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Aeppli-Bott-Chern cohomology and Deligne cohomology from a

viewpoint of Harvey-Lawson’s spark complex

Jyh-Haur Teh

Abstract

By comparing Deligne complex and Aeppli-Bott-Chern complex, we construct a differential
cohomology Ĥ∗(X, ∗, ∗) that plays the role of Harvey-Lawson spark group Ĥ∗(X, ∗), and a
cohomology H∗

ABC(X ;Z(∗, ∗)) that plays the role of Deligne cohomology H∗
D(X ;Z(∗)) for every

complex manifold X . They fit in the short exact sequence

0 → Hk+1
ABC(X ;Z(p, q)) → Ĥk(X, p, q)

δ1→ Zk+1
I (X, p, q) → 0

and Ĥ•(X, •, •) possess ring structure and refined Chern classes, acted by the complex conju-
gation, and if some primitive cohomology groups of X vanish, there is a Lefschetz isomorphism.
Furthermore, the ring structure of H•

ABC(X ;Z(•, •)) inherited from Ĥ•(X, •, •) is compatible

with the one of the analytic Deligne cohomology H•(X ;Z(•)). We compute Ĥ∗(X, ∗, ∗) for X
the Iwasawa manifold and its small deformations and get a refinement of the classification given
by Nakamura.

1 Introduction

The theory of differential characters was founded by Cheeger and Simons ([8, 2, 3]) around 1970.
It obtains intensive development in the last 20 years. Physicists realize that differential charac-
ters can be used in the mathematical formulation of generalized abelian gauge theories([9]), and
mathematicians found that they appear naturally in many mathematical problems ([13, 14]).
The interaction between physics and mathematics stimulates lot of development in both dis-
ciplines and the theory of differential characters is extended to various generalized differential
cohomologies. The article [6] of Bunke and Schick gives us a nice overview about differential
cohomologies, including differential K-theory, and their relation with physics, especially with
string theory.

There are various constructions of differential cohomologies ([4, 5, 13]). A particular simple
construction to us was given by Harvey and Lawson through their theory of spark complexes
([10, 11, 12, 13, 15, 20]) which unifies many known results. By applying their theory, they
constructed a ∂-analogue ([12, 10]) of differential characters for complex manifolds. The Harvey-

Lawson spark group Ĥk(X, p) of level p of a complex manifold X contains the analytic Deligne
cohomology Hk+1

D (X,Z(p)) as a subgroup and fits in the short exact sequence

0 → Hk+1
D (X,Z(p)) → Ĥk(X, p) → Zk+1

Z
(X, p) → 0

where Zk+1
Z

(X, p) is the subgroup of complex differential (k + 1)-forms with integral periods.

Deligne cohomology group Hk+1
D (X ;Z(p)) is usually defined by the hypercohomology group

Hk+1(X,Z(p)) of the Deligne complex of sheaves

Z(p) : 0 → Z →֒ Ω0 d
→ Ω1 d

→ · · ·
d
→ Ωp−1 → 0
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where Ωk is the sheaf of holomorphic k-forms. Recall that the Aeppli and Bott-Chern cohomol-
ogy ([19]) of a complex manifold X can be defined by the hypercohomology of the complex of
sheaves:

B•
p,q : 0 → C → O⊕O → Ω1 ⊕ Ω

1
→ · · · → Ωp−1 ⊕ Ω

p−1
→ Ω

p
→ · · · → Ω

q−1
→ 0

where p ≥ q and Ω
k

is the sheaf of anti-holomorphic k-forms. We have

Hp,q
A (X ;C) ∼= Hp+q+1(X,B•

p+1,q+1) and Hp,q
BC(X ;C) ∼= Hp+q(X,B•

p,q)

By this similarity to the definition of Deligne cohomology, it is natural to ask the following
question

Question: Is there a differential cohomology that plays the role of the Harvey-Lawson spark
group Ĥ(X, p), and the hypercohomology groups of the complex of sheaves

0 → Z → O ⊕O → Ω1 ⊕ Ω
1
→ · · · → Ωp−1 ⊕ Ω

p−1
→ Ω

p
→ · · · → Ω

q−1
→ 0

that play the role of Deligne cohomology?

This is the motivation of this paper. We answer this question affirmative by constructing
cohomology Ĥ∗(X, p, q) andH∗

ABC(X ;Z(p, q)) for every complex manifoldX , and integers p, q ≥
0 that fit in the short exact sequence:

0 → Hk+1
ABC(X ;Z(p, q)) → Ĥk(X, p, q)

δ1→ Zk+1
I (X, p, q) → 0

The cohomology Ĥ•(X, •, •) possess a ring structure and refined Chern classes, acted by the
complex conjugation, and if some primitive cohomology groups of X vanish, there is a Lefschetz
isomorphism. Furthermore, the ring structure of H•

ABC(X ;Z(•, •)) inherited from Ĥ•(X, •, •)
is compatible with the one of the analytic Deligne cohomology H•(X ;Z(•)). We compute

Ĥ•(X, •, •) for X the Iwasawa manifold and its small deformations and get a refinement of the
classification given by Nakamura. Such finer classification is different from the one given by
Angella [1].

The paper is organized as follow. In section 2, we review Harvey and Lawson’s theory of spark
complexes and use it to construct Ĥ∗(X, p, q). We show that the above mentioned sequence is
short exact, give a 3× 3-grid that relates Griffiths intermediate Jacobian and Hodge group and
prove a Lefschetz property. In section 3, we establish a ring structure on Ĥ•(X ; •, •). In section
4, we construct refined Chern classes for complex vector bundles and prove a Whitney product
formula. Furthermore, for holomorphic vector bundles, we show that their refined Chern classes
can be defined on Ĥ•

ABC(X ;Z(•, •)) and the total refined Chern class defines a natural map

from holomorphic K-theory to Ĥ•(X ;Z(•, •)). In section 5, we compute the ABC-cohomology
of the Iwasawa manifold and its small deformations, and give a refinement of the classification
given by Nakamura ([17]).

Acknowledgements The author thanks Siye Wu for his interest in this work and Taiwan
National Center for Theoretical Sciences(Hsinchu) for proving a nice working environment.

2 Harvey-Lawson spark groups

We recall the construction of spark groups given by Harvey and Lawson in [12].

Definition 2.1. (Spark complexes) Suppose that F • = ⊕i≥0F
i, E• = ⊕i≥0E

i, I• = ⊕i≥0I
i

are cochain complexes and Ψ : I → F is a morphism of cochain complexes, E• →֒ F • is an
embedding with the following properties:
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1. Ψ(Ik) ∩ Ek = {0} for all k > 0,

2. Ψ : I0 → F 0 is injective,

3. the embedding induces an isomorphism Hk(E•) → Hk(F •).

Then S = (F •, E•, I•) is called a spark complex.

Definition 2.2. (Spark groups) Given a spark complex S = (F •, E•, I•), a spark of degree k
is a pair (a, r) ∈ F k ⊕ Ik+1 which satisfies the spark equation

{
da = e− Ψ(r) where e ∈ Ek+1,
dr = 0.

Let S k(F •, E•, I•) be the collection of all sparks of degree k in (F •, E•, I•). Two sparks
(a, r), (a′, r′) of degree k are equivalent if there exists a pair (b, s) ∈ F k−1 ⊕ Ik such that

{
a− a′ = db+ Ψ(s),
r − r′ = −ds.

We write Ĥk(S ) = Sk(F •, E•, I•)/ ∼ for the group of equivalence spark classes of degree k.

Let X be a complex manifold of complex dimension m. We write Ep,q
cpt(X) for the space of

(p, q)-forms with compact support on X . The space of currents of degree (p, q) on X is the
topological dual space D′p,q(X) := {Em−p,m−q

cpt }′. We write

D′k(X, p, q) =
⊕

i1+j1=k
i1<p

D′i1,j1(X)
⊕ ⊕

i2+j2=k
j2<q

D′i2,j2(X)

and the counterpart of forms Ek
cpt(X, p, q) is defined similarly.

