Convergence of ergodic averages for many group rotations

Zoltán Buczolich, Department of Analysis, Eötvös Loránd University, Pázmány Péter Sétány 1/c, 1117 Budapest, Hungary email: buczo@cs.elte.hu

www.cs.elte.hu/~buczo

and

Gabriella Keszthelyi[†], Department of Analysis, Eötvös Loránd University, Pázmány Péter Sétány 1/c, 1117 Budapest, Hungary email: keszthelyig@gmail.com

March 22, 2021

Abstract

Suppose that G is a compact Abelian topological group, m is the Haar measure on G and $f: G \to \mathbb{R}$ is a measurable function. Given (n_k) , a strictly monotone increasing sequence of integers we consider the nonconventional ergodic/Birkhoff averages

$$M_N^{\alpha} f(x) = \frac{1}{N+1} \sum_{k=0}^{N} f(x + n_k \alpha).$$

The f-rotation set is

 $\Gamma_f = \{ \alpha \in G : M_N^{\alpha} f(x) \text{ converges for } m \text{ a.e. } x \text{ as } N \to \infty. \}$

^{*}This author was supported by the Hungarian National Foundation for Scientific Research K075242.

 $^{^\}dagger {\rm This}$ author was supported by the Hungarian National Foundation for Scientific Research K104178.

 $^{2010\} Mathematics\ Subject\ Classification:$ Primary 22D40; Secondary 37A30, 28D99, 43A40.

Keywords: Birkhoff average, locally compact Abelian group, torsion, p-adic integers

We prove that if G is a compact locally connected Abelian group and $f: G \to \mathbb{R}$ is a measurable function then from $m(\Gamma_f) > 0$ it follows that $f \in L^1(G)$.

A similar result is established for ordinary Birkhoff averages if $G = \mathbb{Z}_p$, the group of p-adic integers.

However, if the dual group, \widehat{G} contains "infinitely many multiple torsion" then such results do not hold if one considers non-conventional Birkhoff averages along ergodic sequences.

What really matters in our results is the boundedness of the tail, $f(x + n_k \alpha)/k$, k = 1, ... for a.e. x for many α , hence some of our theorems are stated by using instead of Γ_f slightly larger sets, denoted by $\Gamma_{f,b}$.

1 Introduction

The starting point of this paper is a result of the first listed author in [3] which states that if f is a (Lebesgue) measurable function on the unit circle \mathbb{T} and Γ_f denotes the set of those α 's for which the Birkhoff averages

$$M_n^{\alpha} f(x) = \frac{1}{n+1} \sum_{k=0}^{n} f(x+k\alpha)$$

converge for almost every x then from $m(\Gamma_f) > 0$ it follows that $f \in L^1(\mathbb{T})$. Hence $M_n^{\alpha} f$ converges for all $\alpha \in \mathbb{T}$.

In this paper we consider generalizations of this result to compact Abelian groups equipped with their Haar measure m. Theorem 1 implies that an analogous result is true even for non-convential ergodic averages considered on a compact, locally connected Abelian group G.

On the other hand, if there is "sufficiently many multiple torsion" in the dual group \widehat{G} then Theorem 6 implies that there are non- L^1 measurable functions f for which $m(\Gamma_f)=1$ (in fact, $\Gamma_f=G$) if one considers non-conventional Birkhoff averages along ergodic sequences. Having lots of torsion in \widehat{G} means that G is highly disconnected. In our opinion the most surprizing result of this paper is Theorem 7 which states that if $G=Z_p$, the group of p-adic integers and one considers the ordinary ergodic averages of a measurable function f then from $m(\Gamma_f)>0$ it follows that $f\in L^1(G)$. The group Z_p is zero-dimensional and all elements of its dual group, $Z(p^\infty)$, are of finite order. If one considers a group G which is a countable product of Z_p 's then there is enough "multiple torsion" (see Definition 3) in Γ_f and Theorem 6 implies that the result of Theorem 7 does not hold in these groups. If $M_n^{\alpha}f(x)$ converges then the tail $\frac{f(x+n\alpha)}{n} \to 0$. In our proofs the sets $\Gamma_{f,0}$

(and $\Gamma_{f,b}$), the sets of those α 's where $\frac{f(x+n\alpha)}{n} \to 0$, (or $\frac{|f(x+n\alpha)|}{n}$ is bounded) for a.e. x play an important role. Since $\Gamma_f \subset \Gamma_{f,0} \subset \Gamma_{f,b}$ from $m(\Gamma_f) > 0$ it follows that the other sets are also of positive measure and hence in the statements of Theorems 1 and 7 these sets are used. Again the tail of the ergodic averages plays an important role, like in [1], where we showed that for L^1 functions and ordinary ergodic averages the return time property for the tail may might fail and hence Bourgain's return time property [2] does not hold in these situations.

The proof of Theorem 1 is a rather straightforward generalization of Theorem 1 in [3]. We provide its details, since they are also used with some non-trivial modifications in the proof of Theorem 7.

Next we say a few words about the background history and related questions to this paper. Answering a question raised by the first listed author of this paper P. Major in [9] constructed two ergodic transformations $S, T: X \to X$ on a probability space (X, μ) and a measurable function $f: X \to \mathbb{R}$ such that for μ a.e. x

$$\lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^{n} f(S^k x) = 0, \text{ and } \lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^{n} f(T^k x) = a \neq 0.$$

M. Laczkovich raised the question whether S and T can be irrational rotations of \mathbb{T} . In Major's example S and T are conjugate. Therefore, his method did not provide an answer to Laczkovich's question.

The results of Z. Buczolich in [4] imply that for any two independent irrationals α and β one can find a measurable $f: \mathbb{T} \to \mathbb{R}$ such that $M_n^{\alpha} f(x) \to c_1$ and $M_n^{\beta} f(x) \to c_2$ for a.e. x with $c_1 \neq c_2$. In this case by Birkhoff's ergodic theorem $f \notin L^1(\mathbb{T})$. It is shown in [3] that for any sequence (α_j) of independent irrationals one can find a measurable $f: \mathbb{T} \to \mathbb{R}$ such that $f \notin L^1(\mathbb{T})$, but $\alpha_j \in \Gamma_f$ for all $j = 1, \ldots$ By Theorem 1 of [3] from $f \notin L^1(\mathbb{T})$ it follows that $m(\Gamma_f) = 0$. It was a natural question to see how large Γ_f could be for an $f \notin L^1(\mathbb{T})$. In [14] R. Svetic showed that Γ_f can be c-dense for an $f \notin L^1(\mathbb{T})$.

