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Aeppli-Bott-Chern cohomology and Deligne cohomology from a

viewpoint of Harvey-Lawson’s spark complex

Jyh-Haur Teh

Abstract

By comparing Deligne complex and Aeppli-Bott-Chern complex, we construct a differential
cohomology H *(X, #,*) that plays the role of Harvey-Lawson spark group H* (X,%), and a
cohomology H 5 (X; Z(*, *)) that plays the role of Deligne cohomology H}(X; Z(x)) for every
complex manifold X. They fit in the short exact sequence

= )
0— HYEL(X;Z(p,q)) — H*(X,p,q) & ZE (X, p,q) = 0

and H* (X, e, @) possess ring structure and refined Chern classes, acted by the complex conju-
gation, and if some primitive cohomology groups of X vanish, there is a Lefschetz isomorphism.
Furthermore, the ring structure of H p(X;Z(e,e)) inherited from H*(X, e, e) is compatible
with the one of the analytic Deligne cohomology H®(X;Z(e)). We compute EI*(X, *, %) for X
the Iwasawa manifold and its small deformations and get a refinement of the classification given
by Nakamura.

1 Introduction

The theory of differential characters was founded by Cheeger and Simons ([8 2, [3]) around 1970.
It obtains intensive development in the last 20 years. Physicists realize that differential charac-
ters can be used in the mathematical formulation of generalized abelian gauge theories([9]), and
mathematicians found that they appear naturally in many mathematical problems ([I3] [14]).
The interaction between physics and mathematics stimulates lot of development in both dis-
ciplines and the theory of differential characters is extended to various generalized differential
cohomologies. The article [6] of Bunke and Schick gives us a nice overview about differential
cohomologies, including differential K-theory, and their relation with physics, especially with
string theory.

There are various constructions of differential cohomologies ([4, [5, [13]). A particular simple
construction to us was given by Harvey and Lawson through their theory of spark complexes
([10] 11, M2l 13} 15} 20]) which unifies many known results. By applying their theory, they
constructed a d-analogue ([12,[10]) of differential characters for complex manifolds. The Harvey-
Lawson spark group H* (X, p) of level p of a complex manifold X contains the analytic Deligne
cohomology H™ (X, Z(p)) as a subgroup and fits in the short exact sequence

0 — HEN(X, Z(p)) — H*(X,p) — ZE71(X,p) = 0

where Zg“(X ,p) is the subgroup of complex differential (k 4 1)-forms with integral periods.
Deligne cohomology group H%H(X ;Z(p)) is usually defined by the hypercohomology group
H*1(X, Z(p)) of the Deligne complex of sheaves

Z(p):O%Z%Qoiﬂli---iﬂp—l_ﬂ)
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where QF is the sheaf of holomorphic k-forms. Recall that the Aeppli and Bott-Chern cohomol-
ogy ([I9]) of a complex manifold X can be defined by the hypercohomology of the complex of
sheaves:

B, :05C5060-0'a0 5 5 el ' 50 5. 507 50
where p > ¢ and Q" is the sheaf of anti-holomorphic k-forms. We have
HRY(X;C) = HPTIH (X, By i1 4+1) and HEA(X;C) = HP (X, B,

By this similarity to the definition of Deligne cohomology, it is natural to ask the following
question

Question: Is there a differential cohomology that plays the role of the Harvey-Lawson spark
group H(X,p), and the hypercohomology groups of the complex of sheaves

05250005200 5 5@ ol 50 5. 507 50
that play the role of Deligne cohomology?

This is the motivation of this paper. We answer this question affirmative by constructing
cohomology H*(X,p, q) and H} (X ; Z(p, q)) for every complex manifold X, and integers p, ¢ >
0 that fit in the short exact sequence:

= )
0— HYEL(X;Z(p,q)) — H*(X,p,q) & ZE(X,p,q) = 0

The cohomology He (X, e, @) possess a ring structure and refined Chern classes, acted by the
complex conjugation, and if some primitive cohomology groups of X vanish, there is a Lefschetz
isomorphism. Furthermore, the ring structure of H g (X;Z(e,e)) inherited from H*(X,e,e)
is compatible with the one of the analytic Deligne cohomology H®(X;Z(e)). We compute
H *(X,e,0) for X the Iwasawa manifold and its small deformations and get a refinement of the
classification given by Nakamura. Such finer classification is different from the one given by
Angella [1].

The paper is organized as follow. In section 2, we review Harvey and Lawson’s theory of spark
complexes and use it to construct H*(X,p,q). We show that the above mentioned sequence is
short exact, give a 3 x 3-grid that relates Griffiths intermediate Jacobian and Hodge group and
prove a Lefschetz property. In section 3, we establish a ring structure on H*(X; e, e). In section
4, we construct refined Chern classes for complex vector bundles and prove a Whitney product
formula. Furthermore, for holomorphic vector bundles, we show that their refined Chern classes
can be defined on HYz-(X;Z(e,e)) and the total refined Chern class defines a natural map
from holomorphic K-theory to ﬁ‘(X; Z(e,e)). In section 5, we compute the ABC-cohomology
of the Iwasawa manifold and its small deformations, and give a refinement of the classification
given by Nakamura ([I7]).
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2 Harvey-Lawson spark groups

We recall the construction of spark groups given by Harvey and Lawson in [12].

Definition 2.1. (Spark complexzes) Suppose that F®* = @®;>oF", E®* = ®;>0E" 1* = ®;>0l"
are cochain complexes and V : I — F is a morphism of cochain complexes, E®* — F*® is an
embedding with the following properties:



1. W(I*)n E¥ = {0} for all k >0,

2. W: 19— FO is injective,

3. the embedding induces an isomorphism H*(E®) — H*(F*®).
Then & = (F*,E*, I*) is called a spark complez.

Definition 2.2. (Spark groups) Given a spark complex ¥ = (F*,E®,I*), a spark of degree k
is a pair (a,r) € F* @ I*T1 which satisfies the spark equation

da = e — U(r) where e € EF1
dr = 0.

Let #*(F*,E* I*) be the collection of all sparks of degree k in (F*,E®,I*). Two sparks
(a,),(a’,r") of degree k are equivalent if there evists a pair (b,s) € F*~1 @ I* such that

r—r = —ds.

{ a—a =db+ V(s),

We write H*(.7) = S¥(F*, E®,1°)/ ~ for the group of equivalence spark classes of degree k.