Define dp,q : D′k−1(X, p, q) → D′k(X, p, q) by

dp,q(a, b) = (πpda, π
′
qdb)

where
πp : D′k(X) →

⊕

i1+j1=k

i1<p

D′(i1,j1)(X), π′
q : D′k(X) →

⊕

i2+j2=k

j2<q

D′(i2,j2)(X)

are the natural projections. It is easy to see that d2p,q = 0 and hence (D•(X, p, q), dp,q) is a

cochain complex. Let Ik(X) be the space of locally integral currents of degree k on X . Define
Ψp,q : Ik(X) → D′k(X, p, q) by

Ψp,q(r) = (πp(r), π′
q(r))

Proposition 2.3. Let X be a complex manifold of dimension m. For α ∈ Ep,q(X), β ∈
Em−p,m−q
cpt (X), define α(β) :=

∫
X
α ∧ β. Then Ep,q(X) may be considered as a subspace of

D′p,q(X). With maps and differentials defined above, the triple (D′•(X, p, q), E•(X, p, q), I•(X))
forms a spark complex.

Proof. It is well known that the inclusion map E∗(X, p, q) →֒ D′∗(X, p, q) is a quasi-isomorphism
and Ψ : I0(X) → D′0(X, p, q) is injective. The fact that E∗(X, p, q) ∩ Ψ(I∗(X)) = {0} follows
from [12, Appendix B].

Definition 2.4. For a complex manifold X, the k-th Harvey-Lawson spark group of level (p, q)
is the spark group

Ĥk(X, p, q) := Ĥk(D•(X, p, q), E•(X, p, q), I•(X))
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Proposition 2.5. On a complex manifold X, the complex conjugation on currents induced by
the complex structure of X induces a map Ĥk(X, p, q) → Ĥk(X, q, p) defined by

(a, b, r) 7→ (b, a, r)

which is an isomorphism.

Proof. Note that πp(a) = π′
p(a) and π′

q(b) = πq(b). If dp,q(a, b) = (e1, e2) − (πp(r), π′
q(r)), then

dp,q(a, b) = (π′
pda, πqdb) = (e1, e2) − (π′

p(r), πq(r)), so dq,p(b, a) = (πqdb, π
′
pda) = (e2, e1) −

(πq(r), π′
p(r)) this implies that [(b, a, r)] ∈ Ĥk(X, q, p). Since r is a locally integral current, it is

real, hence r = r. This map is well defined and applies it twice we get the minus identity which
shows that it is an isomorphism.

From the general theory of spark complexes [12, Prop 1.8], we have the following 3 × 3
commutative grid.

Proposition 2.6. There is a 3×3 commutative grid of exact sequences associated to the spark
complex (D′•(X, p, q), E•(X, p, q), I•(X))

0

��

0

��

0

��

0 // H
k(D′•(X,p,q))

Hk
I
(D′•(X,p,q))

//

��

Ĥk
E(X, p, q) //

��

dp,qE
k(X, p, q) //

��

0

0 // Hk(G) //

��

Ĥk(X, p, q)
δ1

//

δ2

��

Zk+1
I (X, p, q) //

��

0

0 // Kerk+1((Ψp,q)∗) //

��

Hk+1(I•(X))
(Ψp,q)∗

//

��

Hk+1
I (E•(X, p, q)) //

��

0

0 0 0

where Zk+1
I (X, p, q) consists of pairs (e1, e2) ∈ Ek+1(X, p, q) that are closed under the differential

dp,q and have integral periods, i.e., [(e1, e2)] = (Ψp,q)∗(ρ) in Hk+1(D′•(X, p, q)) for some ρ ∈

Hk+1(I•(X)). Furthermore, Ĥk
E(X, p, q) = kernel of δ2, and G is the cone complex formed by

Ψp,q : I•(X) → D′•(X, p, q).

2.1 Aeppli-Bott-Chern cohomology as a hypercohomology

Fix a complex manifold X . Let Ωk,Ω
k

be the sheaves of holomorphic k-forms and anti-
holomorphic k-forms on X respectively. Recall that the Aeppli and Bott-Chern cohomology
for a complex manifold X can be defined by the hypercohomology of the complex of sheaves: if
q ≥ p,

B•
p,q : 0 → C → O ⊕O → Ω1 ⊕ Ω

1
→ · · · → Ωp−1 ⊕ Ω

p−1
→ Ω

p
→ · · · → Ω

q−1
→ 0,

we have
Hp,q

A (X ;C) ∼= Hp+q+1(X,B•
p+1,q+1) and Hp,q

BC(X ;C) ∼= Hp+q(X,B•
p,q).

Modifying accordingly we have the case for p ≥ q.
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Definition 2.7. Let Ω•<p,•<q be the complex of sheaves

O ⊕O → Ω1 ⊕ Ω
1
→ · · · → Ωp−1 ⊕ Ω

p−1
→ Ω

p
→ · · · → Ω

q−1
→ 0

if p < q, and the complex of sheaves:

O ⊕O → Ω1 ⊕ Ω
1
→ · · · → Ωq−1 ⊕ Ω

q−1
→ Ωq → · · · → Ωp−1 → 0

if p ≥ q

Similar to the definition of Deligne cohomology, we define Aeppli-Bott-Chern cohomology as
following.

Definition 2.8. The Aeppli-Bott-Chern cohomology Hk
ABC(X ;Z(p, q)) is defined to be the hy-

percohomology group Hk(X,Z → Ω•<p,•<q). If without confusion, we will just call this cohomol-
ogy the ABC cohomology.

Proposition 2.9. There is an isomorphism

Hk
ABC(X ;Z(p, q)) ∼= Hk−1(Cone(I•(X)

Ψp,q

→ D′•(X, p, q)))

where Cone(I•(X)
Ψp,q

→ D′•(X, p, q)) is the cone complex associated to the cochain morphism
Ψp,q : I•(X) → D′•(X, p, q).

Proof. We prove only the case q ≥ p. There are acyclic resolutions

Z → I• and Ωni ⊕ Ω
mi

→ D′ni,• ⊕D′•,mi

Define ηk : Ik → D′k,0 ⊕D′0,k by

ηk(r) = (Πk,0(r),Π0,k(r))

where Πi,j : Ik → D′i,j is the natural projection induced from the decomposition

Ik →֒ D′k =
⊕

i+j=k

D′i,j

Then we have a commutating diagram of sheaves:

I•
η∗
→ D′•,0 ⊕D′0,• → D′•,1 ⊕D′1,• → · · ·

↑ ↑ ↑

Z → Ω0 ⊕ Ω
0

→ Ω1 ⊕ Ω
1

→ · · ·

Let D′i,j = 0 if i or j equals to -1. Then we have a more uniform expression of the resolution
of sheaves

Ωni ⊕ Ω
mi

→ D′ni,0 ⊕D′0,mi → D′ni,1 ⊕D′1,mi → · · · → D′ni,j ⊕D′j,mi

where

ni =

{
i, if i < p
−1, if i ≥ p

mi =

{
i, if i < q
−1, if i ≥ p

Let F i,j = D′ni,j ⊕ D′j,mi , then F k :=
⊕

i+j=k F
i,j and F k(X) = D′k(X, p, q). By [12,

Proposition A.3], the hypercohomology

Hk(X,Z → Ω•<p,•<q) ∼= Hk−1(Cone(Ψp,q : I•(X) → F •(X))) = Hk−1(Cone(Ψp,q : I•(X) → D′•(X, p, q)))
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Corollary 2.10. There is a short exact sequence

0 → Hk+1
ABC(X ;Z(p, q)) → Ĥk(X, p, q)

δ1→ Zk+1
I (X, p, q) → 0

Proof. Consider the 3×3-grid in Proposition 2.6 associated to the spark complex S = (D′•(X, p, q), E•(X, p, q), I•(X)).
By result above, we may replace the cohomology of the cone complex in the middle row of the
3x3-grid by the ABC cohomology.

Corollary 2.11. On a complex manifold X, the complex conjugation on currents induces an
isomorphism between Hk

ABC(X ;Z(p, q)) and Hk
ABC(X ;Z(q, p)).

Proof. This follows from Proposition 2.5 by considering Hk
ABC(X ;Z(p, q)) as a subgroup of

Ĥk−1(X, p, q).

Definition 2.12. On a compact Kähler manifold X, we define the total Griffiths’s p-th inter-
mediate Jacobian to be the group

T J p(X) := (F pH2p−1(X ;C)/H2p−1(X ;Z))
⊕

(F pH2p−1(X ;C)/H2p−1(X ;Z))

where F pH2p−1(X ;C) =
⊕

i+j=2p−1
i≥p

Hi,j(X) is the Hodge filtration and F pH2p−1(X ;C) is the

complex conjugation of F pH2p−1(X ;C).