The question about the possible largest Hausdorff dimension of Γ_f for an $f \notin L^1(\mathbb{T})$ remained open for a while until in [5] it was shown that there are $f \notin L^1(\mathbb{T})$ such that $\dim_H(\Gamma_f) = 1$ (of course with $m(\Gamma_f) = 0$.)

For us motivation to consider non-conventional ergodic averages in this paper came from the project in [6] concerning almost everywhere convergence questions of Birkhoff averages along the squares.

It is also worth mentioning that ergodic averages of non- L^1 functions and rotations on \mathbb{T} were also considered in [13] and [12].

2 Preliminaries

We suppose that G is a compact Abelian topological group, the group operation will be addition. The dual group of the compact Abelian topological group G is denoted by \widehat{G} . By Pontryagin duality \widehat{G} is a discrete Abelian group. For $\gamma \in \widehat{G}$ the corresponding Fourier coefficient is

$$\widehat{f}(\gamma) = \int_{G} g(x)\gamma(-x)dm(x),$$

where m denotes the Haar mesure on G. By the Parseval formula

$$\int_{G} f(x)\overline{g}(x)dm(x) = \sum_{\gamma \in \widehat{G}} \widehat{f}(\gamma)\overline{\widehat{g}(\gamma)} \text{ for } f, g \in L^{2}(G).$$

By [8, 24.25] or [11, 2.5.6 Theorem] if G is a compact Abelian group then G is connected if and only if \widehat{G} is torsion-free.

Suppose that $p_1, p_2, ...$ is a sequence of prime numbers. Recall that the direct product $G = (Z/p_1) \times (Z/p_2) \times ...$ is compact and its dual group $\widehat{G} = (Z/p_1) \bigoplus (Z/p_2) \bigoplus ...$ is the direct sum with the discrete topology see [11, 2.2 p.36] or [8].

We denote by Z_p the group of p-adic integers and its dual group, the Prüfer p-group with the discrete topology will be denoted by $Z(p^{\infty})$.

For other properties of topological groups we refer to standard textbooks like [7], [8] or [11].

Suppose that $f: G \to \mathbb{R}$ is a measurable function. We suppose that the group rotation $T_{\alpha} = x + \alpha$, $\alpha \in G$ is fixed.

Given a strictly monotone increasing sequence of integers (n_k) we consider the nonconventional ergodic averages

$$M_N^{\alpha} f(x) = \frac{1}{N+1} \sum_{k=0}^{N} f(x + n_k \alpha).$$

Of course, if $n_k = k$ we have the usual Birkhoff averages.

The f-rotation set is

$$\Gamma_f = \{ \alpha \in G : M_N^{\alpha} f(x) \text{ converges for } m \text{ a.e. } x \text{ as } N \to \infty \}.$$

As we mentioned in the introduction it was proved in [3] that if $G = \mathbb{T}$, $m = \lambda$, the Lebesgue measure on \mathbb{T} , and $n_k = k$ then for any measurable $f : \mathbb{T} \to \mathbb{R}$ from $m(\Gamma_f) > 0$ it follows that $f \in L^1(\mathbb{T})$.

Scrutinizing the proof of this result one can see that the set

$$\Gamma_{f,0} = \left\{ \alpha \in G : \frac{f(x + n_k \alpha)}{k} \to 0 \text{ for } m \text{ a.e. } x \right\}$$

played an important role. It is obvious that $\Gamma_f \subset \Gamma_{f,0}$.

In [3] it was shown that from $m(\Gamma_{f,0}) > 0$ it follows that $f \in L^1(\mathbb{T})$, when the sequence $n_k = k$ is considered. In this paper we will also use the slightly larger set

$$\Gamma_{f,b} = \left\{ \alpha \in G : \limsup_{k \to \infty} \frac{|f(x + n_k \alpha)|}{k} < \infty \text{ for } m \text{ a.e. } x \right\}.$$
 (1)

3 Main results

First we generalize Theorem 1 of [3] for compact, locally connected Abelian groups.

Theorem 1. If (n_k) is a strictly monotone increasing sequence of integers and G is a compact, locally connected Abelian group and $f: G \to \mathbb{R}$ is a measurable function then from $m(\Gamma_{f,b}) > 0$ it follows that $f \in L^1(G)$.

Remark 2. Since $\Gamma_{f,b} \supset \Gamma_{f,0} \supset \Gamma_f$ Theorem 1 implies that if one considers the non-conventional ergodic averages $M_N^{\alpha} f$ on a locally compact Abelian group for group rotations and $m(\Gamma_f) > 0$ then $f \in L^1(G)$.

Proof. Set $n_0 = 0$. First we suppose that G is connected. Given an integer K put

$$G_{\alpha,K} = \{x : |f(x + n_k \alpha)| < K \cdot k \text{ for every } k > K$$
and $|f(x + n_k \alpha)| < K^2 \text{ for } k = 0, \dots, K\}.$

$$(2)$$

If $\alpha \in \Gamma_{f,b}$ then $m(G_{\alpha,K}) \to 1$ as $K \to \infty$.

Choose and fix K and $\varepsilon > 0$ such that the set

$$B = \{\alpha : m(G_{\alpha,K}) > \varepsilon\} \tag{3}$$

is of positive m-measure. From the measurability of f it follows that B and the sets $g_{\alpha,K}$ are also measurable.

Set

$$L_k(f) = \{ x \in G : |f(x)| > k \}. \tag{4}$$

From k > K and $x \in G_{\alpha,K} + n_k \alpha$ it follows that

$$|f(x)| = |f(x - n_k \alpha + n_k \alpha)| < k \cdot K.$$

Set $H_{\alpha} = G \setminus G_{\alpha,K}$, (keep in mind that K is fixed). From k > K and $x \in L_{k \cdot K}(f)$ it follows that $x \notin G_{\alpha,K} + n_k \alpha$, that is, $x \in H_{\alpha} + n_k \alpha$.

For $\alpha \in B$ we set $a(\alpha) = m(H_{\alpha}) < 1 - \varepsilon$, by (3). This implies $1/(1 - a(\alpha)) < 1/\varepsilon$.

For $\alpha \in B$ put

$$h(x,\alpha) = \begin{cases} 1 \text{ if } x \in H_{\alpha}, \\ -\left(\frac{a(\alpha)}{1-a(\alpha)}\right) \text{ if } x \notin H_{\alpha}. \end{cases}$$
 (5)

For $\alpha \notin B$ set $h(x, \alpha) = 0$ for any $x \in G$.

