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 4
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THE CP-MATRIX APPROXIMATION PROBLEM

JINYAN FAN AND ANWA ZHOU

Abstract. A symmetric matrix A is completely positive (CP) if there exists
an entrywise nonnegative matrix V such that A = V V T . In this paper, we
study the CP-matrix approximation problem of projecting a matrix onto the
intersection of a set of linear constraints and the cone of CP matrices. We
formulate the problem as the linear optimization with the norm cone and the
cone of moments. A semidefinite algorithm is presented for the problem. A
CP-decomposition of the projection matrix can also be obtained if the problem
is feasible.

1. Introduction

A real n × n symmetric matrix A is completely positive (CP) if there exist
nonnegative vectors v1, · · · , vr ∈ R

n
+ such that

(1.1) A = v1v
T
1 + · · ·+ vrv

T
r ,

where r is called the length of the decomposition (1.1). The smallest r in the above
is called the CP-rank of A. If A is CP, we call (1.1) a CP-decomposition of A.
So, A is CP if and only if A = V V T for an entrywise nonnegative V . Clearly, a
CP-matrix is double nonnegative, i.e., it is not only positive semidefinite but also
nonnegative entrywise.

Let Sn be the set of real n×n symmetric matrices. For a cone C ⊆ Sn, the dual
cone of C is defined as

C∗ := {B ∈ Sn : A •B ≥ 0 for all A ∈ C},
where A •B := trace(ATB) is the standard inner product on R

n×n. Denote

CPn = {A ∈ Sn : A = V V T with V ≥ 0}, the completely positive cone,

COPn = {B ∈ Sn : xTBx ≥ 0 for all x ≥ 0}, the copositive cone.

Both CPn and COPn are proper cones (i.e. closed, pointed, convex and full-
dimensional). Moreover, they are dual to each other [17]. A variety of NP-hard
problems can be formulated as optimization problems over the completely positive
cone or the copositive cone. Interested readers are referred to [2, 6, 7, 8, 4, 12, 15]
for the work in the field.

The important applications of the CP cone motivate people to study whether a
matrix is CP or not. However, checking the membership in CPn has been shown NP-
hard, while checking the membership in COPn co-NP-hard [13, 26]. It is generally
difficult to treat CPn (or COPn) directly. A standard approach is to approximate
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it by simpler and more tractable cones [12, 14, 3, 32, 24]. By Nie’s approach
proposed in [27, 28], Zhou and Fan [36] presented a semidefinite algorithm for the
CP-matrix completion problem, which includes the CP checking as a special case;
a CP-decomposition for a general CP-matrix can also be found by the algorithm.
The approach is also applied to check interiors of the completely positive cone [37].

In [34], Sponseldur and Dür considered the problem of projecting a matrix onto
the cones of copositive and completely positive matrices. Unlike projecting onto
the cones of nonnegative matrices and positive semidefinite matrices, projecting
onto either CPn or COPn is a nontrivial task in view of the NP-complexity results
[13, 26]. Sponseldur and Dür used polyhedral approximations of COPn to compute
the projection of a matrix onto COPn and the projection onto CPn by a dual
approach.

In this paper, we consider the general CP-matrix approximation problem stated
as:

min
X

‖X − C‖p
s.t. Ai •X = bi, i = 1, . . . ,me,

Ai •X ≥ bi, i = me + 1, . . . ,m,
X ∈ CPn,

(1.2)

where C,Ai ∈ Sn, bi ∈ R(i = 1, . . . ,m), and ‖ · ‖p is the p-norm (p = 1, 2,∞ or
F ). The problem is projecting a symmetric matrix onto the intersection of a set of
linear constraints and the complete positive cone.

Specially, if C = 0, then (1.2) becomes the feasibility problem of finding a matrix
in the intersection of a set of linear constraints and the CP cone, which has the
minimum p-norm.

If there are no linear constraints, (1.2) is reduced to the CP projection problem

min
X

‖X − C‖p
s.t. X ∈ CPn.

(1.3)

Hence, the CP projection problem is a special case of (1.2). Clearly, (1.3) is always
feasible and has a solution. If the minimum is zero, then the projection matrix of
C onto CPn is itself, which implies that C is CP. If the minimum is nonzero, then
C is not CP. So, solving the CP projection problem (1.3) provides a way to check
whether C is CP.

In this paper, we formulate (1.2) as a linear optimization problem with the cone
of moments and the p-norm cone, then propose a semidefinite algorithm for it. If
(1.2) is infeasible, we can get a certificate for it. If (1.2) is feasible, we can get a
projection matrix of C onto the set of linear constraints and the CP cone. Moreover,
a CP-decomposition of the projection matrix can also be obtained.

The paper is organized as follows. In section 2, we review the norm cone and its
dual cone, and characterize the CP matrix as a moment sequence. In section 3, we
show how to formulate (1.2) as a linear optimization problem with the norm cone
and the cone of moments; its dual problem is also given. We present a smidefinite
algorithm for (1.2) and study its convergence properties in section 4. Some com-
putational results are given in section 5. Finally, we conclude the paper in section
6.
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2. Preliminaries

In this section, we first give the dual norm of the p-norm on Sn for p = 1, 2,∞
and F respectively; the p-norm cone and its dual cone are also given. Then we
characterize CP matrices as moments, and review some basics about moments
and localizing matrices, as well as the semidefinite relaxations of the CP cone (cf.
[21, 22, 25, 23, 27]).

2.1. p-norm cone and its dual. For A ∈ R
n×n, the p-norms of A (p = 1, 2,∞, F )

are defined by:

‖A‖1 = max
j

n
∑

i=1

|Aij |, the maximum absolute column sum norm or 1-norm,

‖A‖2 = (λmax(A
TA))1/2, the spectral norm or 2-norm,

‖A‖∞ = max
i

n
∑

j=1

|Aij |, the maximum absolute row sum norm or ∞-norm,

‖A‖F = (trace(ATA))1/2, the Frobenius norm or F -norm.

Note that, when A ∈ Sn, the 1-norm is the same as ∞-norm.
Let ‖ ·‖ be a norm on Sn. The associated dual norm, denoted by ‖ ·‖∗, is defined

by

‖A‖∗ = sup{A •X : ‖X‖ ≤ 1},(2.1)

(cf. [5, Section A.1.6]). It can be proved that the dual norm of the p-norm for
p = 1, 2,∞ and F are:

‖A‖1∗ =

n
∑

j=1

max
i

|Aij |,

‖A‖2∗ = trace((ATA)1/2),

‖A‖∞∗ =

n
∑

i=1

max
j

|Aij |,

‖A‖F∗ = ‖A‖F .

