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Abstract

Suppose that G is a compact Abelian topological group, m is the
Haar measure on G and f : G → R is a measurable function. Given
(nk), a strictly monotone increasing sequence of integers we consider
the nonconventional ergodic/Birkhoff averages

Mα
Nf(x) =

1

N + 1

N∑

k=0

f(x+ nkα).

The f -rotation set is
Γf = {α ∈ G : Mα

Nf(x) converges for m a.e. x as N → ∞.}
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We prove that if G is a compact locally connected Abelian group
and f : G → R is a measurable function then from m(Γf ) > 0 it
follows that f ∈ L1(G).

A similar result is established for ordinary Birkhoff averages if
G = Zp, the group of p-adic integers.

However, if the dual group, Ĝ contains “infinitely many multiple
torsion” then such results do not hold if one considers non-conventional
Birkhoff averages along ergodic sequences.

What really matters in our results is the boundedness of the tail,
f(x + nkα)/k, k = 1, ... for a.e. x for many α, hence some of our
theorems are stated by using instead of Γf slightly larger sets, denoted
by Γf,b.

1 Introduction

The starting point of this paper is a result of the first listed author in [3]
which states that if f is a (Lebesgue) measurable function on the unit circle
T and Γf denotes the set of those α’s for which the Birkhoff averages

Mα
n f(x) =

1

n + 1

n∑

k=0

f(x+ kα)

converge for almost every x then from m(Γf) > 0 it follows that f ∈ L1(T).
Hence Mα

n f converges for all α ∈ T.
In this paper we consider generalizations of this result to compact Abelian

groups equipped with their Haar measure m. Theorem 1 implies that an
analogous result is true even for non-convential ergodic averages considered
on a compact, locally connected Abelian group G.

On the other hand, if there is “sufficiently many multiple torsion” in
the dual group Ĝ then Theorem 6 implies that there are non-L1 measur-
able functions f for which m(Γf ) = 1 (in fact, Γf = G) if one considers
non-conventional Birkhoff averages along ergodic sequences. Having lots of
torsion in Ĝ means that G is highly disconnected. In our opinion the most
surprizing result of this paper is Theorem 7 which states that if G = Zp, the
group of p-adic integers and one considers the ordinary ergodic averages of a
measurable function f then from m(Γf ) > 0 it follows that f ∈ L1(G). The
group Zp is zero-dimensional and all elements of its dual group, Z(p∞), are of
finite order. If one considers a group G which is a countable product of Zp’s
then there is enough “multiple torsion” (see Definition 3) in Γf and Theorem
6 implies that the result of Theorem 7 does not hold in these groups. If

Mα
n f(x) converges then the tail

f(x+ nα)

n
→ 0. In our proofs the sets Γf,0
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(and Γf,b), the sets of those α’s where
f(x+ nα)

n
→ 0, (or

|f(x+ nα)|

n
is

bounded) for a.e. x play an important role. Since Γf ⊂ Γf,0 ⊂ Γf,b from
m(Γf ) > 0 it follows that the other sets are also of positive measure and
hence in the statements of Theorems 1 and 7 these sets are used. Again
the tail of the ergodic averages plays an important role, like in [1], where
we showed that for L1 functions and ordinary ergodic averages the return
time property for the tail may might fail and hence Bourgain’s return time
property [2] does not hold in these situations.

The proof of Theorem 1 is a rather straightforward generalization of The-
orem 1 in [3]. We provide its details, since they are also used with some
non-trivial modifications in the proof of Theorem 7.

Next we say a few words about the background history and related ques-
tions to this paper. Answering a question raised by the first listed au-
thor of this paper P. Major in [9] constructed two ergodic transformations
S, T : X → X on a probability space (X, µ) and a measurable function
f : X → R such that for µ a.e. x

lim
n→∞

1

n+ 1

n∑

k=0

f(Skx) = 0, and lim
n→∞

1

n+ 1

n∑

k=0

f(T kx) = a 6= 0.

M. Laczkovich raised the question whether S and T can be irrational
rotations of T. In Major’s example S and T are conjugate. Therefore, his
method did not provide an answer to Laczkovich’s question.

The results of Z. Buczolich in [4] imply that for any two independent
irrationals α and β one can find a measurable f : T → R such thatMα

n f(x) →
c1 and Mβ

n f(x) → c2 for a.e. x with c1 6= c2. In this case by Birkhoff’s
ergodic theorem f 6∈ L1(T). It is shown in [3] that for any sequence (αj)
of independent irrationals one can find a measurable f : T → R such that
f 6∈ L1(T), but αj ∈ Γf for all j = 1, .... By Theorem 1 of [3] from f 6∈ L1(T)
it follows that m(Γf ) = 0. It was a natural question to see how large Γf

could be for an f 6∈ L1(T). In [14] R. Svetic showed that Γf can be c-dense
for an f 6∈ L1(T).

