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Abstract

We consider the generalized Anderson Model ∆ +
∑

n∈N
ωnPn, where N is a countable set,

{ωn}n∈N are i.i.d random variables and Pn are rank N < ∞ projections. For these models we
prove theorem analogous to that of Jakšić-Last on the equivalence of the trace measure σn(·) =
tr(PnEHω (·)Pn) for n ∈ N a.e ω. Our model covers the dimer and polymer models.

1 Introduction

In this paper we address the nature of spectral measure for generalized Anderson type models with single
site potentials of higher rank or a constant randomness over several neighboring collection of sites . The
basic setup of the problem is the following. We have a self adjoint operator A on separable Hilbert
space H , and rank N projections {Pn}n∈N where N is countable or a finite set. Given an absolutely
continuous measure µ on R, we define the set of operators

Hω = A+
∑

n∈N

ωnPn (1.1)

for {ωn}n∈N ∈ RN distributed identically and independently following the distribution µ. This defines
a map from measure space (Ω,B,P) (product measure space (RN ,B(RN ),⊗µ)) to the set of essentially
self adjoint linear operators on H . We are interested in the spectral measure of this set of operators.

In the case of Anderson tight-binding model, we have the Hilbert space l2(Zd) on which we have the
operator ∆ defined by

(∆u)(n) =
∑

|n−m|=1

u(m) ∀u ∈ l2(Zd), n ∈ Z
d

and the collection of rank one projection {|δn〉〈δn|}n∈Zd . Prior works [9, 11, 21, 22] proved simplicity of
spectrum for such models using the property that {|δn〉〈δn|}n∈Zd are rank one.

Similar to the tight-binding model, we have the random Schrödinger operators, defined by

(Hωf)(x) = −
d

∑

i=1

∂2f

∂x2i
(x) +

∑

p∈Zd

ωpG(x − p)f(x) ∀x ∈ R
d, f ∈ C∞

c (Rd)

where G is a compactly supported function on [0, 1]d. Simplicity of the singular spectrum for this model
is still an open problem.

These models are also considered on graphs (for example Bethe lattices and one dimensional strips).
In the case of Bethe lattice and Bethe strips absolute continuous spectrum was shown to exists [7, 13, 14].
All these models show localization at high disorder [1] and so have pure point spectrum also.

Multiplicity of these spectra are not well understood for projection valued perturbation. Known
results study rank one perturbation [9, 11] and cyclicity [22, 21]. In work by Naboko, Nichols and Stolz
[15], such a problem is handled for pure point part of the spectrum. Sadel and Schulz-Baldes [18] were
looking at quasi-one-dimensional stochastic dirac operator, and provided conditions for singular and
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absolutely continuous spectrum in terms of size of fibres. They also proved that the multiplicity of ac
spectrum is 2. In this paper we prove results similar to those in [9] and [11].

Before stating the main results, we introduce some notations. For n ∈ N and ω ∈ Ω define Hn,ω

as the cyclic subspace generated by Hω defined by (1.1) and the vector space PnH (this vector space
is isomorphic to C

N ), and set Qωn : H → Hn,ω as the canonical projection. Let EHω be the spectral
projection measure for the operatorHω; set Σωn(·) = PnEHω (·)Pn (which is now a matrix valued measure)
and set σωn (·) = tr(Σωn(·)) as the trace measure (these are finite measures). Let Pωac be the orthogonal
projection onto the absolutely continuous spectral subspace Hac(H

ω). For n,m ∈ N , define

En,m = {ω ∈ Ω| QωnPmhas same rank as Pm} (1.2)

We will be working with the following set

M = {n ∈ N| σωn is not equivalent to Lebesgue measure for a.e ω}

The reason for confining oneself in this set is a theorem of F. and M. Riesz [17], which implies that
the Borel transform of any complex measure which is zero in C+ has to be absolutely continuous with
respect to Lebesgue measure. But one can prove that the total variation measure need to be equivalent to
Lebesgue measure, see [11, Theorem 2.2] for a proof. So confining to M we get that the Borel transform
of non-zero measure in M can never be identically zero in C+, and so one can use results about boundary
values of analytic functions like [2, 3]. We state the main theorem:

Theorem 1.1. For any N ∈ N, let {Pn}n∈N be collection of rank N projections such that
∑

n∈N Pn = I,
and µ be a absolutely continuous measure on R. Let {Hω}ω∈Ω be a family of operator defined as in (1.1),
then

1. For n,m ∈ M we have P(En,m) ∈ {0, 1}.

2. Let n,m ∈ M such that P(En,m ∩ Em,n) = 1. For a.e ω ∈ Ω, the restrictions PωacH
ω|Hn,ω

and
PωacH

ω|Hm,ω
are unitary equivalent.

3. Let n,m ∈ M such that P(En,m∩Em,n) = 1, for a.e ω ∈ Ω the measures σωn and σωm are equivalent
as Borel measures.

Remark 1.2. Two examples for which the condition P(En,m) = 1 can be verified are:

1. Consider l2(Z) with the operator Hω = ∆ +
∑

n∈Z
ωnPn where Pn =

∑N−1
k=0 δNn+k, we have

P(En,m) = 1 for each n,m ∈ Z. This is because for n1, n2 ∈ Z,
〈

δn1
, (Hω)|n1−n2|δn2

〉

= 1 and
hence all cyclic subspaces intersect with each other non-trivially. If we considered l2(Zd) and some
enumeration of its basis {δnk

}k∈Z and define Pn as before, again we can prove P(En,m) = 1.

