ︷︷ ︸

αu

)),

where αu : ρ
N denotes the argument of q as indicated above, and 〈αu〉(n) : ρ̄N is defined to be

λk.(αu(k) if k ≺u n else ⊥).

Remark 4.5. Technically speaking the term λu.wR≺u is not properly defined in E-HAω - we are simply
assuming here that there exists a function F definable in E-HAω such that for all u, F (u) satisfies the
defining equation of wR≺u i.e. well-founded recursion over ≺u as considered in Section 3.4. However,
in all of the concrete examples we consider, ≺ will not depend on u and wR≺ will always be trivially
definable in E-HAω, so this rather casual definition will not be problematic.

Proposition 4.4 above is a special case of Proposition 5.2 in the next section, whose proof can be found
in the appendix, and so we omit a proof of Proposition 4.4 here. However, on an informal level, it is not
too difficult to see that Ψ is well-defined. First we note that the definition of 〈αu〉(n) is not circular, since
it is only used to define αu(n), and thus αu as a whole is constructed using the well-founded recursor
wR≺u . Then one observes that the whole expression is a well-defined backward recursive functional since
to compute Ψ(u) we only call Ψ on arguments of the form u ⊕ 〈αu〉(n)

x
m for m /∈ dom(u) by condition

(ii), which are always strict extensions of u.

Theorem 4.6. Suppose that Ψ(≺,m) is defined as in Proposition 4.4 for ≺ and m satisfying conditions
(i) and (ii). Then the term Φ(≺,m) := λε, q . Ψε,q(≺,m)(∅) realizes the J

∗
1 -shift, provably in E-HAω +Cont+

BkI+ BkR+ (wI≺u) + λu.wR≺u .

Remark 4.7. Here (wI≺u) denotes the collection of well-founded induction schemata over the well-founded
relations ≺u. As with the corresponding modes of recursion discussed in Remark 4.5, in practise ≺u will
typically not depend on u and wI≺ will be easily provable in E-HAω.

Proof. Assume that ε and q realize the premise of the J∗
1 -shift. We prove that Φ(≺,m)εq mr R using a

main backward induction and an auxiliary well-founded induction. Let us define

B(u) :≡ ∀n ∈ dom(u)(u(n) mr A(n)) → Ψε,q(u) mr R.

This is an open formula in the sense of Proposition 3.2 since by Cont we have

Ψ(u)mr R ↔ ∃n∀wΨ([u](n) ⊕ w) mr R.

Now, to prove the backward induction step for B, assume that u is a partial realizer of ∀nA(n) (i.e. the
premise of B(u) holds) and suppose that B(v) holds for all v ⊐ u. We want to show that Ψε,q(u) mr R.

We do this by first proving using wI≺u that αu (as defined in Proposition 4.4) realizes ∀nA(n). Fix
n and assume as an auxiliary induction hypothesis that αu(k) mr A(k) for all k ≺u n. If n ∈ dom(u) we
trivially have αu(n) = u(n) mr A(n), so assume that n /∈ dom(u). In this case, first observe that

x mr A(mnu) → ∀i ∈ dom(v)(v(i) mr A(i)) and ∀i ∈ dom(v)(v(i) mr A(i)) → Ψε,q(v) mr R

14

for v := u ⊕ 〈αu〉(n)
x
mnu. The first step is clear by the auxiliary induction hypothesis, which implies that

u ⊕ 〈αu〉(n) is a partial realizer of ∀nA(n), while the second step follows from the main hypothesis B(v),
since by condition (ii) we know that n /∈ dom(u) implies that mnu /∈ dom(u) and thus v ⊐ u. Putting
this together we see that λx.Ψ(u ⊕ 〈αu〉(n)

x
mnu) mr (A(mnu) → R) and thus

αu(n) = εmnu,n(λx.Ψ(u ⊕ 〈αu〉(n)
x
mnu)) mr A(n).

by correctness of ε. This completes the auxiliary well-founded induction, giving us ∀n(αu(n) mr A(n)),
and therefore Ψ(u) = q(αu) mr R, which completes the main backward induction step. Finally, then,
we obtain ∀uB(u) by BkI, and so in particular by B(∅) we have Ψε,q(∅) mr R, which completes the
proof.

Corollary 4.8. There is a term Φ̃(≺,m) primitive recursive in BkR+λu.wR≺u which realizes the J∗
2 -shift,

provably in E-HAω + Cont+ BkI+ BkR+ (wI≺u) + λu.wR≺u .

Proof. Keeping all the notation of Theorem 4.6, define Ψ̃ε,q(u) = αu so that it satisfies the recursive
equation

Ψ̃ε,q(u) = u ⊕ λn . εmnu,n(λx . q(Ψ̃
ε,q(u ⊕ 〈αu〉(mnu)

x
mnu))).

Define Φ̃εq := Ψ̃ε,q(∅). Then it follows immediately from ∀uB(u) and ≺∅-induction, as in the proof of
Theorem 4.6, that Φ̃εq mr ∀nA(n).

Let us now briefly consider some specific instantiations of the parameters of Theorem 4.6 (a more
detailed discussion will be given in Section 5.2). Firstly, setting Ψ0 = Ψ(≺,m) in the simple case that
≺u= ∅ and mnu = n for all u, we have 〈αu〉(n) = ∅ and, using the abbreviation εn for εn,n our realizer
becomes

Ψε,q0 (u) = q(u ⊕ λn . εn(λx . Ψ0(u
x
n)))

which is nothing more than a simple variant of the Berardi-Bezem-Coquand realizer of countable choice
given in [3] and discussed in [5]. On the other hand, suppose that we still keep ≺u= ∅ for all u, but
define mnu := µi ≤ n(i /∈ dom(u)), where recall that µ is the bounded search operator which in this
case returns the least i ≤ n satisfying i /∈ dom(u), and n if no such i exists. Then finite input for this
variant of Ψ will be of the form ŝ for some sequences s : ρ∗. Defining Ψ1(s) := Ψ(∅,m)(ŝ) and observing
that for n ≥ |s| we have mnŝ = |s|, we obtain

Ψε,q1 (s) := q(ŝ ⊕ λn . ε|s|,n(λx . Ψ1(s ∗ x)))

which is just a (non-dependent) form of modified bar recursion. Finally, let us define ≺u=< andmnu = n
for all u. Then setting Ψ2(s) := Ψ(<,m)(ŝ), abbreviating εn,n by εn and observing that for n ≥ |s| we
have ŝ ⊕ 〈αu〉(n) = [αu](n) we obtain a realizing term satisfying

Ψε,q2 (s) = q(ŝ ⊕ λn . εn(λx . Ψ2([αu](n) ∗ x))︸ ︷︷ ︸
αu

).

The corresponding variant Ψ̃2 which realizes J∗
2 -shift is exactly the simple implicit product of selection

functions of [12].
Thus three completely different modified realizability intepretations of countable choice appear as

simple instances of Theorem 4.6. Moreover, in each instance we only require a restricted form of backward
induction and well-founded recursion which corresponds exactly to the soundness proofs used in the
original papers: for Ψ0 Theorem 4.6 is reduced to the proof of the double negation shift using update
recursion given in [5], while Ψ1 and Ψ2 require backward induction relativised to downward closed partial
functions, which is entirely equivalent to the variants of bar induction used to prove their correctness
in [6] and [12] respectively. Thus Theorem 4.6 doesn’t simply provide a parametrised framework with
which different realizers can be compared, but also a framework in which their correctness proofs can be
viewed in a uniform way as relativisations of backward induction.

