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Résumé

We define a cocycle on GLn(Q) using Shintani’s method. This construction is
closely related to earlier work of Solomon and Hill, but differs in that the cocycle
property is achieved through the introduction of an auxiliary perturbation vector Q.
As a corollary of our result we obtain a new proof of a theorem of Diaz y Diaz and
Friedman on signed fundamental domains, and give a cohomological reformulation of
Shintani’s proof of the Klingen–Siegel rationality theorem on partial zeta functions of
totally real fields.

Next we relate the Shintani cocycle to the Sczech cocycle by showing that the
two differ by the sum of an explicit coboundary and a simple “polar” cocycle. This
generalizes a result of Sczech and Solomon in the case n = 2.

Finally, we introduce an integral version of our cocycle by smoothing at an auxiliary
prime ℓ. This integral refinement has strong arithmetic consequences. We showed in
previous work that certain specializations of the smoothed class yield the p-adic L-
functions of totally real fields. Furthermore, combining our cohomological construction
with a theorem of Spiess, one deduces that that the order of vanishing of these p-adic
L-functions is at least as large as the expected one.
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Introduction

In this paper, we study a certain “Eisenstein cocycle” onGLn(Q) defined using Shintani’s
method. Our construction follows previous works of Solomon, Hu, Hill, Spiess, and Steele in
this direction ([So1], [HS], [Hi], [Sp2], [Stee]).

We study three main themes in this paper. First, we define an (n−1)-cocycle on GLn(Q)
valued in a certain space of power series denotedR((z))hd. The basic idea of defining a cocycle
using Shintani’s method is well-known ; the value of the cocycle on a tuple of matrices is the
Shintani–Solomon generating series associated to the simplicial cone whose generators are
the images of a fixed vector under the action of these matrices. The difficulty in defining a
cocycle stems from two issues : choosing which boundary faces to include in the definition
of the cone, and dealing with degenerate situations when the generators of the cone do not
lie in general position. Hill’s method is to embed Rn into a certain ordered field with n
indeterminates, and to perturb the generators of the cone using these indeterminates so that
the resulting vectors are always in general position. The papers [Stee] and [Sp2] use Hill’s
method. Our method is related, but somewhat different. We choose an auxiliary irrational
vector Q ∈ Rn and include a face of the simplicial cone if perturbing the face by this vector
brings it into the interior of the cone. We learned during the writing of this paper that this
perturbation idea was studied much earlier by Colmez in unpublished work for the purpose
of constructing Shintani domains [Co3]. Colmez’s technique was used by Diaz y Diaz and
Friedman in [DDF]. However the application of this method to the cocycle property appears
to be novel.

Using formulas of Shintani and Solomon, we prove that the cocycle we construct spe-
cializes under the cap product with certain homology classes to yield the special values of
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partial zeta functions of totally real fields of degree n at nonpositive integers. This is a co-
homological reformulation of Shintani’s calculation of these special values and his resulting
proof of the Klingen–Siegel theorem on their rationality.

In 1993, Sczech introduced in [Sc2] an Eisenstein cocycle on GLn(Q) that enabled him
to give another proof of the Klingen–Siegel theorem. Our second main result is that the
cocycles defined using Shintani’s method and Sczech’s method are in fact cohomologous.
The fact that such a result should hold has long been suspected by experts in the field ;
all previous attempts were restricted to the case n = 2 (see for instance [Sc3], [So2, §7] or
[Hi, §5]). One technicality is that the cocycles are naturally defined with values in different
modules, so we first define a common module where the cocycles can be compared, and then
we provide an explicit coboundary relating them.

The third and final theme explored in this paper is a smoothing process that allows for the
definition of an integral version of the Shintani cocycle. The smoothing method was introdu-
ced in our earlier paper [CD], where we defined an integral version of the Eisenstein cocycle
constructed by Sczech. The integrality property of the smoothed cocycles has strong arith-
metic consequences. We showed in [CD] that one can use the smoothed Sczech–Eisenstein
cocycle to construct the p-adic L-functions of totally real fields and furthermore to study the
analytic behavior of these p-adic L-functions at s = 0. In particular, we showed using work
of Spiess [Sp1] that the order of vanishing of these p-adic L-functions at s = 0 is at least
equal to the expected one, as conjectured by Gross in [Gr]. The formal nature of our proofs
implies that these arithmetic results could be deduced entirely from the integral version of
the Shintani cocycle constructed in this paper. In future work, we will explore further the
leading terms of these p-adic L-functions at s = 0 using our cohomological method [DS].

We conclude the introduction by stating our results in greater detail and indicating the
direction of the proofs. Sections 3 and 4 both rely on Sections 1 and 2 but are independent
from each other. Only Section 4 uses results from the earlier paper [CD].

Q-perturbation, cocycle condition and fundamental domains

Fix an integer n ≥ 2, and let Γ = GLn(Q). Let K denote the abelian group of functions
on Rn generated by the characteristic functions of rational open simplicial cones, i.e. sets of
the form R>0v1 +R>0v2 + · · ·+R>0vr with linearly independent vi ∈ Qn.

Let Rn
Irr ⊂ Rn denote the set of vectors with the property that their n components

are linearly independent over Q. Let Q denote the set of equivalence classes of Rn
Irr under

multiplication by R>0.
Given an n-tuple of matrices A = (A1, . . . , An) ∈ Γn, we let σi ∈ Qn denote the leftmost

column of Ai, i.e. the image under Ai of the first standard basis vector. (In fact replacing this
basis vector by any nonzero vector inQn would suffice.) Fixing Q ∈ Rn

Irr, we define an element
ΦSh(A,Q) ∈ K as follows. If the σi are linearly dependent, we simply let ΦSh(A,Q) = 0. If
the σi are linearly independent, we define ΦSh(A,Q) ∈ K to be the characteristic function
of the simplicial cone C = C(σ1, . . . , σn) and some of its boundary faces, multiplied by
sgn(det(σ1, . . . , σn)). A boundary face is included if translation of an element of that face
by a small positive multiple of Q moves the element into the interior of C. The property
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Q ∈ Rn
Irr ensures that Q does not lie in any face of the cone, and hence translation by a

small multiple of Q moves any element of a face into either the interior or exterior of the
cone. The definition of ΦSh(A,Q) depends on Q only up to its image in Q.

Our first key result is the following cocycle property of ΦSh (see Theorems 1.1 and 1.6).
The function

n
∑

i=0

(−1)iΦSh(A0, . . . , Âi, . . . , An, Q) (1)

lies in the subgroup L ⊂ K generated by characteristic functions of wedges, i.e. sets of the
form Rv1 + R>0v2 + · · · + R>0vr for some r ≥ 1 and linearly independent vi ∈ Qn. We
conclude that the function ΦSh defines a homogeneous (n − 1)-cocycle on Γ valued in the
space N of functions Q → K/L.

Along the way we note that if the σi are all in the positive orthant of Rn, then in fact
the function (1) vanishes. As a result we obtain another proof of the main theorem of [DDF],
which gives an explicit signed fundamental domain for the action of the group of totally
positive units in a totally real field of degree n on the positive orthant. In the language of
[Sp2], we show that the specialization of ΦSh to the unit group is a Shintani cocycle (see
Theorem 1.5 below).

Using this result and Shintani’s explicit formulas for the special values of zeta functions
associated to simplicial cones, we recover the following classical result originally proved by
Klingen and Siegel. Let F be a totally real field, and let a and f be relatively prime integral
ideals of F . The partial zeta function of F associated to the narrow ray class of a modulo f
is defined by

ζf(a, s) =
∑

b∼fa

1

Nbs
, Re(s) > 1. (2)

Here the sum ranges over integral ideals b ⊂ F equivalent to a in the narrow ray class group
modulo f, which we denote Gf. The function ζf(a, s) has a meromorphic continuation to C,
with only a simple pole at s = 1.

Theorem 1. The values ζf(a,−k) for integers k ≥ 0 are rational.

We prove Theorem 1 by showing that

ζf(a,−k) = 〈ΦSh,Zk〉 (3)

where Zk ∈ Hn−1(Γ,N ∨) is a certain homology class depending on a, f, and k, and the
indicated pairing is the cap product

Hn−1(Γ,N )×Hn−1(Γ,N
∨) −→ R, N ∨ = Hom(N ,R). (4)

See Theorem 2.10 below for a precise statement. Combined with a rationality property of
our cocycle (Theorem 2.9) that implies that the cap product 〈ΦSh,Zk〉 lies in Q, we deduce
the desired result.

Our proof of Theorem 1 is simply a cohomological reformulation of Shintani’s original
argument. However, our construction has the benefit that we give an explicit signed funda-
mental domain. This latter feature is useful for computations and served as a motivation for
[DDF] as well.
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Comparison with the Sczech cocycle

Sczech’s proof of Theorem 1 is deduced from an identity similar to (3), but involving a
different cocycle. It leads to explicit formulas in terms of Bernoulli numbers that resemble
those of Shintani in [Sh]. A natural question that emerges is whether a direct comparison of
the two constructions is possible. Our next result, stated precisely in Theorem 3.1, is a proof
that the cocycle on Γ defined in Sections 1 and 2 using Shintani’s method is cohomologous
(after projecting to the +1-eigenspace for the action of {±1} on Q) to the cocycle defined by
Sczech, up to a simple and minor error term. Rather than describing the details of Sczech’s
construction in this introduction, we content ourselves with explaining the combinatorial
mechanism enabling the proof, with an informal discussion in the language of [Sc1, §2.2].

For n vectors τ1, . . . , τn ∈ Cn, define a rational function of a variable x ∈ Cn by

f(τ1, . . . , τn)(x) =
det(τ1, . . . , τn)

〈x, τ1〉 · · · 〈x, τn〉
.

Given an n-tuple of matrices A = (A1, . . . , An) ∈ Γn, denote by Aij the jth column of
the matrix Ai. The function f satisfies a cocycle property (see (53)) that implies that the
assignment A 7→ α(A) := f(A11, A21, . . . , An1) defines a homogeneous (n − 1)-cocycle on Γ
valued in the space of functions on Zariski open subsets of Cn. The rational function α(A)
is not defined on the hyperplanes 〈x,Ai1〉 = 0.

Alternatively we consider, for each x ∈ Cn − {0}, the index wi = wi(A, x) giving the
leftmost column of Ai not orthogonal to x. The function β(A)(x) = f(A1w1 , . . . , Anwn)(x) is
then defined onCn−{0}, and the assignment A 7→ β(A) can also be viewed as a homogeneous
(n− 1)-cocycle on Γ.

Using an explicit computation, we show that the function α corresponds to our Shintani
cocycle (Proposition 3.10), whereas the function β yields Sczech’s cocycle (Proposition 3.9).
A coboundary relating α and β is then given as follows. Let A = (A1, . . . , An−1) ∈ Γn−1, and
define for i = 1, . . . , n− 1 :

hi(A) =

{

f(A1w1, . . . , A(i−1)wi−1
, Ai1, Aiwi

, A(i+1)1, . . . , A(n−1)1) if wi > 1

0 if wi = 1.

Let h =
∑n−1

i=1 (−1)
ihi. We show that β − α = dh. In the case n = 2, this recovers Sczech’s

formula [Sc1, Page 371].

Smoothing and applications to classical and p-adic L-functions

In Section 4, we fix a prime ℓ and we introduce a smoothed version ΦSh,ℓ of the Shintani
cocycle, essentially by taking a difference between ΦSh and a version of the same shifted by a
matrix of determinant ℓ. The smoothed cocycle is defined on an arithmetic subgroup Γℓ ⊂ Γ
and shown to satisfy an integrality property (Theorem 4.7).

Through the connection of the Shintani cocycle to zeta values given by (3), this integra-
lity property translates as in [CD] into corresponding results about special values of zeta
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functions. For the interest of the reader, we have included the statements of these arith-
metic results in this introduction. For the proofs we refer the reader to [CD], where these
applications were already presented.

Our first arithmetic application of the smoothed cocycle is the following integral refine-
ment of Theorem 1, originally due to Pi. Cassou-Noguès [Ca] and Deligne–Ribet [DR].

Theorem 2. Let c be an integral ideal of F relatively prime to f and let ℓ = Nc. The smoothed
zeta function

ζf,c(a, s) = ζf(ac, s)− Nc1−sζf(a, s)

assumes values in Z[1/ℓ] at nonpositive integers s.

Cassou–Noguès’ proof of Theorem 2 is a refinement of Shintani’s method under the
assumption that OF/c is cyclic. The proof of Theorem 2 that follows from the constructions
in this paper is essentially a cohomological reformulation of Cassou–Noguès’ argument. For
simplicity we assume further that ℓ = Nc is prime. One can define a modified version of
the homology class Zk denoted Zk,ℓ, such that ζf,c(a,−k) = 〈ΦSh,ℓ,Zk,ℓ〉. A result from [CD]
restated in Theorem 4.7 below implies that the cap product 〈ΦSh,ℓ,Zk,ℓ〉 lies in Z[1/ℓ], thereby
completing the proof of Theorem 2.

