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Zeros of the Zak transform of totally positive functions✩

Tobias Kloos

Faculty of Mathematics, TU Dortmund, D-44227 Dortmund

Abstract

We study the Zak transform of totally positive (TP) functions. We use the
convergence of the Zak transform of TP functions of finite type to prove that
the Zak transforms of all TP functions without Gaussian factor in the Fourier
transform have only one zero in their fundamental domain of quasi-periodicity.
Our proof is based on complex analysis, especially the Theorem of Hurwitz and
some real analytic arguments, where we use the connection of TP functions of
finite type and exponential B-splines.

Keywords: Gabor frame, Total positivity, Exponential B-spline, Zak
transform

Introduction

The Gabor transform provides an important tool for the analysis of a given
signal f : R → C in time and frequency. A window function g ∈ L2(R) has
time-frequency shifts

MξTyg(x) = e2πiξxg(x− y), ξ, y ∈ R.

The Gabor transform of a square-integrable signal f is defined as

Sgf(kα, lβ) = 〈f,MlβTkαg〉, k, l ∈ Z,

where the parameters (kα, lβ) ∈ αZ × βZ of the time-frequency shifts of g
form a lattice in R2, with lattice parameters α, β > 0. The family

G(g, α, β) := {MlβTkα g | k, l ∈ Z}

is called a Gabor family. If there exist constants A,B > 0, which depend on
g, α, β, such that for every f ∈ L2(R) we have

A‖f‖2 ≤
∑

k,l∈Z

|〈f,MlβTkαg〉|
2 ≤ B‖f‖2, (1)
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the family is called a Gabor frame. In order to describe Gabor families of a
window function g, a very helpful tool is the Zak transform

Zαg(x, ω) :=
∑

k∈Z

g(x− kα)e2πikαω, (x, ω) ∈ R
2.

In Approximation Theory, the Zak transform was used by Schoenberg [14] in
connection with cardinal spline interpolation. For a polynomial B-spline Bm

of degree m−1, Schoenberg called Z1B the exponential Euler spline. The Zak
transform Zαg has the properties

Zαg(x, ω + 1
α
) = Zαg(x, ω), Zαg(x+ α, ω) = e2πiαω Zαg(x, ω). (2)

Therefore, its values in the lattice cell [0, α) × [0, 1
α
) define Zαg completely.

A well-known result for Gabor families G(g, α, β), with α = 1, β = 1/N , and
N ∈ N, states that the values

Aopt = ess inf
x,ω∈[0,1)

N−1∑

j=0

|Z1g(x, ω + j
N
)|2, Bopt = ess sup

x,ω∈[0,1)

N−1∑

j=0

|Z1g(x, ω + j
N
)|2,

(3)
are the optimal frame-bounds A,B in the inequality (1), whenever they are
positive and finite, see [3, page 981], [8]. For rational values of αβ, a connection
of the Zak transform Zαg with the frame-bounds of the Gabor family G(g, α, β)
was given by Zibulsky and Zeevi [18]. Therefore, the presence and the location
of zeros of Zαg is relevant for the existence of lower frame-bounds in (1).
Moreover, the celebrated Balian-Low theorem [3] states that a Gabor family
at the critical density αβ = 1 cannot be a frame, if the window function g or
its Fourier transform

ĝ(ω) =

∫

R

g(x)e−2πixω dx

is continuous and in the Wiener space,

W (R) := {g ∈ L∞(R) | ‖g‖W =
∑

n∈Z

ess sup
x∈[0,1]

|g(x+ n)| < ∞}.

The proof in [6] uses the topological argument, that every continuous function
with the property (2) must have a zero in every lattice cell and, hence, Aopt

in (3) with N = 1 is zero. In [1] the connection of the Zak transform and
discretized Gabor frames is summarized and it is pointed out, that the knowl-
edge of the location of the zeros is sufficient for providing that a periodized
and sampled window function generates a discrete Gabor frame.

