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EXPLICIT COPRODUCT FORMULA

FOR QUANTUM GROUPS OF INFINITE SERIES

V.K. KHARCHENKO

Abstract. We find an explicit form for the coproduct formula for PBW gen-
erators of quantum groups of infinite series Uq(sp2n) and Uq(so2n). Similar
formulas for Uq(sln+1) and Uq(so2n+1) are already known.

To appear in the Israel Journal of Mathematics

1. introduction

In the present paper, we prove an explicit coproduct formula for quantum groups
Uq(g), where g = sp2n or g = so2n are simple Lie algebras of type C, D respectively.
Consider a Weyl basis of the Lie algebra g,

u[k,m] = [. . . [[xk, xk+1], xk+2], . . . , xm],

see [21, Chapter VI, §4] or [6, Chapter IV, §3, XVII]. Here, xi = x2n−i and in case
Cn, we have k ≤ m ≤ 2n− k, whereas in case Dn, the sequence x1, x2, . . . , x2n−1

has no term xn−1 and k ≤ m < 2n − k. If we replace the Lie operation by skew
brackets, then the above basis becomes a set of PBW generators for the related
quantum group Uq(g). We then find the coproduct of those PBW generators:

(1.1) ∆(u[k,m]) = u[k,m]⊗ 1 + gkm ⊗ u[k,m]

+

m−1∑

i=k

τi(1− q
−1)gki u[i+ 1,m]⊗ u[k, i],

where gki is a group-like element that corresponds to u[k, i], and almost all τ equal
1. More precisely, in case Cn, there is one exception: τn−1 = 1 + q−1 if m = n. In
case Dn, the exception is: τn−1 = 0 if m = n; and τn−1 = pnn−1 otherwise.

Recall that the same formula is valid for Uq(sln+1) and Uq(so2n+1). In case An

there are no exceptions [13, Lemma 3.5]. In case Bn, the main parameter q becomes
q2, and we have an exception τn = q, whereas in the sequence x1, x2, . . . , x2n, the
variable xn appears twice: xi = x2n−i+1, see [12, Theorem 4.3]. In case B2, an
explicit formula was established by M. Beattie, S. Dǎscǎlescu, Ş. Raianu, [3].

In the formula, if i ≥ 2n−m, then u[i+ 1,m] does not appear in the list of the
above PBW generators because m > 2n− (i + 1). The elements u[k,m] with m >

2n− k are defined in a similar manner,

u[k,m] = [xk, [xk+1, . . . , [xm−1, xm] . . .]].
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1

http://arxiv.org/abs/1411.0747v1
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The formula remains valid for those elements as well, in which case all of the τ
equal 1, except for τn = 1 + q−1 if k = n in case Cn, and τn = 0 if k = n in
case Dn (by definition, in case Dn, the sequence that defines u[n,m] has the form
xn, xn+2, xn+3, . . . , xm). In other words, whereas the PBW generators do not span
a subcoalgebra, the formula remains valid for a basis of the subcoalgebra generated
by them. Furthermore, the formula demonstrates that the PBW generators span a
left coideal.

We are reminded that M. Rosso [18] and H. Yamane [25] separately constructed
PBW generators for Uq(sln+1). Then, G. Lusztig [17] found PBW bases for arbitrary
Uq(g) in terms of his famous automorphisms defining the action of braid groups. A
coproduct formula for PBW generators Eβ in Lusztig form appeared in the paper
by S.Z. Levendorski and Ya. S. Soibelman [15, Theorem 2.4.2]:

(1.2) ∆(En
β )− (Eβ ⊗ 1 + qHβ ⊗ Eβ)

n ∈ Uh(n+)β ⊗ Uh(B+).

Recently I. Heckenberger and H.-J. Schneider [5, Theorem 6.14] proved a similar
formula within a more general context:

(1.3) ∆B(N)(x) − x⊗ 1 ∈ k〈Nβl−1
〉k〈Nβl−2

〉 · · ·k〈Nβ1
〉 ⊗B(N), x ∈ Nβl

.

Although these formulas have no explicit form, they are convenient for inductive
considerations, particularly in the study of one-sided coideal subalgebras.

We develop the coproduct formula by the same method as that in [12] for the
case Bn. Firstly, we demonstrate that the values of the elements u[k,m] in Uq(g)
are almost independent of the arrangement of brackets (Lemmas 3.6, 3.7, 6.4, 6.5).
Then, using this fact, we demonstrate that these values form a set of PBW gen-
erators (Propositions 4.1, 7.1). Next, we find the explicit shuffle representation of
those elements (Propositions 4.2, 8.1). In case Cn (as well as in cases An and Bn)
these PBW generators are proportional to shuffle comonomials. This proportional-
ity makes it easy to find the coproduct of those elements inside the shuffle coalgebra.
Because there is a clear connection (2.13) between the coproduct in Uq(g) and the
coproduct in the shuffle coalgebra, we can set up the coproduct formula (Theorem
5.1). In case Dn, each PBW generator is either proportional to a comonomial or a
linear combination of two comonomials. These two options allows one to find the
coproduct inside the shuffle coalgebra and deduce the coproduct formula (Theorem
9.1).

The set of PBW generators for Uq(g) is the union of those sets for positive and
negative quantum Borel subalgebras. Thus, we focus only on the positive quantum
Borel subalgebra U+

q (g).

2. Preliminaries

2.1. Skew brackets. Let X = {x1, x2, . . . , xn} be a set of quantum variables; that
is, associated with each xi there are an element gi of a fixed Abelian group G and
a character χi : G→ k∗. For every word w in X, let gw or gr(w) denote an element
of G that appears from w by replacing each xi with gi. In the same manner, χw

denotes a character that appears from w by replacing each xi with χ
i.

Let G〈X〉 denote the skew group algebra generated by G and k〈X〉 with the
commutation rules xig = χi(g)gxi, or equivalently wg = χw(g)gw, where w is an
arbitrary word in X. If u, v are homogeneous in each xi, 1 ≤ i ≤ n polynomials,
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then the skew brackets are defined by the formula

(2.1) [u, v] = uv − χu(gv)vu.

We use the notation χu(gv) = puv = p(u, v). The form p(-, -) is bimultiplicative:

(2.2) p(u, vt) = p(u, v)p(u, t), p(ut, v) = p(u, v)p(t, v).

In particular p(-, -) is completely defined by n2 parameters pij = χi(gj).
The brackets satisfy an analog of the Jacobi identity:

(2.3) [[u, v], w] = [u, [v, w]] + p−1
wv[[u,w], v] + (pvw − p

−1
wv)[u,w] · v.

The antisymmetry identity transforms as follows:

(2.4) [u, v] = −puv[v, u] + (1− puvpvu)u · v

The Jacobi identity (2.3) implies a conditional identity:

(2.5) [[u, v], w] = [u, [v, w]], provided that [u,w] = 0.

By the evident induction on length, this result allows for the following generaliza-
tion:

Lemma 2.1. [14, Lemma 2.2]. If y1, y2, . . . , ym are homogeneous linear com-

binations of words such that [yi, yj ] = 0, 1 ≤ i < j − 1 < m, then the bracketed

polynomial [y1y2 . . . ym] is independent of the precise arrangement of brackets:

(2.6) [y1y2 . . . ym] = [[y1y2 . . . ys], [ys+1ys+2 . . . ym]], 1 ≤ s < m.

Another conditional identity is: if [u, v] = 0 (that is, uv = puvvu), then

(2.7) [u, [v, w]] = −pvw[[u,w], v] + puv(1− pvwpwv)v · [u,w].

The brackets are related to the product by ad-identities:

(2.8) [u · v, w] = pvw[u,w] · v + u · [v, w],

(2.9) [u, v · w] = [u, v] · w + puvv · [u,w].

It is easy to verify all of the identities developing the brackets by (2.1).

2.2. Quantum Borel algebra. The group G acts on the free algebra k〈X〉 by
g−1ug = χu(g)u, where u is an arbitrary monomial in X. The skew group algebra
G〈X〉 has a natural Hopf algebra structure

∆(xi) = xi ⊗ 1 + gi ⊗ xi, i ∈ I, ∆(g) = g ⊗ g, g ∈ G.