For ‖ · ‖ on Sn, the norm cone is defined by

K = {(X, s) ∈ Sn × R+ : ‖X‖ ≤ s},

where Sn × R+ is the Cartesian product of Sn and R+. The dual cone of K is
defined by

K∗ = {(Y, t) ∈ Sn × R+ : X • Y + st ≥ 0 for all (X, s) ∈ Sn × R+}.

For the p-norm cone (p = 1, 2,∞ and F ),

Kp = {(X, s) ∈ Sn × R+ : ‖X‖p ≤ s},

we can prove that the dual cone of Kp is

K∗
p = {(Y, t) ∈ Sn × R+ : ‖Y ‖p∗ ≤ t}.
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2.2. Characterization as moments. A symmetric matrix A ∈ Sn can be iden-
tified by a vector consisting of its upper triangular entries, i.e.

vech(A) = (A11, A12, . . . , A1n, A22, . . . , A2n, A33, . . . , Ann)
T .

Let N be the set of nonnegative integers. For α = (α1, · · · , αn) ∈ N
n, denote

|α| := α1 + · · ·+ αn. Let

(2.2) E := {α ∈ N
n : |α| = 2}.

Then, A can also be identified as

a = (aα)α∈E ∈ R
E , aα = Aij if α = ei + ej, i ≤ j,

where ei is the i-th unit vector in R
n and R

E denotes the space of real vectors
indexed by α ∈ E. We call a an E-truncated moment sequence (E-tms).

Let

(2.3) ∆ = {x ∈ R
n : x2

1 + · · ·+ x2
n − 1 = 0, x1 ≥ 0, · · · , xn ≥ 0}

be the nonnegative part of the unit sphere. Every nonnegative vector is a multiple
of a vector in ∆. So, by (1.1), A ∈ CPn if and only if there exist ρ1, · · · , ρr > 0
and u1, · · · , ur ∈ ∆ such that

(2.4) A = ρ1u1u
T
1 + · · ·+ ρluru

T
r .

The E-truncated ∆-moment problem (E-T∆MP) studies whether or not a given
E-tms a admits a ∆-measure µ, i.e., a nonnegative Borel measure µ supported in
∆ such that

aα =

∫

∆

xαdµ, ∀α ∈ E,

where xα := xα1

1 · · ·xαn
n . A measure µ satisfying the above is called a ∆-representing

measure for a. A measure is called finitely atomic if its support is a finite set, and
is called r-atomic if its support consists of at most r distinct points.

Hence, by (2.4), a symmetric matrix A, with the identifying vector a ∈ R
E , is

completely positive if and only if a admits an r-atomic ∆-measure, i.e.,

(2.5) a = ρ1[u1]E + · · ·+ ρr[ur]E ,

where each ρi > 0, ui ∈ ∆ and

[ui]E := (uα
i )α∈E , i = 1, . . . , r.

Denote

R = {a ∈ R
E : a admits a ∆-measure}.(2.6)

Then, R is the CP cone (cf. [28]). Hence,

A ∈ CPn if and only if a ∈ R.(2.7)
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2.3. Localizing matrices and flatness. Let E and ∆ be given in (2.2) and (2.3),
respectively. Denote

R[x]E := span{xα : α ∈ E}.
We say R[x]E is ∆-full if there exists a polynomial p ∈ R[x]E such that p|∆ > 0
(i.e. p(u) > 0 for all u ∈ ∆). It is shown in [?] that the dual cone of R is

P = {p ∈ R[x]E : p(x) ≥ 0, ∀x ∈ ∆}.(2.8)

An E-tms a ∈ R
E defines a Riesz functional Fa acting on R[x]E as

(2.9) Fa(
∑

α∈E

pαx
α) :=

∑

α∈E

pαaα.

For convenience, we also denote the inner product 〈p, a〉 := Fa(p).
Let

N
n
d := {α ∈ N

n : |α| ≤ d} and R[x]d := span{xα : α ∈ N
n
d}.

For s ∈ R
N

n
2k and q ∈ R[x]2k, the k-th localizing matrix of q generated by s is the

symmetric matrix L
(k)
q (s) satisfying

(2.10) Fs(qp
2) = vec(p)T (L(k)

q (s)) vec(p), ∀p ∈ R[x]k−⌈deg(q)/2⌉ .

In the above, vec(p) denotes the coefficient vector of polynomial p in the graded
lexicographical ordering, and ⌈t⌉ denotes the smallest integer that is not smaller

than t. In particular, when q = 1, L
(k)
1 (s) is called a k-th order moment matrix

and denoted as Mk(s). We refer to [27, 18, 16] for more details about localizing
and moment matrices.

Denote the polynomials:

h(x) := x2
1 + · · ·+ x2

n − 1, g0(x) := 1, g1(x) := x1, · · · , gn(x) := xn.

Note that ∆ given in (2.3) is nonempty compact. It can also be described equiva-
lently as

(2.11) ∆ = {x ∈ R
n : h(x) = 0, g(x) ≥ 0},

where g(x) = (g0(x), g1(x), · · · , gn(x)). As shown in [27], a necessary condition for
s ∈ R

N
n
2k to admit a ∆-measure is

(2.12) L
(k)
h (s) = 0 and L(k)

gj (s) � 0, j = 0, 1, · · · , n,

where L
(k)
gj (s) � 0 means L

(k)
gj (s) is symmetric positive semidefinite. If, in addition

to (2.12), s satisfies the rank condition

(2.13) rankMk−1(s) = rankMk(s),

then s admits a unique ∆-measure, which is rankMk(s)-atomic (cf. Curto and
Fialkow [11]). We say s is flat if both (2.12) and (2.13) are satisfied.