Motivated by the results in [10], we show that every Zak transform of a to-
tally positive function without a Gaussian factor in its Fourier transform has
exactly one zero in its fundamental domain, which appears at ω = 1

2
. For this,

in the first two sections we give a short introduction on totally positive func-
tions, exponential B-splines and how they are related to each other. In section
three we prove the stated conjecture by using several convergence properties
of totally positive functions of finite type.
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1. Totally positive functions

In this section, we want to introduce totally positive functions in Schoenberg’s
terminology and give some remarkable properties. For more detailed informa-
tion on total positivity in terms of functions and matrices see [9].

Definition 1.1 (Totally positive (TP) function, [12]). A measurable, non-
constant function g : R → R is called totally positive (TP), if for every N ∈ N

and two sets of real numbers

x1 < x2 < . . . < xN , y1 < y2 < . . . < yN ,

the corresponding matrix A =
(
g(xj−yk)

)N

j,k=1
has a non-negative determinant.

The most popular examples of TP functions are the exponential functions
eax, a ∈ R \ {0}, which are not integrable, the one- and two-sided exponen-
tials e−bxχ[0,∞)(x), e

−b|x|, b > 0, and the Gaussian e−x2

, which are in L1(R).
Schoenberg gave a characterization of TP functions by their two-sided Laplace
transforms and specified the subclass of integrable TP functions as follows.

Theorem 1.2 ([12], [13]). A function g : R → R, which is not an exponential
g(x) = Ceax with C, a ∈ R, is a TP function, if and only if its two-sided Laplace
transform exists in a strip S = {s ∈ C | α < Re s < β} with −∞ ≤ α < β ≤ ∞
and is given by

(Lg)(s) =

∫ ∞

−∞

g(t)e−st dt = Cs−neγs
2−δs

∞∏

ν=1

ea
−1
ν s

1 + a−1
ν s

,

where n ∈ N0 and C, γ, δ, aν are real parameters with

C > 0, γ ≥ 0, aν 6= 0, 0 < γ +

∞∑

ν=1

(
1
aν

)2

< ∞.

Moreover, g is integrable and TP, if and only if its Fourier transform is given
by

ĝ(ω) =

∫ ∞

−∞

g(t)e−2πitω dt = Ce−γω2

e−2πiδω

∞∏

ν=1

e2πia
−1
ν ω

1 + 2πia−1
ν ω

,

with the same conditions on C, γ, δ, aν as above.

Unless otherwise specified, we will consider integrable TP functions with γ = 0
and distinguish the infinite and finite type. Thus, by disregarding scaling and
shifting, we focus on functions g, gn ∈ L2(R), given by their Fourier transforms

ĝ(ω) =

∞∏

ν=1

e2πi
ω
aν

1 + 2πi ω
aν

, ĝn(ω) =

n∏

ν=1

e2πi
ω
aν

1 + 2πi ω
aν

, n ∈ N, (4)
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where (aν)ν∈N ⊂ R \ {0} and
∑∞

ν=1 a
−2
ν < ∞. By applying the inverse Fourier

transform to (4), we get the following expressions in the time domain

g(x) =
∞

∗
ν=1

|aν | e
−aν(x+

1

aν
) χ[0,∞)

(
sign(aν)(x+ 1

aν
)
)
, (5)

gn(x) =
n

∗
ν=1

|aν | e
−aν(x+

1

aν
) χ[0,∞)

(
sign(aν)(x+ 1

aν
)
)
.

Following Schoenberg, we define the reciprocals of their Laplace transforms as
Ψ or Ψn,

Ψ(s) =
∞∏

ν=1

(1 + a−1
ν s)e−a−1

ν s ,Ψn(s) =
n∏

ν=1

(1 + a−1
ν s)e−a−1

ν s ,
∞∑

ν=1

a−2
ν < ∞.