Let C = ||aij || be a symmetrizable Cartan matrix and let D = diag(d1, . . . , dn)
be such that diaij = djaji. We denote a Kac-Moody algebra defined by C, see [7],
as g. Suppose that parameters pij are related by

(2.10) pii = qdi , pijpji = qdiaij , 1 ≤ i, j ≤ n.

In this case the multiparameter quantization U+
q (g) is a homomorphic image of

G〈X〉 defined by Serre relations with the skew brackets in place of the Lie operation:

(2.11) [. . . [[xi, xj ], xj ], . . . , xj ]
︸ ︷︷ ︸

1−aji times

= 0, 1 ≤ i 6= j ≤ n.
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By [8, Theorem 6.1], the left-hand sides of these relations are skew-primitive ele-
ments in G〈X〉. Therefore the ideal generated by these elements is a Hopf ideal,
hence U+

q (g) has the natural structure of a Hopf algebra.

2.3. PBW basis. Recall that a linearly ordered set V is said to be a set of PBW

generators (of infinite heights) if the set of all products

(2.12) g · vn1

1 · v
n2

2 · · · · · v
nk

k , g ∈ G, v1 < v2 < . . . < vk ∈ V

is a basis of U+
q (g).

We fix the order x1 > x2 > . . . > xn on the set X. On the set of all words in X,
we fix the lexicographical order with the priority from left to right, where a proper
beginning of a word is considered to be greater than the word itself.

A non-empty word u is called a standard Lyndon-Shirshov word if vw > wv for
each decomposition u = vw with non-empty v, w. The standard arrangement of
brackets [u] on a standard word u is defined by induction: [u] = [[v][w]], where v, w
are the standard words such that u = vw and v has the minimal length [22], [23],
see also [16].

In [9], it was proven that the values of bracketed standard words corresponding
to positive roots with the lexicographical order form a set of PBW generators (of
infinite heights) for U+

q (g), where g is a Lie algebra of infinite series A,B,C,D.

2.4. Shuffle representation. The k-algebra A generated by values of xi, 1 ≤ i ≤
n in U+

q (g) is not a Hopf subalgebra because it has no nontrivial group-like elements.
Nevertheless, A is a Hopf algebra in the category of Yetter-Drinfeld modules over
k[G]. In particular, A has a structure of a braided Hopf algebra with a braiding
τ(u⊗v) = p(v, u)−1v⊗u. The braided coproduct ∆b : A→ A⊗A is connected with
the coproduct on U+

q (g) as follows

(2.13) ∆b(u) =
∑

(u)

u(1)gr(u(2))−1⊗u(2), where ∆(u) =
∑

(u)

u(1) ⊗ u(2).

The tensor space T (W ), W =
∑
xik also has the structure of a braided Hopf

algebra, which is the braided shuffle algebra Shτ (W ) with the coproduct

(2.14) ∆b(u) =

m∑

i=0

(z1 . . . zi)⊗(zi+1 . . . zm),

where zi ∈ X, and u = (z1z2 . . . zm−1zm) is the tensor z1 ⊗ z2 ⊗ . . . ⊗ zm−1 ⊗ zm,
called a comonomial, considered as an element of Shτ (W ). The braided shuffle
product satisfies

(2.15) (w)(xi) =
∑

uv=w

p(xi, v)
−1(uxiv), (xi)(w) =

∑

uv=w

p(u, xi)
−1(uxiv).

The map xi → (xi) defines a homomorphism of the braided Hopf algebra A into
the braided Hopf algebra Shτ (W ). This is extremely useful for calculating the
coproducts due to formulae (2.13) and (2.14). If q is not a root of 1, then this
representation is faithful. Otherwise, its kernel is the largest Hopf ideal in A(2),

where A(2) is the ideal of A generated by values of xixj , 1 ≤ i, j ≤ n. See details in
P. Schauenberg [20], M. Rosso [19], M. Takeuchi [24], D. Flores de Chela and J.A.
Green [4], N. Andruskiewitsch, H.-J. Schneider [1], V. K. Kharchenko [10].
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3. Relations in U+
q (sp2n).

Throughout the following three sections, we fix a parameter q such that q3 6= 1,
q 6= −1. If C is a Cartan matrix of type Cn, then relations (2.10) take the form

(3.1) pii = q, 1 ≤ i < n; pi i−1pi−1 i = q−1, 1 < i < n; pijpji = 1, j > i+ 1;

(3.2) pnn = q2, pn−1npnn−1 = q−2.

In this case, the quantum Borel algebra U+
q (sp2n) is a homomorphic image of G〈X〉

subject to the following relations

(3.3) [xi, [xi, xi+1]] = [[xi, xi+1], xi+1] = 0, 1 ≤ i < n− 1; [xi, xj ] = 0, j > i+1;

(3.4) [[xn−1, xn], xn] = [xn−1, [xn−1, [xn−1, xn]]] = 0.

Lemma 3.1. If u is a standard word independent of xn, then either u = xkxk+1 . . . xm,

k ≤ m < n, or [u] = 0 in U+
q (sp2n). Here [u] is a nonassociative word with the

standard arrangement of brackets.

Proof. The Hopf subalgebra of U+
q (sp2n) generated by xi, 1 ≤ i < n is the Hopf

algebra U+
q (sln) defined by the Cartan matrix of type An−1. By this reason the

third statement of [9, Theorem An] applies. �

Definition 3.2. In what follows, xi, n < i < 2n denotes the generator x2n−i.

Respectively, v(k,m), 1 ≤ k ≤ m < 2n is the word xkxk+1 · · ·xm−1xm, whereas
v(m, k) is the opposite word xmxm−1 · · ·xk+1xk. If 1 ≤ i < 2n, then φ(i) denotes
the number 2n− i, so that xi = xφ(i).

Definition 3.3. If k ≤ i < m < 2n, then we set

(3.5) σm
k

df
= p(v(k,m), v(k,m)),

(3.6) µ
m,i
k

df
= p(v(k, i), v(i + 1,m)) · p(v(i + 1,m), v(k, i)).

Lemma 3.4. For each i, k ≤ i < m we have

(3.7) µ
m,i
k = σm

k (σi
kσ

m
i+1)

−1.

Proof. Because p(-, -) is a bimultiplicative map, there is a decomposition

(3.8) p(ab, ab) = p(a, a)p(b, b) · p(a, b)p(b, a).

Applying this equality to a = v(k, i), b = v(i + 1,m), we get the required relation.
�

Lemma 3.5. If 1 ≤ k ≤ m < 2n, then

(3.9) σm
k =

{
q2, if m = φ(k);
q, otherwise.



6 V.K. Kharchenko

Proof. The bimultiplicativity of p(-, -) implies that σm
k =

∏

k≤s,t≤m pst is the prod-

uct of all coefficients of the (m − k + 1) × (m − k + 1)-matrix ||pst||. By (3.1) all
coefficients on the main diagonal equal q except pnn = q2.

If m < n or k > n, then for non-diagonal coefficients, we have pstpts = 1 unless
|s− t| = 1, whereas ps s+1ps+1 s = q−1. Hence, σm

k = qm−k+1 · q−(m−k) = q.

If m = n or k = n but not both, then we have pnn = q2, pnn−1pn−1n = q−2.

By the above reasoning, we get σm
k = q(m−k)+2 · q−(m−k−1)−2 = q. Of course, if

k = n = m then σm
k = pnn = q2.

In the remaining case, k < n < m, we use induction on m− k.
By (3.8) we have

(3.10) σm+1
k = σm

k · q · p(v(k,m), xm+1) · p(xm+1, v(k,m)).

We shall prove that if k < n < m, then

(3.11) p(v(k,m), xm+1) · p(xm+1, v(k,m)) =







1, if k = φ(m)− 1;
q−2, if k = φ(m);
q−1, otherwise.

The left hand side of the above equality is
∏

k≤t≤m ptm+1pm+1 t. If m = n, then by

3.1 and 3.2, the factor pt n+1pn+1 t differs from 1 only if t ∈ {n − 2, n − 1, n} and
related values are respectively q−1, q2, q−2. Hence, if k < n − 1 = φ(m) − 1, then
the total product is q−1; if k = n− 1 = ψ(m) − 1, then this is 1; if k = n = φ(m),
then this is q−2.