The question about the possible largest Hausdorff dimension of Γf for an
f 6∈ L1(T) remained open for a while until in [5] it was shown that there are
f 6∈ L1(T) such that dimH(Γf) = 1 (of course with m(Γf ) = 0.)

For us motivation to consider non-conventional ergodic averages in this
paper came from the project in [6] concerning almost everywhere convergence
questions of Birkhoff averages along the squares.

It is also worth mentioning that ergodic averages of non-L1 functions and
rotations on T were also considered in [13] and [12].
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2 Preliminaries

We suppose that G is a compact Abelian topological group, the group oper-
ation will be addition. The dual group of the compact Abelian topological
group G is denoted by Ĝ. By Pontryagin duality Ĝ is a discrete Abelian
group. For γ ∈ Ĝ the corresponding Fourier coefficient is

f̂(γ) =

∫

G

g(x)γ(−x)dm(x),

where m denotes the Haar mesure on G. By the Parseval formula

∫

G

f(x)ḡ(x)dm(x) =
∑

γ∈Ĝ

f̂(γ)ĝ(γ) for f, g ∈ L2(G).

By [8, 24.25] or [11, 2.5.6 Theorem] if G is a compact Abelian group then G

is connected if and only if Ĝ is torsion-free.
Suppose that p1, p2, ... is a sequence of prime numbers. Recall that the

direct product G = (Z/p1) × (Z/p2) × . . . is compact and its dual group

Ĝ = (Z/p1)
⊕

(Z/p2)
⊕

. . . is the direct sum with the discrete topology see
[11, 2.2 p.36] or [8].

We denote by Zp the group of p-adic integers and its dual group, the
Prüfer p-group with the discrete topology will be denoted by Z(p∞).

For other properties of topological groups we refer to standard textbooks
like [7], [8] or [11].

Suppose that f : G → R is a measurable function. We suppose that the
group rotation Tα = x+ α, α ∈ G is fixed.

Given a strictly monotone increasing sequence of integers (nk) we consider
the nonconventional ergodic averages

Mα
Nf(x) =

1

N + 1

N∑

k=0

f(x+ nkα).

Of course, if nk = k we have the usual Birkhoff averages.
The f -rotation set is

Γf = {α ∈ G : Mα
Nf(x) converges for m a.e. x as N → ∞}.

As we mentioned in the introduction it was proved in [3] that ifG = T, m = λ,
the Lebesgue measure on T, and nk = k then for any measurable f : T → R

from m(Γf) > 0 it follows that f ∈ L1(T).
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Scrutinizing the proof of this result one can see that the set

Γf,0 =
{
α ∈ G :

f(x+ nkα)

k
→ 0 for m a.e. x

}

played an important role. It is obvious that Γf ⊂ Γf,0.
In [3] it was shown that from m(Γf,0) > 0 it follows that f ∈ L1(T), when

the sequence nk = k is considered. In this paper we will also use the slightly
larger set

Γf,b =
{
α ∈ G : lim sup

k→∞

|f(x+ nkα)|

k
< ∞ for m a.e. x

}
. (1)

3 Main results

First we generalize Theorem 1 of [3] for compact, locally connected Abelian
groups.

Theorem 1. If (nk) is a strictly monotone increasing sequence of integers

and G is a compact, locally connected Abelian group and f : G → R is a

measurable function then from m(Γf,b) > 0 it follows that f ∈ L1(G).

Remark 2. Since Γf,b ⊃ Γf,0 ⊃ Γf Theorem 1 implies that if one considers
the non-conventional ergodic averages Mα

Nf on a locally compact Abelian
group for group rotations and m(Γf ) > 0 then f ∈ L1(G).

Proof. Set n0 = 0. First we suppose that G is connected. Given an integer
K put

Gα,K = {x : |f(x+ nkα)| < K · k for every k > K (2)

and |f(x+ nkα)| < K2 for k = 0, . . . , K}.

If α ∈ Γf,b then m(Gα,K) → 1 as K → ∞.
Choose and fix K and ε > 0 such that the set

B = {α : m(Gα,K) > ε} (3)

is of positive m-measure. From the measurability of f it follows that B and
the sets gα,K are also measurable.

Set
Lk(f) = {x ∈ G : |f(x)| > k}. (4)

From k > K and x ∈ Gα,K + nkα it follows that

|f(x)| = |f(x− nkα + nkα)| < k ·K.

5



Set Hα = G\Gα,K , (keep in mind that K is fixed). From k > K and
x ∈ Lk·K(f) it follows that x /∈ Gα,K + nkα, that is, x ∈ Hα + nkα.

For α ∈ B we set a(α) = m(Hα) < 1 − ε, by (3). This implies 1/(1 −
a(α)) < 1/ε.

For α ∈ B put

h(x, α) =

{
1 if x ∈ Hα,

−
(

a(α)
1−a(α)

)
if x /∈ Hα.