Of course the construction of such a framework is only partially motivated by the desire to compare
existing interpretations. Theorem 4.6 generalises existing work in that one can use an arbitrary param-
eters to define new realizers of the J∗

i -shift that are automatically correct, giving an additional level of
flexibility and power when it comes to extracting computational content from proofs in practise.

However, we do not discuss this in any more detail here, instead proceeding straight to the generali-
sation of Theorem 4.6 to full dependent choice.

15

5 A computational interpretation of dependent choice

We now give a parametrised realizability interpretation to the principle of countable dependent choice.
Our formulation of dependent choice will be slightly more general that the usual sequential variants
treated in e.g. [6, 15, 26], in the sense that we parametrise the principle itself by a decidable well-
founded relation ⊳ on N which dictates the underlying dependency of the choice sequence.

To be more precise, given a decidable strict well-founded partial order ⊳ let us extend our type system
with types ρ⊳ which represent the set

⋃
n∈N

ρ⊳n where

ρ⊳n :≡ {m | m⊳ n} → ρ.

We tacitly assume that the types ρ⊳ can be smoothly incorporated into our system, and come equipped
with a length function | · | : ρ⊳ → N returning for each t : ρ⊳ a unique index |t| such that t ∈ ρ⊳|t| . For
⊳ =<, the type ρ< is isomorphic to the type ρ∗ of finite sequences over ρ, objects of type

{m | m < n} → ρ

representing finite sequences of length n. In fact ρ⊳ is essentially a generalisation of the finite sequence
type to arbitrary ⊳-closed partial functions (which need not have finite domain, though). Note that
when ⊳ = ∅ is the empty relation, the type ρ∅ is isomorphic to N, and as we will see, in this case our
parametrised dependent choice principle collapses to normal countable choice.

Now, the principle of ⊳-DCseq is given by the schema

∀sρ
⊳

(∀i⊳ |s|Ai({s}(i), s(i)) → ∃xρA|s|(s, x)) → ∃αN→ρ∀nAn({α}(n), α(n))

where {α}(n) : ρ⊳n is just the ⊳-initial segment of α i.e. λm⊳ n.α(m), and analogously for s (note that
{s}(i) is well-defined for i ⊳ |s| by transitivity of ⊳). Note that ⊳-DCseq follows from the full axiom of
choice together with well-founded recursion over ⊳ as follows: by classical logic and full choice we have

∀s(∀i ⊳ |s|Ai({s}(i), s(i)) → ∃xA|s|(s, x)) → ∃Θ∀s(∀i⊳ |s|Ai({s}(i), s(i)) → A|s|(s,Θs)).

Now, recursively defining α(n) := Θ({α}(n)), we prove ∀nAn({α}(n), α(n)) by wI⊳, since from the
assumption that ∀i ⊳ nAi({α}(i), α(i)) we obtain An({α}(n), α(n)) using that fact that {{α}(n)}(i) =
{α}(i) for i⊳ n.

In Section 5.2 below we discuss more well-known instances dependent choice, including its canonical
formulation as

∀n, xX∃yAn(x, y) → ∃f∀nAn(f(n), f(n+ 1)),

which is easily provable from <-DCseq. However, here we take advantage of the fact that our setting
allows us to interpret dependent choice in the non-standard, but very general form ⊳-DCseq.

5.1 Realizing ⊳-DCJ
∗

i

seq

As in the previous section, we realize a positive form of the negative translation of ⊳-DCseq which is
somewhat analogous to the dependent J-shift of [15]. As with the previous section, we can easily derive
a realizer for the standard negative translation of dependent choice principles from a realizer of our shift
principles - and we illustrate this in Section 5.2.

Definition 5.1. We define the translated principle ⊳-DCJ
∗
i

seq
by

⊳-DCJ
∗
1

seq
:

{
∀s, r(∀i ⊳ |s|Ai({s}(i), s(i)) → (∃xA|s|(s, x) → R) → ∃xA|r|(r, x))

→ (∃α∀nAn({α}(n), α(n)) → R) → R

⊳-DCJ
∗
2

seq
:

{
∀s, r(∀i ⊳ |s|Ai({s}(i), s(i)) → (∃xA|s|(s, x) → R) → ∃xA|r|(r, x))

→ (∃α∀nAn({α}(n), α(n)) → R) → ∃α∀nAn({α}(n), α(n))

where A is arbitrary formula over N× ρ⊳ × ρ and the realizing type of R is restricted to being discrete.

16

Again, these variants are nothing more than convenient syntactical rephrasings of the dependent shift
principle given in [15], this time extended to arbitrary partial orderings ⊳.

Now, if σ and τ are the realizing types of An(s, x) and R respectively, then ⊳-DCJ
∗
1

seq
is realized by

a term Φ of type ((ρ× σ)
⊳ → ρ⊳ → (ρ × σ → τ) → ρ × σ) → ((ρ × σ)N → τ) → τ which given input

ε : (ρ× σ)
⊳ → ρ⊳ → (ρ× σ → τ) → ρ× σ and q : (ρ× σ)N → τ that satisfies

∀s(ρ×σ)
⊳

, rρ
⊳

, pρ×σ→τ

{
∀i⊳ |s|(s(i)1 mr Ai({s0}(i), s(i)0)) →

(∀xρ×σ(x1 mr A|s|(s0, x0) → p(x) mr R) → εs,r(p)1 mr A|r|(r, εs,r(p)0))

∀α(ρ×σ)N (∀n α(n)1 mr An({α0}(n), α(n)0) → q(α) mr R)

returns a term Φεq : τ satisfying Φεq mr R. In the formulae above and results that follows, s0 : ρ
⊳ denotes

the first projection of the term s : (ρ× σ)
⊳

i.e. s0(m) := s(m)0, and similarly for infinite sequences α.
As in the previous section, we construct a family of realizing terms which follow the same basic principle
of backward recursion on partial functions, and which give a computational interpretation to ⊳-DCJ

∗
1

seq
.

However, this time our choices of ≺u and mnu require some additional conditions to ensure they are
now compatible with ⊳.

Proposition 5.2. Suppose that σ and τ are the realizing types of A(n) and R, with τ discrete, and that

≺ : (ρ× σ)
N

→ (N× N → B) and m : N× (ρ× σ)
N

→ N are such that

(i) ∀k(k ≺u n ∨ k ⊳ n ∨ k ⊳mnu→ k ≺′
u n) for some well-founded relation ≺′

u,

(ii) n /∈ dom(u) → mnu /∈ dom(u) ∪ {k | k ≺u n},

for all u and n. Then there is a term Ψε,q(⊳,≺,m) : (ρ× σ)
N

→ τ with parameters of type ε : ((ρ× σ)
⊳ →

ρ⊳ → (ρ × σ → τ) → ρ × σ) and q : ((ρ × σ)N → τ) which is primitive recursively definable in BkR +
λu.wR≺′

u, and satisfies the recursive equation

Ψε,q(u) = q(u ⊕ λn . ε{α}(mnu),{α0}(n)(λx . Ψ
ε,q(u ⊕ 〈αu〉(n)

x
mnu))︸ ︷︷ ︸

αu

)

where αu : (ρ× σ)N denotes the argument of q as indicated above and 〈αu〉(n) : (ρ× σ)
N

is defined to be

λk.(αu(k) if k ≺u n else ⊥).