If m > n, then the factor ptm+1pm+1 t differs from 1 only if

t ∈ {φ(m)− 2, φ(m)− 1, φ(m),m}

and related values are respectively q−1, q2, q−1, q−1. Therefore if k < φ(m)−1, then
the whole product is q−1; if k = φ(m) − 1, then this is 1; if k = φ(m), then this is
q−2; if k > φ(m), then this is again q−1. This completes the proof of (3.11).

To complete the inductive step, we use (3.11) and inductive hypothesis: if k
= φ(m) − 1, then σm+1

k = q · q · 1 = q2; if k = φ(m), then σm+1
k = q2 · q · q−2 = q;

otherwise σm+1
k = q · q · q−1 = q. �

We define the bracketing of v(k,m), k ≤ m < 2n as follows.

(3.12) v[k,m] =







[[[. . . [xk, xk+1], . . .], xm−1], xm], if m < φ(k);
[xk, [xk+1, [. . . , [xm−1, xm] . . .]]], if m > φ(k);
[[v[k,m− 1], xm]], if m = φ(k),

where in the latter term, [[u, v]]
df
= uv − q−1p(u, v)vu.

Conditional identity (2.6) demonstrates that the value of v[k,m] in U+
q (sp2n) is

independent of the precise arrangement of brackets, provided that m ≤ n or k ≥ n.
Now we are going to analyze what happens with the arrangement of brackets if
k < n < m 6= φ(k).

Lemma 3.6. If k ≤ n ≤ m < φ(k), then the value in U+
q (sp2n) of the brack-

eted word [ykxnxn+1 · · ·xm], where yk = v[k, n − 1], is independent of the precise

arrangement of brackets.

Proof. To apply (2.6), it suffices to check [yk, xt] = 0, where n < t ≤ m or, equiva-
lently, φ(m) ≤ t < n. By (2.5) we have

[yk, xt] = [[v[k, t− 2], v[t− 1, n− 1]], xt] = [v[k, t− 2], [v[t− 1, n− 1], xt]].
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By Lemma 3.1 the element [v[t− 1, n− 1], xt] equals zero in U+
q (so2n) because the

word u(t− 1, n)xt is independent of xn, it is standard, and the standard bracketing
is precisely [v[t− 1, n], xt]. �

Lemma 3.7. If k ≤ n, φ(k) < m, then the value in U+
q (sp2n) of the bracketed word

[xkxk+1 · · ·xnym], where ym = v[n+1,m], is independent of the precise arrangement

of brackets.

Proof. To apply (2.6), we need the equalities [xt, ym] = 0, k ≤ t < n. The polyno-
mial [xt, ym] is independent of xn. Moreover, [xt, ym] is proportional to [ym, xt] due
to antisymmetry identity (2.4) because

p(xt, ym)p(ym, xt) = pt t+1pttpt t−1 · pt+1 tpttpt−1 t = 1.

The equality [ym, xt] = 0 turns to the proved above equality [v[k, n − 1], xt] = 0 if
one renames the variables xn+1 ← xk, xn+2 ← xk+1, . . . . �

4. PBW generators of U+
q (sp2n)

Proposition 4.1. If q3 6= 1, q 6= −1, then values of the elements v[k,m], k ≤ m ≤
φ(k) form a set of PBW generators with infinite heights for the algebra U+

q (sp2n)
over k[G].

Proof. A word v(k,m) is a standard Lyndon-Shirshov word provided that k ≤ m

< φ(k). By [9, Theorem Cn, p. 218] these words with the standard bracketing,
say [v(k,m)], become a set of PBW generators if we add to them the elements

[vk]
df
= [v[k, n − 1], v[k, n]] 1 ≤ k < n. We shall use induction on m − k in order to

demonstrate that the value in U+
q (sp2n) of [v(k,m)], k ≤ m < φ(k) is the same as

the value of v[k,m] with the bracketing given in (3.12).
Ifm ≤ n, then the value of v[k,m] is independent of the arrangement of brackets,

see Lemma 2.1.
If k < n < m, then according to [9, Lemma 7.18], the brackets in [v(k,m)] are

set by the following recurrence formulae (we note that [v(k,m)] = [vk φ(m)] in the
notations of [9]):

(4.1)
[v(k,m)] = [xk[v(k + 1,m)]], if m < φ(k)− 1;
[v(k,m)] = [[v(k,m− 1)]xm], if m = φ(k)− 1.

In the latter case, the induction applies directly. In the former case, using induction
and Lemma 3.6, we have

[v(k + 1,m)] = v[k + 1,m] = [v[k + 1, n− 1], v[n,m]].

At the same time [xk, xt] = 0, n ≤ t ≤ m because xt = xφ(t) and φ(t) ≥ φ(m) >
k + 1. This implies [xk, v[n,m]] = 0. Applying conditional identity (2.5), we get

[v(k,m)] = [xk[v[k + 1, n− 1], v[n,m]]] =
[
[xkv[k + 1, n− 1]], v[n,m]

]
= v[k,m].

It remains to analyze the case m = φ(k). We have to demonstrate that if in
the set V of PBW generators of Lyndon-Shirshov standard words one replaces the
elements [vk] with v[k, φ(k)], 1 ≤ k < n then the obtained set is still a set of PBW
generators. To do this, due to [11, Lemma 2.5] with T ← {v[k, φ(k)], 1 ≤ k < n},
S ← Uq(sp2n), it suffices to see that the leading term of the PBW decomposition
of v[k, φ(k)] in the generators V is proportional to [vk].



8 V.K. Kharchenko

By definition (3.12) with m = φ(k), we have

v[k,m] = v[k,m− 1]xm − q
−1πxmv[k,m− 1]

= −q−1π[xm, v[k,m− 1]] + (1 − q−1ππ′)v[k,m− 1] · xm,

where π = p(v(k,m − 1), xm), π′ = p(xm, v(k,m − 1)). The second term of the
latter sum is a basis element (2.12) in the PBW generators V. This element starts
with v[k,m − 1] which is lesser than [vk]. Hence it remains to analyze the bracket
[xk, v[k,m− 1]].

If k = n− 1, then [xk, v[k,m− 1]] = [xn−1, [xn−1, xn]] = [vk].
If k < n− 1, then by Lemma 3.6 we have

(4.2) [xk, v[k,m− 1]] = [xk, [v[k, n], v[n+ 1,m− 1]]].

The basic relations (3.3) imply [xk, [xk, xk+1]] = 0, [xk, v[k+ 2, n]] = 0. By Lemma
2.1 value of v[k, n] is independent of the arrangement of brackets,

v[k, n] = [[xk, xk+1], v[k + 2, n]],

hence [xk, v[k, n]] = 0.
By Eq. (2.7) with u← xk, v ← v[k, n], w ← v[n+ 1,m− 1], the right hand side

of (4.2) is a linear combination of the following two elements:

(4.3) [xk, v[n+ 1,m− 1]], v[k, n]], v[k, n] · [xk, v[n+ 1,m− 1]].

The latter element starts with a factor v[k, n] which is lesser than [vk]. Hence it
remains to prove that the leading term of the former element is proportional [vk].

By downward induction on k we shall prove the following decomposition

(4.4) v[n+ 1,m− 1] = αv[k + 1, n− 1] +

n−1∑

s=k+2

γs v[s, n− 1] · Us, α 6= 0.

If k = n− 2, then this decomposition reduces to xn+1 = xn−1. Let us apply [-, xm]
to the both sides of the above equality. Using (2.4), we see that [v[k+1, n− 1], xm]
is proportional to v[k, n−1]+γk+1 v[k+1, n−1] ·xm, whereas (2.8) implies [v[s, n−
1] ·Us, xm] = v[s, n− 1] · [Us, xk−1] for s ≥ k+2. This completes the inductive step.

Let us apply [xk, -] to both sides of the already proved Eq. (4.4). By (2.9), we
get

(4.5) [xk, v[n+ 1,m− 1]] = αv[k, n− 1] +

n−1∑

s=k+2

γ′s v[s, n− 1] · [xk, Us].

Finally, let us apply [-, v[k, n]] to both sides of (4.5). In this way we find a
decomposition of the first element of (4.3):

(4.6) [[xk, v[n+ 1,m− 1]], v[k, n]] = α [vk] +

n−1∑

s=k+2

γ′s v[s, n− 1] · [xk, Us] · v[k, n]

−
n−1∑

s=k+2

γ′′s v[k, n] · v[s, n− 1] · [xk, Us].