Corollary 2.13. When p = q, k = 2p− 1, on a compact Kähler manifold X, the 3× 3-grid has
the form

0

��

0

��

0

��

0 // T J p(X) //

��

Ĥk
E(X, p, p) //

��

dp,pE
2p−1(X, p, p) //

��

0

0 // H2p
ABC(X ;Z(p, p)) //

��

Ĥ2p−1(X, p, p)
δ1

//

δ2

��

Z2p
I (X, p, p) //

��

0

0 // Hdgp,p(X) //

��

H2p(X ;Z)
(Ψp,q)∗

//

��

H2p
I (X, p, p) //

��

0

0 0 0

where Hdgp,p(X) is the group of Hodge classes.

Let X be a complex manifold. Recall that (see [12, 10]) the Harvey-Lawson spark groups of
level p are the spark groups of the spark complex

(D′•(X, p), E•(X, p), I•(X))

where D′k(X, p) =
⊕

i+j=k

i<p
D′i,j(X), Ek(X, p) =

⊕
i+j=k

i<p
E i,j(X), and I•(X) → D′•(X, p) is the

projection map. The Deligne cohomology group Hk+1
D

(X ;Z(p)) sits in the short exact sequence

0 → Hk+1
D

(X ;Z(p)) → Ĥk(X, p)
δ1→ Zk+1

I (X, p) → 0

6



Proposition 2.14. 1. We have a morphism between spark complexes

I• // D′•(X, p, q) ⊇ E•(X, p, q)

�� ��

I• // D′•(X, p) ⊇ E•(X, p)

where the middle map is given by the natural projection. This morphism induces a mor-
phism between short exact sequences:

0 // Hk
ABC(X ;Z(p, q)) //

��

Ĥk−1(X, p, q) //

��

Zk
I (X, p, q) //

��

0

0 // Hk
D

(X ;Z(p)) // Ĥk−1(X, p) // Zk
I (X, p) // 0

2. For X a complex manifold, there is a commutative diagram

Ĥk(X, p, q) //

��

Ĥk(X, q)

��

Ĥk(X, p) // Hk(X ;Z)

given by natural projections which induces a commutative diagram

Hk
ABC(X ;Z(p, q)) //

��

Hk
D

(X ;Z(q))

��

Hk
D

(X,Z(p)) // Hk(X ;Z)

3. For X a compact Kähler manifold, k = p + q − 1, if Hk+1(X ;Z) is a free abelian group,
then

Ĥk(X, p, q) ∼= (C/Z)t ⊕Hk+1(X ;Z) ⊕ dp,qE
k(X, p, q)

where t = dimCH
k(X ;C).

4. For X a complex manifold, there is a commutative diagram:

Ĥk(X, p+ 1, q + 1)
δ1

//

δ2

��

Zk+1
I (X, p+ 1, q + 1)

��

Hk+1(X ;Z) //
⊕

i+j=k
i<p+1

Hi,j
A,I(X)

⊕ ⊕
i+j=k
j<q+1

Hi,j
A,I(X)

where the right vertical arrow is given by (e1, e2) 7→ ([e1], [e2]), the bottom horizontal
arrow is induced by the projection Πi,j : Ik+1(X) → D′i,j(X), and Hi,j

A,I(X) is the image

of the homomorphism Π(i,j)∗ : Hk+1(X ;Z) → Hi,j
A (X) where Hi,j

A (X) is the (i, j) Aeppli
cohomology of X.

Proof. 1. This follows directly from definition.
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2. The morphisms are

[(a, b, r)] //

��

[(b, r)]

��

[(a, r)] // [r]

3. In a compact Kähler manifold, k = p+q−1, Hk(X ; Ω•<p,•<q) =
⊕

r+s=k
r<p

Hr,s(X)
⊕ ⊕

r+s=k
s<q

Hr,s(X) =

Hk(X ;C). Note that Hk(E•(X, p, q)) ∼= Hk(X ; Ω•<p,•<q). Now consider the 3 × 3-grid
associated to the spark complex S = (D′•(X, p, q), E•(X, p, q), I•(X)). Since Hk+1(X ;Z)
is a free abelian group, the middle column of the 3 × 3-grid splits. Since dp,qE

k(X, p, q)

is a vector space, the top row of the 3 × 3-grid also splits. Thus we have Ĥk(X, p, q) ∼=
Hk(E•(X,p,q))

Hk
I
(E•(X,p,q))

⊕Hk+1(X ;Z) ⊕ dp,qE
k(X, p, q) and the result follows.

4. Recall that the Aeppli cohomology is defined as Hi,j
A (X) = Ker∂∂

Im∂+Im∂
. For (e1, e2) ∈

Zk
I (X, p+ 1, q + 1), πp+1de1 = 0. By comparing the types of both sides, we get (∂ep,q1 +

∂ep−1,q+1
1 ) + · · · = 0. This implies that ∂∂ep−i,q+i

1 = 0 for i = 1, 2, ..., p. Similarly,

∂∂ep+j,q−j
2 = 0 for j = 1, 2, ..., q. So ([e1], [e2]) ∈

⊕
i+j=k
i<p+1

Hi,j
A (X)

⊕ ⊕
i+j=k
j<q+1

Hi,j
A (X). Note that

if dα = 0, then ∂∂αi,j = 0 where α =
∑

i+j=k+1 α
i,j , and Πi,j(dβ) = ∂βi−1,j + ∂βi,j−1

for β =
∑

i+j=k β
i,j . This implies that Π(p,q)∗ is well defined. The commutativity of this

diagram is clear. Since δ1 is surjective, the right vertical homomorphism has image as
indicated.

2.2 Lefschetz property

Let X be a Kähler manifold with Kähler form ω. The Lefschetz operator  L : D′•(X) →
D′•+2(X) is defined by  L(α) = ω ∧ α. Let us recall that when in addition X is compact, the
Lefschetz decomposition of forms induces a decomposition on currents. We summarize several
properties that we need in the following: suppose that the dimension of X is n.

1. D′k(X) =
∑

i≥i0
 LiP k−2i(X) where P k(X) = {α ∈ D′k(X)| Ln−k+1α = 0} is the primitive

part, i0 = max{i − n, 0}, the Lefschetz operator  Ln−k : D′k(X) → D′2n−k(X) is an
isomorphism, and  Lj : D′i(X) → D′i+2j(X) is injective if j ≤ n− i.

2. If a =
∑

i≥i0
 Liai ∈ D′k(X) is the Lefschetz decomposition of a where i0 = max{i−n, 0},

ai ∈ P k−2i(X), define Ta =
∑

i≥i1
 Li−1ai where i1 = max{i − n, 1}, then T n−k is the

inverse of  Ln−k : D′k(X) → D′2n−k(X) and T n−k ◦  Ln−k = idk−1 : D′k(X) → D′k(X) if
k ≤ n.

Proposition 2.15. Suppose that p+q = k−1 and k ≤ n, then the map  Ln−k induces monomor-
phisms

 Ln−k : Ĥk−1(X, p, q;Q) → Ĥ2n−k+1(X,n− q, n− p;Q)

and
 Ln−k : Hk

ABC(X ;Z(p, q);Q) → H2n−k
ABC (X ;Z(n− q, n− p);Q)

where Q indicates the original groups tensored with Q over Q. Furthermore, these monomor-
phisms are isomorphisms if the primitive cohomology PHk−1(X ;Q) = 0.
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Proof. Note that  Ld = d L, Td = dT and  Liπp = πp+i  L
i,  Liπ′

q = π′
q+i  L

i. The maps are well de-
fined and injective by the properties of Lefschetz decomposition mentioned above. Note that for
[(a′, b′, r′)] ∈ Ĥ2n−k+1(X,n−q, n−p;Q), we have [(T n−ka′, T n−kb′, T n−kr′)] ∈ Ĥk−1(X, p, q;Q),
and  Ln−k[(T n−ka′, T n−kb′, T n−kr′)] = [(a′−an−k−1, b

′−bn−k−1, r
′)] where a′ =

∑
i≥n−k−1  Liai, b

′ =∑
i≥n−k−1  Libi are the Lefschetz decomposition of a′ and b′. Thus if PHk−1(X ;Q) = 0, then

an−k−1 = dc, bn−k−1 = de, and [(an−k−1, bn−k−1, 0)] = 0 in Ĥk−1(X, p, q;Q). By restriction,
the same holds for Aeppli-Bott-Chern cohomology with Q-coefficients.