Let X be a complex manifold of complex dimension m. We write £2(X) for the space of
(p, q)-forms with compact support on X. The space of currents of degree (p,q) on X is the
topological dual space D'P4(X) := {E, ™71} We write

cpt
D*X,pq)= @ Drx)P P DRX)
i1+j1=k i2+ja=k
i1<p Jj2<q

and the counterpart of forms Sfpt (X, p,q) is defined similarly.
Define d, , : D'*~1(X,p,q) = D'"*(X,p,q) by

dp.q(a,b) = (mpda, Tydb)

where
m: DR(X)» P DEIX), 7 DMX) - P DE(X)
i1+j1=Fk ig+j2=k
11<p J2<q
are the natural projections. It is easy to see that dg_’q = 0 and hence (D*(X,p,q),dpq) is a
cochain complex. Let I*(X) be the space of locally integral currents of degree k on X. Define
Wpq: I¥(X) = D'™*(X,p,q) by
Upq(r) = (mp(r), me(r))

Proposition 2.3. Let X be a complex manifold of dimension m. For a € EPU(X),[ €
Eupe VM TUX), define o) = [y A B. Then EP9(X) may be considered as a subspace of
D'P4(X). With maps and differentials defined above, the triple (D'*(X,p,q),E*(X,p,q),I*(X))

forms a spark complez.

Proof. Tt is well known that the inclusion map £*(X, p, q) < D™ (X, p, q) is a quasi-isomorphism
and ¥ : I9(X) — D°(X,p,q) is injective. The fact that £*(X,p,q) N ¥([*(X)) = {0} follows
from [12] Appendix BJ. O

Definition 2.4. For a complex manifold X, the k-th Harvey-Lawson spark group of level (p, q)
18 the spark group R N
H"(X,p,q) = H*(D*(X,p,q), *(X,p,q), I*(X))



Proposition 2.5. On a complex manifold X, the complex conjugation on currents induced by
the complex structure of X induces a map H*(X,p,q) — H*(X,q,p) defined by

(a,b,7) — (b,a,r)

which is an isomorphism.

Proof. Note that m,(a) = 7, (@) and 7} (b) = mq(b). If dpq4(a,b) = (e1,e2) — (mp(r), 7} (r)), then
dp.q(a,0) = (mda, mydb) = (€1,22) — (m,(7), m4(7)), s0 dyp(b,@) = (mydd, myda) = (€2,21) —
(q(7), (7)) this implies that [(b,a,T)] € H*(X,q,p). Since r is a locally integral current, it is
real, hence 7 = r. This map is well defined and applies it twice we get the minus identity which
shows that it is an isomorphism. O

From the general theory of spark complexes [I12] Prop 1.8], we have the following 3 x 3
commutative grid.

Proposition 2.6. There is a 8x 8 commutative grid of exact sequences associated to the spark
complex (D'*(X,p,q),E*(X,p,q), I*(X))

0 0 0

k(e -
0 g?gg/-gi)gggg HE(XJL Q) dP#ng(Xupa q) ——0

O—>Hk(G) —>~ﬁk(X,p7q) $2?+1(X7paq) —0

d2

(¥p,q)
—

0—— Kerk+1((\11p7q)*) E—— HkJrl(I' (X)) ’Herl(g. (Xapv Q)) —0

0 0 0

where Z}Hl(X,p, q) consists of pairs (e, e3) € EF1 (X, p, q) that are closed under the differential
dp,q and have integral periods, i.e., [(e1,e2)] = (Vp.4)«(p) in H*1(D'*(X,p,q)) for some p €
HM(I*(X)). Furthermore, ﬁE(X,p,q) = kernel of 62, and G is the cone complex formed by
Upq: I%(X) = D"*(X,p,q).

2.1 Aeppli-Bott-Chern cohomology as a hypercohomology

Fix a complex manifold X. Let Qk,ﬁk be the sheaves of holomorphic k-forms and anti-
holomorphic k-forms on X respectively. Recall that the Aeppli and Bott-Chern cohomology
for a complex manifold X can be defined by the hypercohomology of the complex of sheaves: if
q=0p,

q—1

BT.’-,q:O%C%O@@%Ql@ﬁl—)..._)Qp—l@ﬁp—l_)ﬁp—>”.—>ﬁ Lo,

we have
HRY(X;C) 2 HPFTHY(X, Bp i1 441) and HEL(X;C) = HPT(X, Bpq)-

Modifying accordingly we have the case for p > q.



Definition 2.7. Let Q*<P:*<Y be the complez of sheaves

080520 5 5P el 505 0" 50
if p < q, and the complex of sheaves:

0a0-5Ae0 - 5 1a0" 50 5. 5 50

ifp>q

Similar to the definition of Deligne cohomology, we define Aeppli-Bott-Chern cohomology as
following.

Definition 2.8. The Aeppli-Bott-Chern cohomology H% 5 (X;Z(p,q)) is defined to be the hy-
percohomology group HF (X, 7 — Q*<P*<9). If without confusion, we will just call this cohomol-
ogy the ABC cohomology.

Proposition 2.9. There is an isomorphism
H (X3 Z(p. ) = H* ™ (Cone(I*(X) ™' D"*(X.p,9)))
where Cone(I*(X) Una pyre (X,p,q)) is the cone complex associated to the cochain morphism
\I/pvq : I.(X) - D/.(vaa q)
Proof. We prove only the case ¢ > p. There are acyclic resolutions
Z— I® and Q" @ Q" — D™ @ Do
Define 7y, : I¥ — D'®0 @ D'OF by

k(1) = (Hg0(r), o k(1))
where II; ; : T k — D’ is the natural projection induced from the decomposition
"< Dp%= @ D"
itj=k
Then we have a commutating diagram of sheaves:

I E} D'*0 ey DOy prel D DLe ...
ll i T )
Zz - Qe - el ..

Let D' = 0if i or j equals to -1. Then we have a more uniform expression of the resolution
of sheaves

Qni®§mi _>D/ni,0®D/0,mi —>Dmi’1®D/1’mi—>"-—>Dmi’jEBD/j’mi
where
Lo iti<p _ [ ifi <gq
T -1 ifizp T -l ifi>p

Let FiJ = D'Mid @ D'Wmi then F* = @
Proposition A.3], the hypercohomology

ik F%J and F*¥(X) = D'*(X,p,q). By [12

H*(X,Z — Q*<P*<9) = g1 (Cone(¥, , : I*(X) — F*(X))) = H* "1 (Cone(¥, , : I*(X) — D"*(X,p,q)))
O



Corollary 2.10. There is a short exact sequence
-~ 5
0 — Hibe(X;Z(p,q) = H*(X,p,q) 3 Z1 (X, p,q) = 0

Proof. Consider the 3x3-grid in Proposition2.6associated to the spark complex . = (D"*(X,p,q),E*(X,p, q), I*(X)).
By result above, we may replace the cohomology of the cone complex in the middle row of the
3x3-grid by the ABC cohomology. O

Corollary 2.11. On a complex manifold X, the complex conjugation on currents induces an
isomorphism between H% 5 (X;Z(p,q)) and HX 5 (X;Z(q, p)).