(5)

For α /∈ B set h(x, α) = 0 for any x ∈ G.
Then h(x, α) is a bounded measurable function defined on G×G and

∫

G

h(x, α)dm(x) = 0 for any α ∈ G. (6)

From k > K and x ∈ Lk·K(f) it follows that x ∈ Hα + nkα for any α ∈ B.
This implies

h(x− nkα, α) = 1 for any x ∈ Lk·K(f) and α ∈ B. (7)

Taking average

1

m(B)

∫

B

h(x− nkα, α)dm(α) = 1 for k > K and x ∈ Lk·K(f). (8)

Keep α fixed and select a character γ ∈ Ĝ. Consider in the Fourier-series of
h(x, α) the coefficient cγ(α) corresponding to this character, that is,

cγ(α) =

∫

G

h(x, α)γ(−x)dm(x). (9)

Since h(x, α) is a bounded measurable function, the function cγ(α) is also
bounded and measurable. Then

h(x, α) ∼
∑

γ∈Ĝ

cγ(α)γ(x). (10)

If γ0(x) ≡ 1 then by (6) we have

cγ0(α) = 0 for any α ∈ G. (11)

For a fixed α ∈ B we have

h(x− nkα, α) ∼
∑

γ∈Ĝ

cγ(α)γ(−nkα)γ(x). (12)
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By (8)

m(Lk·K(f)) ≤

∫

G

∣∣∣∣
1

m(B)

∫

B

h(x− nkα, α)dm(α)

∣∣∣∣
2

dm(x) (13)

=

∫

G

|ϕk(x)|
2dm(x) = ⊛,

where ϕk(x) =
1

m(B)

∫

B

h(x− nkα, α)dm(α) is a bounded measurable func-

tion. If γ is a given character then using that h is bounded and recalling (9)
we obtain

ϕ̂k(γ) =

∫

G

1

m(B)

∫

B

h(x− nkα, α)dm(α)γ(−x)dm(x)

=
1

m(B)

∫

B

∫

G

h(x− nkα, α)γ(−x)dm(x)dm(α)

=
1

m(B)

∫

G

χB(α)

∫

G

h(u, α)γ(−u− nkα)dm(u)dm(α)

=
1

m(B)

∫

G

χB(α)γ(−nkα)

∫

G

h(u, α)γ(−u)dm(u)dm(α)

=
1

m(B)

∫

G

χB(α)γ(−nkα)cγ(α)dm(α).

(14)

By using the Parseval formula we can continue ⊛ in (13) to obtain

m(Lk·K(f)) ≤
∑

γ∈Ĝ

|ϕ̂k(γ)|
2

=
∑

γ∈Ĝ

1

(m(B))2

∣∣∣∣
∫

G

χB(α)γ(−nkα)cγ(α)dm(α)

∣∣∣∣
2

=
1

(m(B))2

∑

γ∈Ĝ

∣∣∣∣
∫

G

χB(α)cγ(α)γ
nk(−α)dm(α)

∣∣∣∣
2

.

(15)

Since χB(α)cγ(α) is a bounded measurable function and γnk ∈ Ĝ, the expres-
sion

∫
G
χB(α)cγ(α)γ

nk(−α)dm(α) is a Fourier coefficient of this function.

Now we use that G is connected and hence Ĝ is torsion-free. If γnk = γnk′

then γnk−nk′ = γ0 ≡ 1, but γ is of infinite order and hence it is only possible
if nk − nk′ = 0, that is k = k′. Hence for k 6= k′ the characters γnk and γnk′

are different. By Parseval’s formula for a fixed γ ∈ Ĝ

∞∑

k=K

∣∣∣∣
∫

G

χB(α)cγ(α)γ
nk(−α)dm(α)

∣∣∣∣
2

≤

∫

G

|χB(α)cγ(α)|
2 dm(α). (16)

7



This, Parseval’s formula, (5), (9) and (15) yield

∞∑

k=K+1

m(Lk·K(f)) ≤
1

(m(B))2

∑

γ∈Ĝ

∫

G

|χB(α)cγ(α)|
2 dm(α)

=
1

(m(B))2

∫

G

χB(α)
∑

γ∈Ĝ

|cγ(α)|
2 dm(α)

=
1

(m(B))2

∫

G

χB(α)

∫

G

|h(x, α)|2dm(x)dm(α) < ∞.

(17)

Since

∫

G

|f | ≤ K ·
∞∑

k=0

m(Lk·K(f)) from (17) and m(G) = 1 it follows that

f ∈ L1(G).
This completes the proof of the case of connected G.
Next we show how one can reduce the case of a locally connected G to

the connected case. If G is locally connected then by [8, 24.45] if C denotes
the component of G containing OG (the neutral element of G) then C is an
open subgroup of G and G is topologically isomorphic to C × (G/C). Since
G is compact G/C should be finite. Suppose that its order is n. Using that
G = C × (G/C) we write the elements of G in the form g = (g1, g2) with
g1 ∈ C, g2 ∈ G/C.