Regarding the somewhat casual definition of the term λu.wR≺′
u see Remark 4.5 - again, in all concrete

cases discussed later ≺u will not even depend on u and wR≺′
u will be trivially definable in E-HAω. As

with Proposition 4.4, on an intuitive level it is not too hard to see that Ψ is well-defined. Firstly αu
is well-defined by ≺′

u-recursion since in order to compute αu(n) we require αu(k) for either k ≺u n,
k ⊳ n or k ⊳mnu, which by condition (i) implies that k ≺′

u n. Then by (ii) for n /∈ dom(u) we have
mnu /∈ dom(u) and thus u ⊏ u ⊕ 〈α〉(n)xmnu and so recursive calls on Ψ are always made on strict
extensions u. A formal proof that Ψ is definable in BkR+ λu.wR≺u is given in Appendix A.

Theorem 5.3. Suppose that Ψ(⊳,≺,m) is defined as in Proposition 5.2 for ⊳, ≺ and m satisfying con-
ditions (i) and (ii), and additionally

(iii) if dom(u) is ⊳-closed then so are dom(u) ∪ {k | k ≺u n} and dom(u) ∪ {k | k ≺u n} ∪ {mnu},

Then the term Φ(⊳,≺,m) := λε, q . Ψε,q(⊳,≺,m)(∅) realizes ⊳-DCJ
∗
1

seq
provably in T + Cont + BkI + BkR +

(wI≺′
u
) + λu.wR≺′

u
.

Remark 5.4. While the proof of this Theorem is fairly lengthy, it is little more than a straightforward
variant of the much simpler proof of Theorem 4.6. The additional technical details are simply required
to deal with the dependency ⊳.

Remark 5.5. All terms s : ρ⊳, when embedded as partial functions, are ⊳-closed by transitivity of ⊳,
but the converse is not necessarily true.

17

Proof. Assume that ε and q realize the premise of ⊳-DCJ
∗
1

seq
. Analogous to the proof of Theorem 4.6, we

use a main backward induction along with an auxiliary well-founded induction, this time on the slightly
more complex formula

B(u) :≡ Ā(u) → Ψε,q(u) mr R.

for
Ā(u) :≡ ∀n ∈ dom(u)(∀k ⊳ n(k ∈ dom(u)) ∧ u(n)1 mr A({u0}(n), u(n)0)),

where now as our premise we require that u is a ⊳-closed partial realizer of the dependent choice sequence.
As before, B(u) is open in the sense of Proposition 3.2 by Cont. To prove the backward induction step,
let’s assume that Ā(u) holds and B(v) is true for all v ⊐ u and try to derive Ψ(u) mr R.

This time we use ≺′
u induction to show that ∀nC(n) where

C(n) :≡ αu(n)1 mr An({(αu)0}(n), αu(n)0).

Then we are done since this would imply that Ψ(u) = q(αu) mr R. So fix n and assume that ∀k ≺′
u

n C(k). There are two cases to consider. If n ∈ dom(u) and then by ⊳-closedness of u, C(n) becomes
u(n)1 mr An({u0}(n), u(n)0) which is true by assumption. Otherwise, if n /∈ dom(u) then C(n) becomes

(∗) ε{α}(mnu),{α0}(n)(p)1 mr An({(αu)0}(n), ε{α}(mnu),{α0}(n)(p)0)

where
p := λx . Ψε,q(u ⊕ 〈αu〉(n)

x
mnu).

We now prove that

x1 mr Amnu({(αu)0}(mnu), x0) → Ā(u ⊕ 〈αu〉(n)
x
mnu) and

Ā(u ⊕ 〈αu〉(n)
x
mnu) → Ψ(u ⊕ 〈αu〉(n)

x
mnu) mr R.

The second implication follows from the main backward induction hypothesis since u ⊏ u ⊕ 〈αu〉(n)
x
mnu

by (ii). To prove the first implication, let’s abbreviate v := u ⊕ 〈αu〉(n)
x
mnu. Then dom(v) = dom(u) ∪

{k | k ≺u n} ∪ {mnu}, and since by Ā(u) we know that dom(u) is ⊳-closed, so is dom(v) by condition
(iii). Thus to obtain Ā(v) it remains to show that

(∗∗) ∀k ∈ dom(v)(v(k)1 mr A({v0}(k), v(k)0)).

There are three possibilities. If k ∈ dom(u) then (∗∗) follows from Ā(u), while if k = mnu then (∗∗)
becomes x1 mr A({(αu)0}(mnu), x0) by (iii) which is our premise. Otherwise, for k ≺u n, (∗∗) be-
comes αu(k)1 mr A({(αu)0}(k), αu(k)0) by condition (iii), and this we know is true by the ≺′

u-induction
hypothesis.

Therefore, putting everything together we obtain

x1 mr Amnu({(αu)0}(mnu), x0) → p(x) mr R.

Since in addition we have ∀i⊳mnu(αu(i)1 mr Ai({(αu)0}(i), αu(i)0), a fact which also follows from the
≺′
u-induction hypothesis along with condition (i), then by correctness of ε we obtain (∗).
Thus we have shown that ∀k ≺′

u n C(k) → C(n) and therefore ∀nC(n) follows by induction. Since
this in turn implies Ψ(u) mr R, we have shown ∀v ⊐ uB(v) → B(u), and thus ∀uB(u) by backward
induction. Finally, then, since Ā(∅) is trivially satisfied, B(∅) implies Ψε,q(∅) mr R, which completes the
proof.

Corollary 5.6. There is a term Φ̃(⊳,≺,m) primitive recursive in BkR + λu.wR≺u which realizes the

⊳-DCJ
∗
2

seq
, provably in E-HAω + Cont+ BkI+ BkR+ (wI≺u) + λu.wR≺u .

Proof. Just as in the previous section, and keeping the notation of Theorem 5.3, define Ψ̃ε,q(u) = αu so
that it satisfies the recursive equation

Ψ̃ε,q(u) = u ⊕ λn . ε{α}(mnu),{α0}(n)(λx . q(Ψ̃
ε,q(u ⊕ 〈αu〉(n)

x
mnu))).

Define Φ̃εq := Ψ̃ε,q(∅). Then it follows immediately from ∀uB(u) and ≺′
∅-induction that Φ̃εq =

α∅ mr ∃α∀nA(n) since ∀n α∅(n)1 mr An({(α∅)0}(n), α∅(n)1).

18

5.2 Examples

We now show that essentially all of the solutions to the modified realizability interpretation choice prin-
ciples given across e.g. [3, 6, 15, 26] appear as special cases of Theorem 5.3, given suitable instantiations
of ⊳, ≺, m and the choice formula An(s, x).