Then $h(x,\alpha)$ is a bounded measurable function defined on $G\times G$ and

$$\int_{G} h(x,\alpha)dm(x) = 0 \text{ for any } \alpha \in G.$$
 (6)

From k > K and $x \in L_{k \cdot K}(f)$ it follows that $x \in H_{\alpha} + n_k \alpha$ for any $\alpha \in B$. This implies

$$h(x - n_k \alpha, \alpha) = 1 \text{ for any } x \in L_{k \cdot K}(f) \text{ and } \alpha \in B.$$
 (7)

Taking average

$$\frac{1}{m(B)} \int_{B} h(x - n_k \alpha, \alpha) dm(\alpha) = 1 \text{ for } k > K \text{ and } x \in L_{k \cdot K}(f).$$
 (8)

Keep α fixed and select a character $\gamma \in \widehat{G}$. Consider in the Fourier-series of $h(x,\alpha)$ the coefficient $c_{\gamma}(\alpha)$ corresponding to this character, that is,

$$c_{\gamma}(\alpha) = \int_{G} h(x, \alpha) \gamma(-x) dm(x). \tag{9}$$

Since $h(x, \alpha)$ is a bounded measurable function, the function $c_{\gamma}(\alpha)$ is also bounded and measurable. Then

$$h(x,\alpha) \sim \sum_{\gamma \in \widehat{G}} c_{\gamma}(\alpha)\gamma(x).$$
 (10)

If $\gamma_0(x) \equiv 1$ then by (6) we have

$$c_{\gamma_0}(\alpha) = 0 \text{ for any } \alpha \in G.$$
 (11)

For a fixed $\alpha \in B$ we have

$$h(x - n_k \alpha, \alpha) \sim \sum_{\gamma \in \widehat{G}} c_{\gamma}(\alpha) \gamma(-n_k \alpha) \gamma(x).$$
 (12)

By (8)

$$m(L_{k \cdot K}(f)) \le \int_{G} \left| \frac{1}{m(B)} \int_{B} h(x - n_{k}\alpha, \alpha) dm(\alpha) \right|^{2} dm(x)$$

$$= \int_{G} |\varphi_{k}(x)|^{2} dm(x) = \circledast,$$
(13)

where $\varphi_k(x) = \frac{1}{m(B)} \int_B h(x - n_k \alpha, \alpha) dm(\alpha)$ is a bounded measurable function. If γ is a given character then using that h is bounded and recalling (9) we obtain

$$\widehat{\varphi}_{k}(\gamma) = \int_{G} \frac{1}{m(B)} \int_{B} h(x - n_{k}\alpha, \alpha) dm(\alpha) \gamma(-x) dm(x)$$

$$= \frac{1}{m(B)} \int_{B} \int_{G} h(x - n_{k}\alpha, \alpha) \gamma(-x) dm(x) dm(\alpha)$$

$$= \frac{1}{m(B)} \int_{G} \chi_{B}(\alpha) \int_{G} h(u, \alpha) \gamma(-u - n_{k}\alpha) dm(u) dm(\alpha)$$

$$= \frac{1}{m(B)} \int_{G} \chi_{B}(\alpha) \gamma(-n_{k}\alpha) \int_{G} h(u, \alpha) \gamma(-u) dm(u) dm(\alpha)$$

$$= \frac{1}{m(B)} \int_{G} \chi_{B}(\alpha) \gamma(-n_{k}\alpha) c_{\gamma}(\alpha) dm(\alpha).$$
(14)

By using the Parseval formula we can continue *\oin (13) to obtain

$$m(L_{k \cdot K}(f)) \leq \sum_{\gamma \in \widehat{G}} |\widehat{\varphi}_{k}(\gamma)|^{2}$$

$$= \sum_{\gamma \in \widehat{G}} \frac{1}{(m(B))^{2}} \left| \int_{G} \chi_{B}(\alpha) \gamma(-n_{k}\alpha) c_{\gamma}(\alpha) dm(\alpha) \right|^{2}$$

$$= \frac{1}{(m(B))^{2}} \sum_{\gamma \in \widehat{G}} \left| \int_{G} \chi_{B}(\alpha) c_{\gamma}(\alpha) \gamma^{n_{k}}(-\alpha) dm(\alpha) \right|^{2}.$$
(15)

Since $\chi_B(\alpha)c_{\gamma}(\alpha)$ is a bounded measurable function and $\gamma^{n_k} \in \widehat{G}$, the expression $\int_G \chi_B(\alpha)c_{\gamma}(\alpha)\gamma^{n_k}(-\alpha)dm(\alpha)$ is a Fourier coefficient of this function.

Now we use that G is connected and hence \widehat{G} is torsion-free. If $\gamma^{n_k} = \gamma^{n_{k'}}$ then $\gamma^{n_k-n_{k'}} = \gamma_0 \equiv 1$, but γ is of infinite order and hence it is only possible if $n_k - n_{k'} = 0$, that is k = k'. Hence for $k \neq k'$ the characters γ^{n_k} and $\gamma^{n_{k'}}$ are different. By Parseval's formula for a fixed $\gamma \in \widehat{G}$

$$\sum_{k=-K}^{\infty} \left| \int_{G} \chi_{B}(\alpha) c_{\gamma}(\alpha) \gamma^{n_{k}}(-\alpha) dm(\alpha) \right|^{2} \leq \int_{G} \left| \chi_{B}(\alpha) c_{\gamma}(\alpha) \right|^{2} dm(\alpha). \tag{16}$$

This, Parseval's formula, (5), (9) and (15) yield

$$\sum_{k=K+1}^{\infty} m(L_{k \cdot K}(f)) \leq \frac{1}{(m(B))^2} \sum_{\gamma \in \widehat{G}} \int_{G} |\chi_{B}(\alpha) c_{\gamma}(\alpha)|^2 dm(\alpha)$$

$$= \frac{1}{(m(B))^2} \int_{G} \chi_{B}(\alpha) \sum_{\gamma \in \widehat{G}} |c_{\gamma}(\alpha)|^2 dm(\alpha)$$

$$= \frac{1}{(m(B))^2} \int_{G} \chi_{B}(\alpha) \int_{G} |h(x,\alpha)|^2 dm(x) dm(\alpha) < \infty.$$
(17)

Since $\int_G |f| \le K \cdot \sum_{k=0}^\infty m(L_{k \cdot K}(f))$ from (17) and m(G) = 1 it follows that $f \in L^1(G)$.