The final arithmetic application of our results regards the study of the p-adic L-functions
associated to abelian characters of the totally real field F . Let ψ : Gal(F/F ) −→ Q

∗
be

a totally even finite order character. Fix embeddings Q →֒ C and Q →֒ Qp, so that ψ

can be viewed as taking values in C or Qp. Let ω : Gal(F/F ) −→ µp−1 ⊂ Q
∗
denote † the

Teichmüller character. Using the integrality properties of our cocycle ΦSh,ℓ, one recovers the
following theorem of Cassou-Noguès [Ca], Barsky [Bs] and Deligne–Ribet [DR].

Theorem 3. There is a unique meromorphic p-adic L-function Lp(ψ, s) : Zp −→ Cp satis-
fying the interpolation property

Lp(ψ, 1− k) = L∗(ψω−k, 1− k)

for integers k ≥ 1, where L∗ denotes the classical L-function with Euler factors at the primes
dividing p removed. The function Lp is analytic if ψ 6= 1. If ψ = 1, there is at most a simple
pole at s = 1 and no other poles.

Now consider the totally odd character χ = ψω−1, and let rχ denote the number of primes
p of F above p such that χ(p) = 1. In [Gr], Gross proposed the following :

Conjecture 1 (Gross). We have

ords=0 Lp(ψ, s) = rχ.

Combining our cohomological construction of the p-adic L-function with Spiess’s forma-
lism, one obtains the following partial result towards Gross’s conjecture :

†. As usual, replace µp−1 by {±1} when p = 2.
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Theorem 4. We have
ords=0 Lp(ψ, s) ≥ rχ.

In the case p > 2, the result of Theorem 4 was already known from Wiles’ proof of the
Iwasawa Main Conjecture [Wi]. Our method contrasts with that of Wiles in that it is purely
analytic ; we calculate the kth derivative of Lc,p(χω, s) at s = 0 and show that it equals the
cap product of a cohomology class derived from ΦSh,ℓ with a certain homology class denoted
Zlogk . Spiess’ theorem that the classes Zlogk vanish for k < rχ then concludes the proof. Our
method applies equally well when p = 2.

Spiess proved Theorem 4 as well using his formalism and his alternate construction of
a Shintani cocycle [Sp2]. Note that our cocycle ΦSh is “universal” in the sense that it is
defined on the group Γ = GLn(Q), whereas the cocycles defined by Spiess are restricted
to subgroups arising from unit groups in totally real number fields. (See Section 2.1 below,
where we describe how our universal cocycle ΦSh can be specialized to yield cocycles defined
on unit groups.)

We should stress that while our proofs of Theorems 1, 2 and 3 are merely cohomological
reformulations of the works of Shintani [Sh] and Cassou–Noguès [Ca], the proof of Theo-
rem 4 relies essentially on the present cohomological construction and Spiess’ theorems on
cohomological p-adic L-functions. In upcoming work we explore further the application of
the cohomological method towards the leading terms of p-adic L-functions at s = 0 and their
relationship to Gross–Stark units [DS].

It is a pleasure to thank Pierre Colmez, Michael Spiess, and Glenn Stevens for helpful
discussions and to acknowledge the influence of their papers [Co1], [Sp2], and [Stev] on this
work. The first author thanks Alin Bostan and Bruno Salvy for many related discussions
that stressed the importance of power series methods. In March 2011, the second and third
authors gave a course at the Arizona Winter School that discussed Eisenstein cocycles. The
question of proving that the Shintani and Sczech cocycles are cohomologous was considered
by the students in our group : Jonathan Cass, Francesc Castella, Joel Dodge, Veronica Ertl,
Brandon Levin, Rachel Newton, Ari Shnidman, and Ying Zhang. A complete proof was given
for the smoothed cocycles in the case n = 2. We would like to thank these students and the
University of Arizona for an exciting week in which some of the ideas present in this work
were fostered.

1 The Shintani cocycle

1.1 Colmez perturbation

Consider linearly independent vectors v1, . . . , vn ∈ Rm. The open cone generated by the
vi is the set

C(v1, . . . , vn) = R>0v1 +R>0v2 + · · ·+R>0vn.

We denote the characteristic function of this open cone by 1C(v1,...,vn). By convention, when
n = 0, we define C(∅) = {0}. Let KR denote the abelian group of functions Rm → Z
generated by the characteristic functions of such open cones.
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Fix now a subspace V ⊂ Rm spanned by arbitrary vectors v1, . . . , vn ∈ Rm, and an
auxiliary vector Q ∈ Rm. We define a function cQ(v1, . . . , vn) ∈ KR as follows. If the vi are
linearly dependent, then cQ(v1, . . . , vn) = 0. If the vi are linearly independent, we impose
the further condition that Q ∈ V but that Q is not in the R-linear span of any subset
of n − 1 of the vi. The function cQ(v1, . . . , vn) is defined to be the characteristic function
of CQ(v1, . . . , vn), which is the disjoint union of the open cone C(v1, . . . , vn) and some of
its boundary faces (of all dimensions, including 0). A boundary face of the open cone C is
included in CQ if translation of an element of the face by a small positive multiple of Q sends
that element into the interior of C. Formally, we have :

cQ(v1, . . . , vn)(w) =

{

limǫ→0+ 1C(v1,...,vn)(w + ǫQ) if the vi are linearly independent,

0 otherwise.
(5)

The limit in (5) is easily seen to exist and is given explicitly as follows. If w 6∈ V , then
cQ(v1, . . . , vn)(w) = 0. On the other hand if

w =

n
∑

i=1

wivi, Q =

n
∑

i=1

qivi (all qi 6= 0),

then

cQ(v1, . . . , vn)(w) =

{

1 if wi ≥ 0 and wi = 0⇒ qi > 0 for i = 1, . . . , n,

0 otherwise.
(6)

Let us give one more characterization of this “Q-perturbation process” that will be useful
for future calculations. For simplicity we suppose m = n and that the vectors vi are linearly
independent. We denote by σ the n× n matrix whose columns are the vectors vi. For each
subset I ⊂ {1, . . . , n}, we have the open cone CI = C(vi : i ∈ I). The weight of this cone
(equal to 0 or 1) in the disjoint union CQ is given as follows. Let d = |I|. The d-dimensional
subspace containing the cone CI can be expressed as the intersection of the n−d codimension
1 hyperplanes determined by v∗i = 0, for i ∈ I = {1, . . . , n} − I. Here {v∗i } is the dual basis
to the vi. Under the usual inner product on Rn, the v∗i are the columns of the matrix σ−t.
Each hyperplane v∗i = 0 divides its complement into a plus part and minus part, namely
the half-space containing the cone C(v1, . . . , vn) and the half-space not containing the cone
(as an inequality, 〈w, v∗i 〉 > 0 or < 0). The weight of CI is equal to 1 if Q lies in the totally
positive region defined by these hyperplanes, i.e. if 〈Q, v∗i 〉 > 0 for all i ∈ I. Otherwise, the
weight of CI is 0. In summary,

weight(CI) =
∏

i∈I

1 + sign(Qσ−t)i
2

. (7)

Note that this formula is valid for d = n as well, with the standard convention that empty
products are equal to 1.
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1.2 Cocycle relation

We now derive a cocycle relation satisfied by the functions cQ. Let v1, . . . , vn ∈ Rm be
linearly independent vectors, with n ≥ 1. A set of the form

L = Rv1 +R>0v2 + · · ·+R>0vn (8)

is called a wedge. The characteristic function 1L of L is an element of KR since

L = C(v1, . . . , vn) ⊔ C(v2, . . . , vn) ⊔ C(−v1, v2, . . . , vn).

Let LR = LR(R
m) ⊂ KR be the subgroup generated by the functions 1L for all wedges L.

Theorem 1.1. Let n ≥ 1, and let v0, . . . , vn ∈ Rm be nonzero vectors spanning a subspace
V of dimension at most n. Let Q ∈ V be a vector not contained in the span of any subset of
n− 1 of the vi. Let B denote a fixed ordered basis of V and define for each i the orientation

OB(v̂i) := OB(v0, . . . , v̂i, . . . , vn) = sign det(v0, . . . , v̂i, . . . , vn) ∈ {0,±1},

where the written matrix gives the representation of the vectors vj in terms of the basis B,
for j 6= i. Then

n
∑

i=0

(−1)iOB(v̂i)cQ(v0, . . . , v̂i, . . . , vn) ≡ 0 (mod LR). (9)

Furthermore, if each vi lies in the totally positive orthant (R>0)
m, then in fact

n
∑

i=0

(−1)iOB(v̂i)cQ(v0, . . . , v̂i, . . . , vn) = 0.

Démonstration. We prove the result by induction on n. For the base case n = 1, the argument
for the “general position” case below gives the desired result ; alternatively one can check
the result in this case by hand.

For the inductive step, note first that the result is trivially true by the definition of cQ
unless dim V = n. We therefore suppose this holds and consider two cases.

Case 1 : The vi are in general position in V , i.e. any subset of {v0, . . . , vn} of size n spans
V . For any w ∈ V , it then follows from our assumption on Q that for ǫ > 0 small enough,
the set {v0, . . . , vn, w+ǫQ} is in general position in V . In view of the definition of cQ given in
(5), Proposition 2 of [Hi] therefore implies that the left side of (9) is a constant function on V
taking the value d(v0, . . . , vn) defined as follows. Let λi for i = 0, . . . , n be nonzero constants
such that

∑n
i=0 λivi = 0. The λi are well-defined up to a simultaneous scalar multiplication.

Then

d(v0, . . . , vn) =

{

(−1)iOB(v̂i) if the λi all have the same sign,

0 otherwise.
(10)

One readily checks that right side of (10) is independent of i. Now, the characteristic function
of V lies in LR, giving the desired result. Furthermore, if the vi lie in the totally positive
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orthant (R>0)
m, then the λi cannot all have the same sign and hence d(v0, . . . , vn) = 0. This

completes the proof in the case where the vi are in general position.

Case 2 : The vi are not in general position. Without loss of generality, assume that
v0, . . . , vn−1 are linearly dependent. Let V ′ denote the (n − 1)-dimensional space spanned
by these n vectors. Denote by π′ : V → V ′ and π : V → R the projections according to the
direct sum decomposition V = V ′ ⊕Rvn. We claim that for i = 0, . . . , n− 1 and w ∈ V , we
have

cQ(v0, . . . , v̂i, . . . , vn)(w) = cπ′(Q)(v0, . . . , v̂i, . . . , vn−1)(π
′(w)) · gQ(w), (11)

where

gQ(w) =

{

1 if π(w) ≥ 0 and π(w) = 0⇒ π(Q) > 0,

0 otherwise.

First note that if v0, . . . , v̂i, . . . , vn are linearly dependent, then under our conditions we
necessarily have that v0, . . . , v̂i, . . . , vn−1 are linearly dependent, and both sides of (11) are
zero.

Therefore suppose that the vectors v0, . . . , v̂i, . . . , vn are linearly independent, in which
case v0, . . . , v̂i, . . . , vn−1 are clearly linearly independent as well, and hence span V ′. Further-
more π′(Q) ∈ V ′ satisfies the condition that it is not contained in the span of any subset
of n − 2 of these vectors, or else Q would lie in the span of n − 1 of the original vectors
v0, . . . , vn ; hence the right side of (11) is well-defined. Equation (11) now follows directly
from the interpretation of the function cQ given in (6).

To deal with the orientations note that if B′ is any other basis of V , then

OB(v̂i) = OB(B
′) · OB′(v̂i). (12)

We therefore choose for convenience a basis B′ for V whose last element is the vector vn.
Using (11) and (12) and the fact that cQ(v0, . . . , vn−1) = 0 since v0, . . . , vn−1 are linearly

dependent, we calculate

n
∑

i=0

(−1)iOB(v̂i)cQ(v0, . . . , v̂i, . . . , vn)(w) = OB(B
′)

n−1
∑

i=0

(−1)iOB′(v̂i)cQ(v0, . . . , v̂i, . . . , vn)(w)

= OB(B
′)ℓQ(w)gQ(w),

where

ℓQ(w) =
n−1
∑

i=0

(−1)iOB′(v̂i)cπ′(Q)(v0, . . . , v̂i, . . . , vn−1)(π
′(w)).

Now if we let B′′ be the basis of V ′ given by the image of the first n−1 elements of B′ under
π′, it is clear that

OB′(v̂i) = OB′′(v0, . . . , v̂i, . . . , vn−1).

Therefore the function ℓQ can be written

ℓQ(w) =

n−1
∑

i=0

(−1)iOB′′(v0, . . . , v̂i, . . . , vn−1)cπ′(Q)(v0, . . . , v̂i, . . . , vn−1)(π
′(w)).
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This is the exact form for which we can use the inductive hypothesis to conclude that
ℓQ ∈ LR(V

′) and ℓQ = 0 if each vi lies in the totally positive orthant. It is readily checked
that this implies that ℓQgQ ∈ LR(V ) as desired (and ℓQgQ = 0 if each vi lies in the totally
positive orthant).