Proof. This follows from Proposition by considering H% 5~(X;Z(p,q)) as a subgroup of
HY(X, p,q). O

Definition 2.12. On a compact Kdhler manifold X, we define the total Griffiths’s p-th inter-
mediate Jacobian to be the group

TTp(X) = (FPHP~Y(X;C)/H*~ 1 (X; Z)) @(FPH>-1(X; C)/H* " (X; 7))

where FPH?P~Y(X;C) = @ H“(X) is the Hodge filtration and FPH?P~1(X;C) is the

i+j=2p—1
izp

complex conjugation of FPH*~1(X;C).

Corollary 2.13. When p=q,k =2p—1, on a compact Kdhler manifold X, the 3 X 3-grid has
the form

0

O—>H124PBC(X3Z(pap))—>ﬁ2p71(X7pap)L).Z[Qp(xapvp)—>0
02
Upq)«
0 —— HdgP(X) —— H(X; Z) — 22 H{"(X,p,p) ——=0
0 0 0

where HdgPP(X) is the group of Hodge classes.

Let X be a complex manifold. Recall that (see [12, [10]) the Harvey-Lawson spark groups of
level p are the spark groups of the spark complex

(D"*(X,p), (X, p), I°(X))
where D'*(X,p) = @irj=r D' (X), EX(X,p) = @iys=1 £ (X), and I*(X) — D'*(X,p) is the
1< A

P <p
projection map. The Deligne cohomology group H g"’l (X;Z(p)) sits in the short exact sequence

0 — HET (X Z(p) — H*(X,p) B Z5(X,p) = 0



Proposition 2.14. 1. We have a morphism between spark complezes

Ie %D/.(vaaq) 2 5.(Xap7Q)

]

I* D'*(X,p) 2 £*(X,p)

where the middle map s given by the natural projection. This morphism induces a mor-
phism between short exact sequences:

0 — HY 5o (X Z(p, q)) — H* (X, p,q) — Z¥(X,p,q) —=0

| | !

0 — HE(X; Z(p)) —— H* (X, p) — Z}(X,p) —0
2. For X a complex manifold, there is a commutative diagram

ﬁk(vaaq) —>ﬁk(X7Q)

| |

H*(X,p) —— HM(X; Z)
given by natural projections which induces a commutative diagram

HY 5o (X5 Z(p, q)) — HE (X Z(q))

| |

HE (X, Z(p)) —— H"(X; Z)

3. For X a compact Kihler manifold, k = p+ q — 1, if H**Y(X;Z) is a free abelian group,
then
Hk(vaa q) = (C/Z)t @ Hk+1(X; Z) @ dp,qgk(vaa q)
where t = dimcH*(X; C).

4. For X a complex manifold, there is a commutative diagram:

A(X,p+1,q+1) — 2= ZMY(X p+1,q+1)
02

HkH(X;Z)—) @ HX?I(X)® @ HZ,JI(X)
it i

where the right vertical arrow is given by (e1,e2) — ([e1], [e2]), the bottom horizontal
arrow is induced by the projection Il j : I**1(X) — D'™J(X), and Hy’(X) is the image
of the homomorphism I1(; ;). : H¥1(X;Z) — HY (X)) where HY (X) is the (i,7) Aeppli
cohomology of X .

Proof. 1. This follows directly from definition.



2. The morphisms are
[(a7 bv T‘)] - [(bv T‘)]

L

[(a,7)] ———1r]

3. In a compact Kihler manifold, k = p+q—1, H*(X;Q*<P*<¢) = P H™*(X)P P H™(X)=

r+s=k r+s=k
r<p s<q

HF(X;C). Note that H*(£*(X,p,q)) = HF(X;Q*<P*<9). Now consider the 3 x 3-grid
associated to the spark complex . = (D"*(X,p,q),E%(X,p,q), [*(X)). Since H**1(X;Z)
is a free abelian group, the middle column of the 3 x 3-grid splits. Since d, ,E*(X, p,q)
is a vector space, the top row of the 3 x 3-grid also splits. Thus we have flk(X,p, q) =

HF(E°(X,p,
W & H Y (X Z) & dp ,£%(X, p, q) and the result follows.

4. Recall that the Aeppli cohomology is defined as H%/(X) = %. For (ey,e2) €
Z¥(X,p+1,q+ 1), mpy1de; = 0. By comparing the types of both sides, we get (Je}*? +
9l ... = 0. This implies that 99} """ = 0 for i = 1,2,...,p. Similarly,
00e5 ) = 0for j =1,2,...,q. So ([e1], [e2]) € B HY (X))@ @ HY (X). Note that

s e

if da = 0, then 00a*7 = 0 where o = Zi-i-j:k-i-l abd, and 11, ;(dB) = 9B 17 + 9ptI—1
for g = Ziﬂ.:k B%3. This implies that II(p,q)« is well defined. The commutativity of this
diagram is clear. Since 07 is surjective, the right vertical homomorphism has image as
indicated.

O

2.2 Lefschetz property

Let X be a Kéahler manifold with Kéhler form w. The Lefschetz operator L : D*(X) —
D'**2(X) is defined by L(a) = w A a. Let us recall that when in addition X is compact, the
Lefschetz decomposition of forms induces a decomposition on currents. We summarize several
properties that we need in the following: suppose that the dimension of X is n.

1. D*(X) =35, L'PF=2(X) where P*(X) = {a € D'*(X)|L""*'a = 0} is the primitive
part, ig = maz{i — n,0}, the Lefschetz operator L% : D'*(X) — D"?"k(X) is an
isomorphism, and £/ : D" (X) — D'7%/(X) is injective if j <n — .

2. fa=35, L'a; € D'’*(X) is the Lefschetz decomposition of a where iy = maz{i —n, 0},
a; € P*%(X), define Ta = D i L 'a; where iy = max{i —n,1}, then T"% is the
inverse of "% : D'*(X) — D'?"%(X) and T" * o L" % = id}_, : D'*(X) — D'*(X) if
k<n.

Proposition 2.15. Suppose that p+q = k—1 and k < n, then the map E"F induces monomor-
phisms N R
EF BN (X p, g, Q) = H M (X — ¢ — p; Q)

and
LR H po(X3Z(p, q); Q) — Hype (X3 Z(n — q,n — p); Q)

where Q indicates the original groups tensored with Q over Q. Furthermore, these monomor-
phisms are isomorphisms if the primitive cohomology PHk’l(X; Q) =0.



Proof. Note that Ld = dL, Td = dT and L'm, = m,,;L', L'n) = x/ | .L’. The maps are well de-
fined and injective by the properties of Lefschetz decomposition mentioned above. Note that for
[(a/,b',7")] € H>" 1 (X n—q,n—p;Q), we have [(T" Fa’, T"*b', T *¢")] € H*= (X, p, 7;Q),
and Lnfk[(Tnfka’, TR, T F)] = [(a'—apn_—1,b"—bp_r_1,7")] where a’ = ZiZn—k—l Lla;, 0/ =
D ikl L'b; are the Lefschetz decomposition of a’ and . Thus if PH*~'(X;Q) = 0, then
Gp—f—1 = dc,by_k—1 = de, and [(an—k—1,bn—-k—1,0)] = 0 in ﬁkfl(X,p,q;Q). By restriction,
the same holds for Aeppli-Bott-Chern cohomology with Q-coefficients. O

3 Ring structure on HYz (X;Z(x*, %))

Let X be a complex manifold of complex dimension m.