(6)

Obviously, these are entire functions with zeros only on the real line. By
using their Laplace transforms, Hirschman and Widder in [5, Theorem 4a] and
Schoenberg in [13] show independently from each other, that

lim
n→∞

gn(x) = g(x),

uniformly on R. Since we want to extend the result of the supposed conver-
gence of TP functions to convergence of their Zak transforms in Section 3, we
need to adapt the proof by Hirschman and Widder. We start with a detailed
inspection of the Laplace transforms. Since |1− (1− z)ez| ≤ |z|2, for all z ∈ C

with |z| ≤ 1, it is easy to see, that

∞∑

ν=1

∣
∣
∣1− (1 + a−1

ν s)e−a−1
ν s
∣
∣
∣ , s ∈ C,

converges locally uniformly in C and so does

∞∏

ν=1

(1 + a−1
ν s)e−a−1

ν s.

Moreover the following was proved.

Lemma 1.3 ([5, Theorem 2b]). For any number τ0 ∈ R \ {0} and any integer
p, there exists a constant Mp > 0 with

∣
∣
∣
∣

1

Ψ(ω + iτ)

∣
∣
∣
∣
≤ Mp |τ |

−p , for all |τ | ≥ |τ0| ,

and for all n ≥ p

∣
∣
∣
∣

1

Ψn(ω + iτ)

∣
∣
∣
∣
≤ Mp |τ |

−p , for all |τ | ≥ |τ0| ,

uniformly for ω in any compact interval of existence.
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With this, we can give some more information about the rate of convergence
of sequences of TP functions.

Theorem 1.4. Let g be a TP function of infinite type, gn the TP function of
type n as in (4) and let a0 := min

ν∈N
|aν |. Then for 0 ≤ σ < a0

lim
n→∞

|g(x)− gn(x)| e
σ|x| = 0,

uniformly for x ∈ R.

Proof. Since the Laplace transforms of the given functions exist and are holo-
morphic in the strip with −a0 < Re s < a0, the inverse transforms provide for
0 ≤ σ < a0 and positive x

|g(x)− gn(x)| =

∣
∣
∣
∣

1

2πi

∫ −σ+i∞

−σ−i∞

(
1

Ψ(s)
−

1

Ψn(s)

)

exsds

∣
∣
∣
∣

≤
e−σx

2π

∫

R

∣
∣
∣
∣

1

Ψ(iτ − σ)
−

1

Ψn(iτ − σ)

∣
∣
∣
∣
dτ.

To show the convergence of the last integral, we split it into two integrals over
the interval I = [−R,R] and R \ I, for R > 0. For any given ε > 0 there exists
an n0 ∈ N, such that for every n ≥ n0 the first part yields

∫ R

−R

∣
∣
∣
∣

1

Ψ(iτ − σ)
−

1

Ψn(iτ − σ)

∣
∣
∣
∣

︸ ︷︷ ︸

−→0 (n→∞) uniformly in [−R,R]

dτ ≤ 2εR.

With Lemma 1.3, for any integer p and every n > p the remaining integral can
be estimated by

∫

R\I

∣
∣
∣
∣

1

Ψ(iτ − σ)
−

1

Ψn(iτ − σ)

∣
∣
∣
∣
dτ ≤ 4Mp

∫ ∞

R

τ−pdτ

=
4Mp

p− 1
R−p+1,

where Mp is a constant independent of n. Now, choosing p ≥ 2 and R arbitrar-
ily large completes the proof. The case of negative x is given analogously by
integrating over the parallel line to the imaginary axis, which includes σ.

Note that the stated proof shows the same convergence properties for all the
derivatives g

(r)
n → g(r), by including a factor sr in the integrand and choosing

n ∈ N sufficiently large.

Next, we take a closer look at the finite type, which is very interesting for
implementing and computational usage of TP functions and also may reveal a
connection to exponential B-splines. Since there are only finitely many expo-
nential terms in (4), which realizes a shift by

∑n
ν=1 aν in the time domain, we

disregard them for the moment. Expression (5) then simplifies to

gn(x) =
n

∗
ν=1

|aν | e
−aνx χ[0,∞)

(
sign(aν) x

)
.
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If b1, . . . , br, bi 6= bj , are distinct and µ1, . . . , µr are the associated multiplicities,
such that