Suppose that f /∈ L1(G) is measurable and m(Γf,b) > 0. Set

Xα,f =
{
x ∈ G : lim sup

k→+∞

|f(x+ nkα)|

k
< +∞

}
.

If α ∈ Γf,b then m(Xα,f) = 1. Suppose that g∗j , j = 1, . . . , n is a list of all
elements of G/C.

For x = (x1, x2) ∈ G define

f ∗(x) = f ∗(x1, x2) =

n∑

j=1

|f(x1, x2 + g∗j )|.

Set

X∗
α,f =

n⋂

j=1

(
Xα,f + (0C , g

∗
j )).

Clearly m(Xα,f ) = 1 implies m(X∗
α,f ) = 1.

For x ∈ X∗
α,f we have lim sup

k→∞

|f ∗(x+ nkα)|

k
< +∞. Since f ∗ is not

depending on its second coordinate we have f ∗(x + nk(α1, α2)) = f ∗(x +

8



nk(α1, 0G/C)). Define f ∗∗ : C → R such that f ∗∗(x1) = f ∗(x1, 0G/C). Since we
assumed that f /∈ L1(G) we have f ∗ /∈ L1(G) and this implies f ∗∗ /∈ L1(C).

Set

Γ∗
f,b = πC(Γf,b) = {α1 : ∃α2 ∈ G/C such that α = (α1, α2) ∈ Γf,b}.

Then for α1 ∈ Γ∗
f,b we have

lim sup
k→∞

|f ∗∗(x1 + nkα1)|

k
< +∞. (18)

Since the Haar measure on C is a positive constant multiple of the Haar
measure on G restricted to C, on the compact connected Abelian group C
we would obtain a measurable function f ∗∗ /∈ L1(C) such that for a set of
positive measure of rotations (18) holds. This would contradict the first part
of this proof concerning connected groups.

Theorem 1 says that if we do not have “too much torsion” in Ĝ then from
m(Γf,b) > 0 it follows that f ∈ L1(G). In the next definition we define what
we mean by “a lot of torsion” in a group.

Definition 3. We say that the group G contains infinitely many multiple
torsion if

(i) either there is a prime number p such that G contains a subgroup alge-
braically isomorphic to the direct sum (Z/p)

⊕
(Z/p)

⊕
. . . (countably

many copies of Z/p),

(ii) or there are infinitely many different prime numbers p1, p2, . . . such
that G contains for any j subgroups of the form (Z/pj)× (Z/pj).

Theorem 4. Suppose that (nk) is a strictly monotone increasing sequence of

integers and G is a compact Abelian group such that its dual group Ĝ contains

infinitely many multiple torsion. Then there exists a measurable f /∈ L1(G)
such that

m(Γf,0) = m(Γf,b) = 1, where m is the Haar-measure on G. (19)

In fact, we show that Γf,0 = Γf,b = G.

Proof. First suppose that in Definition 3 property (i) holds for Ĝ. Then

for any k we can select a subgroup Ĝk in Ĝ such that it is isomorphic to
(Z/p)× (Z/p)× · · · × (Z/p)︸ ︷︷ ︸

k many times

. Suppose that the characters γ1, . . . , γk are the

generators of Ĝk.

9



Put Hk =
⋂k

j=1 γ
−1
j (1). Then Hk is a closed subgroup of G. Since y ∈

x+Hk, that is y−x ∈ Hk if and only if γj(y) = γj(x) for j = 1, . . . , k, which
means that γj(y − x) = γj(y)/γj(x) = 1 for j = 1, . . . , k one can see that G
is tiled with pk many translated copies of Hk. The sets x+Hk are all closed
and therefore Hk is a closed-open subgroup of G.

We also have

m(Hk) =
1

pk
. (20)

Set fk(x) = pk if x ∈ Hk and fk(x) = 0 otherwise.
Put f =

∑∞

k=1 fk. By the Borel-Cantelli lemma and (20) the function f
is m a.e. finite. It is also clear that f is measurable and f /∈ L1(G).

Suppose α ∈ G is arbitrary. Set Xk =
⋃p−1

j=0 Hk − jα. Then m(Xk) =

p−k+1 and by the Borel-Cantelli lemma m a.e. x belongs to only finitely
many Xk. If x /∈ Xk then ∀j ∈ N, x+ jα /∈ Hk and hence

fk(x+ jα) = 0 for any j ∈ N. (21)

Therefore, f(x+nkα)
k

→ 0 for m a.e. x ∈ G and Γf,0 = G.