Given two tms’ ā ∈ R
N

n
d and ¯̄a ∈ R

N
n
e , we say ¯̄a is an extension of ā, if d ≤ e and

āα = ¯̄aα for all α ∈ N
n
d . If ¯̄a is flat and extends ā, we say ¯̄a is a flat extension of

ā. We denote by ¯̄a|E the subvector of ¯̄a, whose entries are indexed by α ∈ E. Note
that an E-tms a ∈ R

E admits a ∆-measure if and only if it is extendable to a flat
tms ã ∈ R

N
n
2k for some k (cf. [27]). By (2.7), we have that

A ∈ CPn if and only if a has a flat extension.(2.14)
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2.4. Semidefinite relaxations. We call a subset I ⊆ R[x] an ideal if I + I ⊆ I
and I · R[x] ⊆ I. For a tuple χ = (χ1, . . . , χm) of polynomials in R[x], denote by
I(χ) the ideal generated by χ1, . . . , χm. The smallest ideal containing all χi is the
set χ1R[x] + · · ·+χmR[x]. A polynomial f ∈ R[x] is called a sum of squares (SOS)
if there exist f1, . . . , fk ∈ R[x] such that f = f2

1 + · · ·+ f2
k .

Let h and g be as in (2.11). Denote

(2.15) I2k(h) = {h(x)φ(x) : deg(hφ) ≤ 2k} ,
and

(2.16) Qk(g) =







n
∑

j=0

gjϕj : each deg(gjϕj) ≤ 2k and ϕj is SOS







.

Then, I(h) =
⋃

k∈N
I2k(h) is the ideal generated by h, and Q(g) =

⋃

k∈N
Qk(g) is

the quadratic module generated by g (cf. [28]). We say I(h)+Q(g) is archimedean
if there exists R > 0 such that R−‖x‖2 ∈ I(h)+Q(g). Clearly, if f ∈ I(h)+Q(g),
then f |∆ ≥ 0. Conversely, if f |∆ > 0 and I(h) + Q(g) is archimedean, then
f ∈ I(h) +Q(g). This is due to Putinars Positivstellensatz (cf. [33]).

For each k ∈ N, denote

(2.17) Ψk = {p ∈ R[x]E : p ∈ I2k(h) +Qk(g)} .
Note that E is finite, R[x]E is ∆-full because p =

∑n
i=1 x

2
i |∆ > 0, and I(h) +Q(g)

is archimedean because 1−‖x‖2 = −h(x) ∈ I(h)+Q(g). By [28, Propositions 3.5],
we have

(2.18) Ψ1 ⊆ · · · ⊆ Ψk ⊆ Ψk+1 ⊆ · · · ⊆ P .

Moreover,

(2.19) int(P ) ⊆
⋃

k

Ψk ⊆ P.

Correspondingly, for each k ∈ N, denote

(2.20) Γk =
{

s ∈ R
N

n
2k : L

(k)
h (s) = 0, L(k)

gj (s) � 0, j = 0, 1, · · · , n
}

,

and

(2.21) Υk = {s|E : s ∈ Γk} ,
(If k < deg(E)/2, Υk is defined to be R

E , by default). Since E is finite, R[x]E is
∆-full and I(h) +Q(g) is archimedean, by [28, Proposition 3.3], we have

Υ1 ⊇ · · · ⊇ Υk ⊇ Υk+1 ⊇ · · · ⊇ R,(2.22)

and

(2.23)
∞
⋂

k=1

Υk = R.

Moreover, Ψk and Υk are dual to each other (cf. [23, 25, 28]).
As shown above, the hierarchy of Υk provides the outer approximations of R

and converges monotonically and asymptotically to R. So, Υk can approximate
the completely positive cone R arbitrarily well.
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3. Linear optimization with the CP cone and norm cone

In this section, we formulate the CP-matrix approximation problem (1.2) as a
linear optimization problem with the cone of moments and the p-norm cone. The
duality is also discussed.

Introducing a variable γ ∈ R+, we transform (1.2) to the following problem:

min
X,γ

γ

s.t. ‖X − C‖p ≤ γ,
Ai •X = bi, i = 1, . . . ,me,
Ai •X ≥ bi, i = me + 1, . . . ,m,
X ∈ CPn.

(3.1)

Let Y = X − C. Then (3.1) can be equivalently written as

min
X,Y,γ

γ

s.t. Ai •X = bi, i = 1, . . . ,me,
Ai •X ≥ bi, i = me + 1, . . . ,m,
X − Y = C,
X ∈ CPn,
(Y, γ) ∈ Kp.

(3.2)

The Lagrange function of (3.2) is:

L(X,Y, γ, λ, P, S, Z, ξ) =γ −
me
∑

i=1

λi(Ai •X − bi)−
m
∑

i=me+1

λi(Ai •X − bi)(3.3)

− (X − Y − C) • P −X • S − Y • Z − γξ.

Denote by F(3.2) the feasible set of (3.2). Then, the Lagrange dual problem of
(3.2) is

max
λ,P,S,Z,ξ

inf
(X,Y,γ)∈F(3.2)

L(X,Y, γ, λ, P, S, Z, ξ)

s.t. λi ≥ 0, i = me + 1, . . .m,
P ∈ Sn,
S ∈ COPn,
(Z, ξ) ∈ K∗

p.

(3.4)

Let b = (b1, . . . , bm)T . Then (3.4) can be simplified as:

max
λ,S,Z

bTλ+ C • Z

s.t.
m
∑

i=1

λiAi + S + Z = 0,

λi ≥ 0, i = me + 1, . . . ,m,
(S, (Z, 1)) ∈ COPn ×K∗

p.

(3.5)

Denote

x =vech(X) ∈ R
n̄ with n̄ = n(n+ 1)/2,

ai =vech(2En − In) ◦ vech(Ai) ∈ R
n̄, i = 1, . . . ,m,
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where “◦” denotes the Hadamard product, En is the all-ones matrix and In the
identity matrix of order n respectively, Then, (3.2) can be formulated as the fol-
lowing linear optimization problem:

(P ) :

ϑP = min
x,Y,γ

γ

s.t. aTi x = bi, i = 1, . . . ,me,
aTi x ≥ bi, i = me + 1, . . . ,m,
x− vech(Y ) = vech(C),
(x, (Y, γ)) ∈ R×Kp,

where R is given by (2.6). The dual problem of (P ) is

(D) :

ϑD = max
λ,s,Z

bTλ+ C • Z

s.t.
m
∑

i=1

λiai + s+ vech(2En − In) ◦ vech(Z) = 0,

λi ≥ 0, i = me + 1, . . . ,m,
(s, (Z, 1)) ∈ P ×K∗

p,

where P is given by (2.8).
By weak duality, for all feasible points (x, Y, γ) in (P ) and (λ, s, Z) in (D), we

have

ϑP ≥ ϑD.(3.6)

The theorem below shows when the strong duality holds, i.e, the equality holds for
(3.6).