Definition 3.1. Let (D'*(X))? = D'*(X) @ D’*(X), (EF(X))? = &F(X) @ EF(X), and ¥ :
I*(X) — (D™(X))? be defined by r — (r,7). Then ((D'*(X))?%, (£%(X))%,I*(X)) is a spark
complex. Let

Hpe(X) = H¥ (D" (X)), (£°(X))?, I*(X)

To define a ring structure on ﬁj‘y (X), we need a modified version of [I1, Thm D.1]. If (a,r)
is a spark and da = e — r, we write dija = e, d2a = 7.

Lemma 3.2. For given o € ﬁ’fp (X),B € ﬁéz (X) with k+£ < 2m and (a1, a2,7) € «, there is
representative (by,b5,s") € 5 such that if d(a1,a2) = (e1,e2) — (r,7), d(b}, b)) = (€1,¢2) — (s, 9),
then a; AV a1 As',r AV, T A s as ANV, as A s’ r Aby are well defined and v A's' is rectifiable.

Proof. Let us recall the construction in [IT, Thm D.1]. For [(a, R)] € H*(X),[(b,S)] € H'(X)
with k+ ¢ < 2m, db =1 — S, there is a current b’ := fe,.b+ x + 1 where x is a smooth ¢-form,
7 is a smooth d-closed ¢-form, for which a A b,a A dob’, R AV and R A dab’ are well defined,
the last one is rectifiable and (V/, fe.S) is equivalent to (b,S). The functions fe : X — X
are diffeomorphisms close to identity parametrized by points ¢ € RN for some N. Note that
db' = — fe.S and dob’ = f¢,.S. Now we fix two representatives (a1, as2,7) € o, (b1,b2,5) € S.
Since [(a1,7)], [(ag, )] € H*(X),[(b1,5)],[(b2,s)] € HY(X), by the construction above, we may
choose £ € RY such that a; A fe.b1, a1 A feus, 7 A feub1,7 A feus, a2 A fexba,aa A feus, A feubo
are all simultaneously well defined and 7 A fe¢.s is rectifiable.

As in the Harvey-Lawson-Zweck’s construction, there exist some smooth forms x1, 71, X2, 72
and

b= febi +xa + 1, Uy = feuba + x2 + 12

such that (b, fess) and (b}, fews) are equivalent to (b1, s) and (ba, s) respectively in HY(X). So
by definition, (b}, b5, fexs) € 8 and the products mentioned in the statement of the Lemma are
well defined and 7 A fe.s is rectifiable. O

If da =¢ — R,db =1 — S and the product is well defined for these two sparks, we write
axb:=any+ (—1DFRAD
We denote by ~ for the equivalence of two sparks.

Lemma 3.3. If (a1, a2,7) ~ (a},a), "), (b1,be,s) ~ (b],b5,s") are sparks of the spark complex
(D"*(X))?,(£%(X))?,I*(X)) and the equivalences are given by

a’l—alzdﬂl—l—ﬁ, b/l—blzdfﬁl—FT,
aé—agzd@—i—R, ) bé—bgzdig—f—T,
v —r=—dR s’ —s=—dTl

respectively. Then there exist



integral current R = R+ doy such that R A s' is well defined and rectifiable;
current u; = Uy — o1 + dog such that uy A s',duy As’ are well defined;
current us = Us — 01 + dos such that us A s',dus A s’ are well defined;

integral current T = T + doy such that a1 AT, a1 NdT, aa AT, ag ANdT, T Nr are well
defined and T A1 is rectifiable.

e v o=

for some currents 01, 02,03 and 4. Furthermore, we may rewrite the equivalences of sparks as
following:

a’l—alzdul—l—R, b’l—b1:d1)1+T,
aé—azzd’UQ—FR, N blz—bQZd'UQ"'T,
v —r=—dR s —s=—dT

where v = 51 — 04,V = 52 — 04.

Proof. This follows from Federer’s slicing theory by making a small perturbation of }N%, Uy, Uz, T
respectively (see [11, Theorem A.2]). O

Proposition 3.4. Suppose that (a1,as,7) ~ (ay,ab, "), (b1,b2,8) ~ (b],bs,s") are equivalent
sparks, (a1,as,r) meets (by,ba,s) and (al,ah, ") meets (by,bh,s") properly respectively. Then

(ay x by, alyx b, v As') ~ (a1 *by,as x by, T A S).

Proof. By Lemma above, we may assume that

a’l—alzdul—i—R, bll—blzd’l)l-‘rT,
a’2—a2:du2—|—R, y b/2—b2:d’02—|—T,
v —r=—dR s’ —s=—dTl

where a1 AT, as AT, a1 ANdT,as ANdT, RN s',T Ar are well defined and the last two currents are
rectifiable. Suppose that

dalzel—r, dblzfl—s,
day =e; — 1/, by = f1— ¢,
dCLQ:eQ—T, ’ deZfQ—S,
dal, = eq — 1’ dby = fo — 5

Then

ayx by —ayx by =ai A8+ (1) e A —ar As — (1) e A by
=(a1 +dus + R)A S — a1 A s+ (=1)eg A(dvy +T)
=a; A (—dT) +duy As' + RAS +d(ey Avy) + (—1)*Tley AT
=(—D)"day AT —ay AdT +d(uy A5’ +e1 Avy) + (D) r AT+ RAS
=d((-D)*"* oy AT +uy As'+er Av) + (=) P AT+ RAS
Similarly,
abx by —agxby = d((=1)* M ag AT +us As' +ex Avg) + (1) AT+ RA S

and we have
d(-D)* Y AT+ RAS)=rAs—1"As

This completes the proof. [l
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Definition 3.5. Suppose that a € flgg (X),B e ﬁfﬂ (X) with k4 ¢ < 2m. For any representa-
tive (a1,a2,7) € «, choose representative (b, by,s") € B according to Lemma 3, we define

axf:=|[(a; % b}, a2 xby,r Ns')| € ﬁgt“l(x)

By Proposition above, this product is well defined. A direct computation shows that it is
graded-commutative. This gives us the following result.

Proposition 3.6. ﬁbz (X) is a graded-commutative ring.

To define a product on H g (X;Z(p, q)), we first define a product on H*(X,p,q) and then
reduce the product to H% 5. (X;Z(p,q)). Note that d,m, = m,d and d,m; = m,d.

Let (mp, my, id)y ﬁfﬁ (X)— ﬁk(X,p, q) be the map defined by

[(a,b,7)] = [(mp(a), 7 (b), )]
We first make an observation.