If in Definition 3 property (ii) holds for Ĝ then for any k select Ĝk in Ĝ
such that it is isomorphic to (Z/pk)× (Z/pk). We suppose that γ1,k and γ2,k
are the generators of Ĝk. Put Hk = γ−1

1,k(1) ∩ γ−1
2,k(1). One can see, similary

to the previous case, that G is tiled by p2k many translated copies of Hk.
Turning to a subsequence if necessary, we can suppose that

∞∑

k=1

1

pk
< +∞. (22)

We also have

m(Hk) =
1

p2k
. (23)

Set fk(x) = p2k if x ∈ Hk and fk(x) = 0 otherwise.
Put f =

∑∞
k=1 fk. Again, it is clear that f is m a.e. finite, measurable

and f /∈ L1(G). For an arbitrary α ∈ G one can define Xk = ∪pk−1
j=0 Hk − jα.

Then m(Xk) =
1
pk
.

From (22) and from the Borel-Cantelli lemma it follows that m a.e. x
belongs to only finitely many Xk. One can conclude the proof as we did it
in the previous case.

It is natural to ask for a version of Theorem 4 for the non-conventional
ergodic averages with m(Γf) = 1 in (19). For convergence of the non-
conventional ergodic averages some arithmetic assumptions about nk are

10



needed.
We recall from [10] Definition 1.2 with some notational adjustment.

Definition 5. . The sequence (nk) is ergodic mod q if for any h ∈ Z

lim
N→∞

∑N
k=0 χh,q(nk)

N + 1
=

1

q
, (24)

Where χh,q(x) = 1 if x ≡ hmod q and χh,q(x) = 0 otherwise.
A sequence (nk) is ergodic for periodic systems if it is ergodic modq for every
q ∈ N.

For ergodic sequences with essentially the same proof we can state the
following version of Theorem 4:

Theorem 6. Suppose that nk is a strictly monotone, ergodic sequence for

periodic systems and G is a compact Abelian group such that its dual group

Ĝ contains infinitely many multiple torsion. Then there exists a measurable

f /∈ L1(G)such that Γf = G, and hence m(Γf ) = 1.

Proof. As we mentioned earlier the argument of the proof of Theorem 4
is applicable. One needs to add the observation that if x ∈ Xk then the
ergodicity of nk for periodic systems implies that Mα

Nfk converges. If x /∈ Xk

then (21) can be used. Hence Mα
Nf converges for all α ∈ G for a.e. x.

In Theorem 4 we saw that if there is “lots of torsion” in Ĝ, that is,
G is ”highly disconnected” then there are measurable functions f not in
L1 for which m(Γf,0) = 1. Since the p-adic integers, Zp are the building
blocks of 0-dimensional compact Abelian groups ([8, Theorem 25.22]) it is
natural to consider them. If we take a countable product of Zp with p fixed
then the dual group will be the direct sum of Z(p∞)’s and will contain a
subgroup algebraically isomorphic to the direct sum (Z/p)

⊕
(Z/p)

⊕
. . . .

Then Theorem 4 is applicable.
If one considers an individual Zp then its dual group is Z(p∞) with all

elements of finite order, so still there seems to be “lots of torsion” in the
dual group. It is also clear that arithmetic properties of nk might matter if
we consider Zp. For us it was quite surprising that if one considers ordinary
ergodic averages, that is, nk = k then Zp behaves like a locally connected
group and the following theorem is true.

Theorem 7. Suppose that nk = k, and p is a fixed prime number. We

consider G = Zp, the group of p-adic integers. Then for any measurable

function f : G → R from m(Γf,b) > 0 it follows that f ∈ L1(G).

11



Before turning to the proof of Theorem 7 we need some notation and a
Claim simplifying the proof of Theorem 7. Denote by Γj

f,b, j = −1, 0, 1, . . .
the set of those α = (α0, α1, . . . ) ∈ Γf,b for which αj+1 6= 0 but α0 = · · · =
αj = 0. Fromm(Γf,b) > 0 it follows that there exists j0 such thatm(Γj0

f,b) > 0.
Given a finite string (x0, . . . , xj) we denote by [x0, . . . , xj] the corresponding
cylinder set in G, that is,

[x0, . . . , xj ] = {(x′
0, x

′
1, . . . ) ∈ G : (x′

0, . . . , x
′
j) = (x0, . . . , xj)}.

Claim 8. If from m(Γ−1
f,b) > 0 it follows that f ∈ L1(G), then Theorem 7 is

also true.

Proof. As mentioned above if m(Γf,b) > 0 then we can choose j0 such that
m(Γj0

f,b) > 0. Then for α ∈ Γj0
f,b for any cylinder [x0, . . . , xj0 ] we have

[x0, . . . , xj0 ] + α = [x0, . . . , xj0 ]. If σ is the one-sided shift on Zp, that
is, σ(x0, x1, . . . ) = (x1, . . . ) then for α ∈ Γj0

f,b we have σj0+1(x + α) =

σj0+1x+ σj0+1α.
For an x′ ∈ G we define the function fx0,...,xj0

(x′) = f(x0, . . . , xj0 , x
′),

where (x0, . . . , xj0, x
′) is the concatenation of the finite string (x0, . . . , xj0) and

x′ ∈ G = Zp. Then Γ−1
fx0,...,xj0

,b ⊃ σj0+1(Γj0
f,b) and we can apply the Claim for

fx0,...,xj0
to obtain that fx0,...,xj0

∈ L1(G), that is, f ∈ L1([x0, . . . , xj0 ]). Since
this holds for any cylinder set [x0, . . . , xj0 ] we obtain that f ∈ L1(G).