2. Consider the Hilbert space ⊕Ni=1l
2(Z), and ∆ as adjacency operator on each space separately. Set

πi : Z → Z be surjective map for i = 1, · · · , N , and define Pn =
∑N
i=1 δ

i
πi(n)

, where {δin}n∈Z is

basis for each l2(Z). Then for this case also P(En,m) = 1.

In case the measure µ has compact support on R and A is bounded, none of the σωn can have full support
on R, and so M = N similar to the rank 1 case of Jakšić and Last [11].

The approach to gain information about the spectral measure is by using the matrix valued function:

Pn(H
ω − z)−1Pn : PnH → PnH

for z ∈ C+. Since we will be working with n ∈ M , it is enough to look at the above matrices. These are
termed Matrix valued Herglotz functions or Birman-Schwinger operators. Birman-Schwinger principle
was developed for compact perturbations in [4, 19] and some notable applications can be found in
[5, 12, 20].

We will be working with the above as Matrix valued Herglotz functions whose properties can be
found in [8]. By combining theorem A.2 (see [8, Theorem 5.4] for proof) and A.3 we obtain conditions
in terms of limǫ↓0 Pn(H

ω − E − ιǫ)−1Pn.
Second and third part of the theorem 1.1 are consequences of perturbations by two projections, and

the first part is because of Kolmogorov 0-1 law. Lemma 3.4 is the primary step for the first part of
the main theorem. It tells us that the event En,m (QωnPm has same rank as Pm), is independent of
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any other perturbation, whence Kolmogorov 0-1 law applies. For second part, whenever the condition is
satisfied, we have to show that for E in a full measure set, the density of the measure has same rank for
both indices; this is done in corollary 3.6. For the last part, the second part of the theorem 1.1 helps by
asserting that absolute continuous parts are equivalent and for the singular part we only need to consider
the lowest (Hausdorff) dimensional part. This is the case because we are using Poltoratskii’s theorem
[16], and lowest dimensional part of the spectrum contributes maximum rate of growth to the Herglotz
function as its argument approaches the boundary of C+ . Corollary 3.8 gives the equivalence for the
lowest dimensional parts of the measure.

Before attempting to handle the problem, it is important to note that the set of perturbations where
the procedure may not be applicable is a measure zero set. Lemma 2.1 gives such a statement, and also
tells us that for almost all perturbation, the measure of singular part (w.r.t to Lebesgue measure) is zero.

2 Preliminaries

Following lemma is a result concerning the zero sets of polynomials. This lemma helps in the proof of
our main theorem by ensuring that for almost all perturbation the set where singular part lie is measure
zero.

Lemma 2.1. For a σ-finite positive measure space (X,B,m), and a collection of measurable functions

ai : X → C, define the function f(λ, x) = 1 +
∑N

n=1 λ
nan(x). The set defined by

Λf = {λ ∈ C|m{x ∈ X |f(λ, x) = 0} > 0} (2.1)

is countable.

Proof. The proof is by induction on degree of f (as a polynomial of λ). We will use the notation:

Sλ = {x ∈ X |f(λ, x) = 0} (2.2)

By definition the sets Sλ are measurable.
Base case of induction is N = 1, so f(λ, x) = 1 + λa1(x). Clearly for λ1 6= λ2 ∈ C we have

Sλ1
∩ Sλ2

= φ. Since, if x ∈ Sλ1
∩ Sλ2

then

1 + λ1a1(x) = 0 & 1 + λ2a1(x) = 0

⇒
1

λ1
= −a1(x) =

1

λ2
⇒ λ1 = λ2

but we assumed λ1 6= λ2. Since (X,m) is σ-finite, we have a countable collection {Xi}i∈N such that
∪iXi = X and for each i we have m(Xi) < ∞. Now for each λ ∈ C and n ∈ N define Sλ,n = Sλ ∩Xn,
so we have ∪nSλ,n = Sλ, and ∪λ∈Λf

Sλ,n ⊂ Xn. We have

∑

λ∈Λf

m(Sλ,n) = m(∪λ∈Λf
Sλ,n) ≤ m(Xn) <∞,

so only for countably many λ ∈ Λf we have m(Sλ,n) 6= 0. Set Λn = {λ ∈ Λf |m(Sλ,n) > 0}, we have
Λf = ∪n∈NΛn, but since countable union of countable set is countable, we get Λf countable. This
completes base case.

Now assume the induction hypothesis, i.e for measurable functions ai : X → C, and f(λ, x) =

1 +
∑N

n=1 λ
nan(x), the set Λf is countable.