This completes the proof of the case of connected G.

Next we show how one can reduce the case of a locally connected G to the connected case. If G is locally connected then by [8, 24.45] if C denotes the component of G containing O_G (the neutral element of G) then C is an open subgroup of G and G is topologically isomorphic to $C \times (G/C)$. Since G is compact G/C should be finite. Suppose that its order is n. Using that $G = C \times (G/C)$ we write the elements of G in the form G = (G, G) with G = (G, G) with G = (G, G) we write the elements of G in the form G = (G, G) with G = (G, G) in the form G = (G, G) in the form G = (G, G) is connected G.

Suppose that $f \notin L^1(G)$ is measurable and $m(\Gamma_{f,b}) > 0$. Set

$$X_{\alpha,f} = \Big\{ x \in G : \limsup_{k \to +\infty} \frac{|f(x + n_k \alpha)|}{k} < +\infty \Big\}.$$

If $\alpha \in \Gamma_{f,b}$ then $m(X_{\alpha,f}) = 1$. Suppose that g_j^* , $j = 1, \ldots, n$ is a list of all elements of G/C.

For $x = (x_1, x_2) \in G$ define

$$f^*(x) = f^*(x_1, x_2) = \sum_{j=1}^n |f(x_1, x_2 + g_j^*)|.$$

Set

$$X_{\alpha,f}^* = \bigcap_{j=1}^n \left(X_{\alpha,f} + (0_C, g_j^*) \right).$$

Clearly $m(X_{\alpha,f}) = 1$ implies $m(X_{\alpha,f}^*) = 1$.

For $x \in X_{\alpha,f}^*$ we have $\limsup_{k \to \infty} \frac{|f^*(x + n_k \alpha)|}{k} < +\infty$. Since f^* is not depending on its second coordinate we have $f^*(x + n_k(\alpha_1, \alpha_2)) = f^*(x + n_k(\alpha_1, \alpha_2))$

 $n_k(\alpha_1, 0_{G/C})$). Define $f^{**}: C \to \mathbb{R}$ such that $f^{**}(x_1) = f^*(x_1, 0_{G/C})$. Since we assumed that $f \notin L^1(G)$ we have $f^* \notin L^1(G)$ and this implies $f^{**} \notin L^1(C)$.

$$\Gamma_{f,b}^* = \pi_C(\Gamma_{f,b}) = \{\alpha_1 : \exists \alpha_2 \in G/C \text{ such that } \alpha = (\alpha_1, \alpha_2) \in \Gamma_{f,b}\}.$$

Then for $\alpha_1 \in \Gamma_{f,b}^*$ we have

$$\limsup_{k \to \infty} \frac{|f^{**}(x_1 + n_k \alpha_1)|}{k} < +\infty. \tag{18}$$

Since the Haar measure on C is a positive constant multiple of the Haar measure on G restricted to C, on the compact connected Abelian group Cwe would obtain a measurable function $f^{**} \notin L^1(C)$ such that for a set of positive measure of rotations (18) holds. This would contradict the first part of this proof concerning connected groups.

Theorem 1 says that if we do not have "too much torsion" in \widehat{G} then from $m(\Gamma_{f,b}) > 0$ it follows that $f \in L^1(G)$. In the next definition we define what we mean by "a lot of torsion" in a group.

Definition 3. We say that the group G contains infinitely many multiple torsion if

- (i) either there is a prime number p such that G contains a subgroup algebraically isomorphic to the direct sum $(Z/p) \bigoplus (Z/p) \bigoplus \dots$ (countably many copies of Z/p),
- (ii) or there are infinitely many different prime numbers p_1, p_2, \ldots such that G contains for any j subgroups of the form $(Z/p_j) \times (Z/p_j)$.

Theorem 4. Suppose that (n_k) is a strictly monotone increasing sequence of integers and G is a compact Abelian group such that its dual group G contains infinitely many multiple torsion. Then there exists a measurable $f \notin L^1(G)$ such that

$$m(\Gamma_{f,0}) = m(\Gamma_{f,b}) = 1$$
, where m is the Haar-measure on G. (19)

In fact, we show that $\Gamma_{f,0} = \Gamma_{f,b} = G$.

Proof. First suppose that in Definition 3 property (i) holds for \widehat{G} . Then for any k we can select a subgroup \widehat{G}_k in \widehat{G} such that it is isomorphic to $(Z/p) \times (Z/p) \times \cdots \times (Z/p)$. Suppose that the characters $\gamma_1, \ldots, \gamma_k$ are the

generators of G_k .

Put $H_k = \bigcap_{j=1}^k \gamma_j^{-1}(1)$. Then H_k is a closed subgroup of G. Since $y \in x + H_k$, that is $y - x \in H_k$ if and only if $\gamma_j(y) = \gamma_j(x)$ for $j = 1, \ldots, k$, which means that $\gamma_j(y - x) = \gamma_j(y)/\gamma_j(x) = 1$ for $j = 1, \ldots, k$ one can see that G is tiled with p^k many translated copies of H_k . The sets $x + H_k$ are all closed and therefore H_k is a closed-open subgroup of G.

We also have

$$m(H_k) = \frac{1}{p^k}. (20)$$

Set $f_k(x) = p^k$ if $x \in H_k$ and $f_k(x) = 0$ otherwise.

Put $f = \sum_{k=1}^{\infty} f_k$. By the Borel-Cantelli lemma and (20) the function f is m a.e. finite. It is also clear that f is measurable and $f \notin L^1(G)$.

Suppose $\alpha \in G$ is arbitrary. Set $X_k = \bigcup_{j=0}^{p-1} H_k - j\alpha$. Then $m(X_k) = p^{-k+1}$ and by the Borel-Cantelli lemma m a.e. x belongs to only finitely many X_k . If $x \notin X_k$ then $\forall j \in \mathbb{N}, x + j\alpha \notin H_k$ and hence

$$f_k(x+j\alpha) = 0 \text{ for any } j \in \mathbb{N}.$$
 (21)

Therefore, $\frac{f(x+n_k\alpha)}{k} \to 0$ for m a.e. $x \in G$ and $\Gamma_{f,0} = G$.