All summands, except the first one, start with v[k, n], v[s, n−1] that are lesser than
[vk]. Hence, the leading term, indeed, is proportional to [vk]. �
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Proposition 4.2. Let k ≤ m < 2n. In the shuffle representation, we have

(4.7) v[k,m] = αm
k · (v(m, k)), αm

k

df
= εmk (q − 1)m−k ·

∏

k≤i<j≤m

pij ,

where

(4.8) εmk =







1 + q, if k ≤ n ≤ m,m 6= φ(k);
1 + q−1, if m = φ(k) 6= n;
1, otherwise.

Proof. We use induction onm−k. Ifm = k, then the equality reduces to xk = (xk).
a). Consider first the case m < φ(k). By the inductive supposition, we have

v[k,m− 1] = αm−1
k · (w), w = v(m− 1, k). Using (2.15), we may write

v[k,m] = αm−1
k {(w)(xm)− p(w, xm) · (xm)(w)}

(4.9) = αm−1
k

∑

uv=w

{p(xm, v)
−1 − p(v, xm)}(uxmv),

where p(v, xm) = p(w, xm)p(u, xm)−1 because w = uv.

Ifm ≤ n, then relations (3.2) imply p(v, xm)p(xm, v) = 1 with only one exception
being v = w. Hence, sum (4.9) has just one term. The coefficient of (xmw) =
(v(m, k)) equals

αm−1
k p(w, xm)(p(w, xm)−1p(xm, w)

−1 − 1) = αm−1
k

m−1∏

i=k

pim · (p
−1
m−1mp

−1
mm−1 − 1).

If m < n, then the latter factor equals q − 1, whereas if m = n, then it is q2 − 1 =
εnk (q − 1).

Suppose that m > n and still m < φ(k). In decomposition (4.9), we have v =

v(s, k), k ≤ s < m and hence p(xm, v)p(v, xm) =
s∏

t=k

pmtptm. The product pmtptm

differs from 1 only if t ∈ {φ(m)− 1, φ(m), φ(m) + 1,m− 1}; related values are q−1,

q2, q−1, q−1 if m > n+1, and they are q−1, q2, q−2 if m = n+1, φ(m)+1 = m−1.
This implies

(4.10) p(xm, v)p(v, xm) =







q−1, if s = φ(m) − 1, or s = m− 1;
q, if s = φ(m);
1, otherwise.

Hence, in (4.9), only three terms remain with s = φ(m)−1, s = φ(m), and s = m−1.
If s = φ(m) − 1 or s = φ(m), then (uxmv) equals

uxmv = v(m− 1, φ(m) + 1)x2mv(φ(m) − 1, k),

whereas the coefficient of the comonomial (uxmv) in sum (4.9) is

p(xm, v0)
−1 − p(v0, xm) + p(xm, xmv0)

−1 − p(xmv0, xm),

where v0 = v(ψ(m)− 1, k). Taking into account (4.10), we find the above sum:

p(v0, xm)(q − 1 + q · q−1 − q) = 0.

Thus, in (4.9) only one term remains, with v = v(m− 1, k), u = ∅. This term has
the required coefficient:

αm
k = αm−1

k (p(xm, w)
−1 − p(w, xm)) = αm−1

k p(w, xm)(q − 1).
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b). Consider the case m > φ(k). By the inductive supposition, we have

v[k + 1,m] = αm
k+1 · (w), w = v(m, k + 1).

Using (2.15), we get

v[k,m] = αm
k+1{(xk)(w) − p(xk, w) · (w)(xk)}

= αm
k+1

∑

uv=w

{p(u, xk)
−1 − p(xk, w)p(xk, v)

−1}(uxkv).

(4.11) = αm
k+1

∑

uv=v(m,k+1)

p(xk, u{p(u, xk)
−1p(xk, u)

−1 − 1}(uxkv).

If k ≥ n, then p(u, xk)p(xk, u) = 1, unless u = w. Hence, (4.11) has only one
term, and the coefficient equals

αm
k+1p(xk, w)(p(w, xk)

−1p(xk, w)
−1 − 1) = αm

k+1p(xk, w)(p
−1
k+1 kp

−1
k k+1 − 1).

If k > n, then the latter factor equals q − 1, whereas if k = n, then it is q2 − 1
= (q − 1)εmn as claimed.

Suppose that k < n. In this case, xk = xt with m > t
df
= φ(k) > φ(n) = n. Let

u = v(m, s).
If s > t+1, then u depends only on xi, i < k−1, and relations (3.1), (3.2) imply

p(xk, u)p(u, xk) = 1.
If s < t, s 6= k + 1, then k + 1 < n (otherwise s = n = k + 1), and we have

p(xk, u)p(u, xk) = pk−1 kpkkpk+1 k · pk k−1pkkpk+1 k = 1 because xt = xk.

Hence, three terms remain in (4.11) with s = t, s = t + 1, and s = k + 1. If
u = v(m, t) or u = v(m, t + 1), then uxkv = v(m, t + 1)x2kv(t − 1, k), whereas the
coefficient of the corresponding tensor is

p(v(m, t+ 1), xk)
−1 − p(xk, v(m, t+ 1)) + p(v(m, t), xk)

−1 − p(xk, v(m, t))

= p(xk, v(m, t+ 1)){p−1
k−1 kp

−1
k k−1 − 1 + p−1

kk p
−1
k−1 kp

−1
k k−1 − pkk} = 0

because pkk = q, pk−1 kpk k−1 = q−1, and pkrprk = 1 if r > t+ 1.
Thus, only one term remains in (4.9), and

αm
k = αm

k+1(p(w, xk)
−1 − p(xk, w)) = αm

k+1p(xk, w)(q − 1).

c). Let m = φ(k) 6= n. In this case, xm = xk, pkk = q. By definition (3.12) we
have

(4.12) v[k,m] = v[k,m− 1] · xk − q
−1p(v(k,m− 1), xm)xk · v[k,m− 1].

Case a) allows us to find the shuffle representation

v[k,m− 1] = αm−1
k (w), w = v(m− 1, k).

Hence the right-hand side of (4.12) in the shuffle form is

αm−1
k

∑

uv=w

(
p(xk, v)

−1 − q−1p(v(k,m− 1), xm) · p(u, xk)
−1
)
· (uxkv)

(4.13) = αm−1
k

∑

uv=v(m−1,k)

p(v, xm)
(
p(xk, v)

−1p(v, xk)
−1 − q−1

)
· (uxkv).
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The coefficient of (v(k,m)) related to u = ∅, v = v(m− 1, k) equals

(4.14) αm−1
k p(v, xm) · (p(xk, v)

−1p(v, xk)
−1 − q−1) = αm−1

k (1− q−1) ·
m−1∏

i=k

pim.

Here we have used xk = xm and Eq. (3.11) with m← m− 1, k ← k. It remains to
show that all other terms in (4.13) are canceled. In this case we would have

εmk = εm−1
k (1− q−1)(q − 1)−1 = (1 + q)(1 − q−1)(q − 1)−1 = 1 + q−1

as required.
If u = v(m− 1, k), v = ∅ or u = v(m− 1, k + 1), v = xk, then

uxkv = v(m− 1, k + 1)x2k,

whereas the total coefficient of the related comonomial is proportional to

1− q−1 · p(u, xm)p(u, xk)
−1 + p−1

kk − q
−1 · pkk = 0.

Let u = v(m− 1, s), v = v(s− 1, k), k+ 1 < s < m. The whole coefficient of the
comonomial (uxkv) takes the form

αm−1
k p(v(s− 1, k), xm) ·

(
p(xk, v(s− 1, k))−1p(v(s− 1, k), xk)

−1 − q−1)
)
.

The latter factor equals
s−1∏

t=k

p−1
kt p

−1
tk − q

−1. The product pktptk differs from 1 only

if t ∈ {k, k+1} and related values are q2 and q−1. This implies that the coefficient
of (uxkv) has a factor q−2 · q − q−1 = 0. �

5. Coproduct formula for U+
q (sp2n)

Theorem 5.1. In U+
q (sp2n) the coproduct on the elements v[k,m], k ≤ m < 2n

has the following explicit form

(5.1) ∆(v[k,m]) = v[k,m]⊗ 1 + gkm ⊗ v[k,m]

+

m−1∑

i=k

τi(1− q
−1)gki v[i + 1,m]⊗ v[k, i],

where τi = 1 with two exceptions, being τn−1 = 1+ q−1 if m = n, and τn = 1+ q−1

if k = n. Here gki = gr(v(k, i)) = gkgk+1 · · · gi.