1.3 Signed fundamental domains

In this section we show that Theorem 1.1 can be combined with a result of Colmez to
deduce a theorem of Diaz y Diaz and Friedman on the existence of signed Shintani domains.
We use this result in the proof of Theorem 2.10 in order to relate our cocycle to the special
values of partial zeta functions.

Consider the totally positive orthant (R>0)
n ⊂ Rn, which forms a group under the

operation ∗ of componentwise multiplication. Let D = {x ∈ (R>0)
n : x1x2 · · ·xn = 1}. Let

U ⊂ D denote a subgroup that is discrete and free of rank n − 1. The goal of this section
is to determine an explicit fundamental domain for the action of U on the totally positive
orthant in terms of an ordered basis {u1, . . . , un−1} for U .

Define the orientation

wu := sign det(log(uij))
n−1
i,j=1) = ±1, (13)

where uij denotes the jth coordinate of ui. For each permutation σ ∈ Sn−1 let

vi,σ = uσ(1) · · ·uσ(i−1) ∈ U, i = 1, . . . , n

(so by convention v1,σ = (1, 1, . . . , 1) for all σ). Define

wσ = (−1)n−1wu sign(σ) sign(det(vi,σ)
n
i=1) ∈ {0,±1}.

We choose for our perturbation vector the coordinate basis vector en = (0, 0, . . . , 0, 1),
and assume that en satisfies the property that it does not lie in the R-linear span of any
(n− 1) of elements of U . Note that the action of U preserves the ray R>0en.

Theorem 1.2 (Colmez, [Co1], Lemme 2.2). If wσ = 1 for all σ ∈ Sn−1, then

⊔

σ∈Sn−1

Cen(v1,σ, . . . , vn,σ) (14)

is a fundamental domain for the action of U on the totally positive orthant (R>0)
n. In other

words, we have
∑

u∈U

∑

σ∈Sn−1

cen(v1,σ, . . . , vn,σ)(u ∗ x) = 1

for all x ∈ (R>0)
n.

Remark 1.3. Note that each of the vectors vi,σ lies in the positive orthant, so each open
cone C(vi1,σ, . . . , vir ,σ) is contained in the positive orthant when r ≥ 1. Furthermore, en lies
along a coordinate axis and is not contained in C(v1,σ, . . . , vn,σ), hence 0 6∈ Cen(v1,σ, . . . , vn,σ).
Therefore CQ(v1,σ, . . . , vn,σ) ⊂ (R>0)

n.
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The following generalization was recently proved by Diaz y Diaz and Friedman using
topological degree theory. We will show that the cocycle property of cQ proved in Theorem 1.1
allows one to deduce their theorem from the earlier result of Colmez. Note that our proof of
the theorem relies upon Colmez’s theorem, whereas the proof of Diaz y Diaz and Friedman
recovers it.

Definition 1.4. A signed fundamental domain for the action of U on (R>0)
n is by de-

finition a formal linear combination D =
∑

i aiCi of open cones with ai ∈ Z such that
∑

u∈U

∑

i ai1Ci
(u ∗ x) = 1 for all x ∈ (R>0)

n. We call 1D :=
∑

i ai1Ci
∈ KR the characteris-

tic function of D.

Note that when each ai = 1 and the Ci are disjoint, the set ⊔iCi is a fundamental domain
in the usual sense.

Theorem 1.5 (Diaz y Diaz–Friedman, [DDF], Theorem 1). The formal linear combination

∑

σ∈Sn−1

wσCen(v1,σ, . . . , vn,σ)

is a signed fundamental domain for the action of U on (R>0)
n, i.e.

∑

u∈U

∑

σ∈Sn−1

wσcen(v1,σ, . . . , vn,σ)(u ∗ x) = 1 (15)

for all x ∈ (R>0)
n.

Démonstration. Colmez proved the existence of a finite index subgroup V ⊂ U such that
the condition wσ = 1 for all σ holds for some basis of V (see [Co1], Lemme 2.1). Fix such a
subgroup V. Our technique is to reduce the desired result for U to the result for V , which is
given by Colmez’s theorem.

Endow the abelian group KR with an action of U by

(uf)(x) = f(u−1 ∗ x). (16)

The key point of our proof is the construction of a cohomology class [φU ] ∈ Hn−1(U,KR) as
follows. Given v1, . . . , vn ∈ U , let

φU(v1, . . . , vn) = sign(det(vi)
n
i=1)cen(v1, . . . , vn) ∈ KR. (17)

The U -invariance of φU follows from the definition of cen given in (5) along with the above-
noted property that the action of U preserves R>0en. The fact that φU satisfies the cocycle
property

n
∑

i=0

(−1)iφU(v0, . . . , v̂i, . . . , vn) = 0

is given by Theorem 1.1, since the vi lie in the positive orthant. We let [φU ] ∈ Hn−1(U,KR)
be the cohomology class represented by the homogeneous cocycle φU .

12



The basis u1, . . . , un−1 of U gives an explicit element αU ∈ Hn−1(U,Z) ∼= Z as follows.
We represent homology classes by the standard projective resolution C∗(U) = Z[U∗+1] of Z,
and let αU be the class represented by the cycle

α(u1, . . . , un−1) = (−1)n−1wu

∑

σ∈Sn−1

sign(σ)[(v1,σ, . . . , vn,σ)] ∈ Z[Un]. (18)

It is a standard calculation that dα(u1, . . . , un−1) = 0 and that the cohomology class αU

represented by α(u1, . . . , un−1) depends only on U and not the chosen basis u1, . . . , un−1 (see
[Sc2, Lemma 5]).

The image of ([φU ], αU) under the cap product pairing

Hn−1(U,KR)×Hn−1(U,Z) −→ KR,U := H0(U,KR)

is by definition the image of the function
∑

σ∈Sn−1
wσcQ(v1,σ, . . . , vn,σ) in KR,U .

Let J denote the group of functions (R>0)
n −→ Z, which is endowed with an action of

U as in (16). Denote by ΣU : KR,U → J U the map defined by

(ΣUf)(x) =
∑

u∈U

f(u ∗ x). (19)

Note that the sum (19) is locally finite by the following standard compactness argument.
The action of U preserves the product of the coordinates of a vector, and applying log to the
coordinates sends the surface {x1 · · ·xn = constant} to a hyperplane. In this hyperplane, the
image of a cone is bounded, and the action of U is translation by a lattice. Given a point x,
only finitely many lattice points can translate x into the bounded region corresponding to a
cone.

Now ΣU (φU ∩ αU) ∈ J U is by definition the function on the left side of (15), namely

∑

u∈U

∑

σ∈Sn−1

wσcen(v1,σ, . . . , vn,σ)(u ∗ x).

It remains to analyze this picture when U is replaced by its finite index subgroup V
chosen at the outset of the proof. General properties of group cohomology (see [Br, pp.
112–114]) yield a commutative diagram :

Hn−1(V,KR)×Hn−1(V,Z)
∩ //

cores

��

KR,V

��

ΣV // J V

ΣU/V

��
Hn−1(U,KR)×Hn−1(U,Z)

res

OO

∩ // KR,U
ΣU // J U .

Here ΣU/V : J V → J U is given by

(ΣU/V f)(x) =
∑

u∈U/V

f(u ∗ x).
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The desired result now follows from the fact that ΣV (φV ∩αV ) = 1 := 1(R>0)n by Colmez’s
theorem, along with

cores(αV ) = [U : V ] · αU , (20)

res φU = φV , (21)

ΣU/V (1) = [U : V ] · 1. (22)

Equation (20) is proven in [Br, Sect. III, Prop. 9.5], whereas (21) and (22) are obvious.

1.4 The Shintani cocycle on GLn(Q)

Recall the notation Γ = GLn(Q). In this section we define a Shintani cocycle ΦSh on
Γ. This cocycle will be directly related to the cocycles φU defined in the previous section ;
however, since our cocycle will be defined on the full group Γ rather than the simpler groups
U ⊂ D in the positive orthant, we will need to consider the quotient KR/LR rather than
KR (cf. definition (8) and the appearance of LR in Theorem 1.1). The relationship between
ΦSh and the φU in our cases of interest will be stated precisely in Section 2.1 below.

Let Rn
Irr denote the set of elements in Rn (viewed as row vectors) whose components are

linearly independent over Q, i.e. the set of vectors Q such that Q ·x 6= 0 for nonzero x ∈ Qn.
The set Rn

Irr is a right Γ-set by the action of right multiplication ; we turn this into a left
action by multiplication on the right by the transpose (i.e. γ · Q := Qγt). Note that any
Q ∈ Rn

Irr satisfies the property that it does not lie in the R-linear span of any n− 1 vectors
in Qn ⊂ Rn. The elements of Rn

Irr will therefore serve as our set of auxiliary perturbation
vectors as employed in Section 1.1. † We let Q = Rn

Irr/R>0, the set of equivalence class of
elements of Rn

Irr under multiplication by positive reals.
Let K ⊂ KR denote the subgroup generated by the characteristic functions of rational

open cones, i.e. by the characteristic functions of cones C(v1, . . . , vn) with each vi ∈ Qn.
Let L = LR ∩ K with LR as in (8). The abelian group K is naturally endowed with a left
Γ-module structure via

γ · ϕ(x) = sign(det γ))ϕ(γ−1x),

and L is a Γ-submodule of K.
Let N denote the abelian group of maps Q −→ K/L. This space is endowed with a

Γ-action given by (γf)(Q) = γf(γ−1Q). We now define a homogeneous cocycle

ΦSh ∈ Z
n−1(Γ,N ).

For A1, . . . , An ∈ Γ, let σi denote the first column of Ai. Given Q ∈ Q, define

ΦSh(A1, . . . , An)(Q) = sign(det(σ1, . . . , σn))cQ(σ1, . . . , σn) (23)

†. To orient the reader who may be familiar with the notation of [Co3] or [DDF] in which one takes
Q = en = (0, 0, . . . , 0, 1) as in Section 1.3, one goes from this vector to an element of our Rn

Irr by applying
a change of basis given by the image in Rn of a basis of a totally real field F of degree n. Our notation
allows for rational cones C and irrational perturbation vectors Q rather than the reverse. This is convenient
for comparison with Sczech’s cocycle, in which one also chooses a vector Q ∈ Rn

Irr. See Section 2.1 and in
particular (26) for more details.
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with cQ as in (5).

Theorem 1.6. We have ΦSh ∈ Zn−1(Γ,N ).

Démonstration. The fact that ΦSh is Γ-invariant follows directly from the definitions. In K,
the cocycle property

n
∑

i=0

(−1)iΦSh(A0, . . . , Âi, . . . , An)(Q) ≡ 0 (mod L)

follows from Theorem 1.1 using for B the standard basis of Rn.

Denote by [ΦSh] ∈ Hn−1(Γ,N ) the cohomology class represented by the homogeneous
cocycle ΦSh.

2 Applications to Zeta Functions

2.1 Totally real fields

Let F be a totally real field of degree n, and denote by J1, . . . , Jn : F → R the n real
embeddings of F . Write J = (J1, . . . , Jn) : F → Rn. We denote the action of F ∗ on Rn

via composition with J and componentwise multiplication by (x, v) 7→ x ∗ v. Let U denote
a subgroup of finite index in the group of totally positive units in O∗

F . We can apply the
discussion of Section 1.3 on fundamental domains to the group J(U) ⊂ D.

Note that en = (0, 0, . . . , 0, 1) satisfies the property that it does not lie in the R-linear
span of any n − 1 elements of the form J(u) for u ∈ F ∗. Indeed, given u1, . . . , un−1 ∈ F ∗,
there exists an x ∈ F ∗ such that TrF/Q(xui) = 0 for all i = 1, . . . , n − 1. Dot product with
J(x) defines an R-linear functional on Rn that vanishes on the J(ui) but not on en, proving
the claim.