If in Definition 3 property (ii) holds for \widehat{G} then for any k select \widehat{G}_k in \widehat{G} such that it is isomorphic to $(Z/p_k) \times (Z/p_k)$. We suppose that $\gamma_{1,k}$ and $\gamma_{2,k}$ are the generators of \widehat{G}_k . Put $H_k = \gamma_{1,k}^{-1}(1) \cap \gamma_{2,k}^{-1}(1)$. One can see, similarly to the previous case, that G is tiled by p_k^2 many translated copies of H_k . Turning to a subsequence if necessary, we can suppose that

$$\sum_{k=1}^{\infty} \frac{1}{p_k} < +\infty. \tag{22}$$

We also have

$$m(H_k) = \frac{1}{p_k^2}. (23)$$

Set $f_k(x) = p_k^2$ if $x \in H_k$ and $f_k(x) = 0$ otherwise.

Put $f = \sum_{k=1}^{\infty} f_k$. Again, it is clear that f is m a.e. finite, measurable and $f \notin L^1(G)$. For an arbitrary $\alpha \in G$ one can define $X_k = \bigcup_{j=0}^{p_k-1} H_k - j\alpha$. Then $m(X_k) = \frac{1}{p_k}$.

From (22) and from the Borel-Cantelli lemma it follows that m a.e. x belongs to only finitely many X_k . One can conclude the proof as we did it in the previous case.

It is natural to ask for a version of Theorem 4 for the non-conventional ergodic averages with $m(\Gamma_f) = 1$ in (19). For convergence of the non-conventional ergodic averages some arithmetic assumptions about n_k are

needed.

We recall from [10] Definition 1.2 with some notational adjustment.

Definition 5. The sequence (n_k) is ergodic mod q if for any $h \in \mathbb{Z}$

$$\lim_{N \to \infty} \frac{\sum_{k=0}^{N} \chi_{h,q}(n_k)}{N+1} = \frac{1}{q},$$
(24)

Where $\chi_{h,q}(x) = 1$ if $x \equiv h \mod q$ and $\chi_{h,q}(x) = 0$ otherwise.

A sequence (n_k) is ergodic for periodic systems if it is ergodic mod q for every $q \in \mathbb{N}$.

For ergodic sequences with essentially the same proof we can state the following version of Theorem 4:

Theorem 6. Suppose that n_k is a strictly monotone, ergodic sequence for periodic systems and G is a compact Abelian group such that its dual group \widehat{G} contains infinitely many multiple torsion. Then there exists a measurable $f \notin L^1(G)$ such that $\Gamma_f = G$, and hence $m(\Gamma_f) = 1$.

Proof. As we mentioned earlier the argument of the proof of Theorem 4 is applicable. One needs to add the observation that if $x \in X_k$ then the ergodicity of n_k for periodic systems implies that $M_N^{\alpha} f_k$ converges. If $x \notin X_k$ then (21) can be used. Hence $M_N^{\alpha} f$ converges for all $\alpha \in G$ for a.e. x.

In Theorem 4 we saw that if there is "lots of torsion" in G, that is, G is "highly disconnected" then there are measurable functions f not in L^1 for which $m(\Gamma_{f,0})=1$. Since the p-adic integers, Z_p are the building blocks of 0-dimensional compact Abelian groups ([8, Theorem 25.22]) it is natural to consider them. If we take a countable product of Z_p with p fixed then the dual group will be the direct sum of $Z(p^{\infty})$'s and will contain a subgroup algebraically isomorphic to the direct sum $(Z/p) \bigoplus (Z/p) \bigoplus \ldots$ Then Theorem 4 is applicable.

If one considers an individual Z_p then its dual group is $Z(p^{\infty})$ with all elements of finite order, so still there seems to be "lots of torsion" in the dual group. It is also clear that arithmetic properties of n_k might matter if we consider Z_p . For us it was quite surprising that if one considers ordinary ergodic averages, that is, $n_k = k$ then Z_p behaves like a locally connected group and the following theorem is true.

Theorem 7. Suppose that $n_k = k$, and p is a fixed prime number. We consider $G = Z_p$, the group of p-adic integers. Then for any measurable function $f: G \to \mathbb{R}$ from $m(\Gamma_{f,b}) > 0$ it follows that $f \in L^1(G)$.

Before turning to the proof of Theorem 7 we need some notation and a Claim simplifying the proof of Theorem 7. Denote by $\Gamma_{f,b}^j$, $j=-1,0,1,\ldots$ the set of those $\alpha=(\alpha_0,\alpha_1,\ldots)\in\Gamma_{f,b}$ for which $\alpha_{j+1}\neq 0$ but $\alpha_0=\cdots=\alpha_j=0$. From $m(\Gamma_{f,b})>0$ it follows that there exists j_0 such that $m(\Gamma_{f,b}^{j_0})>0$. Given a finite string (x_0,\ldots,x_j) we denote by $[x_0,\ldots,x_j]$ the corresponding cylinder set in G, that is,

$$[x_0,\ldots,x_j] = \{(x'_0,x'_1,\ldots) \in G : (x'_0,\ldots,x'_j) = (x_0,\ldots,x_j)\}.$$

Claim 8. If from $m(\Gamma_{f,b}^{-1}) > 0$ it follows that $f \in L^1(G)$, then Theorem 7 is also true.

Proof. As mentioned above if $m(\Gamma_{f,b}) > 0$ then we can choose j_0 such that $m(\Gamma_{f,b}^{j_0}) > 0$. Then for $\alpha \in \Gamma_{f,b}^{j_0}$ for any cylinder $[x_0, \ldots, x_{j_0}]$ we have $[x_0, \ldots, x_{j_0}] + \alpha = [x_0, \ldots, x_{j_0}]$. If σ is the one-sided shift on Z_p , that is, $\sigma(x_0, x_1, \ldots) = (x_1, \ldots)$ then for $\alpha \in \Gamma_{f,b}^{j_0}$ we have $\sigma^{j_0+1}(x + \alpha) = \sigma^{j_0+1}x + \sigma^{j_0+1}\alpha$.