5.2.1 The Berardi-Bezem-Coquand functional (⊳ =≺u= ∅)

It is easy to see that the principle ∅-DCseq is just countable choice, since ρ∅n is just a singleton object
{•} indexed by n, and so ρ∅ is isomorphic to N. Setting An(•, x) := Bn(x) we obtain AC as defined in
Section 4. In fact, Theorem 5.3 completely reduces to Theorem 4.6 for the formula A(n) := ∃xBn(x)
once we eliminate ⊳. Therefore as expected there is a direct corresondence between the realizers of the
two theorems in this case.

For any function m satisfying n /∈ dom(u) → mnu /∈ dom(u), we can define a generalised version of
the Berardi-Bezem-Coquand functional as BBC(m) := Ψ(∅,∅,m), which satisfies the defining equation

BBC
ε,q

(m)(u) = q(u ⊕ λn . εmnu,n(λx . BBC
ε,q

(m)(u
x
mnu))).

Regardless of the choice of m, this functional always gives a computational interpretation to countable
choice. Now suppose that we move back into the more conventional setting of the double negation
translation of countable choice, setting R = ⊥ and assuming Bn(x) is a negated formula, so that there
exists a term h satisfying ∀n, x (h mr (⊥ → Bn(x))(. Then if φ satisfies

φ mr ∀m((∃xBm(x) → ⊥) → ⊥)

then εφm,n(p) :=ρ×σ 〈0ρ, h(φm(p))〉 realizes the premise of ∅-DCJ
∗
1

seq
, and thus defining BBC

φ,q

(m),1 := BBC
εφ,q

(m)

- which satisfies the equation

BBC
φ,q

(m),1(u) = q(u ⊕ λn . 〈0, h(φmnu(λx . BBC
ε,q

(m),1(u
x
mnu)))〉).

- we obtain a term which realizes the negative translation of AC. In particular, setting mnu = n we
obtain

BBC
φ,q
2 (u) = q(u ⊕ λn . 〈0, h(φn(λx . BBC

ε,q
2 (uxn)))〉)

which is just the BBC functional of [3] (more precisely, the variant of the Berardi-Bezem-Coquand
functional for input with arbitrary domain considered in [5]).

5.2.2 Modified bar recursion (≺u= ∅)

Suppose that we retain the simplification ≺u= ∅, but now allow ⊳ to range over arbitrary decidable
partial orders. Then we obtain a realizer which makes recursive calls over updates of its input, just like
the BBC functional, but now m must not only satisfy conditions (i) and (ii) but also (5.3):

u is ⊳-closed → u ∪ {mnu} is ⊳-closed

In this case, the term MBR
ε,q

(⊳,m) := Ψε,q(⊳,∅,m), which has defining equation

MBR
ε,q

(⊳,m)(u) = q(u ⊕ λn . ε{α}(mnu),{α0}(n)(λx . MBR
ε,q

(⊳,m)(u
x
mnu)))

forms a realizer for ⊳-DCseq. This can be viewed as a generalisation of modified bar recursion as first
defined in [6]. All existing variants ofMBR occur when ⊳ is the usual ordering on N, but MBR is perfectly
well-defined in more unusual cases. For instance, suppose that we have a bijective encoding c : N → B∗,
and that

m⊳ n := c(m) is a proper prefix of c(n).

Then ⊳-closed partial functions are precisely partial functions whose domain is a binary tree, and in this
case there are many valid choices for m, a canonical one being

mnu := n if n ∈ dom(u) else i where c(i) is the least prefix of c(n) not in dom(u).

19

This variant of MBR yields an intuitive realizer for dependent choice over binary trees.
Now, suppose that we do indeed have ⊳ =<. Then <-closed partial functions are either total or of the

form ŝ where s is a finite sequence. Observing that in order to evaluate MBR(∅) we can restrict ourselves
to input with finite domain we can redefine our realizer in this case as MBR

ε,q
1 (sρ

∗

) := MBR
ε,q

(<,m)(ŝ),

setting mnu := µi ≤ n(i /∈ dom(u)). Clearly such an m satisfies (5.3), and in particular mnŝ = |s| for
n ≥ |s|. Therefore MBR1 has defining equation

MBR
ε,q
1 (s) = q(ŝ ⊕ λn . εs,{α0}(n)(λx . MBR

ε,q
1 (s ∗ x)))

This directly realizes <-DCseq, which is isormorphic to

∀sρ
∗

(∀i < |s|Ai([s](i), s(i)) → ∃xA|s|(s, x)) → ∃α∀nAn([α](n), α(n)).

We can now easily rederive various concrete instances of MBR1 found in the literature which arise from
setting R = ⊥ and instantiating Ai(s, x) by the correct formula. First, note that we immediately
derive AC from <-DCseq by setting An(s, x) := Bn(x), and a corresponding realizer for AC by defining

MBR
φ,q
2 := MBR

εφ,q
1 for εφs,r(p) = 〈0ρ, h(φ|s|(p))〉, where φ and h are as in Section 5.2.1. This has defining

equation
MBR

φ,q
2 (s) = q(ŝ ⊕ λn . 〈0, h(φ|s|(λx . MBR

φ,q
2 (s ∗ x)))〉)

which is exactly the realizer of countable choice constructed in [6]. Note that the same realizer could
have been constructed from BBC(m),1 for suitable m.

Now suppose that A0(s, x) := B0(x0, x) and An(s, x) := Bn(s|s|−1, x) for n > 0. Then <-DCseq

immediately implies the following, standard formulation of dependent choice:

DC : ∀n, y∃xBn(y, x) → ∀x0∃α(α(0) = x0 ∧ ∀nBn(α(n), α(n + 1)).

The challenge for realizing DC is as follows: we must construct a realizer of ⊥, given realizers

φN→ρ→(ρ×σ)→τ)→τ mr ∀n, y((∃xBn(y, x) → ⊥) → ⊥)

Y (ρ×σ)N→τ mr ∃α(α(0) = x0 ∧ ∀nBn(α(n), α(n + 1))) → ⊥

and in addition assuming that B is negated, thus guaranteeing the existence of a realizer h of ex-falso
quodlibet satisfying ∀n, y, x h mr (⊥ → Bn(y, x)). But in this case, we can easily define realizers of the
premise of <-DCseq as

εφs,r(p) := 〈0, h(φ|s|,(x0∗s0)|s|(p))〉

qY (α) := Yx0(α) := Y (〈x0 ∗ α0, α1〉)

and defining MBR
φ,Y
3 := MBR

εφ,qY

1 yields a realizer for DC satisfying

MBR
φ,Y
3 (s) = Yx0(ŝ ⊕ λn . 〈0, h(φ|s|,(x0∗s0)|s|(λx . MBR

φ,Y
3 (s ∗ x)))〉)

which is this time exactly the realizer of DC given in [6]. In an entirely analogous way, the bar recursive
solution to the sequential variant of dependent choice considered in [26]:

B(〈〉) → ∀sρ
∗

(B(s) → ∃xB(s ∗ x)) → ∃α∀nB([α](n)) (9)

can be defined in terms of MBR1, since (9) is easily implied by <-DCseq for An(s, x) := B(s ∗ x). Given
realizers

aρ0 mr B(〈〉)

φρ
∗→σ→(ρ×σ→τ)→τ mr ∀s(B(s) → (∃xB(s ∗ x) → ⊥) → ⊥)

Y (ρ×σ)N→τ mr ∃α∀nB([α](n)) → ⊥

and assuming the existence of a realizer ∀s h mr (R → B(s)), it is easy to see that

εa0,φs,r (p) := 〈0, h(φs0,(a0∗s)|s|(p)〉

qa0,Y (α) := Ya0(α) := Y (〈α0, G0 ∗ α1〉)

20

realize the premise of <-DCseq, and therefore the realizer we obtain is MBR
a0,φ,Y
4 := MBR

εa0,φ
s,r ,qa0,Y

1 which
satisfies

MBR
a0,φ,Y
4 (s) = Ya0(ŝ ⊕ λn . 〈0, h(φs0,(a0∗s)|s|(λx . MBR

a0,φ,Y
4 (s ∗ x)))〉)

which is exactly the term used to interpret dependent choice in [26] (and also extract an algorithm from
Higman’s lemma in [25]).