Lemma 3.7. Ker(m,,m,id)y = {a € ﬁgQ(X)E(a,b,O) € a,a,b smooth ,mp(a) = 0,7 (b) =
0}.

Proof. Suppose (a,b,7) € a € Ker(mp, ), id),. Then thereis (a/,b',s) € D'*"1(X,p,q)®I*(X)
such that (7, (a), 7 (b)) = dpq(a’, ") + (mp(s), 7 (s)) and r = —ds. Let a = a — da’ — U(s),b=

b—db —W(s) and ¥ = r +ds = 0, then (a,b) — (@,b) = d(a’,b') + ¥(s). So (@,b,0) € a. The
other direction is clear. (|

Theorem 3.8. The map (mp, 7, Tg) id)y is a surjective group homomorphism and the kernel of the
map (my, 7y, id) is an ideal of HD2 (X).

Proof. Suppose a € Ker(my,m,,id)x, 3 € ﬁbg (X), choose representatives (a, b,0) € « such that
mp(a) = 0,7,(b) = 0, and (a’,V',7") € B such that the product is well defined. If D(a’,V’) =
(e1,e2) — (',7), then

axf = [(aner+ (1) TTOAT  bxea+(—1)" 10N, 0Ar)] = [(aAer,bAez,0)] € Ker(my, ), id)x

So the kernel is an ideal of f[l'jg (X).

To show the surjectivity, we pick [(a,b,r)] € H*(X,p,q). Then by definition, dpq(a,b) =
(e1, 62) ».q(r) and dr = 0. From the isomorphism H*T1(D'*(X)?) = H*1(£°(X)?), there is
(ag,bo) € D’k“(X) (eo, fo) € EFL(X)? such that d(ag, bo) = (o, fo) — (r,7). So dp 4(ao,bo) =
(mp, q)(eo,fo) \Ilpﬁq(r) and this implies d, ¢((a,b) — (ag,bo)) = (e1,e2) — (71';0,77(’1)(60, fo). By
[13, Lemma 1.5}, (a,b) — (a0, bo) = (91,92) + dp,q(h1, h2) Where (g1,92) € E¥(X,p,q), (h1,h2) €
D'*=1(X,p,q). Let (a, b) (ao,bo) (91,92)+d(h1, h2). Then d(a,b) = (eo, fo)+d(g1,92)—¥(r).
This implies that [(a,b,r)] € H]’:“)Q( ). Note that (7, q)(a b) (wp,ﬂ'(’z)(ao,bo) + (g91,92) +
(7p, g )d(h1, he) = (mp, my)(a, b) = (a,b). This proves the surjectivity. O

Definition 3.9. Fiz p,q. Let 11, , = iio(wpﬂﬂ—z/pid)k' Then by Theorem [3.8, the kernel of

II, , is an ideal of ﬁbz (X) and 11, 4 is surjective. So we have a group isomorphism
H™(X,p,q) = Hpa (X)/KerTl, g
The right hand side has a natural ring structure and we define the ring structure of fl*(X,p, q)

by this isomorphism.
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For a € HYEL (X Z(p, q)) and B € HYH(X;Z(p,q)) where k + £ < 2m, we consider them

as elements in H ¥(X,p,q) and Y (X, p, q) respectively. A direct computation shows that a *
is in HYE'A2(X;Z(p,q)). This shows that H%zo(X;Z(p,q)) inherits a ring structure from
H*(X,p,q).

ol

Corollary 3.10. The ring structure on the Harvey-Lawson spark group H* (X,p,q) induces a
ring structure on the ABC cohomology H% 5 (X;Z(p, q)).

If we consider the collection of all ABC' cohomology P, , , H*(X;Z(p, q)), there is also a
ring structure on it.
Definition 3.11. Define a product H% 5 (X;Z(p,q)) x Hipc (X5 Z(0',q')) — HZE%(X; Z(p+
pa+dq)) by _
(a, ﬁ) = (7Tp+17’ ) 7Tl/1+q’ ) id) (& * 3)
where @ € ﬁg;l(X), Be ﬁé}l(X) are lifts of a and [ respectively.
To verify that this product is well defined, we refer the reader to the proof of [10, Theorem

6.6] where a similar verification for Deligne cohomology was done. The following result is also
clear from the definition.

Corollary 3.12. The natural map ,, , , HX oo (X5 Z(p, q)) — D, HE (X Z(p)) induced from
the projection [(a1,az,r)] — [(a1,7)] is a ring homomorphism.

4 K-theory and refined Chern classes

By a result of Cheeger and Simons [§], each smooth complex vector bundle with unitary connec-
tion V over a smooth manifold X is assigned differential cohomology class ¢ (E, V) € H2*~1(X)
for each k& > 0. Such classes are called refined Chern classes as they satisfy 01 (¢, (E,V)) =
cx (V) the Chern-Weil form, and 65 (¢x(E, V)) = cx(E) the Chern class of E. They also proved
a Whitney product formula

AE®E . VNaV)=2E,V)«e(E, V)

where ¢ is the Cheeger-Simons total refined Chern class. In this section, we are going to de-
fine refined Chern classes in ABC cohomology and prove some results analogous to the clas-
sical counterparts. The model we use for H*(X) is the spark group of the spark complex

(D"*(X),E%(X), I*(X)).
Definition 4.1. Let X be a complex manifold and E be a complex vector bundles over X
with unitary connection V. Suppose that ¢x(E,V) = [(a,7)] € H?** 1(X). Then [(a,a,r)] €
ﬁékfl(X). We define
(B V) = [(a.@.7)]
and R R N
fu(B, V) = (my,, 7}, id) (C (B, V) € H*1(X, k, k)

We first observe that the product in H *(X) commutes with the complex conjugation.

Lemma 4.2. For o € H*(X), 8 € H(X),

=ax*f

Proof. Choose representatives (a, R) € «, (b, S) € § such that the product (a, R) * (b, S) is well
defined. Write da = ¢ — R,db =1 — S. The a,R) % (b,S) = (a A+ (=1)"T*RAb, RAS) and
we have (a,R) * (b,S) = (@ R) * (b,S) = @AY + (~1)* " 'RAb,RAS) = (a,R) * (b, S). This
gives us the desire formula. [l




Theorem 4.3. Let E and F be two complex vector bundles on a complex manifold X with
unitary connections V and V' respectively. There is a Whitney product formula

1.

~

AE@ F,VaeV)=E,V)xc(FV).

E®@F,VaV)=f(EN)xf(F,V)

Proof. The first result follows from the Whitney product formula proved by Cheeger and Simons
and the Lemma above. For the second result, note that by the definition of the product * of
Dy H*(X,p,q) and the result above, we have

ME®FV&V') = (m,mhid)@(ES FVa V) = Y (w7, id)@(E, V) * & (F, V)
i+ji=k
= N F(B, V)« [i(FV)
i+j=k

This gives us the desire formula. O

Remark 4.4. If F is a hermitian bundle and V is the canonical connection associated to
the hermitian metric of E, then the Chern-Weil form cx(QV) is of type (k,k) and hence
51 (f(E,V)) = 0. This implies that fx(E,V) € H3% (X5 Z(k, k).