We have to show for f(λ, x) = 1+
∑N+1
n=1 λ

nan(x), the set Λf is countable. First we define the relation
∼ for elements of Λf ; for µ, ν ∈ Λf we define µ ∼ ν if there exists {λi}ki=1 such that λ1 = µ, λk = ν
and m(Sλi

∩ Sλi+1
) > 0 for i = 1, · · · , k − 1. For µ ∈ Λf we have µ ∼ µ because m(Sµ) > 0 hence ∼

is reflexive. If µ ∼ ν for µ, ν ∈ Λf , then we have a sequence {λi}ki=1 such that λ1 = µ and λk = ν and

m(Sλi
∩ Sλi+1) > 0, hence choosing λ̃i = λk−i+1 we get ν ∼ µ and so ∼ is symmetric. If µ ∼ ν and

ν ∼ η, then we have sequences {αi}
p
i=1 and {βi}

q
i=1 such that α1 = µ, αp = β1 = ν and βq = η, so

defining the sequence {λi}
p+q
i=1 defined as λi = αi for i ≤ p and λi = βi−p for i > p we get µ ∼ η giving

transitivity of ∼. So ∼ is a equivalence relation on Λf , and can break the set Λf into equivalence classes

indexed by Λ̃ = Λf/ ∼, where we view [λ] ∈ Λ̃ as [λ] = {µ ∈ Λf |µ ∼ λ} and define S[λ] = ∪µ∈[λ]Sµ.
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First we will show for any [λ] ∈ Λ̃, the set [λ] is countable. Let λ ∈ Λf , so we have the m(Sλ) 6= 0. We

will restrict to subspace Sλ, on this space f(ν, x) can be written as f(ν, x) = 1
λ
(λ−ν)

(

1 +
∑N
n=1 ãn(x)ν

n
)

(since λ is a solution). So we have the new function f̃(ν, x) = 1+
∑N

n=1 ãn(x)ν
n, and by our assumption

(induction hypothesis) we get Λf̃ is countable. For any ν ∈ Λf with m(Sλ ∩ Sν) 6= 0 implies ν ∈ Λf̃ , so
for fixed λ ∈ Λf the set of ν ∈ Λf such that m(Sλ ∩ Sν) 6= 0 is countable.

Next choose λ ∈ Λf , and set A0 = {λ}, and define

Ai = ∪β∈Ai−1
{ν ∈ Λf |m(Sν ∩ Sβ) 6= 0} ∀i ∈ N

by previous step each Ai are countable. So ∪∞
i=0Ai is countable. By definition of ∼ we have [λ] = ∪∞

i=0Ai.
Now we will prove Λ̃ is countable. By definition m(S[λ]) > 0 for [λ] ∈ Λ̃, and for [λ] 6= [µ] ∈ Λ̃ we

have m(S[λ] ∩ S[ν]) = 0. For n ∈ N define S[λ],n = S[λ] ∩Xn, then we have

∑

n∈Λ̃

m(S[λ],n) = m(∪[λ]∈Λ̃S[λ],n) ≤ m(Xi) <∞

From last step only countably many [λ] can have m(S[λ],n) > 0. Call Λ̃n = {[λ] ∈ Λ̃|m(S[λ],n) > 0}

(which are countable); for any [λ] ∈ Λ̃ we have

0 < m(S[λ]) ≤
∑

n∈N

m(S[λ],n)

So [λ] ∈ Λ̃ for some n ∈ N we have m(S[λ],n) > 0, hence Λ̃ = ∪n∈NΛ̃n; giving us Λ̃ is countable.
Since Λf = ∪[λ]∈Λ̃[λ] and both the sets are countable we get the countability of Λf .

Remark 2.2. It should be clear that above result holds for a function of the type f(λ, x) =
∑N

n=0 an(x)λ
n

on the set {x ∈ X |a0(x) 6= 0}. One should note that one cannot extend the result for whole of X.

We can view f(λ, x) = λN
(

∑N
n=0 aN−n(x)

(

1
λ

)n
)

, and so the result also holds on the set {x ∈

X |aN(x) 6= 0}.

Corollary 2.3. For a σ-finite positive measure space (X,B,m) and a collection of functions ai : X → C,

bi : X → C, define the function f(λ, x) =
1+

∑N
i=1

ai(x)λ
i

1+
∑

N
i=1

bi(x)λi , then the set

Λf = {λ ∈ C|m{x ∈ X |f(λ, x) = 0} 6= 0} (2.3)

is countable

Proof. Set g(λ, x) = 1+
∑N
n=1 an(x)λ

n, then {(x, µ) ∈ X×C|f(λ, x) = 0} ⊆ {(x, µ) ∈ X×C|g(λ, x) = 0}.
So by lemma 2.1 we get the desired result.

We will need the spectral averaging result (see[6, Corollary 4.2] for proof):

Lemma 2.4. Let Eλ(·) be the spectral family for the operator Aλ = A + λP , where A is self adjoint
operator, and P is a rank N projection. Then for M ⊂ R such that |M | = 0 (Lebesgue measure), we
have PEλ(M)P = 0 for Lebesgue almost all λ.

This lemma guarantees us that we can omit any Lebesgue measure zero set from any analysis that
follows. Following lemma from [9, Proposition 2.1] will be used extensively, as it guarantees the existence
of limits, almost surely. We denote Hφ to be the cyclic subspace generated by A and φ ∈ H .