3 Ring structure on H•
ABC(X;Z(∗, ∗))

Let X be a complex manifold of complex dimension m.

Definition 3.1. Let (D′k(X))2 = D′k(X) ⊕ D′k(X), (Ek(X))2 = Ek(X) ⊕ Ek(X), and Ψ :
Ik(X) → (D′k(X))2 be defined by r 7→ (r, r). Then ((D′•(X))2, (E•(X))2, I•(X)) is a spark
complex. Let

Ĥk
D2(X) := Ĥk((D′•(X))2, (E•(X))2, I•(X))

To define a ring structure on Ĥ•
D2(X), we need a modified version of [11, Thm D.1]. If (a, r)

is a spark and da = e− r, we write d1a = e, d2a = r.

Lemma 3.2. For given α ∈ Ĥk
D2(X), β ∈ Ĥℓ

D2(X) with k+ ℓ ≤ 2m and (a1, a2, r) ∈ α, there is
representative (b′1, b

′
2, s

′) ∈ β such that if d(a1, a2) = (e1, e2)− (r, r), d(b′1, b
′
2) = (ẽ1, ẽ2)− (s, s),

then a1 ∧ b
′
1, a1 ∧ s

′, r ∧ b′1, r ∧ s, a2 ∧ b
′
2, a2 ∧ s

′, r ∧ b′2 are well defined and r ∧ s′ is rectifiable.

Proof. Let us recall the construction in [11, Thm D.1]. For [(a,R)] ∈ Ĥk(X), [(b, S)] ∈ Ĥℓ(X)
with k + ℓ ≤ 2m, db = ψ − S, there is a current b′ := fξ∗b + χ+ η where χ is a smooth ℓ-form,
η is a smooth d-closed ℓ-form, for which a ∧ b′, a ∧ d2b

′, R ∧ b′ and R ∧ d2b
′ are well defined,

the last one is rectifiable and (b′, fξ∗S) is equivalent to (b, S). The functions fξ : X → X
are diffeomorphisms close to identity parametrized by points ξ ∈ RN for some N . Note that
db′ = ψ − fξ∗S and d2b

′ = fξ∗S. Now we fix two representatives (a1, a2, r) ∈ α, (b1, b2, s) ∈ β.

Since [(a1, r)], [(a2, r)] ∈ Ĥk(X), [(b1, s)], [(b2, s)] ∈ Ĥℓ(X), by the construction above, we may
choose ξ ∈ RN such that a1 ∧ fξ∗b1, a1 ∧ fξ∗s, r ∧ fξ∗b1, r ∧ fξ∗s, a2 ∧ fξ∗b2, a2 ∧ fξ∗s, r ∧ fξ∗b2
are all simultaneously well defined and r ∧ fξ∗s is rectifiable.

As in the Harvey-Lawson-Zweck’s construction, there exist some smooth forms χ1, η1, χ2, η2
and

b′1 := fξ∗b1 + χ1 + η1, b′2 := fξ∗b2 + χ2 + η2

such that (b′1, fξ∗s) and (b′2, fξ∗s) are equivalent to (b1, s) and (b2, s) respectively in Ĥℓ(X). So
by definition, (b′1, b

′
2, fξ∗s) ∈ β and the products mentioned in the statement of the Lemma are

well defined and r ∧ fξ∗s is rectifiable.

If da = φ−R, db = ψ − S and the product is well defined for these two sparks, we write

a ∗ b := a ∧ ψ + (−1)k+1R ∧ b

We denote by ∼ for the equivalence of two sparks.

Lemma 3.3. If (a1, a2, r) ∼ (a′1, a
′
2, r

′), (b1, b2, s) ∼ (b′1, b
′
2, s

′) are sparks of the spark complex
((D′•(X))2, (E•(X))2, I•(X)) and the equivalences are given by





a′1 − a1 = dũ1 + R̃,

a′2 − a2 = dũ2 + R̃,

r′ − r = −dR̃

,





b′1 − b1 = dṽ1 + T̃ ,

b′2 − b2 = dṽ2 + T̃ ,

s′ − s = −dT̃

respectively. Then there exist
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1. integral current R = R̃+ dσ1 such that R ∧ s′ is well defined and rectifiable;

2. current u1 = ũ1 − σ1 + dσ2 such that u1 ∧ s
′, du1 ∧ s

′ are well defined;

3. current u2 = ũ2 − σ1 + dσ3 such that u2 ∧ s
′, du2 ∧ s

′ are well defined;

4. integral current T = T̃ + dσ4 such that a1 ∧ T , a1 ∧ dT , a2 ∧ T , a2 ∧ dT , T ∧ r are well
defined and T ∧ r is rectifiable.

for some currents σ1, σ2, σ3 and σ4. Furthermore, we may rewrite the equivalences of sparks as
following: 




a′1 − a1 = du1 +R,
a′2 − a2 = du2 +R,
r′ − r = −dR

,





b′1 − b1 = dv1 + T,
b′2 − b2 = dv2 + T,
s′ − s = −dT

where v1 = ṽ1 − σ4, v2 = ṽ2 − σ4.

Proof. This follows from Federer’s slicing theory by making a small perturbation of R̃, ũ1, ũ2, T̃
respectively (see [11, Theorem A.2]).

Proposition 3.4. Suppose that (a1, a2, r) ∼ (a′1, a
′
2, r

′), (b1, b2, s) ∼ (b′1, b
′
2, s

′) are equivalent
sparks, (a1, a2, r) meets (b1, b2, s) and (a′1, a

′
2, r

′) meets (b′1, b
′
2, s

′) properly respectively. Then
(a′1 ∗ b

′
1, a

′
2 ∗ b

′
2, r

′ ∧ s′) ∼ (a1 ∗ b1, a2 ∗ b2, r ∧ s).

Proof. By Lemma above, we may assume that





a′1 − a1 = du1 +R,
a′2 − a2 = du2 +R,
r′ − r = −dR

,





b′1 − b1 = dv1 + T,
b′2 − b2 = dv2 + T,
s′ − s = −dT

where a1 ∧ T, a2 ∧ T, a1 ∧ dT, a2 ∧ dT,R∧ s′, T ∧ r are well defined and the last two currents are
rectifiable. Suppose that





da1 = e1 − r,
da′1 = e1 − r′,
da2 = e2 − r,
da′2 = e2 − r′

,





db1 = f1 − s,
db′1 = f1 − s′,
db2 = f2 − s,
db′2 = f2 − s′

Then

a′1 ∗ b
′
1 − a1 ∗ b1 =a′1 ∧ s

′ + (−1)k+1e1 ∧ b
′
1 − a1 ∧ s− (−1)k+1e1 ∧ b1

=(a1 + du1 +R) ∧ s′ − a1 ∧ s+ (−1)k+1e1 ∧ (dv1 + T )

=a1 ∧ (−dT ) + du1 ∧ s
′ +R ∧ s′ + d(e1 ∧ v1) + (−1)k+1e1 ∧ T

=(−1)k+1da1 ∧ T − a1 ∧ dT + d(u1 ∧ s
′ + e1 ∧ v1) + (−1)k+1r ∧ T +R ∧ s′

=d((−1)k+1a1 ∧ T + u1 ∧ s
′ + e1 ∧ v1) + (−1)k+1r ∧ T +R ∧ s′

Similarly,

a′2 ∗ b
′
2 − a2 ∗ b2 = d((−1)k+1a2 ∧ T + u2 ∧ s

′ + e2 ∧ v2) + (−1)k+1r ∧ T +R ∧ s′

and we have
d((−1)k+1r ∧ T +R ∧ s′) = r ∧ s− r′ ∧ s′

This completes the proof.
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Definition 3.5. Suppose that α ∈ Ĥk
D2(X), β ∈ Ĥℓ

D2(X) with k+ ℓ ≤ 2m. For any representa-
tive (a1, a2, r) ∈ α, choose representative (b′1, b

′
2, s

′) ∈ β according to Lemma 3.2, we define

α ∗ β := [(a1 ∗ b
′
1, a2 ∗ b

′
2, r ∧ s

′)] ∈ Ĥk+ℓ+1
D2 (X)

By Proposition above, this product is well defined. A direct computation shows that it is
graded-commutative. This gives us the following result.