Proof. By Proposition 4.2 we have the shuffle representation

(5.2) v[k,m] = αm
k · (v(m, k)).

Using (2.14), it is easy to find the braided coproduct of the comonomial shuffle:

∆b
0((v(m, k)) =

m−1∑

i=k

(v(m, i + 1))⊗(v(i, k)),

where for short we put ∆b
0(U) = ∆b(U) − U⊗1 − 1⊗U. Taking into account (5.2),

we have

(5.3) ∆b
0(v[k,m]) = αm

k ·
m−1∑

i=k

(αm
i+1)

−1v[i + 1,m]⊗(αk
i )

−1v[k, i].

Formula (2.13) demonstrates that the tensors u(1) ⊗ u(1) of the (unbraided) co-

product and tensors u
(1)
b ⊗u

(1)
b of the braided one are related by u

(1)
b = u(1)gr(u(2))−1,
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u
(2)
b = u(2). The equality (5.3) provides the values of u

(1)
b and u

(2)
b . Hence we may

find u(1) = αm
k (αi

kα
m
i+1)

−1 ·v[i + 1,m]gki and u
(2) = v[k, i], where gki = gr(v[k, i]).

The commutation rules imply

v[i+ 1,m]gki = p(v(i + 1,m), v(k, i))gkiv[i+ 1,m].

Thus, the coproduct has the form (5.1), where

τi(1 − q
−1) = αm

k (αi
kα

m
i+1)

−1p(v(i+ 1,m), v(k, i)).

The definition of αm
k given in (4.7) shows that

αm
k (αi

kα
m
i+1)

−1 = εmk (εikε
m
i+1)

−1 · p(v(k, i), v(i+ 1,m))

because



∏

k≤a<b≤i

pab
∏

i+1≤a<b≤m

pab





−1
∏

k≤a<b≤m

pab = p(v(k, i), v(i + 1,m)).

The definition of µm,i
k given in (3.6) implies

τi(1− q
−1) = εmk (εikε

m
i+1)

−1(q − 1)µm,i
k ;

that is, τi = εmk (εikε
m
i+1)

−1qµ
m,i
k . By (3.7), we have µm,i

k = σm
k (σi

kσ
m
i+1)

−1. Using
(3.9) and (4.8), we see that

(5.4) εmk σ
m
k =







q2 + q, if k ≤ n ≤ m, k 6= m;
q2, if k = n = m;
q, otherwise.

Now, it is easy to check that the τ ’s have the following elegant form

(5.5) τi = εmk σ
m
k (εikσ

i
k)

−1(εmi+1σ
m
i+1)

−1q

=

{
1 + q−1, if i = n− 1,m = n; or k = i = n;
1, otherwise.

�

Remark 1. If q is a root of 1, say qt = 1, t > 2, then the shuffle representation
is not faithful. Therefore in this case, the formula (5.1) is proved only for the
Frobenius-Lusztig kernel uq(sp2n). Nevertheless, all tensors in (5.1) have degree
at most 2 in each variable. At the same time, general results on combinatorial
representation of Nichols algebras [2, Section 5.5] demonstrate that in case Cn, the
kernel of the natural projection Uq(sp2n) → uq(sp2n) is generated by polynomials
of degree grater then 2 in (or independent of) each given variable. Hence (5.1)
remains valid in this case as well.

6. Relations in U+
q (so2n)

In what follows, we fix a parameter q such that q 6= −1. If C is a Cartan matrix
of type Dn, then relations (2.10) take the form

(6.1) pii = q, 1 ≤ i ≤ n; pi i−1pi−1 i = pn−2npnn−2 = q−1, 1 < i < n;

(6.2) pijpji = pn−1npnn−1 = 1, if j > i+ 1& (i, j) 6= (n, n− 2).

The quantum Borel algebra U+
q (so2n) can be defined by the condition that the

Hopf subalgebras Un−1 and Un generated, respectively, by x1, x2, . . . , xn−1 and
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x1, x2, . . . , xn−2, xn are Hopf algebras Uq(sln) of type An−1, and by one additional
relation

(6.3) [xn−1, xn] = 0.

Recall that xi, n < i < 2n denotes the generator x2n−i, whereas if 1 ≤ i < 2n,
then φ(i) equals 2n− i, so that xi = xφ(i), see Definition 3.2.

Definition 6.1. We define words e(k,m), 1 ≤ k ≤ m < 2n in the following way:

(6.4) e(k,m) =







xkxk+1 · · ·xm−1xm, if m < n or k > n;
xkxk+1 · · ·xn−2xnxn+1 · · ·xm, if k < n− 1 < m;
xnxn+1 · · ·xm, if k = n− 1 < m;
xnxn+2xn+3 · · ·xm, if k = n.

Respectively, e(m, k) is the word opposite to e(k,m). Further, we define a word
e′(k,m) as a word that appears from e(k,m) by replacing the subword xnxn+1, if
any, with xn−1xn. Respectively, e

′(m, k) is the word opposite to e′(k,m).
We see that e(k,m) coincides with v(k,m) if m < n or k > n. If k < n− 1 < m,

then e(k,m) appears from v(k,m) by deleting the letter xn−1 (but not of xn+1!).
Similarly, if k = n, then e(n,m) appears from v(n,m) by deleting the letter xn+1,

whereas if k = n − 1, then we have e(n− 1,m) = v(n,m). We have to stress that
according to this definition e(n− 1, n) = e(n, n) = e(n, n+ 1) = xn.

Lemma 6.2. If 1 ≤ k ≤ m < 2n, then

(6.5) p(e(k,m), e(k,m)) = σm
k =

{
q2, if m = φ(k);
q, otherwise.

Proof. If the word e(k,m) does not contain a subword xnxn+1, then it belongs to
either Un or Un−1 that are isomorphic to U+

q (sln). Hence we have p(e(k,m), e(k,m))
= q.

Let k ≤ n− 1 < m. In this case e(k,m+ 1) = e(k,m)xm+1 which allows one to
use induction on m − n + 1. If m = n, then e(k, n) does not contain a sub-word
xnxn+1. Because p(-, -) is a bimultiplicative map, we may decompose

(6.6) p(e(k,m+ 1), e(k,m+ 1)) = σm
k · q · p(e(k,m), xm+1) · p(xm+1, e(k,m)).

Using relations 6.1 and 6.2 we shall prove

(6.7) p(e(k,m), xm+1) · p(xm+1, e(k,m)) =







1, if k = φ(m) − 1;
q−2, if k = φ(m);
q−1, otherwise.

The left hand side of the above equality is
∏

k≤t≤m, t6=n−1 ptm+1pm+1 t.

If m > n+1, then by 6.1 and 6.2 the factor ptm+1pm+1 t differs from 1 only if t ∈
{φ(m)− 2, φ(m)− 1, φ(m),m} and related values are respectively q−1, q2, q−1, q−1

whereas the product of all those values is precisely q−1. Hence, if k < φ(m)−1, then
the whole product is q−1; if k = φ(m)−1, then this is 1; if k = φ(m), then this is q−2;
if k > φ(m), then this is again q−1. If m = n+1, then nontrivial factors are related
to t ∈ {n− 3, n− 2, n, n+ 1} with values q−1, q2, q−1, q−1, respectively. Hence, we
arrive to the same conclusion with k < n− 2 = φ(m) − 1; k = n − 2 = φ(m) − 1;
and k = n− 1 = φ(m).
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Finally, ifm = n, then there is just one nontrivial factor which relates to t = n−2
with value q−1, so that if k ≤ n − 2 = φ(m) − 2, then the total product is q−1; if
k = n− 1 = ψ(m)− 1, then this is 1. This completes the proof of (6.7).