Lemma 2.5. Let A be a self adjoint operator on a separable Hilbert space H with φ, ψ ∈ H such that
Hφ 6⊥ Hψ. Then for a.e E ∈ R (Lebesgue) the limit

lim
ǫ↓0

〈

φ, (A− E − ιǫ)−1ψ
〉

=
〈

φ, (A− E − ι0)−1ψ
〉

exists and is non-zero.

We note that the limit always exists a.e E, and it is non-zero if and only if Hφ 6⊥ Hψ . We will need
Poltoratskii’s theorem [16].
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Theorem 2.6. For any complex valued Borel measure µ on R and for f ∈ L1(R, dµ), with Borel

transform Fµ(z) =
∫

dµ(z)
x−z

lim
ǫ→0

Ffµ(E + ιǫ)

Fµ(E + ιǫ)
= f(E)

for a.e E with respect to µ-singular.

A proof can be found in [10]. This theorem will be used for proof of equivalence of measure for the
singular part in lemma 3.7 and corollary 3.8.

3 Perturbation by finite Rank Projection

In this section we will be working with (A,H , {Pi}3i=1), where A is a self adjoint operator on the Hilbert
space H , and {Pi}3i=1 are three rank N projections. We will work with the case that the measures
tr(PiEA(·)Pi) are not equivalent to lebesgue measure (hence using Riesz theorem [17], the Borel transform
of these measures are non-zero on the upper half plane). Define Aµ = A+ µP1, Gij(z) = Pi(A− z)−1Pj
and Gµij(z) = Pi(Aµ − z)−1Pj for i, j = 1, 2, 3 and z ∈ C+, and will use the notation

g(E + ι0) := lim
ǫ↓0

g(E + ιǫ)

for E ∈ R (whenever the limit exists). Using the relation A−1 − B−1 = B−1(B − A)A−1 = A−1(B −
A)B−1, we have

Gµ11(z) = G11(z)(I + µG11(z))
−1 (3.1)

(I + µG11(z))(I − µGµ11(z)) = I (3.2)

Gµij(z) = Gij(z)− µGi1(z)(I + µG11(z))
−1G1j(z) (i, j) 6= (1, 1) (3.3)

For any E ∈ R such that G11(E + ι0) exists and finite, and f : (0,∞) → C be such that limǫ→0 f(ǫ) = 0
look at limǫ↓0 f(ǫ)G

µ
11(E + ιǫ) using equation (3.2)

lim
ǫ↓0

f(ǫ)(I − µGµ11(E + ιǫ))(I + µG11(E + ιǫ))− f(ǫ)I = 0

(I + µG11(E + ι0))

(

lim
ǫ↓0

f(ǫ)Gµ11(E + ιǫ)

)

= 0

So we get

range

(

lim
ǫ↓0

f(ǫ)Gµ11(E + ιǫ)

)

⊆ ker(I + µG11(E + ι0)) ⊆ ker(ℑG11(E + ι0)) (3.4)

Since ℑG11(E+ ι0) ≥ 0 it decomposes the space P1H = ker(ℑG11(E+ ι0))⊕ ker(ℑG11(E+ ι0))⊥ with
range(ℑG11(E+ ι0)) = ker(ℑG11(E+ ι0))⊥, so on ker(ℑG11(E+ ι0))⊥ we have ℑGii(E+ ι0) > 0. This
fact will be used in identifying appropriate subspaces. We will need some preliminary results before we
attempt to prove our main results. The Following lemma relates the invertibility of the matrices Gµ12(z)
with the ranks of Q1P2 and P2.

Lemma 3.1. Let A be a self-adjoint operator on a Hilbert space H and P1 and P2 be two projections of
rank N . Let Hi denote the cyclic subspace generated by A and PiH and Qi : H → Hi be the canonical
projection onto that subspace, for i = 1, 2. If Q1P2 has same rank as P2, then P1(A − z)−1P2 is almost
surely invertible for a.e z ∈ C

+.

Proof. Let φ ∈ P2H \ {0}. Since Q1P2 has same rank as P2, we have 0 6= Q1φ ∈ H1 (if it is zero, then
ker(Q1) ∩ P2H 6= {0} and so rank(Q1P2) < rank(P2)), so there is ψ ∈ P1H and f ∈ L2(R, dµψ) such
that Q1φ = f(A)ψ. So

0 6= 〈Q1φ,Q1φ〉 = 〈ψ, f∗(A)Q1φ〉 = 〈ψ, f∗(A)φ〉 =

∫

f̄(x)dµψ,φ(x)

since Q1 commutes with any functions of A. So the measure µψ,φ is non-zero, hence the Borel transform

∫

dµψ,φ(x)

x− z
=

〈

ψ, (A− z)−1φ
〉

,
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is almost surely non-zero on C+.
So for each vector φ ∈ P2H there exists a ψ ∈ P1H such that

〈

ψ, (A− z)−1φ
〉

is non-zero, in other
words P1(A− z)−1P2 is an injection, and since P1(A− z)−1P2 is an n× n matrix we get invertibility.

Remark 3.2. The lemma above also assures that for almost all E the matrix valued function P1(A −
E − ι0)−1P2 is invertible.