Proposition 3.6. Ĥ•
D2(X) is a graded-commutative ring.

To define a product on H•
ABC(X ;Z(p, q)), we first define a product on Ĥ•(X, p, q) and then

reduce the product to H•
ABC(X ;Z(p, q)). Note that dpπp = πpd and dqπ

′
q = π′

qd.

Let (πp, π
′
q, id)k : Ĥk

D2(X) → Ĥk(X, p, q) be the map defined by

[(a, b, r)] 7→ [(πp(a), π′
q(b), r)]

We first make an observation.

Lemma 3.7. Ker(πp, π
′
q, id)k = {α ∈ Ĥk

D2(X)|∃(a, b, 0) ∈ α, a, b smooth , πp(a) = 0, π′
q(b) =

0}.

Proof. Suppose (a, b, r) ∈ α ∈ Ker(πp, π
′
q, id)k. Then there is (a′, b′, s) ∈ D′k−1(X, p, q)⊕Ik(X)

such that (πp(a), π′
q(b)) = dp,q(a

′, b′) + (πp(s), π′
q(s)) and r = −ds. Let ã = a− da′ − Ψ(s), b̃ =

b − db′ − Ψ(s) and r̃ = r + ds = 0, then (a, b) − (ã, b̃) = d(a′, b′) + Ψ(s). So (ã, b̃, 0) ∈ α. The
other direction is clear.

Theorem 3.8. The map (πp, π
′
q, id)k is a surjective group homomorphism and the kernel of the

map (πp, π
′
q, id)k is an ideal of Ĥ•

D2(X).

Proof. Suppose α ∈ Ker(πp, π
′
q, id)k, β ∈ Ĥ l

D2(X), choose representatives (a, b, 0) ∈ α such that
πp(a) = 0, π′

q(b) = 0, and (a′, b′, r′) ∈ β such that the product is well defined. If D(a′, b′) =
(e1, e2) − (r′, r′), then

α∗β = [(a∧e1+(−1)k+10∧r′, b∗e2+(−1)k+10∧r′, 0∧r′)] = [(a∧e1, b∧e2, 0)] ∈ Ker(πp, π
′
q, id)k

So the kernel is an ideal of Ĥ•
D2(X).

To show the surjectivity, we pick [(a, b, r)] ∈ Ĥk(X, p, q). Then by definition, dp,q(a, b) =
(e1, e2)−Ψp,q(r) and dr = 0. From the isomorphism Hk+1(D′•(X)2) ∼= Hk+1(E•(X)2), there is
(a0, b0) ∈ D′k+1(X)2, (e0, f0) ∈ Ek+1(X)2 such that d(a0, b0) = (e0, f0)−(r, r). So dp,q(a0, b0) =
(πp, π

′
q)(e0, f0) − Ψp,q(r) and this implies dp,q((a, b) − (a0, b0)) = (e1, e2) − (πp, π

′
q)(e0, f0). By

[13, Lemma 1.5], (a, b) − (a0, b0) = (g1, g2) + dp,q(h1, h2) where (g1, g2) ∈ Ek(X, p, q), (h1, h2) ∈

D′k−1(X, p, q). Let (ã, b̃) = (a0, b0)+(g1, g2)+d(h1, h2). Then d(ã, b̃) = (e0, f0)+d(g1, g2)−Ψ(r).

This implies that [(ã, b̃, r)] ∈ Ĥk
D2(X). Note that (πp, π

′
q)(ã, b̃) = (πp, π

′
q)(a0, b0) + (g1, g2) +

(πp, π
′
q)d(h1, h2) = (πp, π

′
q)(a, b) = (a, b). This proves the surjectivity.

Definition 3.9. Fix p, q. Let Πp,q =
⊕2n

k=0(πp, π
′
q, id)k. Then by Theorem 3.8, the kernel of

Πp,q is an ideal of Ĥ•
D2(X) and Πp,q is surjective. So we have a group isomorphism

Ĥ∗(X, p, q) ∼= Ĥ∗
D2(X)/KerΠp,q

The right hand side has a natural ring structure and we define the ring structure of Ĥ∗(X, p, q)
by this isomorphism.
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For α ∈ Hk+1
ABC(X ;Z(p, q)) and β ∈ Hℓ+1

ABC(X ;Z(p, q)) where k + ℓ ≤ 2m, we consider them

as elements in Ĥk(X, p, q) and Ĥℓ(X, p, q) respectively. A direct computation shows that α ∗ β
is in Hk+ℓ+2

ABC (X ;Z(p, q)). This shows that H•
ABC(X ;Z(p, q)) inherits a ring structure from

Ĥ•(X, p, q).

Corollary 3.10. The ring structure on the Harvey-Lawson spark group Ĥ•(X, p, q) induces a
ring structure on the ABC cohomology H•

ABC(X ;Z(p, q)).

If we consider the collection of all ABC cohomology
⊕

k,p,qH
k(X ;Z(p, q)), there is also a

ring structure on it.

Definition 3.11. Define a product Hk
ABC(X ;Z(p, q))×Hℓ

ABC(X ;Z(p′, q′)) → Hk+ℓ
ABC(X ;Z(p+

p′, q + q′)) by

(α, β) 7→ (πp+p′ , π′
q+q′ , id)(α̃ ∗ β̃)

where α̃ ∈ Ĥk−1
D2 (X), β̃ ∈ Ĥℓ−1

D2 (X) are lifts of α and β respectively.

To verify that this product is well defined, we refer the reader to the proof of [10, Theorem
6.6] where a similar verification for Deligne cohomology was done. The following result is also
clear from the definition.

Corollary 3.12. The natural map
⊕

k,p,qH
k
ABC(X ;Z(p, q)) →

⊕
k,pH

k
D

(X ;Z(p)) induced from
the projection [(a1, a2, r)] 7→ [(a1, r)] is a ring homomorphism.

4 K-theory and refined Chern classes

By a result of Cheeger and Simons [8], each smooth complex vector bundle with unitary connec-

tion ∇ over a smooth manifold X is assigned differential cohomology class ĉk(E,∇) ∈ Ĥ2k−1(X)
for each k ≥ 0. Such classes are called refined Chern classes as they satisfy δ1(ĉk(E,∇)) =
ck(Ω∇) the Chern-Weil form, and δ2(ĉk(E,∇)) = ck(E) the Chern class of E. They also proved
a Whitney product formula

ĉ(E ⊕ E′,∇⊕∇′) = ĉ(E,∇) ∗ ĉ(E′,∇′)

where ĉ is the Cheeger-Simons total refined Chern class. In this section, we are going to de-
fine refined Chern classes in ABC cohomology and prove some results analogous to the clas-
sical counterparts. The model we use for Ĥ•(X) is the spark group of the spark complex
(D′•(X), E•(X), I•(X)).

Definition 4.1. Let X be a complex manifold and E be a complex vector bundles over X
with unitary connection ∇. Suppose that ĉk(E,∇) = [(a, r)] ∈ Ĥ2k−1(X). Then [(a, a, r)] ∈

Ĥ2k−1
D2 (X). We define

̂̂ck(E,∇) = [(a, a, r)]

and
f̂k(E,∇) := (πk, π

′
k, id)(̂ĉk(E,∇)) ∈ Ĥ2k−1(X, k, k)

We first observe that the product in Ĥ•(X) commutes with the complex conjugation.

Lemma 4.2. For α ∈ Ĥk(X), β ∈ Ĥℓ(X),

α ∗ β = α ∗ β

Proof. Choose representatives (a,R) ∈ α, (b, S) ∈ β such that the product (a,R) ∗ (b, S) is well
defined. Write da = φ−R, db = ψ−S. Then (a,R) ∗ (b, S) = (a∧ψ+ (−1)k+1R∧ b, R∧S) and
we have (a,R) ∗ (b, S) = (a,R) ∗ (b, S) = (a ∧ ψ + (−1)k+1R ∧ b, R ∧ S) = (a,R) ∗ (b, S). This
gives us the desire formula.
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Theorem 4.3. Let E and F be two complex vector bundles on a complex manifold X with
unitary connections ∇ and ∇′ respectively. There is a Whitney product formula

1.
̂̂c(E ⊕ F,∇⊕∇′) = ̂̂c(E,∇) ∗ ̂̂c(F,∇′).