Theorem 3.1. For problems (P ) and (D),

(i) If there exist (x∗, Y ∗, γ∗) ∈ F(P) and (λ∗, s∗, Z∗) ∈ F(D) such that γ∗ −
bTλ∗ −C •Z∗ = 0, then (x∗, Y ∗, γ∗) and (λ∗, s∗, Z∗) are the minimizers of
(P ) and (D), respectively.

(ii) If there exists (x, Y, γ) such that (x, Y, γ) ∈ F(P), ai • x > bi(i = me +
1, . . . ,m) and (x, (Y, γ)) ∈ int(R × Kp), then we have ϑP = ϑD. Further-
more, if ϑP is finite, then there exists an optimal (λ∗, s∗, Z∗) such that
ϑP = bTλ∗ + C • Z∗ = ϑD. If (x∗, Y ∗, γ∗) is the minimizer of (P ), then
there exists a dual feasible point (λ, s, Z) such that γ∗ − bT λ̄− C • Z̄ = 0.

(iii) If there exists (λ, s, Z) ∈ F(D) such that λi > 0(i = me + 1, . . . ,m) and
(s, (Z, 1)) ∈ int(P × K∗

p), then we have ϑP = ϑD. Furthermore, if ϑD is
finite, then there exists an optimal (x∗, Y ∗, γ∗) such that ϑP = γ∗ = ϑD.
If (λ∗, s∗, Z∗) is the minimizer of (D), then there exists a primal feasible
(x, Y , γ) such that γ − bTλ∗ − C • Z∗ = 0.

Theorem 3.1 can be implied by the standard strong duality theory (cf. [1]), so
we omit the proof here. For convenience, if there exists (λ, s, Z) ∈ F(D) such that
λi > 0(i = me +1, . . . ,m) and (s, (Z, 1)) ∈ int(P ×K∗

p), we call (D) have a relative
interior.

4. A semidefinite algorithm

In this section, we present a semidefinite algorithm for the CP-matrix approxi-
mation problem and study its convergence properties.



THE CP-MATRIX APPROXIMATION PROBLEM 9

4.1. A semidefinite algorithm. As shown in (2.18) and (2.22), R and P have
nice relaxations Υk and Ψk, respectively. By (2.20) and (2.21), the k-th order
relaxation of (P ) can be defined as

(P k) :

ϑk
P = min

x,Y,γ,x̃
γ

s.t. aTi x = bi, i = 1, . . . ,me,
aTi x ≥ bi, i = me + 1, . . . ,m,
x− vech(Y ) = vech(C),
x = x̃|E ,
(x̃, (Y, γ)) ∈ Γk ×Kp,

and the dual problem of (P k) is

(Dk) :

ϑk
D = max

λ,s,Z
bTλ+ C • Z

s.t.
m
∑

i=1

λiai + s+ vech(2En − In) ◦ vech(Z) = 0,

λi ≥ 0, i = me + 1, . . . ,m,
(s, (Z, 1)) ∈ Ψk × K∗

p.

Both (P k) and (Dk) are SDP problems, so they can be solved efficiently.
Clearly, ϑk

P ≤ ϑP and ϑk
D ≤ ϑD for all k. Suppose (x∗,k, Y ∗,k, γ∗,k, x̃∗,k) is a

minimizer of (P k) and (λ∗,k, s∗,k, Z∗,k) is a maximizer of (Dk). If x∗,k = x̃∗,k|E ∈ R,
then ϑk

P = ϑP and (x∗,k, Y ∗,k, γ∗,k) is a minimizer of (P ), i.e., the relaxation (P k) is
exact for solving (P ). In this case, if ϑk

P = ϑk
D, then ϑk

D = ϑD and (λ∗,k, s∗,k, Z∗,k)
is a maximizer of (D). If the relaxation (P k) is infeasible, then (P ) is infeasible,
i.e., (1.2) is infeasible.

Based on the above, we propose a semidefinite algorithm for the CP-matrix
approximation problem (1.2).

Algorithm 4.1 (A semidefinite algorithm for the CP-matrix approximation prob-
lem).

Step 0. Input C ∈ Sn and ∆ as (2.3). Let k := 2.
Step 1. Solve the primal-dual pair (P k)-(Dk). If (P k) is infeasible, stop and out-

put that (P ) is infeasible; otherwise, compute an optimal solution (x∗,k, Y ∗,k, γ∗,k, x̃∗,k)
of (P k). Let t := 1.

Step 2. Let x̂ := x̃∗,k|2t. If the rank condition (2.13) is not satisfied, go to Step
4.

Step 3. Compute the finitely atomic measure µ admitted by x̂:

µ = ρ1δ(u1) + · · ·+ ρrδ(ur),

where ρi > 0, ui ∈ ∆, r = rank(Mt(x̂)) and δ(ui) is the Dirac measure supported
on the point ui ∈ ∆.

Step 4. If t < k, set t := t+ 1 and go to Step 2; otherwise, set k := k + 1 and
go to Step 1.

If (1.2) is feasible, Algorithm 4.1 can give a projection matrix of a symmetric
matrix onto the intersection of a set of linear constraints and the CP cone. A CP-
decomposition of the projection matrix can also be obtained. If (1.2) is infeasible,
Algorithm 4.1 can give a certificate for the infeasibility.

We use Step 2 to check whether x̃∗,k|2t is flat or not. Nie [28] showed it might
be possible that x∗,k ∈ R while x̃∗,k|2t is not flat for all t . In such cases, we can
apply the algorithms given in [27, 36] to check whether x∗,k ∈ R or not.
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We use Henrion and Lasserre’s method in [19] to get a r-atomic ∆-measure for
x̂, which can further produce the CP-decomposition of the projection matrix.

We discuss how to solve (P k) for different p-norm cone in section 4.3.

4.2. Convergence properties. We give the asymptotic convergence of Algorithm
4.1 as follows.

Theorem 4.2. Let E and ∆ be as in (2.2) and (2.11), respectively. Suppose (P )
is feasible and (D) has a relative interior point. Algorithm 4.1 has the following
properties:

(i) For all k sufficiently large, (Dk) has a relative interior point and (P k) has
a minimizer (x∗,k, Y ∗,k, γ∗,k, x̃∗,k).