For some z ∈ C+, the invertibility of P1(A − z)−1P2 gives us Q1P2 has same rank as P2. So by
looking at det(Gmn(z)) we can obtain a statement about non-orthogonality of the subspace {Hi}i=1,2.

Choose a basis of PiH , then Gij(z) is a matrix in that basis. We can write

S = {E ∈ R| Entries of Gij(E + ι0) exists and are finite ∀i, j = 1, 2, 3} (3.5)

Then by lemma 2.5 we know that S has full measure. Define

Sij = {E ∈ S|Gij(E + ι0) is invertible} ∀i, j = 1, 2, 3 (3.6)

By lemma 3.1, Sij has full measure whenever QiPj has same rank as Pj .

Remark 3.3. On the set S, the limit G11(E + ι0) exists, and since det(I + µG11(E + ι0)) = 1 +
∑N

i=1 ai(E)µi, using lemma 2.1 for almost all µ the matrix I +µG11(E+ ι0) is invertible on a set of full
measure.

Lemma 3.4. Let A be self adjoint operator on Hilbert space H and {Pi}
3
i=1 be rank N projections.

Define Aµ = A+µP1, Gij(z) = Pi(A−z)−1Pj and G
µ
ij(z) = Pi(Aµ−z)−1Pj . If G23(E+ ι0) is invertible

for a.e E, then Gµ23(E + ι0) is also invertible for a.e (E, µ).

Proof. From equations (3.1) and (3.3) and remark 3.3 we get

Gµ23(E + ι0) = G23(E + ι0)− µG21(E + ι0)(I + µG11(E + ι0))−1G13(E + ι0)

since we are only looking for invertibility, looking at determinant is enough. And so

det(Gµ23(E + ι0)) =
det(G23(E + ι0)) +

∑

an(E)µn

det(I + µG11(E + ι0))

Again by corollary 2.3 we get that for almost all µ the matrix G23(E + ι0) is invertible on a set of full
measure.

Next lemma provide the relation between the absolute continuous component of the measure.

Lemma 3.5. On Hilbert space H we have two rank N projections P1, P2 and a self adjoint operator A.
Set Aµ = A+ µP1, Gij(z) = Pi(A− z)−1Pj and Gµij(z) = Pi(Aµ − z)−1Pj ; set S and S12 as (3.5),(3.6).
Define

V µE,i = ker(ℑGµii(E + ι0))⊥

for each E ∈ S ∩ {x ∈ R| limǫ↓0G
µ
11(x + ιǫ) exists and finite}. Assume S12 has full measure. Then for

a.e µ
(G12(E + ι0))−1 : V µE,1 → V µE,2

is injective, and
(I + µG11(E + ι0)) : V 0

E,1 → V µE,1

is isomorphism.

Proof. From the equation (3.3) and (3.2) we get

Gµ22(z) = G22(z)− µG21(z)G12(z) + µ2G21(z)G
µ
11(z)G12(z)

For E ∈ S ∩ {x ∈ R| limǫ↓0G
µ
11(x + ιǫ) exists and finite}, let v ∈ V µE,1, and set φ = (G12(E + ι0))−1v,

observe (every quantity in RHS below exists and finite so limit can be taken)

lim
ǫ↓0

〈φ, (ℑGµ22(E + ιǫ))φ〉 = lim
ǫ↓0

[〈φ, (ℑG22(E + ιǫ))φ〉 − µ 〈φ,ℑ(G21(E + ιǫ)G12(E + ιǫ))φ〉
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+ µ2 〈φ, (ℑG21(E + ιǫ)Gµ11(E + ιǫ)G12(E + ιǫ))φ〉
]

Since ℑGµ22(E + ι0) is positive matrix, looking at 〈φ, (ℑGµ22(E + ι0))φ〉 is enough.
If 〈φ, (ℑG22(E + ι0))φ〉 = 0 which implies (ℑG22(E+ι0))φ = 0 so using (A.3) we haveG12(E+ι0)φ =

G∗
21(E + ι0)φ, and so

lim
ǫ↓0

〈φ, (ℑGµ22(E + ιǫ))φ〉 = µ2 〈G12(E + ι0)φ, (ℑGµ11(E + ι0))G12(E + ι0)φ〉

− µ 〈φ,ℑ(G21(E + ι0)G12(E + ι0))φ〉

= µ2 〈v, (ℑGµ11(E + ι0))v〉

So φ ∈ V µE,2 and hence G12(E + ι0)−1 gives the injection.

For the other assertion, let v ∈ V 0
E,1 observe

〈v, (I + µG11(E + ι0))v〉 = ‖v‖22 + µ(〈v,ℜG11(E + ι0)v〉+ ι 〈v,ℑG11(E + ι0)v〉)

since 〈v,ℑG11(E + ι0)v〉 6= 0, so the above equation cannot be zero for any µ ∈ R. So on V 0
E,1 the

operator (I + µG11(E + ι0)) is invertible. Set φ = (I + µG11(E + ι0))v, observe

lim
ǫ→0

〈φ, (ℑGµ11(E + ιǫ))φ〉 = lim
ǫ→0

〈

φ,ℑ(G11(E + ιǫ)(I + µG11(E + ιǫ))−1)φ
〉

=
〈

(I + µG11(E + ι0))−1φ, (ℑG11(E + ι0))(I + µG11(E + ι0))−1φ
〉

= 〈v, (ℑG11(E + ι0))v〉 6= 0

This gives the isomorphism (I + µG11(E + ι0)) : V 0
E,1 → V µE,1.