5.2.3 Products of selection functions (mnu = n, ⊳ total)

We finally consider the case in which the functional m is defined to be the projection function mnu = n.
Clearly, the conditions (i)-(iii) are satsified whenever ≺u= ⊳, in which case the realizer simplifies to

Ψε,q(u) = q(u ⊕ λn . ε{α}(n)(λx . Ψ
ε,q(u ⊕ {α}(n)xn))︸ ︷︷ ︸

αu

)

where we abbreviate ε{α}(n) = ε{α}(n),{α0}(n) and {α}(n) is now treated as a partial function. Now,
suppose that ⊳ is a total order, and therefore constitutes an encoding of some countable ordinal ξ. It is
always the case that we can evaluate Ψ(∅) by restricting the input to being ⊳-closed. However, when ⊳

is total then the set of (domain-theoretically) non-total ⊳-closed partial sequences is isomorphic to ρ⊳,
since if u is ⊳-closed then dom(u) = {k | k ⊳ n} where n is the least element of the set of undefined
elements of u. Let us suppose that ⊳ comes equipped with a computable ordinal successor function
succ : N → N i.e. for each number n, succ(n) is the least number greater than n with respect to ⊳.
Define PS

ε,q

(⊳) : ρ
⊳ → ρN by PS

ε,q(s) := Ψ̃ε,q(ŝ) (where Ψ̃ is the term defined in Corollary 5.6). Then PS

satisfies the equation

PS
ε,q

(⊳)(s) = ŝ ⊕ λn . ε{α}(n)(λx . q(PS
ε,q

(⊳)({α}(n) ⋆ x))).

where {α}(n) ⋆ x : ρ⊳succ(n) is defined by

({α}(n) ⋆ x)(m) :=

{
α(m) if m⊳ n

x if m = n.

This functional is a generalisation of the (implicitly well-founded) product of selection functions of

Escardó and Oliva to arbitrary recursive ordinals, and is not only a realizer ⊳-DCJ
∗
2

seq
, but a direct realizer

of the following transfinite J-shift principle:

{
∀s(∀i ⊳ |s|Ai({s}(i), s(i)) → (∃xA|s|(s, x) → R) → ∃xA|s|(s, x))

→ (∃α∀nAn({α}(n), α(n)) → R) → ∃α∀nAn({α}(n), α(n)).

For the particular case that ⊳ is the normal ordering on N and An(s, x) := Bn(s ∗ x) this becomes

{
∀sρ

∗

(∀i < |s|Bi([s](i + 1)) → (∃xB|s|(s ∗ x) → R) → ∃xB|s|(s ∗ x))

→ (∃α∀nBn([α](n+ 1)) → R) → ∃α∀nBn([α](n + 1)).

which is precisely the dependent J-shift of [15], and our realizer becomes

PS
ε,q

(<)(s) = ŝ ⊕ λn . ε[α](n)(λx . q(PS
ε,q

(<)([α](n) ∗ x)))

which is isomorphic to the dependent product of selection functions of [15]. Setting An(s, x) := Bn(x)
as in Section 5.2.2 we see that the dependent J-shift implies the non-dependent J-shift:

∀n(∃xBn(x) → R) → ∃xBn(x)) → (∃α∀nBn(α(n)) → R) → ∃α∀nBn(α(n))

and our realizer can be simplified to

PS
ε,q

(<)(s) = ŝ ⊕ λn . εn(λx . q(PS
ε,q

(<)([α](n) ∗ x)))

which is now isomorphic to the non-dependent product of selection functions of [15].

21

Summary

We have demonstrated that the many variants of bar recursion used to intepret choice principles are just
instances of the same basic cominatorial idea. Theorem 5.3 gives us a completely uniform framework in
which to understand the variety of different realizers currently in the literature, and moreover in each
case we are able to provide generalisations of these realizers to more complex orderings on N. We sum-
marise all this in the table below (here m1nu := µi ≤ n(i /∈ dom(u)) and m2nu = n).

m ≺u ⊳ An(s, x) realizer

m1 ∅ ∅ Bn(x) Berardi-Bezem-Coquand functional [3]
m2 ∅ ∅ / < Bn(x) simple modified bar recursion [6]
m2 ∅ < Bn(s|s|−1, x) dependent modified bar recursion [6]
m2 ∅ < B(s ∗ x) dependent modified bar recursion [26]
m1 < ∅ / < Bn(x) simple product of selection functions [12, 15]
m1 < < Bn(s ∗ x) dependent product of selection functions [12, 15]

However, these examples consitute only an extremely limited range of possibilities for Ψ(m,⊳,<) based
on very simple instantiations of its parameters. Theorem 5.3 gives us far more than just a unifying
perspective for existing realizers: it gives us a very general recipe for devising new realizers for choice
principles that can be tailored to the situation at hand. Thus, rather than simply giving a fixed interpre-
tation of choice and extracting programs relative to this realizer, we have an additional level of flexibility
which should allow us to extract much more efficient and meaningful programs.

6 Understanding the parametrised realizer

Having completed the main theoretic work of this paper, the purpose of this section is to give a somewhat
informal graphical representation of the structure of our realizer and the proof of Theorem 5.3. In doing
so we suggest a potential semantic interpretation of the realizer.

Much work has been done in the last few decades on providing a computational interpretation of
classical logic that can be understood on an intuitive level terms of learning - the basic idea being that
realizers of classical principles typically carry out some kind of ‘learning procedure’ in order to construct
an approximation to that principle.

In [3] a connection is suggested between realizers of negative translated formulas and winning strate-
gies related to the Novikoff interpretation of classical formulas [11, 20]. In particular, an illuminating
semantic interpretation of what we have called the Berardi-Bezem-Coquand functional is given, in which
the functional represents a strategy for building an approximation of a choice functional which wins
against any continuous opponent. We attempt to extend this interpretation to our generalised realizer
of choice, and argue that the our parameters can be giving a clear meaning in this context.

Let us first very briefly recall the basic ideas of [3, 11] (the reader is referred to these papers for a
proper treatment). In the Novikoff calculus, the formula ∃x∀yA(x, y) is mapped to the propositional
formula ∨

x

∧

y

A(x, y).