(ii) The sequence {(x∗,k, Y ∗,k, γ∗,k)} is bounded, and each of its accumulation
points is a minimizer of (P ). The sequence {γ∗,k} converges to the mini-
mum of (1.2).

Proof. (i) Let (λ0, s0, Z0) ∈ F(D) with λ0
i > 0(i = me+1, . . . ,m), and (s0, (Z0, 1)) ∈

int(P ×K∗
p). Then, s

0|∆ > 0 (cf. [28, Lemma 3.1]). Note that since ∆ is compact,
there exist ǫ > 0 and δ > 0 such that

s|∆ − ǫ > ǫ, ∀s ∈ B(s0, δ).

By [30, Theorem 6], there exists N0 > 0 such that

s− ǫ ∈ I2N0
(h) +QN0

(g), ∀s ∈ B(s0, δ).

So (Dk) has a relative interior point for all k ≥ N0, thus the strong duality holds
for (P k) and (Dk). As (P ) is feasible, the relaxation problem (P k) is also feasible.
So, (P k) has a minimizer (x∗,k, Y ∗,k, γ∗,k, x̃∗,k) (cf. [1, Theorem 2.4.I]).

(ii) We first show {(x∗,k, Y ∗,k, γ∗,k)} is bounded. Let (λ0, s0, Z0) and ǫ be as in
the proof of (i). The set I2N0

(h) +QN0
(g) is dual to ΓN0

. For all k ≥ N0, we have
x̃∗,k ∈ ΓN0

and

0 ≤ 〈s0 − ǫ, x̃∗,k〉 = 〈s0, x̃∗,k〉 − ǫ〈1, x̃∗,k〉,
〈(s0, Z0, 1), (x∗,k, Y ∗,k, γ∗,k)〉 = γ∗,k − bTλ0 − C • Z0.

Since γ∗,k ≤ ϑP and 〈s0, x̃∗,k〉 = 〈s0, x∗,k〉 ≤ 〈(s0, Z0, 1), (x∗,k, Y ∗,k, γ∗,k)〉, it holds
that

〈s0, x̃∗,k〉 ≤ T0 := ϑP − bTλ0 − C • Z0.

We get
0 ≤ 〈s0 − ǫ, x̃∗,k〉 ≤ T0 − ǫ(x̃∗,k)0,

(x̃∗,k)0 ≤ T1 := T0/ǫ.

Note that I(h) + Q(g) is archimedean, following the line of proof given in [28,
Theorem 4.3 (ii)], we can obtain that the sequence {x∗,k} is bounded. Due to the
relationships between the definitions of x, Y and γ, we know {(x∗,k, Y ∗,k, γ∗,k)} is
bounded.

Suppose (x∗, Y ∗, γ∗) is an accumulation point of {(x∗,k, Y ∗,k, γ∗,k)}. Without
loss of generality, we assume

(x∗,k, Y ∗,k, γ∗,k) → (x∗, Y ∗, γ∗), k → ∞.

Since x∗,k ∈ Υk, by (2.22) and (2.23), we have x∗ ∈ ⋂∞
k=1 Υk = R. Note that

(x∗,k, Y ∗,k, γ∗,k) ∈ F(P k), we further obtain (x∗, Y ∗, γ∗) ∈ F(P ). Hence,

(4.1) ϑP ≤ γ∗.
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Since (P k) is a relaxation problem of (P ) and (x∗,k, Y ∗,k, γ∗,k) is a minimizer of
(P k), we have

ϑP ≥ γ∗,k, k = 1, 2, . . .

Taking k → ∞, we get

(4.2) ϑP ≥ lim
k→∞

γ∗,k = γ∗,

which together with (4.1) implies that

ϑP = γ∗.

So, (x∗, Y ∗, γ∗) is a minimizer of (P ), and the sequence {γ∗,k} converges to the
minimum of (P ). �

Remark 4.3. If (1.2) is feasible, then, under some general conditions [29, 31],
which is almost necessary and sufficient, we can get a flat extension x̃∗,k by solving
the hierarchy of (P k), within finitely many steps [28, Section 4].

4.3. Subproblem solving. We discuss how to solve the subproblem (P k) in Al-
gorithm 4.1 for different p-norm cone Kp (p = 1, 2,∞, F ).

1. 1-norm or ∞-norm cone. The 1-norm and ∞-norm are the same for
symmetric matrices. Let Y = Y + − Y −, where Y +, Y − ≥ 0 and Y +, Y − ∈ Sn.
Then (P k) can be transformed to the following problem:

min
x,Y +,Y −,γ,x̃

γ

s.t. aTi x = bi, i = 1, . . . ,me,
aTi x ≥ bi, i = me + 1, . . . ,m,
x− vech(Y + − Y −) = vech(C),

Ẽj • (Y + + Y −) ≤ γ, j = 1, . . . , n,
Y +, Y − ≥ 0, Y +, Y − ∈ Sn,
x = x̃|E , x̃ ∈ Γk,

(4.3)

where Ẽj is the matrix whose j-th column is of all ones and other entries are zeros.
(4.3) is a linear optimization problem with linear matrix inequalities. It can be

solved by the softwares GloptiPoly 3 [20] and SeDuMi [35].

2. 2-norm cone. Note that (Y, γ) ∈ K2 if and only if

(

γIn Y
Y T γIn

)

� 0. Since

Y = X − C, we can transform (P k) to the following problem:

min
x,γ,x̃

γ

s.t. aTi x = bi, i = 1, . . . ,me,
aTi x ≥ bi, i = me + 1, . . . ,m,
(

γIn vech−1(x)− C

(vech−1(x) − C)T γIn

)

� 0,

x = x̃|E , x̃ ∈ Γk,

(4.4)

where vech−1(·) denotes the inverse of the linear operator vech(·).
(4.4) can also be solved by the softwares GloptiPoly 3 [20] and SeDuMi [35].

3. F -norm cone. Let

y = vech(
√
2En + (1−

√
2)In) ◦ vech(Y ).
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Then (Y, γ) ∈ KF if and only if (y, γ) ∈ Ln̄+1, where

Ln̄+1 = {(y, γ) ∈ R
n̄+1 : ‖y‖2 ≤ γ}

is the second-order cone (or Lorentz cone). Since Y = X − C, (P k) can be trans-
formed to the following problem:

min
x,y,γ,x̃

γ

s.t. aTi x = bi, i = 1, . . . ,me,
aTi x ≥ bi, i = me + 1, . . . ,m,

y = vech(
√
2En + (1−

√
2)In) ◦ (x− vech(C)),

x = x̃|E ,
(x̃, (y, γ)) ∈ Γk × Ln̄+1.