This only gives the injection between the absolutely continuous spectral subspaces. One cannot
expect more from this setting. By a second perturbation we obtain an isomorphism, which is attained
in the next corollary.

Corollary 3.6. Let A be self adjoint operator on Hilbert space H , and P1, P2 are two rank N projections.
Set Aµ = A + µ1P1 + µ2P2 and Gij(z) = Pi(A− z)−1Pj, G

µ1,µ2

ij (z) = Pi(Aµ1,µ2
− z)−1Pj for i, j = 1, 2

and define the vector space
V µ1,µ2

E,i = ker(ℑGµ1,µ2

ii (E + ι0))⊥

for each E ∈ S ∩ {x ∈ R| limǫ↓0G
µ1,µ2

ii (x+ ιǫ) exists and finite for i = 1, 2}. Assume S12, S21 have full
measure. Then for a.e µ1, µ2 the two vector space V µ1,µ2

E,1 and V µ1,µ2

E,2 are isomorphic.

Proof. This is just application of lemma 3.5. For E in full measure set we have

V µ1,µ2

E,2 →֒ V µ1,µ2

E,1

where the map is (Gµ1,0
21 (E + ι0))−1. Lemma 3.4 tells us Gµ1,0

21 (E + ι0) is also invertible for almost all
µ1. Now we can do the same thing other way around:

V µ1,µ2

E,1 →֒ V µ1,µ2

E,2

Since we are working in finite dimensional spaces (V µ1,µ2

E,i are finite dimensional), injection in both
direction tells us that they are isomorphic.

The next lemma is similar to lemma 3.5, but for the singular part. The conclusion is for subspaces
where growth of the Herglotz function is maximum or equivalently its associated measure has lowest
(Hausdorff) dimension. We will use the fact that a matrix valued measure Σn(·) = PnEA(·)Pn is
absolutely continuous with respect to the trace measure σn(·) = tr(Σn(·)) and so limǫ↓0

1
σn(E+ιǫ)Σn(E+

ιǫ) =M(E) is L1 w.r.t σn-singular (σn(z),Σn(z) are corresponding Borel transform).

Lemma 3.7. On Hilbert space H we have two rank N projections P1, P2 and a self adjoint operator A.
Set Aµ = A+µP1, Gij(z) = Pi(A−z)−1Pj and G

µ
ij(z) = Pi(Aµ−z)−1Pj. Set fE(ǫ) = tr(Gµ11(E+ ιǫ))−1

and E ∈ R be such that fE(ǫ)
ǫ↓0
−−→ 0, define

Ṽ µE,i = ker

(

lim
ǫ↓0

fE(ǫ)G
µ
ii(E + ιǫ)

)⊥
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Assume S12 defined as (3.6) has full measure, then for E ∈ S such that fE(ǫ)
ǫ↓0
−−→ 0 defined as in (3.5)

the map
(G12(E + ι0))−1 : Ṽ µE,1 → Ṽ µE,2

is injective. So the measure σµ2 (where σµi (·) = tr
(

PiEAµ
(·)Pi

)

) is absolutely continuous with respect to
σµ1 -singular.

Proof. Using i, j = 2 in (3.3), we have

Gµ22(z) = G22(z)− µG21(z)G12(z) + µ2G21(z)G
µ
11(z)G12(z)

Since we are working with E ∈ S, the limits for Gij(E + ι0) exists for i, j = 1, 2. For φ, ψ ∈ P2H we
have

〈ψ,Gµ22(E + ιǫ)φ〉 = 〈ψ,G22(E + ιǫ)φ〉 − µ 〈ψ,G21(E + ιǫ)G12(E + ιǫ)φ〉

+ µ2 〈ψ,G21(E + ιǫ)Gµ11(E + ιǫ)G12(E + ιǫ)φ〉

lim
ǫ↓0

fE(ǫ) 〈ψ,G
µ
22(E + ιǫ)φ〉 = µ2 lim

ǫ↓0
fE(ǫ) 〈ψ,G21(E + ιǫ)Gµ11(E + ιǫ)G12(E + ιǫ)φ〉

= µ2

〈

ψ,G21(E + ι0)

(

lim
ǫ↓0

fE(ǫ)G
µ
11(E + ιǫ)

)

G12(E + ι0)φ

〉

And now using (3.4) and (A.3) we have
〈

ψ,G21(E + ι0)

(

lim
ǫ↓0

fE(ǫ)G
µ
11(E + ιǫ)

)

G12(E + ι0)φ

〉

=

〈

ψ,G12(E + ι0)∗
(

lim
ǫ↓0

fE(ǫ)G
µ
11(E + ιǫ)

)

G12(E + ι0)φ

〉

From above if φ = G12(E + ι0)−1v for v ∈ Ṽ µE,1, then φ ∈ Ṽ µE,2, giving us that the map G12(E + ι0)−1 is
injection.