To complete the inductive step we use (6.7) and inductive hypothesis: if k =
φ(m) − 1, then σm+1

k = q · q · 1 = q2; if k = φ(m), then σm+1
k = q2 · q · q−2 = q;

otherwise σm+1
k = q · q · q−1 = q. �

Lemma 6.3. If the word e(k,m) contains the subword xnxn+1; that is k < n < m,

then for each i, k ≤ i < m we have

(6.8) p(e(k, i), e(i+ 1,m)) · p(e(i+ 1,m), e(k, i)) = σm
k (σi

kσ
m
i+1)

−1 = µ
m,i
k .

Proof. If k < n < m, then for i 6= n − 1 there is a decomposition e(k,m) =
e(k, i)e(i + 1,m) which implies (6.8) because the form p(-, -) is bimultiplicative.
For i = n − 1 there is another equality e′(k,m) = e(k, i)e(i + 1,m). Certainly
p(e′(k,m), e′(k,m)) = p(e(k,m), e(k,m)) = σm

k . Hence (6.8) is still valid. �

We define the bracketing of e(k,m), k ≤ m < 2n as follows.

(6.9) e[k,m] =







[[[. . . [xk, xk+1], . . .], xm−1], xm], if m < φ(k);
[xk, [xk+1, [. . . , [xm−1, xm] . . .]]], if m > φ(k);
[[e[k,m− 1], xm]], if m = φ(k),

where as above [[u, v]] = uv − q−1p(u, v)vu.
Conditional identity (2.6) demonstrates that the value of e[k,m] in U+

q (so2n) is
independent of the precise arrangement of brackets, provided that m ≤ n or k ≥ n.

Lemma 6.4. If k < n < m < φ(k), then the value in U+
q (so2n) of the brack-

eted word [ykxn+1xn+2 · · ·xm], where yk = e[k, n], is independent of the precise

arrangement of brackets.

Proof. To apply (2.6), it suffices to check [yk, xt] = 0, where n + 1 < t ≤ m or,
equivalently, φ(m) ≤ t < n− 1. We have

[yk, xt] = [[e[k, t− 2], e[t− 1, n]], xt] = [e[k, t− 2], [e[t− 1, n], xt]].

The polynomial [e[t − 1, n], xt] is independent of xn−1, so that it belongs to the
Hopf subalgebra Un = U+

q (sln). By [9, Theorem An], the element [e[t − 1, n], xt]

equals zero in U+
q (sln) because the word e(t− 1, n)xt is standard, and the standard

bracketing is [e[t− 1, n], xt]. �

Lemma 6.5. If k < n, φ(k) < m, then the value in U+
q (so2n) of the bracketed

word [xkxk+1 · · ·xn−2xnym], where ym = e[n+ 1,m], is independent of the precise

arrangement of brackets.

Proof. To apply (2.6), we need the equalities [xt, ym] = 0, k ≤ t < n − 1. The
polynomial [xt, ym] belongs to the subalgebra Un−1. Moreover, [xt, ym] is propor-
tional to [ym, xt] due to antisymmetry identity (2.4) because p(xt, ym)p(ym, xt)
= pt t+1pttpt t−1 · pt+1 tpttpt−1 t = 1. The equality [ym, xt] = 0 turns to the proved
above equality [e[k, n], xt] = 0 if one renames the variables xn+1 ← xk, xn+2 ←
xk+1, . . . . �
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7. PBW generators of U+
q (so2n)

Proposition 7.1. If q 6= −1, then values of the elements e[k,m], k ≤ m < φ(k)
form a set of PBW generators with infinite heights for the algebra U+

q (so2n) over

k[G].

Proof. All words e(k,m), k ≤ m < φ(k) are standard Lyndon-Shirshov words, and
by [9, Theorem Dn, p. 225] under the standard bracketing, say [e(k,m)], they form
a set of PBW generators with infinite heights.

By induction on m − k we prove that the values in U+
q (so2n) of [e(k,m)] equal

the values of e[k,m] with bracketing given in (6.9).
If m ≤ n, then by Lemma 2.1 we have nothing to prove.
If k < n < m, then according to [9, Lemma 7.25], the brackets in [e(k,m)] are

set by the following recurrence formulae (we note that [e(k,m)] = [ek φ(m)] in the
notations of [9]):

(7.1) [e(k,m)] =

{
[xk[e(k + 1,m)]], if m < φ(k) − 1;
[[e(k,m− 1)]xm], if m = φ(k) − 1.

In the latter case the induction applies directly. In the former case using induction
and Lemma 6.4 we have [e(k + 1,m)] = e[k + 1,m] = [e[k + 1, n], e[n + 1,m]]. At
the same time [xk, xt] = 0, n < t ≤ m because xt = xφ(t) and φ(t) ≥ φ(m) > k + 1
& (k, φ(t)) 6= (n− 2, n). This implies [xk, e[n+1,m]] = 0. Applying the conditional
identity (2.5), we get

[e(k,m)] = [xk[e[k + 1, n], e[n+ 1,m]]] =
[
[xke[k + 1, n]], e[n+ 1,m]

]
= e[k,m].

�

8. Shuffle representation for U+
q (so2n)

In this section, we are going to find the shuffle representation of elements e[k,m],
1 ≤ k ≤ m < 2n. If e(k,m) has not xnxn+1 as a subword, then e[k,m] belongs
to a Hopf subalgebra of type An: this is either Un−1 = U+

q (sln) or Un = U+
q (sln).

At the same time in the considered above case Cn, the elements x1, x2, . . . , xn−1

generate precisely a Hopf subalgebra Uq(sln). Hence we may apply Proposition 4.2:

(8.1) e[k,m] = αm
k · (e(m, k)),

where

(8.2) αm
k =







(q − 1)m−k ·
∏

k≤i<j≤m

pij , if m < n or k > n;

(q − 1)m−n−1 ·
∏

n≤i<j≤m, i,j 6=n+1

pij , if k = n;

(q − 1)n−k−1 ·
∏

k≤i<j≤m, i,j 6=n−1

pij , if m = n.

Proposition 8.1. Let 1 ≤ k < n < m < 2n. In the shuffle representation, we have

(8.3) e[k,m] = αm
k · {(e(m, k)) + pn−1,n(e

′(m, k))},

where

(8.4) αm
k = ǫmk (q − 1)m−k−1 ·

∏

k≤i<j≤m, i,j 6=n−1

pij
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with

(8.5) ǫmk =

{
q−1, if m = φ(k);
1, otherwise.

Proof. a). Consider first the case m < φ(k). We use induction on m − n. Let
m−n = 1. Condition n+1 = m < φ(k) implies k < n− 1. Hence by Lemma 6.4 we
have e[k, n+ 1] = [e[k, n], xn+1], whereas (8.1) implies e[k, n] = αn

k (e(n, k)). Using
(2.15), we may write

e[k, n+ 1] = αn
k{(e(n, k))(xn+1)− p(e(n, k), xn+1) · (xn+1)(e(n, k))}

(8.6) = αn
k

∑

uv=e(n,k)

{p(xn+1, v)
−1 − p(v, xn+1)}(uxn+1v),

where p(v, xn+1) = p(e(n, k), xn+1)p(u, xn+1)
−1 because e(n, k) = uv. We have

p(xn+1, v)
−1 − p(v, xn+1) = p(v, xn+1) · {p(xn+1, v)

−1p(v, xn+1)
−1 − 1}.

At the same time equality xn+1 = xn−1 and relations (6.1), (6.2) imply

p(xn+1, v)p(v, xn+1) =

{
q−1, if v = e(n, k) or v = e(n− 2, k);
1, otherwise.

Hence in the decomposition (8.6) two terms remain

αn
kp(e(n, k), xn+1)(q − 1)(xn+1xnxn−2 · · ·xk) = αn+1

k (e(n+ 1, k))

and

αn
kp(e(n− 2, k), xn+1)(q − 1)(xnxn−1xn−2 · · ·xk) = αn+1

k pn−1,n(e
′(n+ 1, k)),

for p−1
n,n+1 = p−1

n,n−1 = pn−1,n due to (6.2). This completes the first step of induction.

Suppose that equalities (8.3) and (8.4) are valid and still m + 1 < φ(k). Then
Lemma 6.4 implies e[k,m+ 1] = [e[k,m], xm+1]. By (2.15) we have

[(e(m, k)), (xm+1)] =
∑

uv=e(m,k)

p(v, xm+1)·{p(xm+1, v)
−1p(v, xm+1)

−1−1}(uxm+1v).