For an $x' \in G$ we define the function $f_{x_0,...,x_{j_0}}(x') = f(x_0,...,x_{j_0},x')$, where $(x_0,...,x_{j_0},x')$ is the concatenation of the finite string $(x_0,...,x_{j_0})$ and $x' \in G = Z_p$. Then $\Gamma_{f_{x_0,...,x_{j_0}}}^{-1}$, D = D or D and we can apply the Claim for D to obtain that D obtain tha

Proof of Theorem 7. By Claim 8 we can assume that $m(\Gamma_{f,b}^{-1}) > 0$. We need to adjust the proof of Theorem 1 for the case of $G = Z_p$. The key difficulty is the torsion in $\widehat{G} = Z(p^{\infty})$ which makes it impossible to use a direct argument which lead to (16). Anyway, we start to argue as in the proof of Theorem 1, keeping in mind that now $n_k = k$. We introduce the sets $G_{\alpha,K}$, $B \subset \Gamma_{f,b}^{-1}$, $L_k(f)$ as in (2), (3), and (4), respectively. We fix K and define the set H_{α} and the auxiliary function $h(x,\alpha)$ as in (5). We have (6) again.

Our aim is to establish that for a suitable κ_0

$$\sum_{\kappa \ge \kappa_0} p^{\kappa} m(L_{p^{\kappa+2} \cdot K}(f)) < \infty. \tag{25}$$

Suppose that the function φ equals $p^{\kappa+3} \cdot K$ on $L_{p^{\kappa+2} \cdot K}(f) \setminus L_{p^{\kappa+3} \cdot K}(f)$, $\kappa = \kappa_0, \kappa_0 + 1, \ldots$ and equals $K \cdot p^{\kappa_0+2}$ on $G \setminus L_{p^{\kappa_0+2} \cdot K}(f)$. Then $\varphi \geq |f|$ and by (25)

$$\int_{G} \varphi dm \le K \cdot p^{\kappa_0 + 2} m(G) + \sum_{\kappa = \kappa_0}^{\infty} p^{\kappa + 3} \cdot Km(L_{p^{\kappa + 2} \cdot K}(f)) < +\infty.$$
 (26)

This implies that $f \in L^1(G)$.

Hence we need to establish (25). Choose and fix $\kappa_0 \in \mathbb{N}$ such that $p^{\kappa_0} > K$ and suppose that $\kappa \geq \kappa_0$.

Then, keeping in mind that $L_{k\cdot K}(f)\supset L_{p^{\kappa+2}\cdot K}(f)$ for $k\leq p^{\kappa+2}$ we have instead of (7)

$$h(x - k\alpha, \alpha) = 1$$
 for any $\alpha \in B$, $K < k < p^{\kappa+2}$ and $x \in L_{p^{\kappa+2} \cdot K}(f)$. (27)

Let

$$h_{\kappa}(x,\alpha) = \frac{1}{p^{\kappa}} \sum_{k=p^{\kappa}}^{2p^{\kappa}-1} h(x - k\alpha, \alpha).$$
 (28)

Then by (27)

$$h_{\kappa}(x - k\alpha, \alpha) = 1$$
 for any $\alpha \in B$, $0 \le k < p^{\kappa+2} - 2p^{\kappa}$ and $x \in L_{p^{\kappa+2} \cdot K}(f)$

$$(29)$$

Taking average on B

$$\frac{1}{m(B)} \int_{B} h_{\kappa}(x - k\alpha, \alpha) dm(\alpha) = 1 \tag{30}$$

for
$$\kappa \geq \kappa_0$$
, $0 \leq k < p^{\kappa+2} - 2p^{\kappa}$ and $x \in L_{p^{\kappa+2}.K}(f)$.

Now we return to $h(x, \alpha)$ and we define $c_{\gamma}(\alpha)$ as in (9). Again, $c_{\gamma}(\alpha)$ is a bounded, measurable function and (10) holds.

Denoting again by $\gamma_0(x)$ the identically 1 character, the neutral element of \widehat{G} we also have (11) satisfied. For $h_{\kappa}(x,\alpha)$ we have

$$h_{\kappa}(x,\alpha) \sim \sum_{\gamma \in \widehat{G}} c_{\gamma,\kappa}(\alpha) \gamma(x) = \sum_{\gamma \in \widehat{G}} c_{\gamma}(\alpha) \left(\frac{1}{p^{\kappa}} \sum_{k=p^{\kappa}}^{2p^{\kappa}-1} \gamma(-k\alpha) \right) \gamma(x).$$
 (31)

Since $\widehat{G} = Z(p^{\infty})$, the order of γ is a power of p. We denote it by $\operatorname{ord}(\gamma)$. A $\gamma \in \widehat{G}$ of order p^r , r > 0 is of the form

$$\gamma(x) = \exp\left(\frac{2\pi i l}{p^r}(x_0 + px_1 + \dots + p^{r-1}x_{r-1})\right)$$
for $x = (x_0, x_1, \dots) \in G = Z_p$ with l not divisible by p .
$$(32)$$

Since $B \subset \Gamma_{f,b}^{-1}$, for $\alpha \in B$ we have $\alpha_0 \neq 0$ which implies $\gamma(-\alpha) \neq 1$ and if γ is of order p^r , r > 0 then $\gamma(-\alpha) \in \mathbb{C}$ is also of order p^r , r > 0. Hence for $\operatorname{ord}(\gamma) = p^r \leq p^{\kappa}$ and $\alpha \in B$ we have

$$\sum_{k=p^{\kappa}}^{2p^{\kappa}-1} \gamma(-k\alpha) = \sum_{k=p^{\kappa}}^{2p^{\kappa}-1} \gamma^k(-\alpha) = \gamma(-p^{\kappa}\alpha) \frac{1-\gamma^{p^{\kappa}}(-\alpha)}{1-\gamma(-\alpha)} = 0.$$
 (33)

This way we can get rid of some characters with small torsion in the Fourier-series of $h_{\kappa}(x,\alpha)$.

Recalling that $c_{\gamma_0}(\alpha) = \int_G h(x,\alpha) \cdot 1 dm(\alpha) = 0$ by (10) we have in (31)

$$c_{\gamma_0,\kappa}(\alpha) = 0 \text{ if } \alpha \in B.$$
 (34)

Using (31) again we have

$$h_{\kappa}(x - k\alpha, \alpha) \sim \sum_{\gamma \in \widehat{G}} c_{\gamma,\kappa}(\alpha)\gamma(-k\alpha)\gamma(x)$$
 (35)

and by (30) for any $0 \le k < p^{\kappa+2} - 2p^{\kappa}$

$$m(L_{p^{\kappa+2}\cdot K}(f)) \leq \int_{G} \left| \frac{1}{m(B)} \int_{B} h_{\kappa}(x - k\alpha, \alpha) dm(\alpha) \right|^{2} dm(x)$$

$$= \int_{G} |\varphi_{\kappa, k}(x)|^{2} dm(x),$$
(36)

where $\varphi_{\kappa,k}(x) = \frac{1}{m(B)} \int_B h_{\kappa}(x - k\alpha, \alpha) dm(\alpha)$ is a bounded measurable function.