Finally

lim
ǫ↓0

tr (Gµ22(E + ιǫ))

tr (Gµ11(E + ιǫ))
= tr

(

G12(E + ι0)∗
(

lim
ǫ↓0

fE(ǫ)G
µ
11(E + ιǫ)

)

G12(E + ι0)

)

where RHS is L1 for σµ1 -singular by lemma 2.6 (Poltoratskii’s theorem).

Corollary 3.8. Let A be self adjoint operator on Hilbert space H , and P1, P2 are two rank N projections.
Set Aµ = A+ µ1P1 + µ2P2, Gij(z) = Pi(A− z)−1Pj and Gµ1,µ2

ij (z) = Pi(Aµ1,µ2
− z)−1Pj for i, j = 1, 2.

Let E ∈ S12 ∩ S21 (defined as in (3.6)) and tr(Gµ1,µ2

ii (E + ιǫ))−1 ǫ↓0
−−→ 0 for either i = 1, 2, then

Ṽ µ1,µ2

E,i = ker(lim
ǫ↓0

tr(Gµ1,µ2

ii (E + ιǫ))−1Gµ1,µ2

ii (E + ιǫ))⊥ i = 1, 2

are isomorphic. In particular the singular part of trace measure associated with Gµ1,µ2

ii are equivalent to
each other.

Proof. Define
Ṽ µ1,µ2

E,i,j = ker(lim
ǫ↓0

tr(Gµ1,µ2

jj (E + ιǫ))−1Gµ1,µ2

ii (E + ιǫ))⊥

This is exactly like corollary 3.6. By action of lemma 3.7 we have

V µ1,µ2

E,1,1 →֒ V µ1,µ2

E,2,1 & V µ1,µ2

E,2,2 →֒ V µ1,µ2

E,1,2

where first is given by G0,µ2

12 (E+ι0)−1 and second is given by Gµ1,0
21 (E+ι0)−1 which are a.e (with respect

to perturbation µ1, µ2) invertible because of lemma 3.4. Because of the second conclusion of the previous
lemma 3.7 we have

lim
ǫ↓0

tr (Gµ11(E + ιǫ))

tr (Gµ22(E + ιǫ))
exists for a.e tr(P2EAµ

(·)P2)-singular,

lim
ǫ↓0

tr (Gµ22(E + ιǫ))

tr (Gµ11(E + ιǫ))
exists for a.e tr(P1EAµ

(·)P1)-singular.

So as a vector space V µ1,µ2

E,i,j = V µ1,µ2

E,i,i = V µ1,µ2

E,i for a.e tr(PiEAµ
(·)Pi)-singular. Since we have injection

both direction and finite dimensionality of the spaces involved, we get the isomorphism.
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3.1 Proof of Main theorem

Proof. The notation we will use is

Gωnm(z) = Pn(H
ω − z)−1Pm ∀n,m ∈ N

and for some p ∈ M we will denote
Hω
µ,p = Hω + µPp

and
Gω,µ,pnm (z) = Pn(H

ω
µ,p − z)−1Pm ∀n,m ∈ M

1. For n,m ∈ M , let ω ∈ En,m, using lemma 3.1 we get Gωnm(z) is almost surely invertible. For any
p ∈ N , we have Hω

µ,p, and using lemma 3.4 we get Gω,µ,pnm (z) is also almost surely invertible for
almost all µ. So we get, if ω ∈ En,m, then ω̃ ∈ En,m (ω̃ is defined by ωn = ω̃n ∀n ∈ M \ {p}) or in
other words, En,m is independent of the ωp for any p ∈ M . We can repeat the procedure and show
that En,m is independent of {ωpi}

K
i=1 for pi ∈ M . So we can use Kolmogorov 0-1 law to conclude

that P(En,m) ∈ {0, 1}.

2. For any n ∈ M , we have (Hω ,Hn,ω) is unitary equivalent to (Mid, L
2(R,Σωn ,C

N )) (see theorem
A.3). For m ∈ M such that P(En,m ∩Em,n) = 1, we have to show (Σωn)ac is equivalent to (Σωm)ac.
Using (5) of theorem A.2 we have

d(Σωn)ac(E) =
1

π
ℑGωnn(E + ι0)dE

For ω ∈ En,m, we can write the operator H ω̃ = Hω +µ1Pn+µ2Pm, and using corollary 3.6 we get
V ω̃n are isomorphic to V ω̃m , where

V ω̃i = ker
(

Pi(H
ω̃ − E − ι0)−1Pi

)⊥

Since ℑGωnn(E+ι0) = ℑ
(

Pn(H
ω − E − ι0)−1Pn

)

, the isomorphism gives the equivalence. By proof
of part (1), we know En,m is independent of ωn and ωm, so the result holds for a.e ω.