In this section we explain the relationship between the class [ΦSh] and the class [φU ]
defined in Section 1.3 (where we write φU for φJ(U)). Choosing a Z-basis w = (w1, w2, . . . , wn)
of OF yields an embedding ρw : F

∗ → Γ given by

(w1u, w2u, . . . , wnu) = (w1, w2, . . . , wn)ρw(u). (24)

Pullback by ρw (i.e. restriction) yields a class ρ∗wΦSh ∈ Hn−1(U,N ).
Denote by J(w) ∈ GLn(R) the matrix given by J(w)ij = Ji(wj). Note that if we let

diag(J(u)) be the diagonal matrix with diagonal entries Ji(u), then

ρw(u) = J(w)−1 diag(J(u))J(w). (25)

Let
Q = (0, 0, . . . , 1)J(w)−t. (26)

The vector Q is the image under Jn of the dual basis to w under the trace pairing F×F → Q,
(x, y) 7→ TrF/Q(xy). In particular, Q is an element of Rn

Irr. Furthermore, (25) and (26) yield

Qρw(x)
t = Jn(x)Q
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for x ∈ F ∗, which implies that the image of Q in Q is invariant under the action of U . We
can therefore view Q as an element of H0(U,Z[Q]). In conjunction with the canonical map
N ×Q → K/L given by (f,Q) 7→ f(Q), the cup product gives a map

Hn−1(U,N )×H0(U,Z[Q])→ Hn−1(U,K/L)

yielding an element ρ∗w[ΦSh] ∪Q ∈ Hn−1(U,K/L).
Now consider the map induced by J(w), denoted

J(w)∗ : KR −→ KR,

given by (J(w)∗f)(x) = f(J(w)x). Our desired relation is

J(w)∗[φU ] = ρ∗w[ΦSh] ∪Q

in Hn−1(U,KR/LR). In fact, this relationship holds on the level of cocycles as follows. For
any x ∈ F ∗, we define a modified cocycle ΦSh,x ∈ Zn−1(Γ,N ) by letting γ = ρw(x)

−1 and
setting

ΦSh,x(A1, . . . , An) = ΦSh(A1γ, . . . , Anγ). (27)

It is a standard fact in group cohomology that the cohomology class represented by ΦSh,x

is independent of x and hence equal to [ΦSh] (see [Sc2, Lemma 4]). We have the following
equality of cocycles :

J(w)∗φU = ρ∗wΦSh,w1 ∪Q

in Zn−1(U,KR/LR). In concrete terms, this says for u = (u1, . . . , un) :

φU(u)(J(w)x) = ΦSh,w1(ρw(u), Q)(x). (28)

In Section 2.6 this relationship will be used along with Theorem 1.5 to relate the class [ΦSh]
to special values of zeta functions attached to the field F . Over the next few sections we first
we recall Shintani’s results on cone zeta functions.

2.2 Some bookkeeping

We will be interested in sums over the points lying in the intersection of open simplicial
cones with certain lattices in Rn. In this section we introduce a convenient way of enumera-
ting these points. Let V = Qn/Zn, and consider for v ∈ V the associated lattice v+Zn ⊂ Rn.

Let C be a rational open cone. By scaling the generators of C, we can findR-linearly inde-
pendent vectors σ1, . . . , σr ∈ Zn such that C = R>0σ1+ · · ·+R>0σr. Let P = P(σ1, . . . , σr)
denote the half-open parallelpiped generated by the σi :

P = {x1σ1 + · · ·+ xrσr : 0 < x1, . . . , xr ≤ 1} , (29)

with the understanding that P(∅) = {0} in the case r = 0. Then

C ∩ (v + Zn) =
⊔

a∈P∩(v+Zn)

(a+ Z≥0σ1 + · · ·+ Z≥0σr), (30)
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where the disjointness of the union follows from the linear independence of the σi.
Now let C be a rational open cone of maximal dimension r = n in Rn. Let Q ∈ Q and

consider the set CQ defined in Section 1.1, consisting of the disjoint union C and some of its
boundary faces of all dimensions. We would like to enumerate the points in CQ ∩ (v + Zn).

For each subset I ⊂ {1, . . . , n}, the boundary face CI = C(σi : i ∈ I) is assigned a weight
via the Q-perturbation process denoted weight(CI) ∈ {0, 1} and given by (7). Associated to
each cone CI is the parallelpiped PI = P(σi : i ∈ I). We have

CQ ∩ (v + Zn) =
⊔

I⊂{1,...,n}
a∈PI∩(v+Zn)

weight(CI)(a+
∑

i∈I

Z≥0σi), (31)

where our notation means that the set (a +
∑

Z≥0σi) should be included if weight(CI) = 1
and not included if weight(CI) = 0.

Let σ ∈Mn(Z)∩Γ denote the matrix whose columns are the σi. For each a ∈PI∩(v+Zn)
that occurs as I ranges over all subsets of {1, . . . , n}, we can associate the class x = a− v ∈
Zn/σZn. Conversely, given a class x ∈ Zn/σZn, there will be at least one a giving rise to
that class.

To be more precise, let J = J(x) denote the set of indices j for which (σ−1(v+ x))j ∈ Z.
The number of points a giving rise to the class x is 2#J . Let J = {1, . . . , n} − J . For each
I ⊃ J , we can write down a unique point aI ∈PI such that the image of aI − v in Zn/σZn

is equal to x. We define aI by letting σ−1(aI) be congruent to σ−1(v + x) modulo Zn, and
further requiring σ−1(aI)i ∈ (0, 1) if i 6∈ J , and

σ−1(aI)i :=

{

0 i ∈ J ∩ I = I

1 i ∈ J ∩ I.
(32)

We can then rewrite (31) as

CQ ∩ (v + Zn) =
⊔

x∈Zn/σZn

I⊃J(x)

weight(CI)(aI +
∑

i∈I

Z≥0σi). (33)

This decomposition will be used in Sections 3.2 and 4.2.

2.3 Cone generating functions

Let C be a rational open cone in Rn and let v ∈ Qn. Let x1, . . . , xn be variables and let
g(C, v) be the generating series for the set of integer points in C − v :

g(C, v)(x) =
∑

m∈(C−v)∩Zn

xm ∈ Q[[x, x−1]],

where as usual xm denotes xm1
1 · · ·x

mn
n . If µ ∈ Zn, then g(C, v + µ) = x−µg(C, v).

The series g(C, v) is actually the power series expansion of a rational function. In fact,
the decomposition (30) gives rise to the identity

g(C, v)(x) =

∑

a∈(P−v)∩Zn xa

(1− xσ1) · · · (1− xσr)
∈ Q(x), (34)

17



where σi are integral generators of the cone C, and P = P(σ1, . . . , σr) is the half-open
parallelpiped defined in (29).

Write c for the characteristic function of C and define g(c, v) = g(C, v). The following
fundamental algebraic result was proved independently by Khovanskii and Pukhilov [KP]
and Lawrence [La] (cf. [Bv, Theorem 2.4]).

Proposition 2.1. There is a unique map g : K ×Qn −→ Q(x) that is Q-linear in the first
variable such that g(c, v) = g(C, v) for all rational open cones C and g(c, v) = 0 if c ∈ L.

Thus we may view g as a pairing

g : K/L ×Qn −→ Q(x).

Let Q((z)) be the field of fractions of the power series ring Q[[z]]. In our applications, we
will consider images of the functions g(C, v) under the mapping Q(x) → Q((z)) defined by
xi 7→ ezi. Define

h(C, v)(z) = ev·zg(C, v)(ez1, . . . , ezn) ∈ Q((z)).

With σ1, . . . , σr and P as above, we have

h(C, v)(z) =

∑

a∈P∩(v+Zn) e
a·z

(1− eσ1·z) · · · (1− eσr ·z)
.

From the corresponding properties of the functions g(C, v), it follows immediately that h
may be viewed as a pairing

h : K/L ×Qn/Zn −→ Q((z))

that is linear in the first variable. We call h the Solomon–Hu pairing owing to its first
appearance in the works [So1, HS].

2.4 Special values of Shintani zeta functions

We now recall results relating the generating function g(C, v) introduced above to special
values of complex analytic Shintani zeta functions, whose definition we now recall.

Let M ⊂ Mn(R) be the subset of matrices such that the entries of each column are
linearly independent over Q (i.e. for each nonzero row vector x ∈ Qn andM ∈M, the vector
xM has no component equal to 0). Let D ⊂ SLn(R) be the subgroup of n× n real diagonal
matrices with determinant 1. Given M ∈M, define a polynomial fM ∈ R[x1, . . . , xn] by

fM(x1, . . . , xn) = N((x1, . . . , xn)M)

= (xM)1(xM)2 · · · (xM)n. (35)

Note that fM depends only on the image of the matrix M inM/D.
View the elements of the rational open cone C = C(w1, . . . , wr) ⊂ Rn as column vectors.

Choose the wi to have integer coordinates. We consider a matrix M ∈M such that (C,M)
satisfies the following positivity condition :

M tw ⊂ (R>0)
n for all w ∈ C. (36)
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This positivity condition will be needed when defining analytic Shintani zeta functions.
When dealing with their algebraic incarnations, i.e. the cone generating functions h(C, v)
introduced in the previous section, it is not required. This added flexibility in the algebraic
setting is crucial for the cohomological constructions to be described in the following sections.
With C and M as above and a vector v ∈ V, define the Shintani zeta function

ζ(C,M, v, s) =
∑

x∈C∩v+Zn

1

fM (x)s
.

Using (36), it is easy to see that this series is absolutely convergent for s ∈ C with Re(s) > 1.
Letting P = P(w1, . . . , wr) be the parallelpiped defined in (29) and W = (w1, . . . , wr) the
n× r matrix whose columns are the generators of the cone C, we define

Z(C,M, a, s) =
∑

x∈(Z≥0)r

1

fM(a+Wx)s

for a ∈P ∩ (v + Zn). We obtain the finite sum decomposition

ζ(C,M, v, s) =
∑

a∈P∩v+Zn

Z(C,M, a, s).

Shintani [Sh] proved that each Z(C,M, a, s), and hence ζ(C,M, v, s) itself, admits a mero-
morphic continuation to C.

Shintani also gave a formula for the values of these zeta functions at nonpositive integers.
Observe that if k is a nonnegative integer, then fM (x)k is (k!)n times the coefficient of N(z)k

in the Taylor series expansion of ezM
tx. Summing, we obtain the nonsense identity chain

“ζ(C,M, v,−k) =
∑

x∈C∩(v+Zn)

fM (x)k = (k!)n coeff





∑

x∈C∩(v+Zn)

ezM
tx,N(z)k





= (k!)n coeff
(

h(C, v)(zM t),N(z)k
)

.”

Almost nothing in the above identity chain is actually defined and in particular the given
sums do not converge. Further, h(C, v)(zM t) is not holomorphic on a punctured neighbo-
rhood of z = (0, . . . , 0) if n > 1, making the notion of coefficient undefined. Nonetheless, via
an algebraic trick—really, an algebraic version of the trick used by Shintani in his proof of
the analytic continuation of ζ(C,M, v, s)—we generalize the notion of coefficient to a class of
functions including the h(C, v)(zM t). Remarkably, with this generalized notion of coefficient,
the identity

ζ(C,M, v,−k) = (k!)n coeff
(

h(C, v)(zM t),N(z)k
)

(37)

holds. We now define Shintani’s operator and state his theorem giving a rigorous statement
of (37).

Let K be a subfield of C. For 1 ≤ j ≤ n, we write

Zj = (zjz1, . . . , zjzj−1, zj , zjzj+1, . . . , zjzn). (38)

The following lemma is elementary.

19



Lemma 2.2. Let g ∈ K[[z]], let p ∈ K[z] be homogeneous of degree d with coeff(p, zdj ) 6= 0,

and let G = g/p. Then G(Zj) ∈ z
−d
j K[[z]].

Call a homogeneous polynomial p ∈ K[z] of degree d powerful if the power monomials in
p all have nonzero coefficients, i.e., if coeff(p, zdj ) 6= 0 for all j. The powerful polynomials of
interest to us arise as follows. Call a linear form L(z) = ℓ1z1 + · · ·+ ℓnzn dense if ℓj 6= 0 for
all j. If L1, . . . , Lr are dense linear forms, then p = L1 · · ·Lr is powerful.

Definition 2.3. Let K((z))hd ⊂ K((z)) be the subalgebra consisting of G ∈ K((z)) that can
be written in the form G = g/p for a power series g ∈ K[[z]] and a powerful homogeneous
polynomial p ∈ K[z].

Lemma 2.4. Suppose C is a rational open simplicial cone in Rn, M ∈M and v ∈ Qn. Let
Q({mij}) be the field generated by the entries of M . Then h(C, v)(zM t) ∈ Q({mij})((z))

hd.

Démonstration. Write C = C(w1, . . . , wr) and let a ∈P∩(v+Zn). Then a ∈ Qn, so ezM
ta ∈

K[[z]]. For each j = 1, . . . , r, set Lj(z) = zM twj. Then we can write 1− ezM
twj = Lj(z)gj(z)

with gj ∈ K[[z]]×. Setting fa = ezM
tag−1

1 · · · g
−1
r and p = L1 · · ·Lr, we have

h(C, v)(zM t) =
∑

a∈P∩(v+Zn)

fa/p.

It remains to show that p is powerful. Since M ∈ M and wj ∈ Qn for all j, it follows that
each Lj is dense. Therefore p is powerful as desired.

By Lemma 2.2, if G ∈ K((z))hd, then coeff(G(Zj), z
m) makes sense for any j and any

m ∈ Zn. This leads to the following definition.

Definition 2.5. For j = 1, . . . , n, define operators ∆
(k)
j : K((z))hd → K by

∆
(k)
j G = coeff(G(Zj),N(Zj)

k), (39)

where Zj is given in (38). Define the Shintani operator ∆(k) : K((z))hd → K by

∆(k) =
(k!)n

n

n
∑

j=1

∆
(k)
j . (40)

Remark 2.6. If g ∈ K[[z]], then ∆(k)g is simply (k!)n times the coefficient of (z1 · · · zn)
k in g.

Thus, the operator ∆(k) extends the coefficient extraction operation from K[[z]] to K((z))hd.

The Shintani operator shares the following properties with the operation of taking the
(z1 · · · zn)k-coefficient of a regular power series. The proof is an elementary computation.