Recall that by (31) we can express the Fourier-coefficients of h_{κ} by those of h, that is

$$c_{\gamma,\kappa}(\alpha) = \int_{G} h_{\kappa}(x,\alpha)\gamma(-x)dm(x) = c_{\gamma}(\alpha)\frac{1}{p^{\kappa}} \sum_{k=v^{\kappa}}^{2p^{\kappa}-1} \gamma(-k\alpha).$$
 (37)

Therefore,

$$\widehat{\varphi}_{\kappa,k}(\gamma) = \int_{G} \frac{1}{m(B)} \int_{B} h_{\kappa}(x - k\alpha, \alpha) dm(\alpha) \gamma(-x) dm(x)$$

$$= \frac{1}{m(B)} \int_{B} \int_{G} h_{\kappa}(x - k\alpha, \alpha) \gamma(-x) dm(x) dm(\alpha)$$

$$= \frac{1}{m(B)} \int_{G} \chi_{B}(\alpha) \cdot \int_{G} h_{\kappa}(u, \alpha) \gamma(-u - k\alpha) dm(u) dm(\alpha)$$

$$= \frac{1}{m(B)} \int_{G} \chi_{B}(\alpha) \gamma(-k\alpha) c_{\gamma,\kappa}(\alpha) dm(\alpha).$$
(38)

If $\gamma \neq \gamma_0$ and $\operatorname{ord}(\gamma) \leq p^{\kappa}$ then by (33) and (37) we have $c_{\gamma,\kappa}(\alpha) = 0$ for any $\alpha \in B$, and hence $\widehat{\varphi}_{\kappa,k}(\gamma) = 0$.

Recall from (34) that if $\alpha \in B$ then $c_{\gamma_0,\kappa}(\alpha) = 0$. Hence $\widehat{\varphi}_{\kappa,k}(\gamma_0) = 0$ holds in this case as well.

Now suppose that $\gamma^{p^{\kappa}} \neq \gamma_0$. Then $\operatorname{ord}(\gamma) \geq p^{\kappa+1}$ and for $k = 0, \dots, p^{\kappa+1} - 1$ the characters γ^k are different.

By using the Parseval-formula we can continue (36) to obtain for any $0 \le k < p^{\kappa+2} - 2p^{\kappa}$ that

$$m(L_{p^{\kappa+2}\cdot K}(f)) \le \sum_{\gamma \in \widehat{G}} |\widehat{\varphi}_{\kappa,k}(\gamma)|^2$$
 (39)

$$= \sum_{\gamma \in \widehat{G}, \, \gamma^{p^{\kappa}} \neq \gamma_0} \frac{1}{(m(B))^2} \cdot \left| \int_G \chi_B(\alpha) \gamma(-k\alpha) c_{\gamma,\kappa}(\alpha) dm(\alpha) \right|^2.$$

Since $p \ge 2$ implies $p^{\kappa+2} \ge 3p^{\kappa}$ we can use (29) and (39) for $k = 0, ..., p^{\kappa} - 1$. Adding equation (39) for all $\kappa \ge \kappa_0$ and $k = 0, ..., p^{\kappa} - 1$ we need to estimate

$$\sum_{\kappa > \kappa_0} p^{\kappa} m(L_{p^{\kappa+2} \cdot K}(f)) \tag{40}$$

$$\leq \sum_{\kappa \geq \kappa_0} \sum_{\gamma \in \widehat{G}, \gamma^{p^{\kappa}} \neq \gamma_0} \frac{1}{(m(B))^2} \sum_{k=0}^{p^{\kappa}-1} \left| \int_G \chi_B(\alpha) c_{\gamma,\kappa}(\alpha) \gamma(-k\alpha) dm(\alpha) \right|^2.$$

Using (31) and (37) first we estimate for $\kappa \geq \kappa_0$

$$\sum_{k=0}^{p^{\kappa}-1} \left| \int_{G} \chi_{B}(\alpha) c_{\gamma,\kappa}(\alpha) \gamma(-k\alpha) dm(\alpha) \right|^{2}$$
(41)

$$=\sum_{k=0}^{p^{\kappa}-1}\left|\int_{G}\chi_{B}(\alpha)c_{\gamma}(\alpha)\frac{1}{p^{\kappa}}\sum_{k'=p^{\kappa}}^{2p^{\kappa}-1}\gamma(-(k'+k)\alpha)dm(\alpha)\right|^{2}=**$$

in the last expression k'+k can take values between p^{κ} and $3p^{\kappa}-2$. If $p\geq 3$ then $3p^{\kappa}-2\leq p^{\kappa+1}-1$ so for the moment we suppose that $p\geq 3$. In the end of this proof we will point out the little adjustments which we need for the case p=2.

For $p^{\kappa} \leq j \leq 3p^{\kappa} - 2 \leq p^{\kappa+1} - 1$ we denote by w'_j the number of those couples (k, k') for which $0 \leq k \leq p^{\kappa} - 1$, $p^{\kappa} \leq k' \leq 2p^{\kappa} - 1$ and k + k' = j. Obviously, $w'_j \leq p^{\kappa}$. Set $w_j = w'_j/p^{\kappa} \leq 1$. We select these w_j for all $\kappa_0 \leq \kappa \leq \operatorname{ord}(\gamma)$. For those values of j for which we have not defined w_j yet we set $w_j = 0$.