(4.5)

(4.5) is a linear optimization problem with the second-order cone and linear
matrix inequalities. It can be solved by the softwares GloptiPoly 3 [20] and SeDuMi
[35].

5. Numerical experiments

In this section, we present some numerical experiments for computing the pro-
jection of a matrix onto the intersection of a set of linear constraints and the CP
cone by using Algorithm 4.1. A CP-decomposition of the projection matrix is also
given if the problem is feasible. The experiments are implemented on a laptop with
an Intel Core i5-2520M CPU and 4GB of RAM, using Matlab R2012b. We only
display 4 digits for each number.

5.1. CP-approximation in 1-norm or ∞-norm.

Example 5.1. Consider the symmetric matrix C given as:

(5.1) C =









2 1 1 1
1 2 2 1
1 2 6 5
1 1 5 6









.

It can be checked that C is double nonnegative. Since a symmetric double non-
negative matrix with the order less than or equal to 4 is CP (cf. [2]), we have
C ∈ CP4.

Case 1. Consider (1.2) without linear constraints, i.e., we compute the projec-
tion of C onto CP4 in 1-norm.

Algorithm 4.1 terminates at k = 3, with γ∗,k = 0.0000 and x∗,k ∈ R. So, X∗ =

C. This verifies that C is CP. The CP-decomposition of C is C =
∑5

i=1 ρiuiu
T
i ,

where the points and their weights are:

ρ1 = 3.0297, u1 = (0.0000, 0.6287, 0.6491, 0.4284)T ,

ρ2 = 7.6746, u2 = (0.0000, 0.0000, 0.6347, 0.7728)T ,

ρ3 = 2.6969, u3 = (0.4767, 0.3641, 0.7779, 0.1875)T ,

ρ4 = 1.0808, u4 = (0.7669, 0.6418, 0.0000, 0.0000)T ,

ρ5 = 1.5179, u5 = (0.7036, 0.0000, 0.0000, 0.7106)T .
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Case 2. Consider (1.2) with the CP cone and the linear constraints Ai •X =
bi(i = 1, 2), where

A1 = I4, A2 =









0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0









,

b1 = 10, b2 = 12.

Algorithm 4.1 terminates at k = 3 with γ∗,k = 3.0209 and x∗,k ∈ R. The optimal
solution is

X∗ =









0.2709 0.1572 0.9582 0.5928
0.1572 0.6302 1.1918 1.0000
0.9582 1.1918 4.7709 4.0582
0.5928 1.0000 4.0582 4.3280









.

The CP-decomposition of X∗ is X∗ =
∑3

i=1 ρiuiu
T
i , where the points and their

weights are:

ρ1 = 0.8735, u1 = (0.2014, 0.6294, 0.7506, 0.0000)T ,

ρ2 = 3.1791, u2 = (0.2677, 0.0000, 0.8209, 0.5044)T ,

ρ3 = 5.9473, u3 = (0.0357, 0.2186, 0.5993, 0.7693)T .

Case 3. Consider (1.2) with the CP cone and the linear constraints Ai •X =
bi(i = 1, 2), where

A1 =









1 −1 1 −1
−1 2 −2 2
1 −2 3 −3
−1 2 −3 4









, A2 = −I4

b1 = 5, b2 = −19.

Algorithm 4.1 terminates at k = 2 as (P k) is infeasible. So, (1.2) is infeasible.

Case 4. Consider (1.2) with the CP cone and the linear constraints A1 •X = b1
and A2 •X ≥ b2, where Ai, bi(i = 1, 2) are the same as in Case 3.

Algorithm 4.1 terminates at k = 3 with γ∗,k = 1.6916. The optimal solution is

X∗ =









0.8232 0.8946 1.4094 1.0000
0.8946 0.9745 1.4394 1.0000
1.4094 1.4394 5.9043 4.9991
1.0000 1.0000 4.9991 4.3094









.

The CP-decomposition of X∗ is X∗ =
∑2

i=1 ρiuiu
T
i , where the points and their

weights are:

ρ1 = 2.0184, u1 = (0.5817, 0.6464, 0.4532, 0.1957)T ,

ρ2 = 9.9929, u2 = (0.1184, 0.1145, 0.7412, 0.6508)T .
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5.2. CP-approximation in 2-norm.

Example 5.2. Consider the symmetric matrix C given as (cf. [34]):

(5.2) C =













2 1 1 1 2
1 2 2 1 1
1 2 6 5 1
1 1 5 6 2
2 1 1 2 3













.

It is shown in [34] that C ∈ CP5 and the CP-rank of C is 5.

Case 1. Consider (1.2) with the CP cone and the linear constraints Ai •X =
bi(i = 1, 2, 3), where

A1 = I5, A2 =













1 −1 1 −1 1
−1 2 −2 2 −2
1 −2 3 −3 3
−1 2 −3 4 −4
1 −2 3 −4 5













, A3 =













0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0













,

b1 = 19, b2 = 17, b3 = 24.

Algorithm 4.1 terminates at k = 3, with γ∗,k = 0.0000 and x∗,k ∈ R. So,
X∗ = C. This implies that C is not only CP but also satisfies the linear constraints.

The CP-decomposition of C is C =
∑5

i=1 ρiuiu
T
i , where the points and their weights

are:

ρ1 = 5.5421, u1 = (0.0862, 0.0000, 0.3963, 0.7926, 0.4553)T,

ρ2 = 3.8751, u2 = (0.6826, 0.2828, 0.0000, 0.0000, 0.6738)T,

ρ3 = 7.2866, u3 = (0.1450, 0.2334, 0.7608, 0.5879, 0.0000)T,

ρ4 = 0.8380, u4 = (0.0000, 0.9438, 0.0000, 0.0000, 0.3306)T,

ρ5 = 1.4582, u5 = (0.0058, 0.6122, 0.7907, 0.0000, 0.0000)T.

We obtained a minimal CP-decomposition of C. It is different from the minimal
CP-decomposition given in [34].

Case 2. Consider (1.2) with the CP cone and the linear constraints Ai •X =
bi(i = 1, 2, 3), where A1, A2, A3, b1, b3 are the same as in Case 1, and

b2 = 50.