2.
f̂(E ⊕ F,∇⊕∇′) = f̂(E,∇) ∗ f̂(F,∇′)

Proof. The first result follows from the Whitney product formula proved by Cheeger and Simons
and the Lemma above. For the second result, note that by the definition of the product ∗ of⊕

k,p,q Ĥ
k(X, p, q) and the result above, we have

f̂k(E ⊕ F,∇⊕∇′) = (πk, π
′
k, id)(̂ĉk(E ⊕ F,∇⊕∇′)) =

∑

i+j=k

(πk, π
′
k, id)(̂ĉi(E,∇) ∗ ̂̂cj(F,∇′))

=
∑

i+j=k

f̂i(E,∇) ∗ f̂j(F,∇
′)

This gives us the desire formula.

Remark 4.4. If E is a hermitian bundle and ∇ is the canonical connection associated to
the hermitian metric of E, then the Chern-Weil form ck(Ω∇) is of type (k, k) and hence

δ1(f̂(E,∇)) = 0. This implies that f̂k(E,∇) ∈ H2k
ABC(X ;Z(k, k)).

Proposition 4.5. Let E be a hermitian vector bundle over a complex manifold X and ∇ be the
canonical connection associated to the hermitian metrics of E.

1. The class f̂(E,∇) ∈ H2k
ABC(X ;Z(k, k)) is independent of the choice of hermitian metric

on E.

2. Under the canonical map from H2k
ABC(X ;Z(k, k)) → H2k

D
(X ;Z(k)), the class f̂k is sent to

d̂k where d̂k is the Harvey-Lawson’s refined Chern class.

Proof. Suppose that ĉk(E,∇1) = [(a1, r1)] ∈ Ĥ2k−1(X), ĉk(E,∇2) = [(a2, r2)] ∈ Ĥ2k−1(X).
By [12, Proposition 12.1], Harvey and Lawson showed that their refined Chern classes in
Deligne cohomology are independent of the choice of hermitian metrics on E, hence [(πka1, r)] =
[(πka2, r)] ∈ H2k

D
(X ;Z(k)). This means that there exist b ∈ D′k(X, k), s ∈ Ik(X) such that

{
πka1 − πka2 = πkdb+ πk(s),
r1 − r2 = −ds,

Note that πka = π′
ka and d is a real operator. By taking the complex conjugation of the first

equation, we get
π′
ka1 − π′

ka2 = π′
kdb + π′

k(s)

Together with equations above, this means that f̂k(E,∇1) = [(πka1, π
′
ka1, r1)] = [(πka2, π

′
ka2, r2)] =

f̂k(E,∇2). The class f̂k is sent to d̂k follows directly from the definition.

Definition 4.6. If E is a hermitian vector bundle of rank k on a complex manifold X, since
refined Chern classes of E are independent of hermitian metrics on E, we write f̂k(E) for

f̂k(E,∇) where ∇ is the canonical connection associated to a hermitian metric of E, and write
the total refined Chern class to be

f̂(E) := 1 + f̂1(E) + · · · + f̂k(E) ∈

k⊕

i=0

H2i
ABC(X ;Z(i, i))
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Theorem 4.7. For any short exact sequence

0 → E1 → E2 → E3 → 0

of holomorphic vector bundles over X, we have

f̂(E2) = f̂(E1) ∗ f̂(E3)

Proof. Similar to the proof of Theorem 4.3.

Corollary 4.8. If X is a complex manifold and Khol(X) is the Grothendieck group of holomor-
phic vector bundles on X, then the total refined Chern class defines a natural map

f̂ : Khol(X) →
⊕

i≥0

H2i
ABC(X ;Z(i, i))

5 ABC-cohomology of the Iwasawa manifold and its small

deformations

In this section, we compute the ABC-cohomology of the Iwasawa manifold and its small defor-
mations. The Dolbeault cohomology of the Iwasawa manifold and its small deformations were
computed by Nakamura in [17] and the Bott-Chern and Aeppli cohomology were computed by
Angella in [1]. We use an expression of a system of local holomorphic coordinates given in [1]
and recall some results that are used in our computation.

Let

H(3;C) :=








1 z1 z3

0 1 z2

0 0 1


 : z1, z2, z3 ∈ C



 ⊂ GL(3;C)

be the 3-dimensional Heisenberg group over C and consider the action on the left of H(3;Z[i]) :=
H(3;C) ∩ GL(3;Z[i]) on H(3;C). The compact quotient

I3 := H(3;Z[i])\H(3;C)

is call the Iwasawa manifold whose H(3;C)-left-invariant complex structure J0 is the one inher-
ited by the standard complex structure on C3.

We recall a theorem of Nakamura [17].

Theorem 5.1. There exists a locally complete complex-analytic family of complex structures
{Xt = (I3, Jt)}t∈∆(0,ǫ), deformations of I3, depending on

t = (t11, t12, t21, t22, t31, t32) ∈ ∆(0, ǫ) ⊂ C6

where ∆(0, ǫ) is a disc centered at 0 ∈ C6 with a small radius ǫ and X0 = I3.

There is a set of holomorphic coordinates ξ1
t
, ξ2

t
, ξ3

t
for Xt depending on t and the local

coordinates of X0. Since we do not need their precise expressions, we refer the reader to [1,
Theorem 3.1]. Let

ϕ1
t

:= dξ1
t
, ϕ2

t
:= dξ2

t
and ϕ3

t
:= dξ3

t
− z1dξ2

t
− (t21z

1 + t22z
2)dξ1

t

Complex numbers σ11, σ12, σ21, σ22 and σ12 depending only on t are defined through the following
equation

dϕ3
t

= σ12ϕ
1
t
∧ ϕ2

t
+ σ11ϕ

1
t
∧ ϕ1

t
+ σ12ϕ

1
t
∧ ϕ2

t
+ σ21ϕ

2
t
∧ ϕ1

t
+ σ22ϕ

2
t
∧ ϕ2

t
t
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Let

D(t) := det

(
t11 t12
t21 t22

)

and

S :=

(
σ11 σ22 σ12 σ21
σ11 σ22 σ12 σ21

)

Recall that Nakamura classified the small deformations of I3 into 3 classes: (i), (ii), (iii),
and Angella further subdivided class (ii) into (ii.a) and (ii.b), class (iii) into (iii.a) and (iii.b) by
using the Bott-Chern cohomology of Xt. The classification is given in the following list.

class (i) : t11 = t12 = t21 = t22 = 0;

class (ii) : D(t) = 0 and (t11, t12, t21, t22) 6= (0, 0, 0, 0);

subclass (ii.a) : D(t) = 0 and rkS=1;

subclass (ii.b) : D(t) = 0 and rkS=2;

class (iii) : D(t) 6= 0;

subclass (iii.a) :D(t) 6= 0 and rkS=1;

subclass (iii.b) :D(t) 6= 0 and rkS=2;

The set {ϕ1
t
, ϕ2

t
, ϕ3

t
} is a co-frame of (1, 0)-forms on Xt. The structure equations for t in

class (i) are 



dϕ1
t

= 0
dϕ2

t
= 0

dϕ3
t

= −ϕ1
t
∧ ϕ2

t

The structure equations for t in class (ii) and (iii) are




dϕ1
t

= 0
dϕ2

t
= 0

dϕ3
t

= σ12ϕ
1
t
∧ ϕ2

t
+ σ11ϕ

1
t
∧ ϕ1

t
+ σ12ϕ

1
t
∧ ϕ2

t
+ σ21ϕ

2
t
∧ ϕ1

t
+ σ22ϕ

2
t
∧ ϕ2

t
t

The first step towards our computation of the ABC cohomology of Xt is to compute the
cohomology group Hk(E ′•(Xt, p)) for all k, p where E ′•(Xt, p) = π′

p(E•(Xt)). To do this, we
reduce the computation to the corresponding cohomology of its Lie algebra G. Similar reduction
for Bott-Chern cohomology is given in [1, Theorem 3.7]. The hypothesis of the following result
is satisfied by the Iwasawa manifold and its small deformations.