Lemma 2.7. Let h ∈ K((z))hd. Then
– For d1, . . . , dn ∈ K, we have ∆(k)h(d1z1, . . . , dnzn) = (d1 · · · dn)

k∆(k)h(z1, . . . , zn).
– For any permutation σ, we have ∆(k)h(zσ(1), . . . , zσ(n)) = ∆(k)h(z1, . . . , zn).
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Finally, we may state the following theorem of Shintani :

Theorem 2.8 ([Sh, Proposition 1]). Let C be a rational open cone, v ∈ V, and M ∈ M
satisfying (36). The function ζ(C,M, v, s) has a meromorphic continuation to C and satisfies

ζ(C,M, v,−k) = ∆(k)h(C, v)(zM t) for k ∈ Z≥0.

We observe that by Lemma 2.7, the coefficient ∆kh(C, v)(zM t) depends only on the
image of M inM/D.

2.5 The power series-valued Shintani cocycle

In this section we define the Shintani cocycle in the form that will be most useful for our
desired applications ; in particular, the cocycle will take values in a module F for which it
can be compared to the Eisenstein cocycle defined by Sczech in [Sc2] and studied in [CD].

The setM defined in Section 2.4 is naturally a left Γ-set via the action of left multipli-
cation. Let F denote the real vector space of functions

f :M×Q×V −→ R((z))hd

satisfying the following distribution relation for each nonzero integer λ :

f(M,Q, v) = sgn(λ)n
∑

λw=v

f(λM, λ−1Q,w). (41)

Define a left Γ-action on F as follows. Given γ ∈ Γ, choose a nonzero scalar multiple A = λγ
with λ ∈ Z such that A ∈Mn(Z). For f ∈ F , define

(γf)(M,Q, v) =
∑

r∈Zn/AZn

sgn(detA)f(AtM,A−1Q,A−1(r + v)). (42)

The distribution relation (41) implies that (42) does not depend on the auxiliary choice of λ.
Note that the action of Γ on F factors through PGLn(Q). The Solomon–Hu pairing satisfies
the identity

h(γC, v)(zM t) = γh(C, v)(zM t)

for any rational cone C.
We can use ΦSh to define a cocycle ΨSh ∈ Zn−1(Γ,F) by

ΨSh(A,M,Q, v) := h(ΦSh(A)(Q), v)(zM
t). (43)

Here and in the sequel we simply write ΨSh(A,M,Q, v) for ΨSh(A1, . . . , An)(M,Q, v) with
A = (A1, . . . , An) ∈ Γn. Our cocycle ΨSh satisfies the following rationality result.

Theorem 2.9. The value ∆(k)ΨSh(A,M,Q, v) lies in the field K generated over Q by the
coefficients of the polynomial fM(x).
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Démonstration. We will show that ∆(k)(h(C, v)(zM t)) lies in K for any rational cone C. By
the definition of fM(x), any automorphism of C fixing fM (x) permutes the columns of M
up to scaling each column by a factor λi such that

∏n
i=1 λi = 1. Therefore it suffices to prove

that our value is invariant under each of these operations, namely permuting the columns
or scaling the columns by factors whose product is 1. Now, in the tuple zM t, permuting the
columns M has the same effect as permuting the variables zi ; and scaling the ith column
of M by λi has the same effect as scaling zi by λi. The desired result then follows from
Lemma 2.7.

2.6 Special values of zeta functions

Let F be a totally real field, and let a and f be relatively prime integral ideals of F . The
goal of the remainder of this section is to express the special values ζf(a,−k) for integers
k ≥ 0 in terms of the cocycle ΨSh. We invoke the notation of Section 2.1 ; in particular we
fix an embedding J : F →֒ Rn.

Let R = Z[M/D×Q×V] denote the free abelian group on the setM/D×Q×V, which
is naturally endowed with a left Γ-action by the action on the setsM/D,Q, and V. There is
a cycle Zf(a) ∈ Hn−1(Γ,R) associated to our totally real field F and integral ideals a, f. The
cycle consists of the data of elements A ∈ Z[Γn], M ∈M/D, Q ∈ Q, and v ∈ V, defined as
follows.

Fix a Z-module basis w = (w1, . . . , wn) for a
−1f. Let {ǫ1, . . . , ǫn−1} denote a basis of the

group U of totally positive units of F congruent to 1 modulo f. Following (18), define

A(ǫ1, . . . , ǫn−1) = (−1)n−1wǫ

∑

σ∈Sn−1

sign(σ)[(ρw(f1,σ), . . . , ρw(fn,σ))] ∈ Z[Γn]. (44)

Here ρw is the right regular representation of U on w defined in (24), and wǫ is the orientation
associated to J(ǫ) as in (13).

Let M ∈M/D be represented by the matrix

N(a)1/n(Jj(wi))
n
i,j=1 = N(a)1/nJ(w)t. (45)

Note that fM ∈ Q[x1, . . . , xn] is the homogeneous polynomial of degree n given by the norm :

fM(x1, . . . , xn) = N(a) ·N(w1x1 + · · ·+ wnxn). (46)

Let Q be the image under the embedding Jn : F →֒ R of the dual basis to w under the trace
pairing on F , as in (26) :

Q = (0, . . . , 0, 1)J(w)−t = (Jn(w
∗
1), . . . , Jn(w

∗
n)), (47)

where Tr(wiw
∗
j ) = δij . Define the column vector

v = (Tr(w∗
1), . . . ,Tr(w

∗
n)), so that 1 = v1w1 + v2w2 + · · ·+ vnwn. (48)

Dot product with (w1, . . . , wn) provides a bijection v + Zn ←→ 1 + a−1f.
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We now define Zf(a) ∈ Hn−1(Γ,R) to be the homology class represented by the homoge-
neous (n− 1)-cycle

Z̃ = A⊗ [(M,Q, v)] ∈ Z[Γn]⊗R.

The fact that Z̃ is a cycle follows from [Sc2, Lemma 5] as in (18) using the fact that the
elements M , Q, and v are invariant under the action of ρw(U).

For each integer k ≥ 0, the canonical Γ-invariant map F ⊗ R → R given by f ⊗
[(M,Q, v)] 7→ ∆(k)f(M,Q, v) is well-defined by Lemma 2.7, and induces via cap product a
pairing

〈 , 〉k : H
n−1(Γ,F)×Hn−1(Γ,R) −→ R.

Here R has the trivial Γ-action. †

Theorem 2.10. We have ζF,f(a,−k) = 〈ΨSh,Zf(a)〉k ∈ Q.

The rationality of ζF,f(a,−k) is a celebrated theorem of Klingen and Siegel (see [IO] for
a nice survey of the history of various investigations on these special values).

The proof we have outlined here is a cohomological reformulation of Shintani’s origi-
nal argument, with the added benefit that our definition of Zf(a) gives an explicit signed
fundamental domain.

Démonstration. Let U denote the group of totally positive units of F congruent to 1 modulo
f, and let D =

∑

i aiCi denote a signed fundamental domain for the action of U on the totally
positive orthant of Rn (where as in Section 2.1, u ∈ U acts by componentwise multiplication
with J(u)). Then for Re(s)≫ 0,

ζF,f(a, s) =
∑

b⊂OF
b∼fa

1

Nbs
=

∑

{y∈1+a−1f, y≫0}/U

1

(NaNy)s
(a−1b = (y))

=
∑

y∈1+a−1f
J(y)∈D

1

(NaNy)s
. (49)

Here we use the shorthand
∑

J(y)∈D for
∑

i ai
∑

J(y)∈Ci
. Now Theorem 1.5 implies that, using

the notation of (17) and (18), the function φU(α(ǫ1, . . . , ǫn−1)) is the characteristic function
1D of such a signed fundamental domain D for the action of U on (R>0)

n. (Recall from
Definition 1.4 that if D =

∑

aiCi is a signed fundamental domain then 1D :=
∑

ai1Ci
.)

Therefore (28) implies that
ΦSh,w1(A, Q) = 1J(w)−1D.

†. To make contact with the notation of the introduction, note that for each integer k we obtain a map
ηk : R → N∨, i.e. a pairing N ×R → R, by (Φ, [(M,Q, v)]) 7→ ∆(k)h(Φ(Q), v)(zM t). The class denoted Zk

in the introduction is the image of Zf(a) under the map on homology induced by ηk.
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Note that for an element x ∈ F , the vector v = J(w)−1J(x) ∈ Qn satisfies x = w · v,
where w = (w1, . . . , wn). Therefore J(w)

−1D consists of rational cones and

〈ΨSh,Zf(a)〉k = ∆(k)ΨSh(A,M,Q, v)

= ∆(k)h(ΦSh,w1(A, Q), v)(zM
t)

= ∆(k)h(1J(w)−1D, v)(zM
t)

= ζ(J(w)−1D,M, v,−k) (50)

by Theorem 2.8. Here ΦSh,w1 was defined in (27), and may be substituted for ΦSh since
it represents the same cohomology class. Note also that (36) is satisfied for each pair
(J(w)−1Ci,M) by the definition of M in (45) and the fact that Ci ⊂ (R>0)

n (which in
turn was explained in Remark 1.3). By definition, we have for Re(s) large enough :

ζ(J(w)−1D,M, v, s) =
∑

x∈J(w)−1D∩v+Zn

1

fM(x)s

=
∑

y∈1+a−1f
J(y)∈D

1

(NaNy)s
, (51)

where the last equation uses the substitution y = w · x and (46). Comparing (49), (50), and
(51) yields the desired equality ζF,f(a,−k) = 〈ΨSh,Zf,a〉k.

Finally, the rationality of 〈ΨSh,Zf(a)〉k = ∆(k)ΨSh(A,M,Q, v) follows from Theorem 2.9,
since fM(x) has rational coefficients.

3 Comparison with the Sczech Cocycle

In this section we prove that the Shintani cocycle ΨSh defined in Section 2.5 is coho-
mologous to the one defined by Sczech in [Sc2]. We begin by recalling the definition of
Sczech’s cocycle. The reader is referred to [CD] or [Sc2] for a lengthier discussion of Sczech’s
construction.

3.1 The Sczech cocycle

For n vectors τ1, . . . , τn ∈ Cn, define a rational function of a variable x ∈ Cn by

f(τ1, . . . , τn)(x) =
det(τ1, . . . , τn)

〈x, τ1〉 · · · 〈x, τn〉
. (52)

The function f satisfies the cocycle relation (see [Sc2, Lemma 1, pg. 586])

n
∑

i=0

(−1)if(τ0, . . . , τ̂i, . . . , τn) = 0. (53)
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Consider A = (A1, . . . , An) ∈ Γn and x ∈ Zn − {0}. For i = 1, . . . , n, let ̟i = ̟i(A, x)
denote the leftmost column of Ai that is not orthogonal to x. Let v ∈ V = Qn/Zn. Sczech
considers the sum

∑

x∈Zn−{0}

e(〈x, v〉)f(̟1, . . . , ̟n)(x), (54)

where e(u) := e2πiu. Although the definition of ̟i ensures that each summand in (54) is
well-defined, the sum itself is not absolutely convergent. To specify a method of summation,
Sczech introduces a vector Q ∈ Q and defines the Q-summation

Ψ̃Z(A,Q, v) = (2πi)−n
∑

x∈Zn−{0}

e(〈x, v〉)f(̟1, . . . , ̟n)(x)|Q

:= (2πi)−n lim
t→∞

∑

x∈Zn−{0}
|Q(x)|<t

e(〈x, v〉)f(̟1, . . . , ̟n)(x). (55)

Here the vector Q gives rise to the function Q(x) = 〈x,Q〉, and the summation over the
region |Q(x)| < t is absolutely convergent for each t.

More generally, given a homogeneous polynomial P ∈ C[x1, . . . , xn], Sczech defines

Ψ̃Z(A, P,Q, v) = (2πi)−n−degP
∑

x∈Zn−{0}

e(〈x, v〉)P (−∂x1,−∂x2 , . . . ,−∂xn)(f(̟1, . . . , ̟n))(x)|Q.

(56)
Sczech shows that the function Ψ̃Z is a cocycle on Γ valued in the module F̃ defined in Sec-
tion 4.3 below. In order to make a comparison with our Shintani cocycle ΨSh ∈ Zn−1(Γ,F),
however, we consider now an associated cocycle valued in the module F defined in Sec-
tion 2.5. We prove in Proposition 3.9 below that there exists a power-series valued cocycle
ΨZ ∈ Zn−1(Γ,F) such that for each integer k ≥ 0, we have

∆(k)ΨZ(A,M,Q, v) = Ψ̃Z(A, f
k
M , Q, v). (57)

Our main theorem in this section is :

Theorem 3.1. Define Ψ+
Sh ∈ Z

n−1(Γ,F) by

Ψ+
Sh(A,M,Q, v) =

1

2
(ΨSh(A,M,Q, v) + ΨSh(A,M,−Q, v))

and let ΨP ∈ Zn−1(Γ,F) be the “polar cocycle” defined by

ΨP(A,M,Q, v) =
(−1)n+1 det(σ)
∏n

j=1 zM
tσj

, (58)

where σ = (σ1, . . . , σn) is the collection of the leftmost columns of the tuple A ∈ Γn. Then
we have the following equality of classes in Hn−1(Γ,F) :

[ΨZ] = [Ψ+
Sh] + [ΨP]. (59)
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Remark 3.2. It is proven in [Sc2, Theorem 3] that the cohomology class [ΨP] is nontrivial.
However, it clearly vanishes under application of the Shintani operator ∆(k) and therefore
does not intervene in arithmetic applications.