The truth of such a formula is debated by two players ∃loise and ∀belard, who support truth and
falsity respectively. First, ∃loise selects some value x0 for which she claims that

∧
y A(x0, y) is true, and

∀belard follows this by choosing some y0 in an attempt to falsify A(x0, y0). The formula as a whole is
intuitionistically valid iff ∃loise has a winning strategy regardless of any choices made by ∀belard.

Now, it is clear that such a correspondence does not work in the case of classical logic, since there are
Σ2-formulas classically true but for which there is no effective strategy for

∨
x

∧
y A(x, y). In this case,

validity of
∨
x

∧
y A(x, y) is interpreted as the existence of some x0 such that

A(x0, y
′) ∨

∨

x

∧

y

A(x, y)

22

is valid for all y′. The idea here is that ∃loise picks a potential witness x0, which is followed by an attempt
at a counterexample y0 from ∀belard, and the game becomes A(x0, y0)∨

∨
x

∧
y A(x, y). In other words,

either A(x0, y0) is true, in which case ∃loise wins, or it is false, and ∃loise can backtrack and start again,
this time using falsity of A(x0, y0) as constructive information. In this way, ∃loise is allowed to ‘learn’
from ∀belard’s choices. Moreover, as demonstrated in [3], this notion of learning and backtracking is
captured by the recursive functionals which realize the negative translation of the classical formula.

Let us now take this basic idea and consider how the truth of countable choice can be interpreted as
a dialogue between ∃loise and ∀belard in which ∃loise eventually wins. Countable choice can be written
as the disjuction

∃n∀x¬An(x) ∨ ∃f∀nAn(f(n)).

We give this formula a rough interpretation along the lines of [3] as follows. ∃loise begins by attempting to
realize the conclusion of AC with some default function f0 = λn.0 whose ‘domain’ of genuine constructive
information is empty, and ∀belard responds by selecting some point n0 such that this attempt fails i.e.
we cannot provide a realizer for An0(0). ∃loise responds by now attempting to falsify the premise at
some m0, to which ∀belard responds with a point x0 and a realizer for Am0(x0).

∃loise has now been given some constructive information by ∀belard, so she starts the whole process
again, this time with the function f1 := f0[m0 7→ x0], which now has a domain of {m0}. This time,
∀belard picks a point n1 at which f1 fails. Either he picks n1 = m0 in which case he loses since by his
own admission Am0(x0) is true (see [3] for a formal translation of this logic into Novikoff strategies), or
he chooses n1 /∈ {m0}. Then ∃loise responds with some m1 /∈ {m0} which falsifies the premise of AC, and
again ∀belard responds with some x1 and a realizer for Am1(x1). ∃loise now updates her approximation
again to some f2 which includes this information, and continues as before. Roughly speaking, such a
strategy should eventually result in success for ∃loise whenever ∀belard is ‘continuous’, because he will
eventually be forced to pick ni in the domain of fi.

We have been vague as to two details in this strategy: firstly how ∃loise decides on whichmi to choose
in light of ∀belard’s original choice ni, and secondly in how she chooses to update her approximation each
time. In the first instance it is clear that if ∀belard has a ‘good’ choice for ni which is not in the domain
fi then ∃loise must also respond with mi not in the domain of fi if she has any chance of falsifying the
premise of AC. Then, when it comes to updating fi with the information (mi, xi), she could either just
add this directly to fi and define fi+1 := fi[mi → xi], or she could potentially erase some of the existing
elements in the domain of fi.

The most natural choice is of course to pick mi = ni each time and update directly without any
erasing, and this is precisely the strategy given in [3]. However, in the case of dependent choice where
the elements of the choice sequences are related in some way, it is crucial for ∃loise to update her
approximation in a manner which is coherent with the underlying dependency required for the choice
sequence.

Let us now move on to our realizer for the negative translation of countable dependent choice (in

the form of the ⊳-DCJ
∗
1

seq
-shift), and show how the parameters of the realizer correspond to the choices

in ∃loise’s strategy we have just discussed. In Figure 1 below we give a (very informal) diagrammatic
representation of the proof of Theorem 5.3. We retain all our notation, in particular we write Ā(u) to
denote that u is a partial realizer. For simplicity we now work in a concrete realizability setting with
R = ⊥ and εs,r(p) = 〈0, h(φs(p))〉 where

φ mr ∀s((∃xA|s|(s, x) → ⊥) → ⊥).

and ∀n, r, x(h mr (⊥ → An(r, x))), so in particular ε realizes the premise of ⊳-DCJ
∗
1

seq
.

Let us now run through the diagram, step by step. Roughly speaking, each box represents a stage
in a game between ∃loise and ∀belard, and an arrow represents a reverse implication in the proof of
Theorem 5.3. We start at A with the assumtion that ∃loise has already computed a partial realizer u
that is correct wherever it’s defined. At step B, ∃loise plays an approximation (αu)0 := u0 ⊕ 0 to a
choice sequence with a corresponding sequence (αu)1 of realizers, and in response, ∀belard selects some
n and challenges ∃loise to realise An({(αu)0}(n), (αu)0). If n ∈ dom(u) then ∃loise wins, so we assume
the contrary and move on to step C. ∃loise responds to the challenge in the next step D by claiming
that the premise of choice principle is false at point mnu. ∀belard is now forced to produce x such
that x1 mr Amnu({(αu)0}(mnu), x0) - if he fails then ∃loise wins, and if he succeeds then ∃loise is given
constructive information and takes this as an assumption.

23

A Ā(u) ⊢ Ψ(u) mr ⊥

pp

u ⊕ 〈αu〉(n)xmnu⊐u

Ā(u) ⊢ αu mr ∃α∀nAn({α}(n), α(n)) B

��
q mr ∃α∀nAn({α}(n), α(n)) → ⊥

Ā(u), n /∈ dom(u) ⊢ αu(n)1 mr An({(αu)0}(n), 0) C

��
∀belard chooses n

Ā(u), n /∈ dom(u) ⊢ φ{αu}(mnu)(λx.Ψ(u ⊕ 〈αu〉(n)xmnu)) mr ⊥ D

��
h mr (⊥ → An({(αu)0}(n), 0))

E Ā(u), n /∈ dom(u), x1 mr Amnu({α0}(mnu), x0) ⊢ Ψ(u ⊕ 〈αu〉(n)xmnu) mr ⊥

��
∀belard chooses x, ∀s¬¬∃xA|s|(s, x)

Ā(u), n /∈ dom(u), x1 mr Amnu({α0}(mnu), x0) ⊢ Ā(u ⊕ 〈αu〉(n)xmnu) F

��

k≺un

BB

Figure 1: Diagrammatic illustration of Theorem 5.3

We now come to the subtle part: the manner in which ∃loise updates (αu)0 to reflect this new
information and repeat the loop. From a proof theoretic perspective, E is implied by A and F by the cut
rule. We can interpret this semantically as follows: ∃loise forms the updated function (αu)0[mnu 7→ x0],
but states that if in future ∀belard queries this realizer for any k ≺u n with k /∈ dom(u), she will
ignore any subsequent information received and revert to stage C as if ∀belard had chosen k instead
of n. This is reflected in the definition of Ψ, since it makes a recursive call on the partial function
u ⊕ 〈αu〉(n)

x
mnu, but the fact that this is a partial realizer for k ≺u n relies on nested recursive calls of

the form Ψ(u ⊕ 〈α〉(k)ymku), which in particular forgets the value of x at mnu.
Therefore at stage E there are two possibilities. Either at some point in the future ∀belard does

query k ≺u n for k /∈ dom(u), in which case all subsequent information is deemed irrelevant and we make
an auxiliary ≺u-recursive loop back to C, or ∀belard never queries k ≺u n, in which case we can treat
u ⊕ 〈αu〉(n)

x
mnu as a partial realizer and make a backward recursive loop back to stage A. In this way,

the game corresponding to dependent choice can be seen as a path through Figure 1. By the combination
of ≺u-induction and backward induction, using the fact that ≺u is well-founded and ∀belard’s choice of
n at step B is based on a continuous strategy, the proof of Theorem 5.3 essentially says that there is no
infinite path starting from ∅, and therefore ∃loise has a winning strategy in the game as a whole.