Algorithm 4.1 terminates at k = 3 with γ∗,k = 2.8436. The optimal solution is

X∗ =













1.6135 1.3913 2.3928 1.6291 2.3642
1.3913 2.4173 2.1301 3.1909 1.6217
2.3928 2.1301 5.0301 4.1451 2.8557
1.6291 3.1909 4.1451 6.0656 1.0827
2.3642 1.6217 2.8557 1.0827 3.8735













.

The CP-decomposition of X∗ is X∗ =
∑3

i=1 ρiuiu
T
i , where the points and their

weights are:

ρ1 = 6.4943, u1 = (0.4251, 0.1801, 0.4791, 0.0000, 0.7465)T,

ρ2 = 3.9517, u2 = (0.1403, 0.0000, 0.7829, 0.6061, 0.0000)T,

ρ3 = 8.5539, u3 = (0.2058, 0.5079, 0.3613, 0.7344, 0.1723)T.
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Case 3. Consider (1.2) with the CP cone and the linear constraints Ai •X =
bi(i = 1, 2, 3), where A1, A2, A3, b1, b3 are the same as in Case 1, but

b2 = −50.

Algorithm 4.1 terminates at k = 2 as (P k) is infeasible. So, (1.2) is infeasible.

Case 4. Consider (1.2) with the CP cone and the linear constraints Ai •X =
bi(i = 1, 2) and A3 •X ≥ b3, where Ai(i = 1, 2, 3) are the same as in Case 1, and

b1 = 10, b2 = 12, b3 = −2.

Algorithm 4.1 terminates at k = 3, with γ∗,k = 3.3763 and x∗,k ∈ R. The
optimal solution is:

(5.3) X∗ =













0.4943 0.3541 1.2119 0.9809 0.7703
0.3541 0.4565 1.3018 1.3352 0.4720
1.2119 1.3018 3.8986 3.7575 1.7180
0.9809 1.3352 3.7575 3.9192 1.2798
0.7703 0.4720 1.7180 1.2798 1.2316













.

The CP-decomposition of X∗ is X∗ =
∑2

i=1 ρiuiu
T
i , where the points and their

weights are:

ρ1 = 1.3602, u1 = (0.4277, 0.0342, 0.4667, 0.0000, 0.7734)T,

ρ2 = 8.6396, u2 = (0.1686, 0.2295, 0.6457, 0.6735, 0.2199)T.

5.3. CP-approximation in F -norm.

Example 5.3. Consider the symmetric matrix C given in Example 5.2.

Case 1. Consider (1.2) with the CP cone and the linear constraints Ai •X =
bi(i = 1, 2, 3), where Ai, bi(i = 1, 2, 3) are the same as in Case 1 of Example 5.2.

Algorithm 4.1 terminates at k = 3, with γ∗,k = 0.0000 and x∗,k ∈ R. So,
C ∈ CP5. We get the same CP-decomposition of C as that in Case 1 of Example
5.2.

Case 2. Consider (1.2) with the CP cone and the linear constraints Ai •X =
bi(i = 1, 2, 3), where Ai, bi(i = 1, 2, 3) are the same as in Case 2 of Example 5.2.

Algorithm 4.1 terminates at k = 3 with γ∗,k = 4.7642. The optimal solution is

X∗ =













1.4456 1.2748 2.0122 1.7636 2.1333
1.2748 1.3345 2.1511 2.4889 1.4697
2.0122 2.1511 5.5864 4.4398 3.0769
1.7636 2.4889 4.4398 6.3423 0.9011
2.1333 1.4697 3.0769 0.9011 4.2912













.

The CP-decomposition of X∗ is X∗ =
∑4

i=1 ρiuiu
T
i , where the points and their

weights are:

ρ1 = 2.5727, u1 = (0.5085, 0.3250, 0.0000, 0.0000, 0.7973)T,

ρ2 = 7.8537, u2 = (0.1698, 0.2829, 0.4990, 0.8013, 0.0000)T,

ρ3 = 4.5924, u3 = (0.1992, 0.1020, 0.7125, 0.0000, 0.6650)T,

ρ4 = 3.9812, u4 = (0.3055, 0.3115, 0.5712, 0.5713, 0.3962)T.

Case 3. Consider (1.2) with the CP cone and the linear constraints Ai •X =
bi(i = 1, 2, 3), where Ai, bi(i = 1, 2, 3) are the same as in Case 3 of Example 5.2.
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Algorithm 4.1 terminates at k = 2 as (P k) is infeasible. So, (1.2) is infeasible.

Case 4. Consider (1.2) with the CP cone and the linear constraints Ai •X =
bi(i = 1, 2) and A3 • X ≥ b3, where Ai(i = 1, 2, 3) are the same as in Case 4 of
Example 5.2.

Algorithm 4.1 terminates at k = 3, with γ∗,k = 5.1904 and x∗,k ∈ R. The
optimal solution is:

(5.4) X∗ =













0.6441 0.3961 1.1295 0.8842 0.9479
0.3961 0.4305 1.2678 1.2371 0.5508
1.1295 1.2678 3.7388 3.6771 1.5635
0.8842 1.2371 3.6771 3.7860 1.1818
0.9479 0.5508 1.5635 1.1818 1.4007













.

The CP-decomposition of X∗ is X∗ =
∑2

i=1 ρiuiu
T
i , where the points and their

weights are:

ρ1 = 1.6630, u1 = (0.5129, 0.1257, 0.3173, 0.0000, 0.7877)T,

ρ2 = 8.3370, u2 = (0.1574, 0.2202, 0.6545, 0.6739, 0.2104)T.

Example 5.4. Consider the symmetric matrix

C =

















4 5 4 6 4 2
5 1 4 7 4 6
4 4 4 2 5 4
6 7 2 0 3 7
4 4 5 3 1 6
2 6 4 7 6 4

















,

which is generated randomly in Matlab.

Case 1. Consider (1.2) without linear constraints. Algorithm 4.1 terminates at
k = 3, with γ∗,k = 9.7852. So, C is not CP. The projection matrix of C onto CP5

is

X∗ =

















5.3184 4.4216 3.6259 4.2906 3.4447 3.6739
4.4216 4.8771 3.6321 4.7517 3.9731 5.1854
3.6259 3.6321 4.7970 3.0763 3.9514 3.9240
4.2906 4.7517 3.0763 4.7343 3.6374 4.9919
3.4447 3.9731 3.9514 3.6374 3.7868 4.5142
3.6739 5.1854 3.9240 4.9919 4.5142 6.3710

















.