Proposition 5.2. Let X = Γ\G be a solvmanifold endowed with a G-left-invariant complex
structure J , and G be the Lie algebra naturally associated with G. Denote by E ′k

G (X, p) =
π′
p(Ek

G(X)) where Ek
G is the vector space of all G-left-invariant k-forms on X. If the De Rham

cohomology, ∂-cohomology and Bott-Chern cohomology of X can be computed by the complex
of G-left-invariant forms, then the inclusion of the subcomplex i : E ′•

G (X, p) →֒ E ′•(X, p) is a
quasi-isomorphism, which means that the induced homomorphism

i∗ : Hk(E ′•
G (X, p)) → Hk(E ′•(X, p))

is an isomorphism for all k, p ∈ Z.

Proof. For [α] ∈ Hk(E ′•(X, p)), write α = αk,0 + · · · + αk−p+1,p−1. Then from d′pα = 0, we get
a system of equations





∂αk,0 = 0 ⇒ ∂∂αk,0 = 0,

∂αk,0 + ∂αk−1,1 = 0 ⇒ ∂∂αk−1,1 = 0
...

∂αk−q+2,q−2 + ∂αk−p+1,p−1 = 0 ⇒ ∂∂αk−p+1,p−1 = 0
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Since by our assumption, the ∂-cohomology and Bott-Chern cohomology of X can be computed
by G-left-invariant forms, so there exist βi,j ∈ E ′k

G (X, p) for j = 0, 1, ..., k − 1 such that αk,0 −

βk,0 = ∂γk−1,0, αi,j − βi,j = ∂∂ηi−1,j−1 for j = 1, ..., k − 1. Let β = βk,0 + · · · + βk−p+1,p−1 ∈
E ′k
G (X, p). Then α−β = d′p(γk−1,0 +∂ηk−1,1 + · · ·+∂ηk−p,p−2). This shows that i∗ is surjective.

If [ω] ∈ Hk(E ′•
G (X, p)) and i∗[ω] = 0, we have ω = d′pρ for some ρ ∈ E ′k−1(X, p). Comparing the

degrees of both sides of this equation, we have
{
ωk,0 + · · · + ωk−p+2,p−2 = d(ρk−1,0 + · · · + ρk−p+1,p−2),
ωk−p+1,p−1 = ∂ρk−p,p−1

By our assumption, the De Rham cohomology and ∂-cohomology of X can be computed by
G-left-invariant forms, there are G-left-invariant η and τ such that ωk,0 + · · · + ωk−p+2,p−2 =
dη, ωk−p+1,p−1 = ∂τ . Then ω = dη + ∂τ = d′p(η + τ) and η + τ ∈ E ′k+1

G (X, p). This shows that
the homomorphism i∗ is injective.

The second step is to show that the integral cohomology groups of the Iwasawa manifold is
torsion-free. We combine results developed in [7, 16] for this goal. The main tool we use is the
following theorem [7, Theorem 3]. For q ∈ N, let Z{q} = Z[ 12 , · · · ,

1
q
].

Theorem 5.3. For any nilmanifold N , H∗(N ;Z{q}) and H∗(FL(N);Z{q}) are isomorphic
rings where FL(N) denotes the formal group Lie algebra of the fundamental group G := π1(N)
and q ≥ d(N), where d(N) is equal to the finite sum

d(N) = 1 + |G1/G2| + 2|G2/G3| + 3|G3/G4| + · · · + k|Gk/Gk+1| + · · ·

and G1 ⊃ G2 ⊃ G3 ⊃ · · · is a descending series of G (see [7, pg 74]).

If N is the Iwasawa manifold, after some computation, we get d(N) = 1 and all cohomology
groups H∗(FL(N);Z) are torsion-free. This implies that the integral cohomology groups of
Iwasawa manifold are torsion-free. Since it is diffeomorphic to its small deformations, we have
the following result.

Corollary 5.4. All integral cohomology groups of the Iwasawa manifold and its small deforma-
tions are torsion-free.

Lemma 5.5. Let X be a complex manifold. Suppose that Hk(X ;Z) is torsion-free. Then
rkHk

I (E ′•(X, p, q)) = dimC(πp∗, π
′
q∗)D where D := {([α], [α])|[α] ∈ Hk(E•(X))} is the diagonal

of Hk(E•(X)) ⊕Hk(E•(X)).

Proof. The inclusion i : Ek(X) →֒ D′k(X) is a quasi-isomorphism, and with the inclusion
j : Ik(X) →֒ D′k(X), we have a group homomorphism ℓ∗ := i−1

∗ ◦j∗ : Hk(I•(X)) → Hk(E•(X)).
Let {φ1, ..., φn} be a basis of Hk(I•(X)). Since Hk(X ;Z) is torsion-free, the map ℓ∗ is injective,
and hence the rank of the image Im(ℓ∗, ℓ∗) is n. Let DR be the real vector subspace of D obtained
by taking linear combination of {(ℓ∗, ℓ∗)(φj , φj)|j = 1, ..., n} with real coefficients. Then from
the fact dimRDR ≤ n and Im(ℓ∗, ℓ∗) ⊂ DR, we get n = dimRDR = dimCD.

We have the following commutative diagram

Hk(I•(X))
(ℓ∗,ℓ∗)

//

''P
P

P

P

P

P

P

P

P

P

P

P

Im(ℓ∗, ℓ∗)

(πp∗,π
′
q∗)

��

−֒→ DR

(πp∗,π
′
q∗)

��

−֒→ D

(πp∗,π
′
q∗)

��

Hk
I (E•(X, p, q)) −֒→ (πp∗, π

′
q∗)(DR) −֒→ (πp∗, π

′
q∗)(D)

and rkHk
I (E•(X, p, q)) ≤ dimR(πp∗, π

′
q∗)(DR). Since (πp∗, π

′
q∗){(ℓ∗, ℓ∗)(φj , φj)|j = 1, ..., n} is

a generating set over Z for Hk
I (E•(X, p, q)), over R for (πp∗, π

′
q∗)DR respectively, we have

rkHk
I (E•(X, p, q)) ≥ dimR(πp∗, π

′
q∗)(DR). Therefore rkHk

I (E•(X, p, q)) = dimR(πp∗, π
′
q∗)(DR) =

dimC(πp∗, π
′
q∗)(D).
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Lemma 5.6. If X is a complex manifold and Hk(X ;Z) is torsion-free, we may write

Hk
ABC(X ;Z(p, q)) ∼= ZA ⊕ (C/Z)B ⊕ CC

where A = rkHk(X ;Z)−rkHk
I (D′•(X, p, q)), B = rkHk−1

I (D′•(X, p, q)) and C = dimHk−1(D′•(X, p, q))−

rkHk−1
I (D′•(X, p, q)).

Proof. Note that since Hk(X ;Z) is torsion-free for all k ≥ 0, by the 3×3-grid (Proposition 2.6),
we have

Hk
ABC(X ;Z(p, q)) ∼= Kerk−1(Ψp,q)∗ ⊕

Hk−1(D′•(X, p, q))

Hk−1
I (D′•(X, p, q))

∼= ZA ⊕ (C/Z)B ⊕ CC

as required.

We list the procedure of our computation of Hk
ABC(Xt;Z(p, q)) in the following where Xt is

a small deformation of I3.

Step 1 : Find a basis ψ1, ..., ψs consisting of left-invariant forms of Hk(E•
G(Xt)).

Step 2 : Compute the dimension of the space generated by (πp∗, π
′
q∗)(ψj , ψj) for j = 1, ..., s.

This gives the dimension of Hk
I (E•(Xt, p, q)).

Step 3 : Compute the dimension ofHk(E ′•
G (Xt, q)). This is equal to the dimension ofHk(E•(Xt, q))

and we get the dimension of the group Hk(Xt, p, q).

Step 4 : Calculate the integers A,B,C as given in Lemma 5.6.

The following table records the complex dimension of Hk(E ′•(I3, p)).

p\k 1 2 3 4 5
1 2 2 1 0 0
2 5 9 8 3 0
3 4 8 9 7 3
4 4 8 10 8 4

The following table records the complex dimension of Hk(E•(I3, p, q)) and the rank of
Hk

I (E•(I3, p, q)). Note that Hk(E•(I3, p, q)) ∼= Hk(E•(I3, p)) ⊕ Hk(E ′•(I3, q)) and the complex
conjugation induces an isomorphism between Hk(E•(I3, p)) and Hk(E ′•(I3, p)). Furthermore,
Hk(E•(I3, p, q)) ∼= Hk(E•(I3, q, p)).