Proposition 4.5. Let E be a hermitian vector bundle over a complex manifold X and V be the
canonical connection associated to the hermitian metrics of E.

1. The class f(E,V) € H3% o (X;Z(k,k)) is independent of the choice of hermitian metric
on E.

2. Under the canonical map from H3% o (X; Z(k, k) — HZF(X;Z(k)), the class i is sent to
dk where dk is the Harvey-Lawson’s refined Chern class.

Proof. Suppose that ¢(E, V1) = [(a1,m1)] € H2* 1(X),0(E,Vs) = [(az,12)] € H*1(X).
By [12| Proposition 12.1], Harvey and Lawson showed that their refined Chern classes in
Deligne cohomology are independent of the choice of hermitian metrics on F, hence [(mra1,7)] =
[(mras, )] € H2F(X;Z(k)). This means that there exist b € D'*(X, k), s € I*(X) such that

TrQ] — TEAy = Wkdb—l—ﬂk(s),
r — T2 = —dS,

Note that 7Tza = m,a and d is a real operator. By taking the complex conjugation of the first
equation, we get _
a1 — myag = mpdb + T (8)

Together with equations above, this means that ﬁc(E, Vi) = [(mear, 1,61, m1)] = [(Trae, T,G2, r2)] =
fx(E,V3). The class fi is sent to dj follows directly from the definition. O

Definition 4.6. If F is a hermitian vector bundle of rank k on a complex manifold X, since
refined Chern classes of E are independent of hermitian metrics on E, we write fi(E) for

(B, V) where V is the canonical connection associated to a hermitian metric of E, and write
the total refined Chern class to be

FE) =14 Ji(E) + -+ Ju(E EBHABC X5 2(i,4))
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Theorem 4.7. For any short exact sequence
0—-F —FE,— E3—0

of holomorphic vector bundles over X, we have

~ -~ ~

f(E2) = f(Ey) = f(E5)
Proof. Similar to the proof of Theorem [£.3] O

Corollary 4.8. If X is a complex manifold and Ko (X) is the Grothendieck group of holomor-
phic vector bundles on X, then the total refined Chern class defines a natural map

E Kpot(X) — @H%iBC(X;Z(ivi))

i>0

5 ABC-cohomology of the Iwasawa manifold and its small
deformations

In this section, we compute the ABC-cohomology of the Iwasawa manifold and its small defor-
mations. The Dolbeault cohomology of the Iwasawa manifold and its small deformations were
computed by Nakamura in [I7] and the Bott-Chern and Aeppli cohomology were computed by
Angella in [I]. We use an expression of a system of local holomorphic coordinates given in [I]
and recall some results that are used in our computation.

Let
1 2t 23
H(3;C) := 0 1 22 |:22%23cC) cGL(3;C)
0 0 1

be the 3-dimensional Heisenberg group over C and consider the action on the left of H(3; Z[i]) :=
H(3; C) N GL(3;Z[i]) on H(3;C). The compact quotient

I3 := H(3; Z[i])\H(3; C)

is call the Iwasawa manifold whose H(3; C)-left-invariant complex structure .Jy is the one inher-
ited by the standard complex structure on C3.
We recall a theorem of Nakamura [17].

Theorem 5.1. There exists a locally complete complex-analytic family of complex structures
{X¢ = (I3, Jt) }eea(o,e), deformations of I3, depending on

t = (ti1, t12, to1, t2o, t31, t32) € A(0,€) C C°

where A(0, €) is a disc centered at 0 € C® with a small radius € and Xo = I3.

There is a set of holomorphic coordinates &,&2,&8 for Xy depending on t and the local
coordinates of Xy. Since we do not need their precise expressions, we refer the reader to [1]
Theorem 3.1]. Let

pp 1= d&¢, @7 = d& and @} = dE& — 2'dEF — (to1Z" + t227°)dE¢

Complex numbers 047, 013, 097, 093 and 12 depending only on t are defined through the following
equation

do} = o128 N ot + 01708 APt + 01308 ANBr + 0a107 N Pr + Taz0t APt
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Let
D(t) = det< bt )

to1  too
and

011 022 013 091

S = ( 011 T2 012 U21>

Recall that Nakamura classified the small deformations of I3 into 3 classes: (i), (ii), (iii),
and Angella further subdivided class (ii) into (ii.a) and (ii.b), class (iii) into (iii.a) and (iii.b) by
using the Bott-Chern cohomology of X¢. The classification is given in the following list.
class (i) : t11 = t12 = to1 = taa = 0;
class (ii) : D(t) =0 and (tll,tlg, t21, t22) 7£ (O, O, O, 0),

subclass (ii.a) : D(t) =0 and rkS=1;

subclass (ii.b) : D(t) = 0 and rkS=2;
class (iii) : D(t) # 0;

subclass (iii.a) :D(t) # 0 and rkS=1;

subclass (iii.b) :D(t) # 0 and rkS=2;

The set {of, 7,93} is a co-frame of (1,0)-forms on X;. The structure equations for t in
class (i) are

dpg =0
dgi =0
dp} = —py N gt

The structure equations for t in class (i) and (iii) are

dpg =0
dcpf =0
dp? = o190} N @2 + 0110k NP+ 0130t ANBE 4 09102 AP+ 0ggpt A FRE

The first step towards our computation of the ABC cohomology of X is to compute the
cohomology group H*(E'*(X¢,p)) for all k,p where £'*(X¢,p) = m,(£°(X¢)). To do this, we
reduce the computation to the corresponding cohomology of its Lie algebra G. Similar reduction
for Bott-Chern cohomology is given in [I, Theorem 3.7]. The hypothesis of the following result
is satisfied by the Iwasawa manifold and its small deformations.

Proposition 5.2. Let X = T'\G be a solvmanifold endowed with a G-left-invariant complex
structure J, and G be the Lie algebra naturally associated with G. Denote by EJ(X,p) =
W;/D(gé(X)) where EE is the vector space of all G-left-invariant k-forms on X. If the De Rham
cohomology, O-cohomology and Bott-Chern cohomology of X can be computed by the complex
of G-left-invariant forms, then the inclusion of the subcompler i : £5(X,p) — £*(X,p) is a
quasi-isomorphism, which means that the induced homomorphism

i HME (X.p)) > HY(E*(X,p))
is an isomorphism for all k,p € Z.