3. For n,m ∈ M such that P(En,m ∩ Em,n) = 1. Let ω ∈ En,m, define H ω̃ = Hω + µnPn + µmPm
(almost always ω̃ ∈ En,m), then corollary 3.8 gives the equivalence of the trace measure for singular
part. As for absolute continuous part, second part of the theorem gives the equivalence.
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A Appendix

For A ∈Mn(C), we have the decomposition A = ℜA+ ιℑA, where both ℜA and ℑA are self adjoint. For
A11, A12, A21, A22 ∈ Mn(C) such that A∗

11A22 − A∗
21A12 = I and A∗

21A11 = A∗
11A21, A

∗
22A12 = A∗

12A22.
Define

Ã = (A11 −A12A)(A21 −A22A)
−1

then we have

ℑÃ =
1

2ι
(Ã− Ã∗)

=
1

2ι

(

(A11 −A12A)(A21 −A22A)
−1 −

(

(A21 −A22A)
−1

)∗
(A11 −A12A)

∗
)

=
(

(A21 −A22A)
−1

)∗
ℑA

(

(A21 −A22A)
−1

)

(A.1)

This is equivalent to mobius transforms for complex numbers. These kind of transform will play impor-
tant role for determining Σωn .

Following lemma gives some of the properties of the off-diagonal terms of Herglotz matrices.
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Lemma A.1. For Aij ∈Mn(C) i, j = 1, 2, define

A =

(

A11 A12

A21 A22

)

with the property that ℑA ≥ 0. Then for u, v ∈ C
n

∣

∣

∣

∣

〈

u,
A12 −A∗

21

2ι
v

〉∣

∣

∣

∣

2

≤ 2 〈u, (ℑA11)u〉 〈v, (ℑA22)v〉 (A.2)

It’s proof follows same steps as 2× 2 matrix case. As a consequence of (A.2), we have

(ℑA22)v = 0 ⇒ A12v = A∗
21v,& (ℑA11)u = 0 ⇒ A21u = A∗

12u (A.3)

also
ℑtr(A22) = 0 ⇒ A12 = A∗

21,& ℑtr(A11) = 0 ⇒ A21 = A∗
12 (A.4)

We will use Matrix valued Herglotz function to work, following theorem from [8, Theorem 5.4] list
some of the useful properties. Proof of these statements are similar to that of scalar case.

Theorem A.2. Let M : C+ →Mn(C) be a matrix-valued Herglotz function, then

1. M(z) has finite normal limits, i.e M(E ± ι0) = limǫ→0M(E + ιǫ) for a.e E ∈ R.

2. If for each diagonal element Mii(z), 1 ≤ i ≤ n of M(z) has zero normal limit on a fixed subset of
R which has positive Lebesgue measure, then M(z) = C0 where C0 is a constant self-adjoint n× n
matrix with vanishing diagonal elements.

3. There exists a matrix-valued measure Σ on the bounded Borel subset of R satisfying
∫

〈v, dΣ(x)v〉 (1 + x2)−1 ∀v ∈ C
n

such that the Nevanlinna, respectively, Riesz-Herglotz representation

M(z) = C +Dz +

∫

R

dΩ(x)
(

(x− z)−1 − x(1 + x2)−1
)

∀z ∈ C
+

C =M(ι), D = lim
η↑∞

1

ιη
M(ιη)

holds.

4. The Stieltjes inversion formula for Σ is

1

π
lim
ǫ↓0

∫ λ2

λ1

dλℑ(M(λ+ ιǫ)) =
Σ({λ1}) + Σ({λ2})

2
+ Σ((λ1, λ2))

5. The absolute continuous part of the measure is given by

dΣac(λ) =
1

π
ℑ(M(λ+ ι0))dλ

6. Any poles of M(z) are simple and are located on real axis.

We will use the given version of spectral theorem.

Theorem A.3. Let A be a self adjoint operator on Hilbert space H and P be an rank N projection.
Let the vector space PH has basis {δn}Nn=1 and define the cyclic subspace generated by A and δn by Hn

for all n = 1, · · · , N , and define the subspace

HP =

N
∑

i=1

Hi

also let ΣA denote the spectral projection of A, then (L2(R, PΣAP, PH ), id) and (HP , A) are unitarily
equivalent, where id is multiplication by identity.
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Proof. We have a basis of PH given by {δn}Nn=1. So define the map

U : L2(R, PΣAP,C
N ) → HP

as

U(f1, · · · , fN ) 7→
N
∑

i=1

fi(A)δi

the map is injection because

0 = ‖U(f1, · · · , fn)‖
2
2 =

N
∑

i,j=1

〈fi(A)δi, fj(A)δj〉

=

N
∑

i,j=1

∫

f̄i(x)fj(x)dµij(x)

where µij(·) is the measure 〈δi,ΣA(·)δj〉, so the last equation tells us

∫

〈f(x), dPΣAP (x)f(x)〉 = 0

where f(x) = (f1(x), · · · , fN (x)), and (PΣA(·)P )ij = 〈δi,ΣA(·)δj〉. So the map U is injection. The map
is surjection because for φ ∈ HP by definition we can find {fi}Ni=1 such that fi ∈ L2(R, µii,C) such that

φ =
∑N
i=1 fi(A)δi, and so (f1, · · · , fN) maps to φ. Finally we have to show UM = AU , by definition

(Mf)(x) = xf(x)

U(Mf) =

N
∑

i=1

(Afi(A))δi

= A

N
∑

i=1

fi(A)δi = A(Uf)

completing the proof.
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