Remark 3.3. In [Sc2], Sczech considers a matrix of m vectors Qi ∈ Q and the Q summation
(56) with Q(x) =

∏

Qi(x). However, the resulting cocycle is simply the average of the
individual cocycles obtained from each Qi. (This is not clear from the original definition, but
follows from Sczech’s explicit formulas for his cocycle.) Therefore it is sufficient to consider
just one vector Q.

Remark 3.4. In view of Theorem 3.1 and (57), the evaluation of partial zeta functions
of totally real fields using Sczech’s cocycle given in [Sc2, Theorem 1] follows also from our
Theorem 2.10. In fact, we obtain a slightly stronger result in that we obtain the evaluation
using each individual vector Qi = Ji(w

∗), whereas Sczech obtains the result using the matrix
of all n such vectors ; it would be interesting to prove this stronger result directly from the
definition of Sczech’s cocycle via Q-summation, rather than passing through the Shintani
cocycle and Theorem 3.1.

3.2 A generalization of Sczech’s construction

Let k be a positive integer, and let A = (A1, . . . , Ak) ∈ Γk. For each tuple w ∈ {1, . . . , n}k,
let B(A,w) ⊂ Zn − {0} denote the set of vectors x such that the leftmost column of Ai not
orthogonal to x is the with, for i = 1, . . . , k. In other words,

B(A,w) =
k
⋂

i=1

{x ∈ Zn : 〈x,Aij〉 = 0 for j < wi, 〈x,Aiwi
〉 6= 0}.

Here Aij denotes the jth column of the matrix Ai. Then

Zn − {0} =
⊔

w∈{1,...,n}k

B(A,w).

Sczech’s sum (55) can be written with k = n as :

Ψ̃Z(A,Q, v) =
∑

w

∑

x∈B(A,w)

e(〈x, v〉)f(A1w1, . . . , Anwn)(x)|Q.

We now generalize this expression by replacing the columns Aiwi
with certain other columns

of the matrices Ai.
Write Sk = {1, . . . , k} and for simplicity let S = Sn. Given A = (A1, . . . , Ak) ∈ Γk and

an element t = ((a1, b1), (a2, b2), . . . , (an, bn)) ∈ (Sk × S)n, define

τ(A, t) = (Aa1b1 , Aa2b2 , . . . , Aanbn).

In other words, τ(A, t) is an n× n matrix whose ith column is the bith column of Aai .
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For any function g : Sk → (Sk × S)n, we would like to consider the sum

ψ(g)(A,Q, v) =
∑

w

∑

x∈B(A,w)

e(〈x, v〉)f(τ(A, g(w)))(x)|Q. (60)

For example, Ψ̃Z = ψ(β) where β(w) = ((1, w1), (2, w2), . . . , (n, wn)). The difficulty with (60)
in general, however, is that the denominators in the expression defining f may vanish ; it is
therefore necessary to introduce an auxiliary variable u ∈ Cn and to consider the function

ψ(g)(A,Q, v, u) =
∑

w

∑

x∈B(A,w)

e(〈x, v〉)f(τ(A, g(w)))(x− u)|Q. (61)

By Sczech’s analysis [Sc2, Theorem 2], this Q-summation converges for all u ∈ Cn such that
the map x 7→ f(τ(A, g(w)))(x − u) is defined on B(A,w), i.e., such that the denominator
of the right hand side of (52) is nonzero. Thus it converges for u in a dense open subset
of Cn that consists of the complement of a countable union of hyperplanes. In fact, this
convergence is uniform for u in sufficiently small compact subsets of Cn.

This formalism allows for the construction of homogeneous cochains in Ck−1(Γ,F) as
follows.

Proposition 3.5. For any function g : Sk → (Sk × S)n and A = (A1, . . . Ak) ∈ Γk, there is
a unique power series

Ψ(g)(A,Q, v) ∈ Q((z))

such that
ψ(g)(A,Q, v, u) = (2πi)nΨ(g)(A,Q, v)(2πiu) (62)

for any u ∈ Cn for which (61) is defined. Furthermore, for any M ∈ M we have

Ψ(g)(A,Q, v)(zM t) ∈ R((z))hd,

and the assignment (A,M,Q, v) 7→ Ψ(g)(A,Q, v)(zM t) is a homogeneous cochain in Ck−1(Γ,F).

The following lemma is the technical heart of the proof of Proposition 3.5 and is proven
by reducing to computations in [Sc2].

Lemma 3.6. Let H ⊂ Qn be a vector subspace and let L = H ∩ Zn. Let τ = (τ1, . . . , τn) ∈
Mn(Z) ∩ Γ. Then for every v ∈ Qn,

G(u) :=
∑

x∈L

e(〈x, v〉)f(τ1, . . . , τn)(x− u)|Q

belongs to (2πi)nQ((2πiu)). If M = (mij) ∈ M, then G(uM t) ∈ (2πi)nQ({mij})((2πiu))hd.

Remark 3.7. As with (61), the Q-summation defining G(u) converges for u in a dense
open subset of Cn that consists of the complement of a countable union of hyperplanes. The
convergence is uniform for u in sufficiently small compact sets.
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Démonstration. Set x′ = xτ , u′ = uτ , and Q′ = τ−1Q. Then

G(u) =
∑

x∈L

e(〈x, v〉) det(τ)

〈x− u, τ1〉 · · · 〈x− u, τn〉

∣

∣

∣

Q

=
∑

x′∈Lτ

e(〈x′, τ−1v〉) det(τ)

(x′1 − u
′
1)(x

′
n − u

′
n)

∣

∣

∣

Q′
.

Suppose first that H = Qn, so that L = Zn. Then Lτ is a finite-index sublattice of L. Since
the nontrivial characters of L/Lτ are x 7→ e(〈x, τ−1y〉) for y ∈ L∗/τL∗, we have the Fourier
expansion

1Lτ (x
′) =

1

| det τ |

∑

y∈L∗/τL∗

e(〈x′, τ−1y〉).

(L∗ is the dual lattice of L, with its elements naturally viewed as column vectors.) Therefore,

G(u) = sτ
∑

y∈L∗/τL∗

∑

x′∈L

e(〈x′, τ−1(v + y)〉)

(x′1 − u
′
1) · · · (x

′
n − u

′
n)

∣

∣

∣

Q′
,

where sτ = sgn(det τ). Letting p = u′ − x′, we obtain

G(u) = sτ
∑

y∈L∗/τL∗

C1(u
′, τ−1(v + y), Q′)

where, adopting notation from [Sc2, (3)],

C1(u, v, Q) =
∑

p∈Znτ+u

e(〈u− p, v〉)

p1 · · · pn

∣

∣

∣

Q
.

The fact that G(u) belongs to (2πi)nQ((2πiu)) now follows from Sczech’s evaluation of
C1(u, v, Q) in elementary terms given in [Sc2, Theorem 2].

Now suppose r := dimH < n. Choose a matrix λ = (λ1, . . . , λr) ∈ Mn×r(Z) whose
column space is H⊥. Then Lτ = (H ∩ Zn)τ has finite index in

K := Hτ ∩ Zn = {x ∈ Zn : 〈x, λ1〉 = · · · 〈x, λr〉 = 0}.

Inserting the character relations as above, we have

G(u) = sτ
∑

y∈K∗/τL∗

∑

x′∈K

e(〈x′, τ−1(v + y)〉)

(x′1 − u
′
1) · · · (x

′
n − u

′
n)

∣

∣

∣

Q′
.

Computing as in [Sc2, page 599], we obtain

G(u) = sτ
∑

y∈K∗/τL∗

C1(λ, u
′, τ−1(v + y), Q′),
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where

C1(λ, u, v, Q) =

∫ 1

0

· · ·

∫ 1

0

C1(u, t1λ1 + · · · trλr + v,Q)dt1 · · · dtr.

By the proof of [Sc2, Lemma 7], we have

C1(λ, u
′, τ−1(v + y), Q′)

n
∏

i=1

(1− e(u′i)) ∈ (2πi)nQ[[2πiu′]] = (2πi)nQ[[2πiu]].

for all y. Thus G(u) ∈ (2πi)nQ((2πiu)).
To prove the last statement of the lemma, let M = (mij) ∈ M. Then e(uM tτj) − 1 =

2πi(uM tτj)H(u) for an invertible power series H(u) ∈ Q({mij})[[2πiu]]. Since M ∈ M, no
component of M tτj is equal to zero. Therefore, uM tτj ∈ Q({mij})[u] is a dense linear form
(see the paragraph following Lemma 2.2 for the terminology). The desired result then follows
from the proof of Lemma 2.4.

Proof of Proposition 3.5. Each B(A,w) has the form L −
⋃

iMi where L is a sublattice of
Zn and the Mi are finitely many distinct sublattices of L with positive codimension. The
existence of the functions Ψ(g, A,Q, v) now follows from inclusion-exclusion and Lemma 3.6,
as does the fact that Ψ(g)(A,Q, v)(zM t) belongs to R((z))hd when M ∈M.

To see that (A,M,Q, v) 7→ Ψ(g)(A,Q, v)(zM t) is homogeneous (k − 1)-cochain, we first
observe that for any C ∈ Γ, we have τ(CA, g(w)) = Cτ(A, g(w)). Furthermore, it is easy
to see that B(CA,w) = B(A,w)C−1, and a straightforward change of variables then shows
that

ψ(g)(CA,Q, v, uM t) = ψ(g)(A,C−1Q,C−1v, uM tC).

3.3 Recovering the Sczech and Shintani cocycles

We apply the formalism of the previous section to the following functions Sn → (S×S)n :

α(w) = ((1, 1), (2, 1), . . . , (n, 1)),

β(w) = ((1, w1), (2, w2), . . . , (n, wn)).

As we now show, the power series Ψ(α) and Ψ(β) associated to these functions are the
Shintani and Sczech cocycles, respectively (up to an error term given by the polar cocycle
in the first instance).

First we prove a lemma that evaluates the Shintani operator on a regular power series
twisted by M ∈ M. Let fM be the polynomial defined in (35). Let σ ∈ Mn(Z) and define
coefficients P k

r (σ) indexed by tuples r = (r1, . . . , rn) of nonnegative integers by the formula

fM(zσt)k =
∑

r

P k
r (σ)

r!
zr11 · · · z

rn
n , (63)

where r! := r1! · · · rn!. When σ = 1, we simply write P k
r = P k

r (1).
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Lemma 3.8. Let
F (z) =

∑

r

Frz
r ∈ K[[z1, . . . , zn]],

where r ranges over n-tuples of nonnegative integers. Let M ∈M. Then

∆(k)F (zM t) =
∑

r

FrP
k
r .

Démonstration. We have

∆(k)(F (zM t)) =
∑

r

Fr∆
(k)((zM t)r).

As noted in Remark 2.6, ∆(k) evaluated on a regular power series equals (k!)n times the
coefficient of zk1 · · · z

k
n. Meanwhile P k

r is r! times the coefficient of zr in (zM)k1 · · · (zM)kn. The
desired result then follows (with s = (k, k, . . . , k)) from the following general reciprocity law
for any tuples r and s such that

∑

r =
∑

s = m. If we let

Cr,s(M) = s! · (coefficient of zs in (zM)r),

then
Cr,s(M) = Cs,r(M

t). (64)

To see this, note that

Cr,s(M) =
1

m!

(

∂

∂z1

)s1

· · ·

(

∂

∂zn

)sn ( ∂

∂y1

)r1

· · ·

(

∂

∂yn

)rn

(zMy)m
∣

∣

∣

∣

z=y=(0,...,0)

.

This expression is clearly invariant upon switching r and s and replacing M by M t.

Proposition 3.9. Let β(w) = ((1, w1), (2, w2), . . . , (n, wn)). Define

ΨZ(A,M,Q, v) = Ψ(β)(A,Q, v)(zM t). (65)

Then ΨZ satisfies (57).

One can show directly from the definition (65) that ΨZ ∈ Zn−1(Γ,F), but this follows
also from our proof of Theorem 3.1 so we omit the details.