Of course, we have not made our proposed link between Theorem 5.3 and the world of Novikoff games
precise! But at the very least we hope to have provided some insight into how our somewhat syntactic
construction in the previous sections could be viewed from an intuitive, semantic perspective.

Let us now think about our concrete examples. For the Berardi-Bezem-Coquand functional we have
〈αu〉(n) = ∅ and so the ‘forgetful’ subloop is completely avoided. In this case ∃loise simply responds to
∀belard’s choice of n directly, and so when ∀belard plays (〈ni, xi〉) = 〈1, x0〉, 〈4, x1〉, 〈3, x2〉, . . . we get
the following sequence of updates

[0, 0, 0, 0, 0] 7→ [0, x0, 0, 0, 0] 7→ [0, x0, 0, 0, x1] 7→ [0, x0, 0, x2, x1] 7→ . . .

This semantic interpretation of the BBC-functional is of course completely analogous to the one given
in [3]. For modified bar recursion, whenever ∀belard makes a sensible choice n /∈ dom(u), ∃loise switches
instead the least element not already in the domain. Again we avoid the forgetful subloop, but this
time ∃loise’s updates are done in sequence - the same three choices from ∀belard results in the following

24

response:
[0, 0, 0, 0, 0] 7→ [x0, 0, 0, 0, 0] 7→ [x0, x1, 0, 0, 0] 7→ [x0, x1, x2, 0, 0] 7→ . . .

Finally, for the product of selection functions, ∃loise never changes ∀belard’s choice of n, but now assumes
a policy of forgetting everthing above the point being updated. This time the result is

[0, 0, 0, 0, 0] 7→ [0, x0, 0, 0, 0] 7→ [0, x0, 0, 0, x1] 7→ [0, x0, 0, x2, 0] 7→ . . .

the point x1 being forgotten as a result of ∀belard choosing 3 < 4 as his third move.
The strategy related to the BBC-functional fails for dependent choice because it is assumed that

∀belard always picks xi such that Am([u ⊕ 0](m), xi) holds, and so e.g. we have A4([0, x0, 0, 0], x1).
However, if ever in the future he gives ∃loise some new information xi+j for point k < m in the sequence,
then xi is no longer valid - for instance we would require A4([0, x0, 0, x2], x1) to hold, which is not
necessarily true.

Modified bar recursion and the product of selection functions represent two methods of overcoming
this. For the former, ∃loise ensures that ∀belard always gives her constructive information in sequence,
while for the latter she is happy to take information for any point ∀belard chooses, but whenever updating
she erases everthing above, relying on future moves to regain this information.

7 Concluding remarks

There are several directions in which the work presented here could be developed. We have already
demonstrated that Theorem 5.3 provides a uniform soundness proof through which most of the existing
variants of backward recursion used to interpret dependent choice can be derived. The most obvious
next step would be to explore the use of new variants of bar recursion which arise from giving more
interesting values to the parameters of Ψ(m,≺,⊳).

Take, for example, the following classical statement:

For any function f : B∗ → N, there exists a function g : B∗ → N such that for any branch
s : B∗ we have f(g(s)) ≤ f(t) whenever t has s as a prefix.

This is a direct consequence of the axiom of countable choice, and so any instantiations of (m,≺)
satisfying the conditions of Theorem 4.6 will yield a realizer capable of building an approximation to the
choice function g. However, it would seem most sensible to choose the parameters so that the recursion
is carried out over the natural tree structure s⊳ t iff s is a prefix of t (relative to some encoding of B∗

into N) - using, for example, the variant of modified bar recursion sketched out the beginning of Section
5.2.2. Then if an approximation to g is defined at s then this information could be used to extend the
approximation to extensions t of s.

It would be interesting to examine in general how such realizers, tailored to the situation at hand,
compare to those built from the existing forms of bar recursion. One would expect an advantage in terms
of both algorithmic efficiency and the syntactic expressiveness of the extracted program.

Another interesting application of our parametrised form of bar recursion would be to extend the
work of Escardó and Oliva on Nash-equilibria of unbounded games to the transfinite case. In [14, 15] it
is shown that the infinite products of selection functions corresponding to the functional PS(<) defined in
Section 5.2.3 computes optimal strategies in infinite sequential games over the natural numbers. However,
PS(⊳) is well-defined for any computable well ordering on N, and in particular it is not too difficult to
show that in these cases Spector’s equations:

α(n) = ε{α}(n)(pn)

pn(ε{α}(n)(pn)) = q(α)

can be solved in ε and q for arbitrary ⊳ by setting α = PSε,q(∅) and pn(x) := q(PSε,q({α}(n) ⋆ x)),
entirely analogously to the normal ordering on N. However, it would be useful to formalise this properly
and to investigate whether there are any interesting applications of higher-type transfinite games.

Finally, to the author’s knowledge all known realizability interpretations of choice are restricted to
countable or dependent choice principles, and it is not known how to extend these to choice over function
spaces, for example:

∀fN→N∃xρBf (x) → ∃F (N→N)→ρ∀fBf(F (f)).

25

One possibility would be to build an approximation to F over some countable basis (ci)i∈N for the space
N → N. However, in this case updates to the approximation must be made in a coherent way, since
the values of two distinct elements c1 and c2 must be compatible with their intersection. Therefore the
ideas behind our parametrised realizer could be helpful here, the aim being to assign an ordering to the
basis and make sure that the updates respect this ordering. However, in the author’s opinion it is likely
that some additional ingenuity would be required here, as the challege posed by giving a computational
interpretation non-countable choice seems to be a significant one.

Funding. This work was supported by a LabEx CARMIN postdoctoral research fellowship, and also the
Austrian Science Fund (FWF) project “Automated Complexity Analysis via Transformations” (project
number P25781).