Proof of Theorem 7. By Claim 8 we can assume that m(Γ−1
f,b) > 0. We need

to adjust the proof of Theorem 1 for the case of G = Zp. The key difficulty is

the torsion in Ĝ = Z(p∞) which makes it impossible to use a direct argument
which lead to (16). Anyway, we start to argue as in the proof of Theorem
1, keeping in mind that now nk = k. We introduce the sets Gα,K , B ⊂
Γ−1
f,b, Lk(f) as in (2), (3), and (4), respectively. We fix K and define the set

Hα and the auxiliary function h(x, α) as in (5). We have (6) again.
Our aim is to establish that for a suitable κ0

∑

κ≥κ0

pκm(Lpκ+2·K(f)) < ∞. (25)

Suppose that the function ϕ equals pκ+3 ·K on Lpκ+2·K(f)\Lpκ+3·K(f), κ =
κ0, κ0 + 1, . . . and equals K · pκ0+2 on G\Lpκ0+2·K(f). Then ϕ ≥ |f | and by
(25)

∫

G

ϕdm ≤ K · pκ0+2m(G) +

∞∑

κ=κ0

pκ+3 ·Km(Lpκ+2·K(f)) < +∞. (26)

This implies that f ∈ L1(G).
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Hence we need to establish (25). Choose and fix κ0 ∈ N such that pκ0 > K
and suppose that κ ≥ κ0.

Then, keeping in mind that Lk·K(f) ⊃ Lpκ+2·K(f) for k ≤ pκ+2 we have
instead of (7)

h(x− kα, α) = 1 for any α ∈ B, K < k < pκ+2 and x ∈ Lpκ+2·K(f). (27)

Let

hκ(x, α) =
1

pκ

2pκ−1∑

k=pκ

h(x− kα, α). (28)

Then by (27)

hκ(x− kα, α) = 1 for any α ∈ B, 0 ≤ k < pκ+2 − 2pκ and x ∈ Lpκ+2·K(f)
(29)

Taking average on B

1

m(B)

∫

B

hκ(x− kα, α)dm(α) = 1 (30)

for κ ≥ κ0, 0 ≤ k < pκ+2 − 2pκ and x ∈ Lpκ+2·K(f).

Now we return to h(x, α) and we define cγ(α) as in (9). Again, cγ(α) is a
bounded, measurable function and (10) holds.
Denoting again by γ0(x) the identically 1 character, the neutral element of

Ĝ we also have (11) satisfied. For hκ(x, α) we have

hκ(x, α) ∼
∑

γ∈Ĝ

cγ,κ(α)γ(x) =
∑

γ∈Ĝ

cγ(α)

(
1

pκ

2pκ−1∑

k=pκ

γ(−kα)

)
γ(x). (31)

Since Ĝ = Z(p∞), the order of γ is a power of p. We denote it by ord(γ).

A γ ∈ Ĝ of order pr, r > 0 is of the form

γ(x) = exp

(
2πil

pr
(x0 + px1 + · · ·+ pr−1xr−1)

)

for x = (x0, x1, . . . ) ∈ G = Zp with l not divisible by p.

(32)

Since B ⊂ Γ−1
f,b, for α ∈ B we have α0 6= 0 which implies γ(−α) 6= 1 and if

γ is of order pr, r > 0 then γ(−α) ∈ C is also of order pr, r > 0. Hence for
ord(γ) = pr ≤ pκ and α ∈ B we have

2pκ−1∑

k=pκ

γ(−kα) =

2pκ−1∑

k=pκ

γk(−α) = γ(−pκα)
1− γpκ(−α)

1− γ(−α)
= 0. (33)

13



This way we can get rid of some characters with small torsion in the Fourier-
series of hκ(x, α).

Recalling that cγ0(α) =
∫
G
h(x, α) · 1dm(α) = 0 by (10) we have in (31)

cγ0,κ(α) = 0 if α ∈ B. (34)

Using (31) again we have

hκ(x− kα, α) ∼
∑

γ∈Ĝ

cγ,κ(α)γ(−kα)γ(x) (35)

and by (30) for any 0 ≤ k < pκ+2 − 2pκ

m(Lpκ+2·K(f)) ≤

∫

G

∣∣∣∣
1

m(B)

∫

B

hκ(x− kα, α)dm(α)

∣∣∣∣
2

dm(x) (36)

=

∫

G

|ϕκ,k(x)|
2dm(x),

where ϕκ,k(x) =
1

m(B)