Relations (6.1), (6.2) imply that

p(xm+1, v)p(v, xm+1) =







q, if v = e(φ(m) − 1, k);
q−1, if v = e(m, k) or v = e(φ(m) − 2, k);
1, otherwise.

Thus in the decomposition just three terms remain. Two of them, corresponding
to v = e(φ(m)− 1, k) and v = e(φ(m)− 2, k), are canceled:

p(xφ(m)−1, xm+1)(q
−1 − 1) + (q − 1) = q(q−1 − 1) + (q − 1) = 0.

Thus

[(e(m, k)), (xm+1)] = {(q − 1) ·
∏

k≤i≤m, i6=n−1

pim+1} (e(m+ 1, k)).

In perfect analogy, we have

[(e′(m, k)), (xm+1)] = {(q − 1) ·
∏

k≤i≤m, i6=n−1

pim+1} (e
′(m+ 1, k)).
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The inductive supposition yields e[m, k] = αm
k ·{(e(m, k))+pn−1,n(e

′(k,m))}. Hence
to complete the induction, it suffices to note that

αm+1
k = αm

k · (q − 1) ·
∏

k≤i≤m, i6=n−1

pim+1.

b). Similarly consider the case m > φ(k) using downward induction on n − k.
Let k = n − 1. Condition m > φ(k) implies m ≥ n + 2. Hence by Lemma 6.5
we have e[n − 1,m] = [xn, e[n + 1,m]], whereas (8.1) and (8.2) imply e[n + 1,m]
= αm

n+1(e(m,n+ 1)). Using (2.15), we may write

e[n− 1,m] = αm
n+1{(xn)(e(m,n+ 1))− p(xn, e(m,n+ 1)) · (e(m,n+ 1))(xn)}

(8.7) = αm
n+1

∑

uv=e(m,n+1)

{p(u, xn)
−1 − p(xn, u)}(uxnv),

where p(xn, u) = p(xn, e(m,n+ 1))p(xn, v)
−1 because e(m,n+ 1) = uv. We have

p(u, xn)
−1 − p(xn, u) = p(xn, u) · {p(u, xn)

−1p(xn, u)
−1 − 1}.

Equality xn+1 = xn−1 and relations (6.1), (6.2) imply that p(u, xn)p(xn, u) = 1
unless u = e(m,n+1) or u = e(m,n+2). In these two exceptional cases, the product
equals pn+2npnn+2 = q−1 because pnn+1pn+1n = 1. Hence in the decomposition
(8.7) two terms remain

αm
n+1p(xn, e(m,n+ 1))(q − 1)(xm · · ·xn+1xn) = αm

n−1(e(m,n− 1))

and

αm
n+1p(xn, e(m,n+ 2))(q − 1)(xm · · ·xn+2xnxn+1) = αm

n−1 · p
−1
nn+1(e

′(m,n− 1)).

This completes the first step of induction because p−1
nn+1 = pn−1n.

Suppose that equalities (8.3) and (8.3) are valid and stillm > φ(k−1) = φ(k)+1.
Lemma 6.5 implies e[k − 1,m] = [xk−1, e[k,m]]. We have

[(xk−1), (e(m, k))] =
∑

uv=e(m,k)

p(xk−1, u) · {p(u, xk−1)
−1p(xk−1, u)

−1− 1}(uxk−1v).

Relations (6.1), (6.2) imply that

p(u, xk−1)p(xk−1, u) =







q if u = e(m,φ(k) + 1);
q−1 if u = e(m, k) or u = e(φ(k) + 2, k);
1 otherwise.

Hence in the decomposition (8.6) just three terms remain. Two of them, corre-
sponding to u = e(m,φ(k) + 1) and u = e(m,φ(k)), are canceled:

p(xk−1, xφ(k)+1)(q
−1 − 1) + (q − 1) = q(q−1 − 1) + (q − 1) = 0.

Thus

[(xk−1), (e(m, k)] = {(q − 1) ·
∏

k≤j≤m, j 6=n−1

pk−1 j} (v(m, k − 1)).

In perfect analogy, we have

[(xk−1), (e
′(m, k)] = {(q − 1) ·

∏

k≤j≤m, j 6=n−1

pk−1 j} (v
′(m, k − 1)).
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The inductive supposition states e[m, k] = αm
k ·{(e(m, k))+pn−1,n(e

′(k,m))}. Hence
it remains to note that

αm
k−1 = αm

k · (q − 1) ·
∏

k≤j≤m, j 6=n−1

pk−1 j .

c). Let m = φ(k) 6= n. In this case, xm = xk, ǫ
m
k = q−1. If k = n− 1, m = n+1,

then e(n− 1, n) = xn and by Definition 6.9 we have

e[n− 1, n+ 1] = xnxn+1 − q
−1pnn+1xn+1xn = (1− q−1)xnxn+1

since due to (6.3) we have xn+1xn = pn−1nxnxn+1 with xn+1 = xn−1 and pnn+1pn−1n

= 1. In the shuffle form, we get

(xn)(xn+1) = (xnxn+1) + p−1
n+1n(xn+1xn) = pnn+1 · {(xn+1xn) + pn−1n(xnxn+1)}.

It remains to note that e(n − 1, n + 1) = xnxn+1, e(n + 1, n − 1) = xn+1xn,

e′(n− 1, n+ 1) = xn−1xn, e
′(n+ 1, n− 1) = xnxn−1 = xnxn+1.

Let k < n− 1. By definition (6.9) we have

(8.8) e[k,m] = e[k,m− 1] · xm − q
−1p(e(k,m− 1), xm)xk · e[k,m− 1].

Already done case a) allows us to find the shuffle representation

e[k,m− 1] = αm−1
k · {(e(m− 1, k)) + pn−1n(e

′(m− 1, k))}.

We have

[[(e(m− 1, k)), (xm)]] =
∑

uv=e(m−1,k)

p(v, xm) · {p(xm, v)
−1p(v, xm)−1 − q−1}(uxmv).

Relations (6.1), (6.2) imply that

p(xm, v)p(v, xm) =







1, if v = ∅ or v = e(m− 1, k);
q2, if v = xk;
q, otherwise.

Therefore in the decomposition just three terms remain. Two of them, correspond-
ing to v = ∅ and v = xk, are canceled:

p(xk, xm)(q−2 − q−1) + (1 − q−1) = q(q−2 − q−1) + (1− q−1) = 0.

Thus

[[(e(m− 1, k)), (xm)]] = {(1− q−1) ·
∏

k≤i<m, i6=n−1

pim} (e(m, k)).

In perfect analogy, we have

[[(e′(m− 1, k)), (xm)]] = {(1− q−1) ·
∏

k≤i<m, i6=n−1

pim} (e
′(m, k)).

It suffices to note that 1− q−1 = ǫmk (q − 1), and by definition

αm
k = αm−1

k · ǫmk (q − 1) ·
∏

k≤i<m, i6=n−1

pim.

The proposition is completely proved. �
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9. Coproduct formula for Uq(so2n)

Theorem 9.1. In U+
q (so2n) the coproduct on the elements e[k,m], k ≤ m < 2n

has the following explicit form

(9.1) ∆(e[k,m]) = e[k,m]⊗ 1 + gkm ⊗ e[k,m]

+

m−1∑

i=k

τi(1 − q
−1)gki e[i+ 1,m]⊗ e[k, i],

where τi = 1, with two exceptions, being τn = 0 if k = n, and τn−1 = 0 if m = n;
and τn−1 = pnn−1 otherwise. Here gki = gr(e(k, i)) is a group-like element that

appears from the word e(k, i) under the substitutions xλ ← gλ.

Proof. If the word e(k,m) does not contain the subword xnxn+1, then e[k,m] be-
longs to either Un−1 or Un. Both of these Hopf algebras are isomorphic to U+

q (sln).
Hence if m ≤ n or k ≥ n, then we have nothing to prove.

Suppose that k < n < m. In this case by Proposition 8.1 we have the shuffle
representation

(9.2) e[k,m] = αm
k · {(e(m, k)) + pn−1 p(e

′(m, k))},

where (e(m, k)) is a comonomial shuffle

(e(m, k)) =

{
(xmxm−1 · · ·xn+2xn+1xnxn−2 · · ·xk), if k < n− 1;
(xmxm−1 · · ·xn+2xn+1xn), if k = n− 1,

whereas (e′(m, k)) is a related one:

(e′(m, k)) =

{
(xmxm−1 · · ·xn+2xnxn−1xn−2 · · ·xk), if k < n− 1;
(xmxm−1 · · ·xn+2xnxn−1), if k = n− 1.