A Appendix

Proof of Proposition 5.2. We define Ψε,q(⊳,≺,m)(u) := BkRψ
ε,q

(u) where

ψε,qu (fN×(ρ×σ)
N

→τ) :=τ q(α
ε,f
u)

where αε,fu : (ρ× σ)N is recusively defined over ≺′
u by

αε,fu (n) :=

{
u(n) if n ∈ dom(u)

ε{α}(mnu),{α0}(n)(λx . f(mnu, u⊕ 〈αu〉(n)
x
mnu)) otherwise

where 〈αu〉(n) := λk.(αε,fu (k) if k ≺u n). By condition (i) of the proposition, αε,fu is well-founded. Now,
unwinding definitions, we obtain

Ψε,q(u) = ψu(λn, v . Ψ
ε,q(u ⊕ v) if n ∈ dom(v)\dom(u)︸ ︷︷ ︸

f

)

= q(αu)

= q(u ⊕ λn . ε{α}(mnu),{α0}(n)(λx . f(mnu, u⊕ 〈αu〉(n)
x
mnu)))

(∗)
= q(u ⊕ λn . ε{α}(mnu),{α0}(n)(λx . Ψ(u⊕ 〈αu〉(n)

x
mnu)))

where step (∗) follows from

f(mnu, u⊕ 〈αu〉(n)
x
mnu) = Ψ(u⊕ (u⊕ 〈αu〉(n)

x
mnu)) if mnu ∈ dom(u⊕ 〈αu〉(n)

x
mnu)\dom(u)

= Ψ(u⊕ 〈αu〉(n)
x
mnu) if mnu /∈ dom(u)

= Ψ(u⊕ 〈αu〉(n)
x
mnu)

the last step following from condition (ii).

References

[1] F. Aschieri. Learning, Realizability and Games in Classical Arithmetic. PhD thesis, Universita degli
Studi di Torino and Queen Mary, University of London, 2011.

[2] J. Avigad. Update procedures and the 1-consistency of arithmetic. Mathematical Logic Quarterly,
48(1):3–13, 2002.

[3] S. Berardi, M. Bezem, and T. Coquand. On the computational content of the axiom of choice.
Journal of Symbolic Logic, 63(2):600–622, 1998.

[4] U. Berger. The Berardi-Bezem-Coquand functional in a domain-theoretic setting. Unpublished re-
sults, available from author’s webpage at http://www.cs.swan.ac.uk/∼csulrich/recent-papers.html,
2002.

26

[5] U. Berger. A computational interpretation of open induction. In F. Titsworth, editor, Proceedings
of the Nineteenth Annual IEEE Symposium on Logic in Computer Science, pages 326–334. IEEE
Computer Society, 2004.

[6] U. Berger and P. Oliva. Modified bar recursion and classical dependent choice. Lecture Notes in
Logic, 20:89–107, 2005.

[7] U. Berger and P. Oliva. Modified bar recursion. Mathematical Structures in Computer Science,
16(2):163–183, 2006.

[8] U. Berger and H. Schwichtenberg. Program extraction from classical proofs. In D. Leivant, editor,
Logic and Computational Complexity workshop (LCC’94), volume 960 of Lecture Notes in Computer
Science, pages 77–97. 1995.

[9] M. Bezem. Strongly majorizable functionals of finite type: A model for bar recursion containing
discontinuous functionals. Journal of Symbolic Logic, 50:652–660, 1985.

[10] V. Blot and C. Riba. On bar recursion and choice in a classical setting. In Proceedings of APLAS
2013, volume 8301 of Lecture Notes in Computer Science, pages 349–364, 2013.

[11] T. Coquand. An analysis of Ramsey’s theorem. Information and Computation, 110(2):297–304,
1994.

[12] M. Escardó and P. Oliva. Computational interpretation of analysis via products of selection func-
tions. In Proceedings of CiE 2010, volume 6158 of LNCS, pages 141–150. 2010.

[13] M. Escardó and P. Oliva. Selection functions, bar recursion and backward induction. Mathematical
Structures in Computer Science, 20(2):127–168, 2010.

[14] M. Escardó and P. Oliva. Sequential games and optimal strategies. Royal Society Proceedings A,
467:1519–1545, 2011.

[15] M. Escardó and P. Oliva. The Peirce translation. Annals of Pure and Applied Logic, 163(6):681–692,
2012.

[16] S. C. Kleene. Countable functionals. In A. Heyting, editor, Constructivity in Mathematics, pages
81–100. North-Holland, Amsterdam, 1959.

[17] U. Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in Mathematics. Mono-
graphs in Mathematics. Springer, 2008.

[18] G. Kreisel. Interpretation of analysis by means of functionals of finite type. In A. Heyting, editor,
Constructivity in Mathematics, pages 101–128. North-Holland, Amsterdam, 1959.

[19] C. St. J. A. Nash-Williams. On well-quasi-ordering finite trees. Proceedings of the Cambridge
Philosophical Society, 59:833–835, 1963.

[20] P.S. Novikoff. On the consistency of certain logical calculi. Matematiceskij Sbornik, 12(54):230–260,
1943.

[21] P. Oliva and T. Powell. On Spector’s bar recursion. Mathematical Logic Quarterly, 58:356–365,
2012.

[22] P. Oliva and T. Powell. Bar recursion over finite partial functions. 2014. Preprint, available from
http://arxiv.org/abs/1410.6361.

[23] P. Oliva and T. Powell. A constructive interpretation of Ramsey’s theorem via the product of
selection functions. To appear: Mathematical Structures in Computer Science, 2015. Preprint
available at http://arxiv.org/abs/1204.5631.

[24] J.-C. Raoult. Proving open properties by induction. Information Processing Letters, 29:19–23, 1988.

27

[25] M. Seisenberger. On the Constructive Content of Proofs. PhD thesis, Ludwig Maximilians Univer-
sität München, 2003.

[26] M. Seisenberger. Programs from proofs using classical dependent choice. Annals of Pure and Applied
Logic, 153(1-3):97–110, 2008.

[27] C. Spector. Provably recursive functionals of analysis: a consistency proof of analysis by an ex-
tension of principles in current intuitionistic mathematics. In F. D. E. Dekker, editor, Recursive
Function Theory: Proc. Symposia in Pure Mathematics, volume 5, pages 1–27. American Mathe-
matical Society, Providence, Rhode Island, 1962.

[28] T. Streicher. A classical realizability model arising from a stable model of untyped lambda calculus.
Preprint, available from http://arxiv.org/abs/1407.1547, 2014.

[29] A. S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, volume
344 of Lecture Notes in Mathematics. Springer, Berlin, 1973.

28

	1 Introduction
	1.1 Realizability interpretations of classical analysis: A brief overview
	1.2 Outline of the paper

	2 Preliminaries
	2.1 The finite types
	2.2 The theory E-HA
	2.3 Models of E-HA

	3 Backward induction and recursion
	3.1 Open induction
	3.2 Backward induction
	3.3 Some additional remarks on backward induction
	3.4 Backward recursion

	4 A computational interpretation of the double negation shift
	4.1 Modified realizability intepretation of extensions of PA
	4.2 The J-shift and its variants
	4.3 Realizing the Ji-shift

	5 A computational interpretation of dependent choice
	5.1 Realizing -DCseqJi
	5.2 Examples
	5.2.1 The Berardi-Bezem-Coquand functional (=u=)
	5.2.2 Modified bar recursion (u=)
	5.2.3 Products of selection functions (mnu=n, total)

	6 Understanding the parametrised realizer
	7 Concluding remarks
	A Appendix