Proof. For [a] € H*(E'*(X,p)), write o = a®0 + ... 4 o P+1P=1 Then from d,,a = 0, we get
a system of equations

M0 =0 = 09" =0,
0ak0 + 9okt = 0 = 90k~ =0

Dak—at2.a-2 | gok—r+lr—1 — () = §Hal—r+Lr—1 —
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Since by our assumption, the 9-cohomology and Bott-Chern cohomology of X can be computed
by G-left-invariant forms, so there exist 8%7 € E’gk(X,p) for 7 =0,1,....k — 1 such that a0 —
RO = gyk=10 i — pd = 9ot~ for j =1,...,k — 1. Let § = gF0 4 ... 4 gh—ptlp-1 ¢
EF(X,p). Then a—fB = d),(v* 10+ 0n" 11 +. ..+ 9n*~PP=2). This shows that i, is surjective.
If [w] € H*(E5 (X, p)) and i, [w] = 0, we have w = d; p for some p € £’*~1(X, p). Comparing the
degrees of both sides of this equation, we have

wk,O 4+t wk7p+2.,p72 — d(pkq,o 4+t pkprrl.,p72)7
wh=ptlp=1 — gpk—p.p—1

By our assumption, the De Rham cohomology and 0-cohomology of X can be computed by
G-left-invariant forms, there are G-left-invariant 7 and 7 such that w*? 4 ... 4 WF=P+2P=2 =
dn, WF=PTLe=t = 97 Then w = dn+ 01 = dj,(n+7) and n+ 7 € E’Qk“(X,p). This shows that
the homomorphism 4, is injective. O

The second step is to show that the integral cohomology groups of the Iwasawa manifold is
torsion-free. We combine results developed in [7, [T6] for this goal. The main tool we use is the
following theorem [7, Theorem 3]. For ¢ € N, let Z{q} = Z[}, - , %]

Theorem 5.3. For any nilmanifold N, H*(N;Z{q}) and H*(FL(N);Z{q}) are isomorphic
rings where FL(N) denotes the formal group Lie algebra of the fundamental group G := m1(N)
and q > d(N), where d(N) is equal to the finite sum

d(N) = 1+4|G1/Ga| + 2|G2/Gs| +3|G3/Ga| + - + k|Gr /Gl + - -
and G1 D Gy D G3 D - -+ is a descending series of G (see [1, pg 74]).

If N is the Iwasawa manifold, after some computation, we get d(N) = 1 and all cohomology
groups H*(FL(N);Z) are torsion-free. This implies that the integral cohomology groups of
Iwasawa manifold are torsion-free. Since it is diffeomorphic to its small deformations, we have
the following result.

Corollary 5.4. All integral cohomology groups of the ITwasawa manifold and its small deforma-
tions are torsion-free.

Lemma 5.5. Let X be a compler manifold. Suppose that H*(X;Z) is torsion-free. Then
rkHJ(E'*(X, p,q)) = dimc(mps, w0, )D where D := {([o], [o])|[a] € H*(E*(X))} is the diagonal
of H*(£*(X)) @ H*(&*(X)).

Proof. The inclusion i : £¥(X) < D'®(X) is a quasi-isomorphism, and with the inclusion
j: I¥(X) < D'*(X), we have a group homomorphism ¢, := iy 1oj, : H¥(I*(X)) — H*(£*(X)).
Let {¢1, ..., on} be a basis of H*(I*(X)). Since H*(X;Z) is torsion-free, the map ¢, is injective,
and hence the rank of the image Im(¢,, £,) is n. Let Dg be the real vector subspace of D obtained
by taking linear combination of {({s,:)(¢;,$;)|7 = 1,...,n} with real coeflicients. Then from
the fact dimgDg < n and Im(4,, ¢,) C Dg, we get n = dimg Dg = dim¢D.

We have the following commutative diagram

(12 (X)) =22 (e, 00) — D — D
\ l(ﬂ—p*)ﬂ-é*) l(ﬂp*,ﬂ';*) ‘/(T(p*,ﬂ';*)
H;C(g.(vavqn — (Wp*vﬂ—(/]*)(DR) — (Wp*vﬂ—(/]*)(,D)

and tkHF(E*(X,p,q)) < dimg(mp., 7}, )(Dr). Since (mpe, mp ) {(le; 0) (05, 05)|7 = 1,...,n} is
a generating set over Z for HF(E*(X,p,q)), over R for (Tps, To ) Dr Tespectively, we have
rkH}(E*(X, p,q)) > dimg(mps, 7, )(Dg). Therefore rkHF (E*(X,p,q)) = dimg(mp., 7, )(Dg) =
dimc (7« , T ) (D). O
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Lemma 5.6. If X is a complex manifold and H*(X;Z) is torsion-free, we may write
Hipe(X;Z(p,q) = 24 & (C/2)" & C°

where A = rkH*(X;Z)—rkHF(D'*(X,p,q)), B = rkHY *(D"*(X,p,q)) and C = dimH*~*(D'*(X,p,q))—

rkH (D' (X, p, q)).-

Proof. Note that since H*(X;Z) is torsion-free for all & > 0, by the 3 x 3-grid (Proposition 2.6)),
we have
H:Y(D'"*(X,p,q))

H: (X Z(p, q)) = Ker" 1 (U, ). & ~ 749 (C/Z2)B o CC
Aol (p,q)) e’ (¥p,q) Hffl(D"(X,p,q)) (C/z)

as required. O
We list the procedure of our computation of H% 5 (X¢; Z(p, q)) in the following where X is

a small deformation of Is.

Step 1 : Find a basis 1, ..., s consisting of left-invariant forms of Hk(Eé(Xt)).

Step 2 : Compute the dimension of the space generated by (mp., 7. ) (¥;,95) for j = 1,...;s.
This gives the dimension of HF(£*(Xg, p, q)).

Step 3 : Compute the dimension of H*(£5(X¢,¢)). This is equal to the dimension of H*(£°(X¢, q))
and we get the dimension of the group H*(Xy,p, q).

Step 4 : Calculate the integers A, B, C as given in Lemma
The following table records the complex dimension of H*(&'® (I3, p)).