Démonstration. By the definition of β, the function ψ(β)(A,Q, v, u) is well-defined for all u
in an open neighborhood of 0 in Cn. Therefore F = Ψ(β)(A,Q, v) is a regular power series,
i.e. F (z) ∈ R[[z1, . . . , zn]]. Hence if we write F =

∑

r Frz
r and fk

M(z) =
∑

r P
k
r z

r/r! as in
(63), then Lemma 3.8 implies that

∆(k)F (zM t) =
∑

r

FrP
k
r . (66)
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On the other hand, by [Sc2, Theorem 2] the series

F (u) = (2πi)−n
∑

x∈Zn−{0}

e(〈x, v〉)f(̟1, . . . , ̟n)
(

x−
u

2πi

)

|Q,

as well as those formed by taking partial derivatives of the general term, converge uniformly
on a sufficiently small compact neighborhood of u = 0 in Cn. Therefore term by term
differentiation is valid for F , and after applying fk

M(∂u1 , . . . , ∂un) and plugging in u = 0 we
obtain

∑

r

FrP
k
r = (2πi)−n(k+1)

∑

x∈Zn−{0}

e(〈x, v〉)fk
M(−∂x1 ,−∂x2 , . . . ,−∂xn)(f(̟1, . . . , ̟n))(x)|Q.

(67)
The right side of (67) is the definition of Ψ̃Z(A, f

k
M , Q, v), so combining (66) and (67) gives

the desired equality
∆(k)F (zM t) = Ψ̃Z(A, f

k
M , Q, v).

Proposition 3.10. Let α(w) = ((1, 1), (2, 1), . . . , (n, 1)). Then

Ψ+
Sh(A,M,Q, v) + ΨP(A,M,Q, v) = Ψ(α)(A,Q, v)(zM t).

Démonstration. Attached to A and α is the square matrix σ = (σ1, . . . , σn) = (A11, . . . , An1).
Arguing as in the first paragraph of the proof of Lemma 3.6, we have

ψ(α)(A,Q, v, u) = sσ
∑

y∈Zn/σZn

∑

x′∈Zn−{0}

e(〈x′, σ−1(v + y)〉)

(x′1 − u
′
1) . . . (x

′
n − u

′
n)
|Q′ . (68)

For any given y ∈ Zn, the inner sum is identified in Sczech’s notation [Sc2, (3)] as

(−1)n
∑

x∈Zn−{0}

e(〈x, σ−1(v + y)〉)

(x1 − u′1) . . . (xn − u
′
n)
|Q′=

−1

u′1 . . . u
′
n

+ C1(u
′, σ−1(v + y), Q′). (69)

To express this last quantity in elementary terms, we write v′ = σ−1(v + y) and let
J = J(y) denote the set of indices j ∈ {1, . . . , n} with v′j ∈ Z.We then invoke [Sc2, Theorem
2] to obtain for u ∈ (C− Z)n :

C1(u, v
′, Q′) =

1

2
(H (u, v′, Q′) + (−1)nH (−u,−v′, Q′))

=
1

2
(H (u, v′, Q′) + H (u, v′,−Q′)), (70)

where H (u, v′, Q′) = (−2πi)n
∏

j∈J

(

e(uj)

1− e(uj)
+

1 + signQ′
j

2

)

∏

j /∈J

e(uj{v′j})

1 − e(uj)
.
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Fix a subset I0 ⊂ J , select the factor
(1+signQ′

j)

2
for j ∈ I0, and expand the product for

H (u, v′, Q′) accordingly. Writing I = I0 one obtains

H (u, v′, Q′) =(−2πi)n
∑

I0⊂J

∏

j∈I0

(1 + signQ′
j)

2

∏

j∈J−I0

e(uj)

1− e(uj)

∏

j /∈J

e(uj{v
′
j})

1 − e(uj)

= (−2πi)n
∑

I⊃J

weight(CI)
e(u · σ−1aI)
∏

j∈I 1− e(uj)
. (71)

The last line follows from the formula (7) for weight(CI) and the definition (32) of the point
aI ∈PI . Collecting (68), (69), (70) and (71) we arrive at

ψ(α)(A,Q, v, u) =
(−1)n+1 det σ

N(uσ)
+ (2πi)nsσ

∑

y∈Zn/σZn

I⊃J(y)

weight+(CI)
e(u · aI)

∏

j∈I 1− e((uσ)j)
, (72)

where weight+(CI) is the average of the weights for Q and −Q. The identity (72) holds for
all u ∈ Cn as long as the vector uσ has no component in Z.

Unwinding the argument of Section 2.2 to go from (31) to (33), we obtain

ψ(α)(A,Q, v, u) =
(−1)n+1 det σ

N(uσ)
+ (2πi)nsσ

∑

I⊂{1,...,n}

weight+(CI)
∑

a∈PI∩(v+Zn)

e(u · a)
∏

j∈I 1− e((uσ)j)

=
(−1)n+1 det σ

N(uσ)
+ (2πi)nsσ

∑

I⊂{1,...,n}

weight+(CI)h(CI , v)(2πiu)

=
(−1)n+1 det σ

N(uσ)
+ (2πi)n h(Φ+

Sh(A)(Q), v)(2πiu), (73)

where the superscript “+” again denotes the average of the contributions of Q and −Q. This
implies the desired equality between power series using the definitions of ΨSh,ΨP, and Ψ(α)
given in (43), (58), and (62) respectively.

3.4 An explicit coboundary

Recall the notation Sk = {1, . . . , k}, S = Sn. Extending by linearity, we can define Ψ(g)
for any map g : Sk → Z[(Sk×S)n]. In fact, more is true ; if we denote by ∂ : Z[(Sk×S)n+1]→
Z[(Sk × S)n] the usual differential

∂([t0, . . . , tn]) =

n
∑

i=0

(−1)i[t0, . . . , t̂i, . . . , tn],

then Ψ(g) is well-defined for any map g : Sk → Z[(Sk × S)n]/ Image(∂). This follows from
the cocycle relation (53), which implies that f(τ(A, t)) = 0 for t ∈ Image(∂).
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We will show that the map β − α : Sn → Z[(S × S)n]/ Image(∂) is a coboundary in the
following sense. For i = 1, . . . , n, let êi : Sn−1 → S be the unique increasing map whose
image does not contain i. Given

h : Sn−1 → Z[(Sn−1 × S)
n], (74)

define dh : Sn → Z[(S × S)n] by

(dh)(w1, . . . , wn) =
n
∑

i=1

(−1)i(êi × id)(h(ŵi)). (75)

We will show that there exists an h such that β − α = dh (mod Image(∂)). Let us indicate
why this completes the proof of Theorem 3.1. For any h as in (74), Proposition 3.5 yields
a homogeneous cochain Ψ(h) ∈ Cn−2(Γ,F). It is easily checked from (75) that d(Ψ(h)) =
Ψ(dh). Therefore, combining Propositions 3.9 and 3.10, we obtain

ΨZ −Ψ+
Sh −ΨP = Ψ(β)−Ψ(α) = dΨ(h)

as desired. It remains to define the appropriate function h.

Proposition 3.11. For i = 1, . . . , n− 1, define hi : S
n−1 → Z[(Sn−1 × S)n] by

hi(w) =

{

[(1, w1), . . . , (i− 1, wi−1), (i, 1), (i, wi), (i+ 1, 1), . . . , (n− 1, 1)], wi > 1

0, wi = 1,

where w = (w1, . . . , wn−1). Let h =
∑n−1

i=1 (−1)
ihi. Then β − α ≡ dh (mod Image(∂)).

Remark 3.12. For n = 2, the map h is given by h(1) = 0 and h(2) = −[(1, 1), (1, 2)]. This
is the formula stated by Sczech [Sc1, Page 371].

Démonstration. One shows by induction on m that for m = 1, . . . , n,
(

α +
m−1
∑

i=1

dhi

)

(w1, . . . , wn)

is equal to

[(1, w1), . . . , (m− 1, wm−1), (m, 1), . . . , (n, 1)]+
m−1
∑

i=1

(−1)i+m−1[(1, w1), . . . , (̂i, wi), . . . , (m− 1, wm−1), (m, 1), (m,wm), (m+ 1, 1), . . . , (n, 1)].

For m = n, this yields

(α + dh)(w1, . . . , wn) = [(1, w1), . . . , (n− 1, wn−1), (n, 1)]+
n−1
∑

i=1

(−1)i+n−1[(1, w1), . . . , (̂i, wi), . . . , (n− 1, wn−1), (n, 1), (n, wn)]

≡ [(1, w1), . . . , (n, wn)] (mod Image(∂))

as desired.
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4 Integral Shintani cocycle

In this section we introduce an auxiliary prime ℓ and enact a smoothing process on our
cocycle ΨSh to define a cocycle ΨSh,ℓ on a certain congruence subgroup of Γ. The smoothed
cocycle ΨSh,ℓ satisfies an integrality property refining the rationality result stated in Theo-
rem 2.9. This refinement is stated in Theorem 4.7 below. The key technical result allowing
the proof of Theorem 4.7 is the explicit formula for ΨSh,ℓ given in Theorem 4.4. We provide
the details of the proof of Theorem 4.4 here ; the deduction of Theorem 4.7 is given in [CD,
§2.7].

The arithmetic applications regarding classical and p-adic L-functions of totally real fields
stated in the Introduction as Theorems 2, 3, and 4 follow mutatis mutandis as in [CD] from
Theorem 4.7. See §3-5 of loc. cit. for the proofs.

4.1 Definition of the smoothing

Fix a prime ℓ. Let Z(ℓ) = Z[1/p, p 6= ℓ] denote the localization of Z at the prime ideal
(ℓ). Let

Γℓ = Γ0(ℓZ(ℓ)) = {A ∈ GLn(Z(ℓ)) : ℓ | Aj1 for j > 1}.

Let πℓ = diag(ℓ, 1, 1, . . . , 1). Note that if A ∈ Γℓ, then πℓAπ
−1
ℓ ∈ GLn(Z(ℓ)).

For any Ψ ∈ Zn−1(Γ,F), define a smoothed homogeneous cocycle Ψℓ ∈ Z
n−1(Γℓ,F) by

Ψℓ(A,M,Q, v) := Ψ(πℓAπ
−1
ℓ , π−1

ℓ M,πℓQ, πℓv)− ℓΨ(A,M,Q, v) (76)

for A = (A1, . . . , An) ∈ Γn
ℓ . The following is a straightforward computation using the fact

that Ψ is a cocycle for Γ.

Proposition 4.1. We have Ψℓ ∈ Zn−1(Γℓ,F).

4.2 An explicit formula

We will now give an explicit formula for ∆(k) ◦ ΨSh,ℓ for an integer k ≥ 0 in terms of
Dedekind sums. For each integer k ≥ 0, the Bernoulli polynomial bk(x) is defined by the
generating function

text

et − 1
=

∞
∑

k=0

bk(x)
tk

k!
. (77)

The following elementary lemma gives an explicit formula for the terms appearing in the
definition of h(C, v).

Lemma 4.2. Consider the cone C = C(σi1 , . . . , σir) whose generators are a subset of the
columns of the matrix σ ∈ Γ. Then

ez·a

(1− ez·σi1 ) · · · (1− ez·σir )
= (−1)r

∞
∑

mj=0

r-tuples

r
∏

j=1

bmj
(σ−1(a)ij )

mj !
(zσij )

mj−1
∏

i 6∈{ij}

e(zσi)(σ
−1(a)i).

(78)
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Define the periodic Bernoulli function Bk(x) = bk({x}), where {x} ∈ [0, 1) denotes the
fractional part of x. The functions Bk are continuous for k 6= 1, i.e. bk(0) = bk(1). The
function B1 is not continuous at integers since b1(0) = −1/2 and b1(1) = 1/2. One can
choose between these values by means of an auxiliary Q ∈ Q as follows.

Definition 4.3. Let e = (e1, . . . , en) be a vector of positive integers, Q ∈ Q, and v ∈ V. Let

J = {1 ≤ j ≤ n : ej = 1 and vj ∈ Z}. (79)

Define

Be(v,Q) =

(

∏

j∈J

−sgn(Qj)

2

)

∏

j /∈J

Bej(vj).

Note that this is Be(v,−Q) in the notation of [CD].

Let σ ∈Mn(Z) have nonzero determinant. Define the Dedekind sum

D(σ, e, Q, v) =
∑

x∈Zn/σZn

Be(σ
−1(x+ v), σ−1Q). (80)

Suppose that σ has the property that σℓ := πℓσ/ℓ ∈ Mn(Z). (This says that the bottom
n− 1 rows of σ are divisible by ℓ.) Write e =

∑

ei. Define the ℓ-smoothed Dedekind sum

Dℓ(σ, e, Q, v) = D(σℓ, e, πℓQ, πℓv)− ℓ
1−n+eD(σ, e, Q, v) (81)

We can now give a formula for ∆(k) ◦ΨSh,ℓ in terms of the smoothed Dedekind sum Dℓ.
Let A = (A1, . . . , An) ∈ Γn

ℓ , and let σ̃ denote the matrix consisting of the first columns of the
Ai. Assume that det σ̃ 6= 0, and choose a scalar multiple σ = λσ̃ with λ an integer coprime
to ℓ such that σ ∈Mn(Z). Note that since each Ai ∈ Γℓ, it follows that σℓ = πℓσ/ℓ ∈Mn(Z)
as well.

Theorem 4.4. We have

∆(k)ΨSh,ℓ(A,M,Q, v) = (−1)nsgn(det σ)
∑

r

P k
r (σ)

ℓr(r + 1)!
Dℓ(σ, r + 1, Q, v),

where r + 1 := (r1 + 1, . . . , rn + 1), and the coefficients P k
r (σ) are defined in (63).