Hk(E•(I3, p, q)) Hk
I (E•(I3, p, q))

(p, q)\k 1 2 3 4 5 1 2 3 4 5

(1, 1) 4 4 2 0 0 4 4 2 0 0
(1, 2) 7 11 9 3 0 4 8 6 2 0
(1, 3) 6 10 10 7 3 4 8 8 6 2
(1, 4) 6 10 11 8 4 4 8 10 8 4
(2, 2) 10 18 16 6 0 4 8 10 4 0
(2, 3) 9 17 17 10 3 4 8 10 8 2
(2, 4) 9 17 18 11 4 4 8 10 8 4
(3, 3) 8 16 18 14 6 4 8 10 8 4
(3, 4) 8 16 19 15 7 4 8 10 8 4
(4, 4) 8 16 20 16 8 4 8 10 8 4

In the following table, we compute Hk
ABC(I3;Z(p, q)). Each triple in the entries denotes

(A,B,C) where A,B,C are given in Lemma 5.6.
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(p, q)\k 1 2 3 4 5 6

(1, 1) (0, 1, 0) (4, 4, 0) (8, 4, 0) (8, 2, 0) (4, 0, 0) (0, 0, 0)
(1, 2) (0, 1, 0) (0, 4, 3) (4, 8, 3) (6, 6, 3) (4, 2, 1) (0, 0, 0)
(1, 3) (0, 1, 0) (0, 4, 2) (2, 8, 2) (2, 8, 2) (2, 6, 1) (0, 2, 1)
(1, 4) (0, 1, 2) (0, 4, 2) (0, 8, 2) (0, 10, 1) (0, 8, 0) (0, 4, 0)
(2, 2) (0, 1, 0) (0, 4, 6) (0, 8, 10) (4, 10, 6) (4, 4, 2) (0, 0, 0)
(2, 3) (0, 1, 0) (0, 4, 5) (0, 8, 9) (0, 10, 7) (2, 8, 2) (0, 2, 1)
(2, 4) (0, 1, 0) (0, 4, 5) (0, 8, 8) (0, 10, 8) (0, 8, 3) (0, 4, 0)
(3, 3) (0, 1, 0) (0, 4, 4) (0, 8, 8) (0, 10, 8) (0, 8, 6) (0, 4, 2)
(3, 4) (0, 1, 0) (0, 4, 4) (0, 8, 8) (0, 10, 9) (0, 8, 7) (0, 4, 3)
(4, 4) (0, 1, 0) (0, 4, 4) (0, 8, 8) (0, 10, 10) (0, 8, 8) (0, 4, 4)

Now we turn to a much more involved computation of the ABC cohomology of Xt.
The following table records the complex dimension of Hk(E•(Xt, p)).

p\k 1 2 3 4 5
1 2 2 1 0 0
2 4 7 if rkT=1, 6 if rkT=1, 2 0

if rkT=2, 5 if rkT=2, 1
3 4 8 9 6 2
4 4 8 10 8 4

Note that Hk(E•(Xt, p, q)) ∼= Hk(E•(Xt, p)) ⊕Hk(E ′•(Xt, q)) and the complex conjugation
induces an isomorphism betweenHk(E•(Xt, p)) andHk(E ′•(Xt, p)). Furthermore,Hk(E•(Xt, p, q)) ∼=

Hk(E•(Xt, q, p)). LetN(T ) denote the number of nonzero entries of T where T =

(
σ11 σ12
σ21 σ22

)
.

Hk(E•(Xt, p, q)) Hk
I (E•(Xt, p, q))

(p, q)\k 1 2 3 4 5 1 2 3 4 5
(1, 1) 4 4 2 0 0 4 4 2 0 0
(1, 2) 6 9 if rkT=1, 7 if rkT=1, 2 0 4 7 6 if rkT=1, 2 0

if rkT=2, 6 if rkT=2, 1 0 if rkT=2, 1
(1, 3) 6 10 10 6 2 4 8 10 if rkT=1, 5 2

if rkT=2, 4
(1, 4) 6 10 11 8 4 4 8 10 8 4
(2, 2) 8 14 if rkT=1, 12 if rkT=1, 4 0 4 7 10 if rkT=1 and N(T) = 1, 3 0

if rkT=2, 10 if rkT=2, 2 if rkT=1 and N(T) ≥ 2, 4
if rkT=2, 2

(2, 3) 8 15 if rkT=1, 15 if rkT=1, 8 2 4 8 10 if rkT=1, 6 2
if rkT=2, 14 if rkT=2, 7 if rkT=2, 4

(2, 4) 8 15 if rkT=1, 16 if rkT=1, 10 4 4 8 10 8 4
if rkT=2, 15 if rkT=2, 9

(3, 3) 8 16 18 12 4 4 8 10 if rkT=1, 6 4
if rkT=2, 4

(3, 4) 8 16 19 14 6 4 8 10 8 4
(4, 4) 8 16 20 16 8 4 8 10 8 4

In the following table, we compute Hk
ABC(Xt;Z(p, q)). Each triple in the entries denotes

(A,B,C) where A,B,C are defined in Lemma 5.6.
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(p, q)\k 1 2 3 4 5 6
(1, 1) (0, 1, 0) (4, 4, 0) (8, 4, 0) (8, 2, 0) (4, 0, 0) (0, 0, 0)
(1, 2) (0, 1, 0) (1, 4, 2) (4, 7, 2) if rkT=1, (6, 6, 1) (4, 2, 0) (0, 0, 0)

if rkT=2, (7, 6, 0) (4, 1, 0) (0, 0, 0)
(1, 3) (0, 1, 0) (0, 4, 2) (0, 8, 2) if rkT=1, (1, 10, 0) (2, 7, 1) (0, 2, 0)

if rkT=2, (2, 10, 0) (2, 6, 2) (0, 2, 0)
(1, 4) (0, 1, 2) (0, 4, 2) (0, 8, 2) (0, 10, 1) (0, 8, 0) (0, 4, 0)
(2, 2) (0, 1, 0) (4, 4, 4) (0, 7, 7) if rkT=1 and N(T) = 1, (5, 10, 2) (4, 3, 1) (0, 0, 0)

if rkT=1 and N(T) ≥ 2, (4, 10, 2) (4, 4, 0) (0, 0, 0)
if rkT=2, (6, 10, 0) (4, 2, 0) (0, 0, 0)

(2, 3) (0, 1, 0) (0, 4, 4) (0, 8, 7) if rkT=1, (2, 10, 5) (2, 6, 2) (0, 2, 0)
if rkT=2, (4, 10, 4) (2, 4, 3) (0, 2, 0)

(2, 4) (0, 1, 0) (0, 4, 4) (0, 8, 7) if rkT=1, (0, 10, 6) (0, 8, 2) (0, 4, 0)
if rkT=2, (0, 10, 5) (0, 8, 1) (0, 4, 0)

(3, 3) (0, 1, 0) (0, 4, 4) (0, 8, 8) if rkT=1, (2, 10, 8) (0, 6, 6) (0, 4, 0)
if rkT=2, (4, 10, 8) (0, 4, 8) (0, 4, 0)

(3, 4) (0, 1, 0) (0, 4, 4) (0, 8, 8) (0, 10, 9) (0, 8, 6) (0, 4, 2)
(4, 4) (0, 1, 0) (0, 4, 4) (0, 8, 8) (0, 10, 10) (0, 8, 8) (0, 4, 4)

Note that for t in class (iii), the rank of T is always 2. So the ABC cohomology of such Xt

does not give a finer classification than Nakamura’s classification. But for t in class (ii), the
ABC cohomology may be different for T with different rank. We summarize our observation in
the following. This refinement is not same as Angella’s refinement of Nakamura’s classification.

Corollary 5.7. We may subdivide class (ii) into 3 subclasses:

subclass ii.1 : rank T=1 and N(T ) = 1;

subclass ii.2 : rank T=1 and N(T ) ≥ 2;

subclass iii.3 : rank T=2.
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