The CP-decomposition of X∗ is X∗ =
∑4

i=1 ρiuiu
T
i , where the points and their

weights are:

ρ1 = 7.0443, u1 = (0.3599, 0.4862, 0.0000, 0.5526, 0.2300, 0.5252)T ,

ρ2 = 4.6526, u2 = (0.0000, 0.2673, 0.6042, 0.1571, 0.4868, 0.5494)T ,

ρ3 = 13.2067, u3 = (0.3707, 0.4278, 0.3766, 0.4028, 0.3828, 0.4785)T ,

ρ4 = 4.9810, u4 = (0.7213, 0.3047, 0.4961, 0.2554, 0.2749, 0.0000)T .
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Case 2. Consider (1.2) with the CP cone and the linear constraints Ai •X =
bi(i = 1, 2), where Ai, bi(i = 1, 2) are generated randomly:

A1 =

















−12 0 7 −5 4 −2
0 3 1 −2 −6 −13
7 1 4 1 −9 6
−5 −2 1 7 −9 10
4 −6 −9 −9 −19 1
−2 −13 6 10 1 13

















,

A2 =

















−4 3 11 11 2 −5
3 6 3 −3 5 −9
11 3 5 0 −3 −9
11 −3 0 14 −4 −16
2 5 −3 −4 7 −14
−5 −9 −9 −16 −14 3

















,

b1 = −17, b2 = 6.

Algorithm 4.1 terminates at k = 3, with y∗,k1 = 11.4970. The optimal solution is

X∗ =

















5.5277 4.9260 5.0372 4.5381 3.1904 2.7187
4.9260 4.7114 4.2671 4.8028 3.0364 3.5882
5.0372 4.2671 6.0026 3.3516 3.4975 3.0055
4.5381 4.8028 3.3516 5.5691 2.9252 4.7051
3.1904 3.0364 3.4975 2.9252 2.3729 3.0340
2.7187 3.5882 3.0055 4.7051 3.0340 6.9676

















.

The CP-decomposition of X∗ is X∗ =
∑3

i=1 ρiuiu
T
i , where the points and their

weights are:

ρ1 = 5.0609, u1 = (0.5069, 0.5243, 0.0000, 0.6726, 0.0996, 0.0766)T ,

ρ2 = 7.4131, u2 = (0.0000, 0.1967, 0.0000, 0.4359, 0.1960, 0.8561)T ,

ρ3 = 18.6772, u3 = (0.4757, 0.4030, 0.5669, 0.3165, 0.3303, 0.2839)T .

Case 3. Consider (1.2) with the CP cone and the linear constraints Ai •X =
bi(i = 1, 2), where Ai, bi(i = 1, 2) are generated randomly:

A1 =

















8 −2 5 6 5 −4
−2 10 8 12 17 4
5 8 7 6 −2 −3
6 12 6 4 12 7
5 17 −2 12 10 −8
−4 4 −3 7 −8 9

















,

A2 =

















−2 −16 −12 4 1 −5
−16 3 8 −3 −10 0
−12 8 −13 −1 11 3
4 −3 −1 −3 5 9
1 −10 11 5 10 3
−5 0 3 9 3 −15

















,

b1 = −6, b2 = 4.

Algorithm 4.1 terminates at k = 2 as (P k) is infeasible. So, (1.2) is infeasible.
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Case 4. Consider (1.2) with the CP cone and the linear constraints A1 •X =
b1, A2 •X ≥ b2, where Ai, bi(i = 1, 2) are generated randomly:

A1 =

















5 7 −4 −9 4 9
7 −2 6 −4 7 −6
−4 6 −17 −9 −1 6
−9 −4 −9 5 −13 6
4 7 −1 −13 −3 1
9 −6 6 6 1 −6

















,

A2 =

















2 −4 6 4 7 1
−4 −2 11 2 6 7
6 11 12 −9 −2 7
4 2 −9 −3 0 10
7 6 −2 0 4 −11
1 7 7 10 −11 11

















,

b1 = 7, b2 = −10.

Algorithm 4.1 terminates at k = 3, with γ∗,k = 10.4410. The optimal solution is

X∗ =

















5.5853 4.9676 3.4690 3.9792 3.9314 4.6082
4.9676 5.0242 3.6848 4.2784 4.1044 5.3069
3.4690 3.6848 3.6883 2.3311 3.7530 3.9202
3.9792 4.2784 2.3311 4.5442 2.8846 4.8841
3.9314 4.1044 3.7530 2.8846 3.9128 4.3521
4.6082 5.3069 3.9202 4.8841 4.3521 6.2313

















.

The CP-decomposition of X∗ is X∗ =
∑3

i=1 ρiuiu
T
i , where the points and their

weights are:

ρ1 = 3.4136, u1 = (0.7633, 0.3769, 0.3647, 0.0000, 0.3772, 0.0000)T ,

ρ2 = 7.4149, u2 = (0.4695, 0.4255, 0.0000, 0.6215, 0.1124, 0.4467)T ,

ρ3 = 18.1576, u3 = (0.3287, 0.4196, 0.4221, 0.3042, 0.4285, 0.5115)T .

Example 5.5. Consider the computing time of projecting a random symmetric
matrix onto the CP cone. For each n = 2, 3, . . . , 10, we generate 50 random sym-
metric n× n matrices.

Table 1 shows the average time (seconds) consumed by Algorithm 4.1 to compute
the projection matrix onto the CP cone.

n 2 3 4 5 6 7 8 9 10
Time 0.36 0.53 0.80 1.56 4.76 21.37 101.29 428.21 1732.21

Table 1. The average time for computing the CP projection matrix.

6. Conclusions

We study the CP-matrix approximation problem of projecting a symmetric ma-
trix onto the intersection of a set of linear constraints and the CP cone. It includes
the feasibility problem and the CP projection problem as special cases. We for-
mulate the problem as the linear optimization with the cone of moments and the
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p-norm cone (p = 1, 2,∞, or F ). A semidefinite algorithm (i.e., Algorithm 4.1) is
presented for it. Its convergence is also studied. If the problem is infeasible, we
can get a certificate for it. If the problem is feasible, we can get a projection ma-
trix; moreover, a CP-decomposition of the projection matrix can also be obtained.
Numerical results show that Algorithm 4.1 is efficient in solving the CP-matrix
approximation problem.
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