The proof of Theorem 4.4 is involved and technical ; the reader is invited to move on to
the statement of Theorem 4.7 and the rest of the paper, returning to our discussion here as
necessary.

The proof of Theorem 4.4 will be broken into three parts :
– Showing that the terms from (78) arising from indices mj = 0 cancel under the smoo-
thing operation ; in particular, ΨSh,ℓ takes values in R[[z1, . . . , zn]].

– Calculating the remaining terms and thereby giving a formula for ΨSh,ℓ in terms of the
Dedekind sums Dℓ.
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– Applying Lemma 3.8, which relates the values of ∆(k) on a power series inR[[z1, . . . , zn]]
to the coefficients appearing in (63).

Lemma 4.5. In the evaluation of ΨSh,ℓ(A,M,Q, v) using (78), the terms arising from tuples
m with any component mj = 0 in Ψ(πℓAπ

−1
ℓ , π−1

ℓ M,πℓQ, πℓv) and ℓΨ(A,M,Q, v) cancel. In
particular, ΨSh,ℓ(A,M,Q, v) ∈ R[[z1, . . . , zn]].

Démonstration. This is the manifestation of Cassou–Noguès’ trick in our context. Up to the
factor sgn det σ, the value of ΨSh(A,M,Q, v) is the right side of (78) summed over various
cones C = C(σi1 , . . . , σir) and all a ∈P ∩ (v + Zn), with the subsets {ij} chosen according
the Q-perturbation rule, P the parallelpiped associated to C, and z replaced by zM t :

∑

C

∑

a∈P∩v+Zn

(−1)r
∞
∑

mj=0

r-tuples

r
∏

j=1

Bmj
(σ−1(a)ij )

mj !
(zM tσij )

mj−1
∏

i 6∈{ij}

e(zM
tσi)(σ−1(a)i). (82)

Let us now fix a cone C and consider the corresponding contribution of πℓC to the value
ΨSh(πℓA, π

−1
ℓ M,πℓQ, πℓv). (Note that C will be included using perturbation via Q if and only

if πℓC will be included using perturbation via πℓQ.) In applying (78), we use the generators
πℓσij for the cone πℓC. By applying the change of variables a 7→ π−1

ℓ a, we obtain the exact
same expression as (82) except with Zn in the second index replaced by 1

ℓ
Z⊕ Zn−1 :

∑

C

∑

a∈P∩v+( 1
ℓ
Z⊕Zn−1)

(same). (83)

Fix a tuple m = (m1, . . . , mr) appearing in the sum (82) such that at least one mj is
equal to zero. Fix such an index j and a point a ∈P ∩ v +Zn. For each equivalence class b
mod ℓ, there is a unique point of the form a+ kσij/ℓ in P ∩ v + (1

ℓ
Z⊕ Zn−1) for an integer

k ≡ b (mod ℓ). Now, the summand associated to each of these points in (83) is equal to the
summand of the associated point a in (82), and in particular is independent of k. To see this,
note that

σ−1(a+ kσij/ℓ) = σ−1(a) + (0, . . . , 0, k/ℓ, 0, . . . , 0),

with k/ℓ in the ijth component. Hence the only term possibly depending on k isBmj
(σ−1(a)ij ),

but B0(x) = 1 is a constant. The ℓ terms a + kσij/ℓ in (83) therefore cancel with the term
a in (82), in view of the factor ℓ in the definition (76).

Lemma 4.6. We have

ΨSh,ℓ(A,M,Q, v) = (−1)nsgn det(σ)
∑

r

ℓ−r ·Dℓ(σ, r + 1, Q, v)
(zM tσ)r

(r + 1)!
,

where r ranges over all n-tuples r = (r1, . . . , rn) of nonnegative integers.

Démonstration. We will require the decomposition (33) for CQ ∩ (v + Zn), whose notation
we now recall. For each x ∈ Zn/σZn, let J = J(x) denote the set of indices j such that
σ−1(v + x)j ∈ Z. For each I ⊃ J , consider the cone CI = C(σi : i ∈ I) with associated
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parallelpiped PI . The point x and subset I yield a point aI ∈ PI such that aI − v ≡ x
(mod σZn), defined by (32).

We evaluate ΨSh(A,M,Q, v) by employing the decomposition (33) and applying (78).
By Lemma 4.5, we need only consider terms from (78) arising from mj ≥ 1. We write
r = (r1, . . . , rn) = (m1− 1, . . . , mn− 1). Suppressing for the moment the factor of sgn det(σ)
in the definition (23) of ΦSh, we obtain that for a vector of nonnegative integers r and a
class x ∈ Zn/σZn, the contribution of the cone CI to the coefficient of

∏n
i=1(zM

tσi)
ri in

ΨSh(A,M,Q, v) for I ⊃ J is 0 unless ri = 0 for i 6∈ I, and in that case equals

weight(CI)(−1)
#I
∏

i 6∈J

Bri+1(σ
−1(v + x)i)

(ri + 1)!

∏

i∈J∩I

bri+1(1)

(ri + 1)!
. (84)

Therefore, let Jr = J ∩ {i : ri = 0}. The expression (84) summed over all I ⊃ Jr can be
written

(−1)n
∑

x∈Zn/σZn

∏

i 6∈Jr

Bri+1(σ
−1(v + x)i)

(ri + 1)!
2−#Jr

∑

I⊃Jr

weight(CI)(−2)
n−#I . (85)

The inner sum in (85) is easily computed using (7) :

∑

I⊂Jr

(−2)#I
∏

i∈I

1 + sign(Qσ−t)i
2

= (−1)#Jr
∏

j∈Jr

sign(Qσ−t)j .

Therefore, we end up with the following formula for the coefficient of
∏n

i=1(zM
tσi)

ri

arising from terms with each mi = ri + 1 ≥ 1 :

∑

x∈Zn/σZn

∏

i 6∈Jr

Bri+1(σ
−1(v + x)i)

(ri + 1)!

∏

j∈Jr

−sgn(Qσ−t)j
2

=
∑

x∈Zn/σZn

Br+1(σ
−1(x+ v), σ−1Q)

(r + 1)!
.

(86)
Evaluating the same expression with (A,M,Q, v) replaced by (πℓAπ

−1
ℓ , π−1

ℓ M,πℓQ, πℓv) and
using the definition of ΨSh,ℓ gives the desired result.

Theorem 4.4 now follows from Lemma 4.6 and Lemma 3.8 applied with

F = (−1)nsgn det(σ)
∑

r

ℓ−r ·Dℓ(σ, r + 1, Q, v)
zr

(r + 1)!

and M replaced by σtM .

In [CD], we show that Theorem 4.4 implies the following integrality property of ΨSh,ℓ

(see Theorem 4 and §2.7 of loc. cit.).

Theorem 4.7. Suppose that M and v satisfy fM(v + 1
ℓ
Z ⊕ Zn−1) ⊂ Z[1

ℓ
]. Then for every

nonnegative integer k, we have ∆(k)ΨSh,ℓ(A,M,Q, v) ∈ Z[1
ℓ
].

Theorem 4.7 can be used to prove Theorems 2 and 3 from the introduction ; furthermore
Spiess’ cohomological formalism for p-adic L-functions can then be used with our construc-
tion to deduce Theorem 4. We refer the reader to [CD, §3–5] for the proofs.
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4.3 A generalized cocycle

We conclude the paper by defining a generalization of the power series ΨSh,ℓ. We discuss
this generalization here because it was stated without proof in [CD, Proposition 2.4].

Let P = R[z1, . . . , zn], viewed as a Γ-module via (γP )(z) = P (zγ). The fact that the
power series ΨSh,ℓ is regular (by Lemma 4.6) implies that its domain of definition can be
expanded from matrices M and their associated polynomials fM to arbitrary polynomials
P ∈ P. Let F̃ denote the R-vector space of functions f : P × Q × V −→ R that are linear
in the first variable and satisfy the distribution relation

f(P,Q, v) = sgn(λ)n
∑

λw=v

f(λdegPP, λ−1Q,w) (87)

for each nonzero integer λ when P is homogeneous. The space F̃ has a Γ-action given by
(42), with M replaced by P .

Following (63), define for P ∈ P and any matrix σ ∈Mn(R) coefficients Pr(σ) by

P (zσt) =
∑

r

Pr(σ)

r!
zr11 · · · z

rn
n . (88)

Fixing σ = 1, these coefficients define an operator ∆(P ) : R[[z1, . . . , zn]]→ R given by

∆(P )

(

∑

r

Frz
r

)

=
∑

r

FrPr(1).

Proposition 4.8. The function

Ψ̃Sh,ℓ(A, P,Q, v) := ∆(P )ΨSh,ℓ(A, 1, Q, v) (89)

= (−1)nsgn(det σ)
∑

r

Pr(σ)

ℓr(r + 1)!
Dℓ(σ, r + 1, Q, v) (90)

is a homogeneous cocycle for Γℓ valued in F̃ , i.e. Ψ̃Sh,ℓ ∈ Z
n−1(Γℓ, F̃).

Démonstration. The cocycle condition
∑n

i=0(−1)
iΨ̃Sh,ℓ(A0, . . . , Âi, . . . , An) = 0 follows from

that for ΨSh,ℓ. The fact that Ψ̃Sh,ℓ is invariant under Γℓ follows from the equivalent statement
for ΨSh,ℓ and the fact that for any matrix γ ∈Mn(R) and any F ∈ R[[z1, . . . , zn]], we have

∆(γtP )F (z) = ∆(P )F (zγ). (91)

Equation (91) is a mild generalization of Lemma 3.8 that again follows from (64). The
equality between (89) and (90) follows from Lemma 4.6 and (91) applied to γ = σ.
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[Co3] P. Colmez. La méthode de Shintani et ses variantes. Unpublished preprint.

[Das] S. Dasgupta. Shintani Zeta Functions and Gross-Stark units for totally real fields.
Duke Math. Journal, 143 (2008), no. 2, 225–279.

[DS] S. Dasgupta, M. Spiess. Principal minors of Gross’s p-adic regulator and the Eisen-
stein cocycle, in preparation.

[DR] P. Deligne, K. Ribet.Values of abelian L-functions at negative integers over totally
real fields. Invent. Math. 59 (1980), no. 3, 227–286.

[DDF] F. Diaz y Diaz, E. Friedman. Signed fundamental domains for totally real number
fields. Proc. London Math. Soc. 108 no. 4 (2014), 965-988.

[Gr] B. Gross, p-adic L-series at s = 0. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981),
no. 3, 979–994.

[Hi] R. Hill. Shintani cocycles on GLn. Bull. of the LMS 39 (2007), 993-1004.

[HS] S. Hu, D. Solomon. Properties of the higher-dimensional Shintani generating func-
tions and cocycles on PGL3(Q). Proc. LMS 82 (2001), no. 1, 64-88.

[IO] T. Ishii, T. Oda. A short history on investigation of the special values of zeta and
L-functions of totally real number fields. In Automorphic forms and zeta functions.
Proc. of the conf. in memory of Tsuneo Arakawa, World Sci. Publ. (2006), 198-233.

[KP] A. G. Khovanski, G. Pukhlikov. The Riemann-Roch theorem for integrals and sums
of quasipolynomials on virtual polytopes. Algebra i Analiz 4 (1992), no. 4, 789-812.

39

http://arxiv.org/abs/1410.4741


[La] J. Lawrence. Rational-function-valued valuations on polyhedra. In Discrete and Com-
putational Geometry, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 6, Amer.
Math. Soc. Providence, RI, 1991, 199-208.

[Sc1] R. Sczech. Eisenstein cocycles for GL2(Q) and values of L-functions in real quadratic
fields. Comment. Math. Helv. 67 (1992), no. 3, 363–382.

[Sc2] R. Sczech. Eisenstein group cocycles forGLn and values of L-functions. Invent. Math.
113 (1993), no. 3, 581–616.

[Sc3] R. Sczech. A remark on the Eisenstein-Shintani cocycle. Unpublished preprint (1998).

[Sh] T. Shintani. On evaluation of zeta functions of totally real algebraic number fields. J.
Fac. Sci Univ. Tokyo, Sect. IA Math 23 (1976), no. 2, 393-417.

[So1] D. Solomon. Algebraic properties of Shintani’s generating functions : Dedekind sums
and cocycles on PGL2(Q). Compositio Math. 112 (1998), no. 3, 333-362.

[So2] D. Solomon. The Shintani cocycle II. Partial ζ-functions, cohomologous cocycles and
p-adic interpolation. Journal of Number Theory 75 (1999), 53-108.

[Sp1] M. Spiess. On special zeros of p-adic L-functions of Hilbert modular forms. Invent.
Math. 196 (2014), 69-138.

[Sp2] M. Spiess. Shintani cocycles and the vanishing order of p-adic Hecke L-series at
s = 0. Math. Annalen 359 (2014), 239-265.

[Stev] G. Stevens. The Eisenstein measure and real quadratic fields. Théorie des nombres
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