By using this notation we can continue ** from (41)

$$** \leq \sum_{j=p^{\kappa}}^{p^{\kappa+1}-1} w_j \left| \int_G \chi_B(\alpha) c_{\gamma}(\alpha) \cdot \gamma(-j\alpha) dm(\alpha) \right|^2$$
 (42)

$$\leq \sum_{i=n^{\kappa}}^{p^{\kappa+1}-1} \left| \int_{G} \chi_{B}(\alpha) c_{\gamma}(\alpha) \cdot \gamma(-j\alpha) dm(\alpha) \right|^{2}.$$

Using (41) and (42) while continuing the estimation of (40) we obtain

$$\sum_{\kappa \geq \kappa_0} p^{\kappa} m(L_{p^{\kappa+2} \cdot K}(f)) \leq$$

$$\leq \sum_{\kappa \geq \kappa_0} \sum_{\gamma \in \widehat{G}, \gamma^{p^{\kappa}} \neq \gamma_0} \frac{1}{(m(B))^2} \sum_{j=p^{\kappa}}^{p^{\kappa+1}-1} \left| \int_G \chi_B(\alpha) c_{\gamma}(\alpha) \gamma(-j\alpha) dm(\alpha) \right|^2 \\
\leq \sum_{\kappa \geq \kappa_0} \sum_{j=1}^{\operatorname{ord}(\gamma)-1} \frac{1}{(m(B))^2} \cdot \left| \int_G \chi_B(\alpha) c_{\gamma}(\alpha) \gamma(-j\alpha) dm(\alpha) \right|^2.$$
(43)

Since for a fixed γ the characters γ^{-j} are different, for different values $0 \le j < \operatorname{ord}(\gamma)$ by Parseval's Theorem we infer

$$\sum_{j=1}^{\operatorname{ord}(\gamma)-1} \left| \int_{G} \chi_{B}(\alpha) c_{\gamma}(\alpha) \gamma(-j\alpha) dm(\alpha) \right|^{2} \leq \int_{G} \left| \chi_{B}(\alpha) c_{\gamma}(\alpha) \right|^{2} dm(\alpha).$$
 (44)

Using this in (43) we obtain

$$\sum_{\kappa \geq \kappa_0} p^{\kappa} m(L_{p^{\kappa+2} \cdot K}(f)) \leq \frac{1}{(m(B))^2} \sum_{\gamma \in \widehat{G}} \int_G |\chi_B(\alpha) c_{\gamma}(\alpha)|^2 dm(\alpha)$$

$$= \frac{1}{(m(B))^2} \int_G \chi_B(\alpha) \sum_{\gamma \in \widehat{G}} |c_{\gamma}(\alpha)|^2 dm(\alpha)$$

$$= \frac{1}{(m(B))^2} \int_G \chi_B(\alpha) \int_G |h(x,\alpha)|^2 dm(x) dm(\alpha) < +\infty.$$
(45)

This completes the proof if p > 3.

In case of p=2 the intervals $p^{\kappa} \leq j \leq 3p^{\kappa}-2$ are not disjoint, but $3p^{\kappa}-2 \leq p^{\kappa+2}-1$. Instead of (43) we could obtain

$$\sum_{\kappa \geq \kappa_0} p^{\kappa+1} m(L_{p^{\kappa+1} \cdot K}(f)) \leq 2 \cdot \sum_{\gamma \in \widehat{G}} \sum_{j=1}^{2 \operatorname{ord}(\gamma) - 1} \frac{1}{(m(B))^2} \left| \int_G \chi_B(\alpha) c_{\gamma}(\alpha) \gamma(-j\alpha) dm(\alpha) \right|^2.$$

For a fixed γ the characters $\gamma^{-j}(\alpha)$, $j \leq 2 \operatorname{ord}(\gamma) - 1$ are not different but for each $j \leq 2 \operatorname{ord}(\gamma) - 1$ there is at most one other $j' \leq 2 \operatorname{ord}(\gamma) - 1$ such that $\gamma^{-j} = \gamma^{-j'}$, hence

$$\sum_{j=1}^{2\mathrm{ord}(\gamma)-1} \left| \int_G \chi_B(\alpha) c_\gamma(\alpha) \gamma(-j\alpha) dm(\alpha) \right|^2 \le 2 \int_G |\chi_B(\alpha) c_\gamma(\alpha)|^2 dm(\alpha).$$

References

[1] I. ASSANI, Z. BUCZOLICH AND D. MAULDIN, "An L^1 Counting problem in Ergodic Theory," J. Anal. Math. 95 (2005), 221–241.

- [2] J. BOURGAIN, Pointwise Ergodic Theorems for Arithmetic Sets, with an Appendix by J. Bourgain, H. Fürstenberg, Y. Katznelson, and D. S. Ornstein, *Publ. Mat. IHES* **69** (1989), 5-45.
- [3] Z. Buczolich, "Arithmetic averages of rotations of measurable functions", Ergodic Theory Dynam. Systems 16 (1996), no. 6, 1185–1196.
- [4] Z. BUCZOLICH, "Ergodic averages and free \mathbb{Z}^2 actions", Fund. Math., **160**, (1999), 247-254.
- [5] Z. Buczolich, "Non-L¹ functions with rotation sets of Hausdorff dimension one", Acta Math. Hungar. **126**, (2010) 23-50.
- [6] Z. Buczolich and D. Mauldin, "Divergent Square Averages," Ann. of Math. 171:(3) (2010), 1479-1530., 2010.
- [7] L. Fuchs, *Infinite abelian groups Vol. I.*, Pure and Applied Mathematics, Vol. 36 Academic Press, New York-London 1970.
- [8] E. Hewitt and K. A. Ross *Abstract harmonic analysis. Vol. I.* Structure of topological groups, integration theory, group representations. Second edition. Grundlehren der Mathematischen Wissenschaften **115** Springer-Verlag, Berlin-New York, 1979.
- [9] P. Major, "A counterexample in ergodic theory", Acta Sci. Math. (Szeged) 62 (1996), 247-258.
- [10] J. M. ROSENBLATT AND M. WIERDL "Pointwise ergodic theorems via harmonic analysis" *Ergodic theory and its connections with harmonic analysis* (Alexandria, 1993), 3151, London Math. Soc. Lecture Note Ser., **205**, Cambridge Univ. Press, Cambridge, 1995.
- [11] W. Rudin, Fourier analysis on groups Interscience Tracts in Pure and Applied Mathematics, No. 12 Interscience Publishers (a division of John Wiley and Sons), New York-London 1962.

- [12] YA. SINAI AND C. ULCIGRAI, "Renewal type limit theorem for the Gauss map and continued fractions", *Ergodic Theory Dynam. Systems*, **28** (2008), no. 2, 643–655.
- [13] YA. SINAI AND C. ULCIGRAI, "A limit theorem for Birkhoff Sums of non-integrable functions over rotations", *Probabilistic and Geometric Structures in Dynamics*, edited by K. Burns, D. Dolgopyat, and Ya. Pesin, American Mathematical Society, Contemp. Math., **469**, (2008) Amer. Math. Soc., Providence, RI, 317-340.
- [14] R. SVETIC, "A function with locally uncountable rotation set", *Acta Math. Hungar.* **81 (4)**, (1998), 305-314.