∫

B

hκ(x−kα, α)dm(α) is a bounded measurable func-

tion.
Recall that by (31) we can express the Fourier-coefficients of hκ by those

of h, that is

cγ,κ(α) =

∫

G

hκ(x, α)γ(−x)dm(x) = cγ(α)
1

pκ

2pκ−1∑

k=pκ

γ(−kα). (37)

Therefore,

ϕ̂κ,k(γ) =

∫

G

1

m(B)

∫

B

hκ(x− kα, α)dm(α)γ(−x)dm(x)

=
1

m(B)

∫

B

∫

G

hκ(x− kα, α)γ(−x)dm(x)dm(α)

=
1

m(B)

∫

G

χB(α) ·

∫

G

hκ(u, α)γ(−u− kα)dm(u)dm(α)

=
1

m(B)

∫

G

χB(α)γ(−kα)cγ,κ(α)dm(α).

(38)

If γ 6= γ0 and ord(γ) ≤ pκ then by (33) and (37) we have cγ,κ(α) = 0 for
any α ∈ B, and hence ϕ̂κ,k(γ) = 0.

Recall from (34) that if α ∈ B then cγ0,κ(α) = 0. Hence ϕ̂κ,k(γ0) = 0
holds in this case as well.
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Now suppose that γpκ 6= γ0. Then ord(γ) ≥ pκ+1 and for k = 0, . . . , pκ+1−
1 the characters γk are different.

By using the Parseval-formula we can continue (36) to obtain for any
0 ≤ k < pκ+2 − 2pκ that

m(Lpκ+2·K(f)) ≤
∑

γ∈Ĝ

|ϕ̂κ,k(γ)|
2 (39)

=
∑

γ∈Ĝ, γpκ 6=γ0

1

(m(B))2
·

∣∣∣∣
∫

G

χB(α)γ(−kα)cγ,κ(α)dm(α)

∣∣∣∣
2

.

Since p ≥ 2 implies pκ+2 ≥ 3pκ we can use (29) and (39) for k = 0, ..., pκ−
1. Adding equation (39) for all κ ≥ κ0 and k = 0, ..., pκ−1 we need to estimate

∑

κ≥κ0

pκm(Lpκ+2·K(f)) (40)

≤
∑

κ≥κ0

∑

γ∈Ĝ,γpκ 6=γ0

1

(m(B))2

pκ−1∑

k=0

∣∣∣∣
∫

G

χB(α)cγ,κ(α)γ(−kα)dm(α)

∣∣∣∣
2

.

Using (31) and (37) first we estimate for κ ≥ κ0

pκ−1∑

k=0

∣∣∣∣
∫

G

χB(α)cγ,κ(α)γ(−kα)dm(α)

∣∣∣∣
2

(41)

=

pκ−1∑

k=0

∣∣∣∣∣

∫

G

χB(α)cγ(α)
1

pκ

2pκ−1∑

k′=pκ

γ(−(k′ + k)α)dm(α)

∣∣∣∣∣

2

= ∗∗

in the last expression k′+k can take values between pκ and 3pκ−2. If p ≥ 3
then 3pκ − 2 ≤ pκ+1 − 1 so for the moment we suppose that p ≥ 3. In the
end of this proof we will point out the little adjustments which we need for
the case p = 2.

For pκ ≤ j ≤ 3pκ − 2 ≤ pκ+1 − 1 we denote by w′
j the number of those

couples (k, k′) for which 0 ≤ k ≤ pκ − 1, pκ ≤ k′ ≤ 2pκ − 1 and k + k′ = j.
Obviously, w′

j ≤ pκ. Set wj = w′
j/p

κ ≤ 1. We select these wj for all κ0 ≤
κ ≤ ord(γ). For those values of j for which we have not defined wj yet we
set wj = 0.

By using this notation we can continue ∗∗ from (41)

∗ ∗ ≤

pκ+1−1∑

j=pκ

wj

∣∣∣∣
∫

G

χB(α)cγ(α) · γ(−jα)dm(α)

∣∣∣∣
2

(42)
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≤

pκ+1−1∑

j=pκ

∣∣∣∣
∫

G

χB(α)cγ(α) · γ(−jα)dm(α)

∣∣∣∣
2

.

Using (41) and (42) while continuing the estimation of (40) we obtain
∑

κ≥κ0

pκm(Lpκ+2·K(f)) ≤

≤
∑

κ≥κ0

∑

γ∈Ĝ,γpκ 6=γ0

1

(m(B))2

pκ+1−1∑

j=pκ

∣∣∣∣
∫

G

χB(α)cγ(α)γ(−jα)dm(α)

∣∣∣∣
2

≤
∑

γ∈Ĝ

ord(γ)−1∑

j=1

1

(m(B))2
·

∣∣∣∣
∫

G

χB(α)cγ(α)γ(−jα)dm(α)

∣∣∣∣
2

.