Using (2.14) it is easy to find the braided coproduct of the comonomial shuffles:

∆b
0((e(m, k))) =

n−2∑

i=k

(e(m, i + 1))⊗(e(i, k)) +
m−1∑

i=n

(e(m, i+ 1))⊗(e(i, k)),

∆b
0((e

′(m, k))) =

n−1∑

i=k

(e′(m, i+ 1))⊗(e(i, k)) +
m−1∑

i=n+1

(e(m, i+ 1))⊗(e′(i, k)),

where for short we define ∆b
0(U) = ∆b(U)−U⊗1−1⊗U. Taking into account (9.2),

we have

(αm
k )−1∆b

0(e[k,m]) =

(
n−2∑

i=k

(αm
i+1)

−1e[i+ 1,m]⊗(e(i, k))

)

+pn−1n(e(m,n))⊗(e(n−1, k))

+(e(m,n+ 1))⊗(e(n, k)) +
m−1∑

i=n+1

(e(m, i+ 1))⊗(αi
k)

−1e[k, i].

Relation (8.1) applied to e[k, i], i ≤ n and e[i + 1,m], i ≥ n allows one to rewrite
the right hand side of the above equality in terms of e[i, j] :

=

(
n−2∑

i=k

(αi
k)

−1(αm
i+1)

−1e[i+ 1,m]⊗e[k, i]

)

+pn−1n(α
m
n )−1(αn−1

k )−1e[n,m]⊗e[k, n−1]

+(αm
n+1)

−1(αn
k )

−1e[n+ 1,m]⊗e[k, n] +
m−1∑

i=n+1

(αm
i+1)

−1(αi
k)

−1e[i+ 1,m]⊗e[k, i].
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Thus, we have

(9.3) ∆b
0(e[k,m]) =

m−1∑

i=k

γi e[i+ 1,m]⊗e[k, i],

where

(9.4) γi = p
δin−1

n−1n · α
m
k (αi

kα
m
i+1)

−1,

whereas δin−1 is the Kronecker delta.
Our next step is to see that for all i, k ≤ i < m we have

(9.5) γi = p
δin−1

nn−1 · (q − 1)ǫmk (ǫikǫ
m
i+1)

−1p(e(k, i), e(i+ 1,m)).

All factors except the ǫ’s in (9.4) have the form (q − 1)s
∏

A pab, where A is a
suitable set of pairs (a, b) and s is an integer exponent. Due to bimultiplicativity of
the form p(-, -), the same is true for the right hand side of (9.5). Hence it suffices
to demonstrate that the sum of exponents of the factors in (9.4) equals 1, and the
resulting product domains in (9.4) and (9.5) are the same, or at least they define
the same product.

If i < n − 1, then using (9.4), (8.1), and Proposition 8.1, we have the required
equality for the exponents,

(m− k − 1)− (i− k)− (m− i− 2) = 1,

and for the product domains:

{k ≤ a < b ≤ m, a, b 6= n−1}\({k ≤ a < b ≤ i}∪{i+1≤ a < b ≤ m, a, b 6= n−1})

= {k ≤ a ≤ i < b ≤ m, a, b 6= n− 1}.

If i ≥ n, then similarly we have the required equality for the exponents,

(m− k − 1)− (i − k − 1)− (m− i− 1) = 1,

and for the product domains:

{k ≤ a < b ≤ m, a, b 6= n−1}\({k ≤ a < b ≤ i, a, b 6= n−1}∪{i+1 ≤ a < b ≤ m, })

= {k ≤ a ≤ i < b ≤ m, a, b 6= n− 1}.

In the remaining case, i = n − 1, we have e(k, i) = xk · · ·xk−2xk−1, e(i + 1,m)
= xnxn+2 · · ·xm. Due to (8.2), the exponent is

(m− k − 1)− (n− 1− k)− (m− n− 1) = 1,

whereas the product domain of αm
k (αn−1

k αm
n )−1 reduces to

{k ≤ a < b ≤ m, a, b 6= n−1}\({k ≤ a < b ≤ n−1}∪{n ≤ a < b ≤ m, a, b 6= n+1})

(9.6) = {k ≤ a < n− 1 < b ≤ m} ∪ {n+ 1 = a < b ≤ m} ∪ {(n, n+ 1)}.

However, in this case the product domain for αn−1
k is not a subset of the product

domain for αm
k . Therefore additionally to the product defined by (9.6), there appears

a factor
∏

k≤a<b=n−1

p−1
ab and a factor pn−1n that comes from (9.4) due to δin−1 = 1.

The latter factor cancels with the factor defined by the subset {(n, n + 1)} since
pn−1npnn+1 = 1, whereas the product domain of the former factor must be added
to the product domain of p(e(k, i), e(i+ 1,m)):

(9.7) {k ≤ a ≤ n− 1 < b ≤ m, b 6= n+ 1} ∪ {k ≤ a < b = n− 1}.
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It remains to compare the products defined by (9.6) without the last pair and that
defined by (9.7).

The set {k ≤ a < n− 1 < b ≤ m, b 6= n+ 1} is a subset of the first sets in (9.6)
and (9.7). After cancelling the pairs from that set, (9.6) and (9.7) transform to,
respectively,

(9.8) {k ≤ a < n− 1 < b = n+ 1} ∪ {n+ 1 = a < b ≤ m}

and

(9.9) {a = n− 1 < b ≤ m, b 6= n+ 1} ∪ {k ≤ a < b = n− 1}.

The first set of (9.8) and the second set of (9.9) define the same product because
xn+1 = xn−1 and pan+1 = pa n−1. By the same reason pn−1 b = pn+1 b, hence
the first set of (9.9) defines the same product as the second set of (9.8) up to
one additional factor, pn−1n that corresponds to the pair (n − 1, n). This factor
is canceled by the first factor pn,n−1 that appears in (9.5) due to δin−1 = 1. The
equality (9.5) is completely proved.

Now we are ready to consider the (unbraided) coproduct. Formula (2.13) demon-

strates that the tensors u(1) ⊗ u(1) of the coproduct and tensors u
(1)
b ⊗u

(1)
b of the

braided coproduct are related by u
(1)
b = u(1)gr(u(2))−1, u

(2)
b = u(2). The equality

(9.3) provides the values of u
(1)
b and u

(2)
b . Hence we may find u(1) = γie[i+1,m]gki

and u(2) = e[k, i], where gki = gr(e[k, i]). The commutation rules imply

e[i+ 1,m]gki = p(e(i+ 1,m), e(k, i))gkie[i+ 1,m].

Therefore the coproduct has the form (9.1), where

τi(1 − q
−1) = γi p(e(i+ 1,m), e(k, i)).

Applying (9.5) and Lemma 6.3 we get

τi(1 − q
−1) = p

δin−1

nn−1 · (q − 1)ǫmk (ǫikǫ
m
i+1)

−1 · σm
k (σi

kσ
m
i+1)

−1.

Lemma 6.2 and Eq. ( 8.5) imply that ǫmk σ
m
k equals q for all k,m without exceptions.

Hence

ǫmk (ǫikǫ
m
i+1)

−1 · σm
k (σi

kσ
m
i+1)

−1 = q−1,

and we have

(9.10) τi = p
δin−1

nn−1 =

{
pnn−1, if i = n− 1;
1, otherwise.

The theorem is completely proved. �

Remark 2. If qt = 1, t > 2, then (9.1) remains valid due to precisely the same
arguments that were given in Remark 1, see page 12.

Remark 3. In fact, the exceptions τn = 0 if k = n, and τn−1 = 0 if m = n

can be omitted in the statement of the above theorem. Indeed, the related tensors
are, respectively, e[n+1,m]⊗ e[n, n] and e[n, n]⊗ e[k, n− 1], whereas by definition
e[n, n] = [[xn, xn]] = xn · xn − q−1p(xn, xn)xn · xn = 0. So that, we may assume
τn = 1, τn−1 = pnn−1 as well.
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