Nk[1[2][3 [4]5
1 [2]2]1[0]0
2 [5[9[8 (3]0
3 [4a[8]9 73
4 [4[8[10]8[4

The following table records the complex dimension of H*(£°(I3,p,q)) and the rank of
HY(&*(I3,p,q)). Note that H*(E*(I5,p,q)) = H*(E*(I5,p)) ® H*(E*(I3,q)) and the complex
conjugation induces an isomorphism between H*(£°(I3,p)) and H*(£'*(I3,p)). Furthermore,
Hk(g.(ﬂf)’vp? q)) = Hk(g.(]l37 qvp))

H*E* (13, p, q)) HY (& (I3, 0, )
ma\k| 1|2 3 15123 1 5
1,1) [4]4 2 0]0[4]4] 2 0 0
1,2) [ 7 |11 9 30486 2 0
(1,3) | 6 |10 10 7 [3[4[8]38 6 2
(1,4) [ 6 ]10 11 8 [4][4]8]10 8 1
(2,2) [10]18 16 6 [0 4[8[10 1 0
(2,3) |9 |17 17 10[3][4]8]10 8 2
2,4) |9 |17 18 11 [4][4]8]10 8 1
(3,3) | 8 |16 18 14[6|[4]8]10 8 1
(3,4) | 8 [16 19 1574810 8 1
(4,4) |8 [16 20 16 [8|[4]8]10 8 1

In the following table, we compute HY - (I3;Z(p,q)). Each triple in the entries denotes
(A, B,C) where A, B,C are given in Lemma [5.6l
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(po\e] 1 | 2 | 3 | 4 | 5 [ 6 |
(1,1) [(0,1,0) | (4,4,0)] (8,4,0) | (8,2,0) | (4,0,0)](0,0,0)
(1,2) |(0,1,0) [ (0,4,3) | (4,8,3) | (6,6,3) | (4,2,1)(0,0,0)
(1,3) | (0,1,0) [ (0,4,2) | (2,8,2) | (2,8,2) | (2,6,1)|(0,2,1)
(1,4) |(0,1,2) [ (0,4,2) ] (0,8,2) | (0,10,1) | (0,8,0) | (0,4,0)
(2,2) |(0,1,0) [ (0,4,6) | (0,8,10) | (4,10,6) | (4,4,2) | (0,0,0)
(2,3) |(0,1,0) [ (0,4,5) | (0,8,9) | (0,10,7) | (2,8,2) | (0,2,1)
(2,4) |(0,1,0)[(0,4,5)| (0,8,8) | (0,10,8) | (0,8,3) | (0,4,0)
(3,3) |(0,1,0) | (0,4,4) | (0,8,8) | (0,10,8) | (0,8,6) | (0,4,2)
(3,4) |(0,1,0) [ (0,4,4) | (0,8,8) | (0,10,9) | (0,8,7) | (0,4,3)
(4,4) |(0,1,0) [ (0,4,4) | (0,8,8) | (0,10,10) | (0,8,8) | (0,4,4)

Now we turn to a much more involved computation of the ABC cohomology of Xj.
The following table records the complex dimension of H*(E*(Xy,p)).

k12 3 1 5

1 (22 1 0 0

2 |47 |ifrtkT=L,6 | if tkI=1,2 | 0
if 1kT=2,5 | if tkT=2,1

3 |48 9 6 2

1 48 10 8 1

Note that H*(£*(X¢,p,q)) = H*¥(£%(Xy,p)) @ HF(E'*(Xt,q)) and the complex conjugation
induces an isomorphism between H*(£® (X4, p)) and H*(£'*(X¢,p)). Furthermore, H*(£*(X4,p, q)) =

HF(£*(X4,q,p)). Let N(T) denote the number of nonzero entries of T where T = le 21?
2T 923
HF(E*(X1,p.q)) HF(E*(X1,p,9))
B \k | 1] 2 3 1 501(2] 3 1 5
1) 1 2 0 0 il2 0 0
(1,2) |69 | ifrkI=1,7 | ifrkI=L2 [0 4|7] 6 Tk T=1,2 0
if tkT=2,6 | if rkT=2,1 |0 if tkT=2, 1
(1,3) |6]10 10 6 24810 if TkT=1,5 2
if rkT=2,4
(1,4) | 6|10 11 8 4(4(8|10 8 4
(2,2) | 8| 14| ifrkT=1,12 | ifrkT=0L4 [0 4|7 |10 |ifrkI=I and N(T) =1,3]0
if rkT=2,10 if rkT=2,2 if rkT=1 and N(T) > 2,4
if tkT=2,2
2,3) |8|15| ifrkT=1,15 | ifrkI=L8 |2 4|8]10 T TkT=1,6 2
if rkT=2,14 if rkT=2,7 if rkT=2,4
(2,4) | 8|15 if rkT=1, 16 if rkT=1,10 {4 || 4| 8| 10 8 4
if tkT=2,15 | if tkT=2,9
(3,3) |8]16 18 12 414|810 if rkT=1,6 4
if tkT=2,4
(3,4) |8|16 19 14 64810 8 1
(4,4) | 8|16 20 16 8141810 8 4

In the following table, we compute H% 5~ (X¢;Z(p,q)). Each triple in the entries denotes
(A, B,C) where A, B,C are defined in Lemma [5.6
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(p,9)\k 1 2 3 4 5 6
1) [(0,1,0)] (4,4,0) ] (3,4,0) ®,2,0) (4,0,0) | (0,0,0)
1,2) |(0,1,0) | (L4,2) ]| (47,2 if TkT=1, (6,6, 1) (4,2,0) | (0,0,0)
if tkT=2, (7,6, 0) (4,1,0) | (0,0,0)
1,3) | (0,1,0) ] (0,4,2) | (0,8,2) itk T=1, (1, 10,0) (2,7,1) 1 (0,2,0)
if tkT=2, (2,10,0) (2,6,2) | (0,2,0)
1,4 | (0,1,2)] (0,4,2)](0,8,2) (0,10,1) (0,8,0) | (0,4,0)
(2,2) | (0,1,0) | (4,4,4) | (0,7,7) | i tkT=1 and N(T) = 1, (5,10,2) | (4,3,1) | (0,0,0)
if tkT=1 and N(T) > 2, (4,10,2) | (4,4,0) | (0,0,0)
if rkT=2, (6, 10, 0) (4,2,0) | (0,0,0)
2.3) | (0,1,0)] (0,4,4) ] (0,8,7) ifTkT=1, (2,10,5) (2,6,2) | (0,2,0)
if tkT=2, (4,10, 4) (2,4,3) | (0,2,0)
2.4 [ (0.L0) ] (0,44)] (0,87 if TkT=1, (0, 10, 6) 0.8,2) [ (0,4,0)
if tkT=2, (0,10,5) (0,8,1) | (0,4,0)
3.3) [(0,1,0)] (0,4,4) [ (0,8,8) i rkT=1, (2,10, 8) (0,6,6) | (0,4,0)
if rkT=2, (4,10, 8) (0,4,8) | (0,4,0)
3.4) | (0,1,0)] (0,4,4) ] (0,8,8) (0,10,9) (0,8,6) | (0,4,2)
(4,4) [(0,1,0)] (0,4,4) [ (0,8,8) 0,10, 10) 0,8,8) | (0,4,4)

Note that for t in class (iii), the rank of T is always 2. So the ABC cohomology of such Xt

does not give a finer classification than Nakamura’s classification. But for t in class (ii), the
ABC cohomology may be different for 7" with different rank. We summarize our observation in
the following. This refinement is not same as Angella’s refinement of Nakamura’s classification.

Corollary 5.7. We may subdivide class (ii) into 3 subclasses:
subclass ii.1 : rank T=1 and N(T) = 1;
subclass ii.2 : rank T=1 and N(T) > 2;

subclass iii.3 : rank T =2.
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