(43)

Since for a fixed γ the characters γ−j are different, for different values 0 ≤
j < ord(γ) by Parseval’s Theorem we infer

ord(γ)−1∑

j=1

∣∣∣∣
∫

G

χB(α)cγ(α)γ(−jα)dm(α)

∣∣∣∣
2

≤

∫

G

|χB(α)cγ(α)|
2 dm(α). (44)

Using this in (43) we obtain

∑

κ≥κ0

pκm(Lpκ+2·K(f)) ≤
1

(m(B))2

∑

γ∈Ĝ

∫

G

|χB(α)cγ(α)|
2dm(α)

=
1

(m(B))2

∫

G

χB(α)
∑

γ∈Ĝ

|cγ(α)|
2dm(α)

=
1

(m(B))2

∫

G

χB(α)

∫

G

|h(x, α)|2dm(x)dm(α) < +∞.

(45)

This completes the proof if p ≥ 3.
In case of p = 2 the intervals pκ ≤ j ≤ 3pκ − 2 are not disjoint, but

3pκ − 2 ≤ pκ+2 − 1. Instead of (43) we could obtain

∑

κ≥κ0

pκ+1m(Lpκ+1·K(f)) ≤ 2·
∑

γ∈Ĝ

2ord(γ)−1∑

j=1

1

(m(B))2

∣∣∣∣
∫

G

χB(α)cγ(α)γ(−jα)dm(α)

∣∣∣∣
2

.

For a fixed γ the characters γ−j(α), j ≤ 2ord(γ)− 1 are not different but
for each j ≤ 2ord(γ) − 1 there is at most one other j′ ≤ 2ord(γ) − 1 such
that γ−j = γ−j′, hence

2ord(γ)−1∑

j=1

∣∣∣∣
∫

G

χB(α)cγ(α)γ(−jα)dm(α)

∣∣∣∣
2

≤ 2

∫

G

|χB(α)cγ(α)|
2dm(α).
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The conclusion of the proof is similar to the p ≥ 3 case.

References

[1] I. Assani, Z. Buczolich and D. Mauldin, “An L1 Counting prob-
lem in Ergodic Theory,” J. Anal. Math. 95 (2005), 221–241.

[2] J. Bourgain, Pointwise Ergodic Theorems for Arithmetic Sets, with
an Appendix by J. Bourgain, H. Fürstenberg, Y. Katznelson, and D. S.
Ornstein, Publ. Mat. IHES 69 (1989), 5-45.

[3] Z. Buczolich,“Arithmetic averages of rotations of measurable func-
tions”, Ergodic Theory Dynam. Systems 16 (1996), no. 6, 1185–1196.

[4] Z. Buczolich, “Ergodic averages and free Z2 actions”, Fund. Math.,
160, (1999), 247-254.

[5] Z. Buczolich, “Non-L1 functions with rotation sets of Hausdorff di-
mension one”, Acta Math. Hungar. 126, (2010) 23-50.

[6] Z. Buczolich and D. Mauldin, “Divergent Square Averages,” Ann.

of Math. 171:(3) (2010), 1479-1530., 2010.

[7] L. Fuchs, Infinite abelian groups Vol. I., Pure and Applied Mathemat-
ics, Vol. 36 Academic Press, New York-London 1970.

[8] E. Hewitt and K. A. Ross Abstract harmonic analysis. Vol. I. Struc-
ture of topological groups, integration theory, group representations.
Second edition. Grundlehren der Mathematischen Wissenschaften 115
Springer-Verlag, Berlin-New York, 1979.

[9] P. Major, “A counterexample in ergodic theory”, Acta Sci. Math.

(Szeged) 62 (1996), 247-258.

[10] J. M. Rosenblatt and M. Wierdl “Pointwise ergodic theorems via
harmonic analysis” Ergodic theory and its connections with harmonic

analysis (Alexandria, 1993), 3151, London Math. Soc. Lecture Note Ser.,
205, Cambridge Univ. Press, Cambridge, 1995.

[11] W. Rudin, Fourier analysis on groups Interscience Tracts in Pure and
Applied Mathematics, No. 12 Interscience Publishers (a division of John
Wiley and Sons), New York-London 1962.

17



[12] Ya. Sinai and C. Ulcigrai, “Renewal type limit theorem for the
Gauss map and continued fractions”, Ergodic Theory Dynam. Systems,
28 (2008), no. 2, 643–655.

[13] Ya. Sinai and C. Ulcigrai, “A limit theorem for Birkhoff Sums
of non-integrable functions over rotations”, Probabilistic and Geometric

Structures in Dynamics, edited by K. Burns, D. Dolgopyat, and Ya.
Pesin, American Mathematical Society, Contemp. Math., 469, (2008)
Amer. Math. Soc., Providence, RI, 317-340.

[14] R. Svetic, “A function with locally uncountable rotation set”, Acta
Math. Hungar. 81 (4), (1998), 305-314.

18


	1 Introduction
	2 Preliminaries
	3 Main results