{a1, . . . , an} = {b1, . . . , b1
︸ ︷︷ ︸

µ1

, . . . , br, . . . , br
︸ ︷︷ ︸

µr

},

this notation implies, that

gn(x) =







∑

bi>0

pbi(x)e
−bix , x ≥ 0,

∑

bi<0

pbi(x)e
−bix , x ≤ 0,

(7)

where pbi are polynomials of degree µi−1. To be more precise, by using divided
differences, Stöckler [16] gives the following closed form for these functions

gn(x) = (−1)n−1 sign(x)

(
n∏

ν=1

aν

)

[a1, . . . , an | e−x·χ[0,∞)(x·)] , x 6= 0,

gn(x) = (−1)n−1

(
n∏

ν=1

aν

)

[a1, . . . , an | χ[0,∞)(·)] , x = 0.

With this form and the well-known identity

[a1, . . . , an | f ] =
r∑

i=1

µr∑

j=1

ci,j f
(j−1)(ai) , ci,j ∈ R, ci,µi

6= 0,

of divided differences, see e.g. [15], it is possible to compute the polynomials
in (7). In the case of distinct weights, the formula reduces to

[a1, . . . , an | f ] =
n∑

i=1

n∏

j=1

j 6=i

(ai − aj)
−1 f(ai),

which provides an explicit form for gn, under these assumptions. In [1] Bannert,
Gröchenig and Stöckler also computed this explicit form of the coefficients, by
using the partial fraction decomposition of ĝn, instead of divided differences.
All in all, these representations provide a good way for implementation and
computing these functions for usage in time-frequency analysis. Moreover it
reveals the close resemblance to exponential B-splines, which will be defined
in the next section.

2. Exponential B-splines

We want to give a short summary of exponential B-splines and list some im-
portant features of them. For a more detailed introduction, see e.g. [15], [11]
and [10].

For a set of weights

Λ = (η1, . . . , η1
︸ ︷︷ ︸

µ1

, . . . , ηr, . . . , ηr
︸ ︷︷ ︸

µr

),

6



with pairwise distinct η1, . . . , ηr ∈ R, and each ηj repeated with multiplicity
µj ∈ N, the space Um, given by

Um = span
(
eη1x, xeη1x, . . . , xµ1−1eη1x, . . . , eηrx, . . . , xµr−1eηrx

)
,

forms an extended complete Tschebycheff (ECT) space. This means, that
there exists a basis {u1, . . . , um} ∈ Um, such that

det

(

M

(
u1, . . . , uℓ

t1, . . . , tℓ

))

> 0

for all 1 ≤ ℓ ≤ m and t1 ≤ . . . ≤ tℓ ∈ R. The matrix

M

(
u1, . . . , uℓ

t1, . . . , tℓ

)

is the collocation matrix of Hermite interpolation, if some nodes tj coincide.
In our case this basis is given by the exponentials.

For ECT spaces in general it is an important result in spline interpolation
theory, that there exist functions, which are compactly supported, piecewise
in these spaces and sufficiently smooth. These properties are fulfilled by B-
splines. In our special case, the associated splines are defined as follows.

Definition 2.1. Let Λ = (λ1, . . . , λm) ∈ Rm, λ0 = 0, and let exponential
weight functions

wj := e(λj−λj−1)x, j = 1, . . . , m,

be given. Then, with proper normalization, the exponential B-spline (EB-
spline) BΛ, with knots 0, 1, . . . , m, is given by the convolution of the functions
eλj(·)χ[0,1),

BΛ = eλ1(·)χ[0,1) ∗ e
λ2(·)χ[0,1) ∗ . . . ∗ eλm(·)χ[0,1), (8)

so its Fourier transform is given by

B̂Λ(ω) =

m∏

j=1

eλj−2πiω − 1

λj − 2πiω
.

By the definition, it is easy to see, that BΛ ∈ Cm−2(R) and suppBΛ = [0, m].
Moreover, BΛ |(j,j+1)∈ Um, 0 ≤ j ≤ m − 1, so they are piecewise exponential
sums

BΛ(x+ k − 1) =

r∑

j=1

p
(k)
j (x)eηjx, x ∈ [0, 1), 1 ≤ k ≤ m, (9)

with real polynomials p
(k)
j of degree µj−1 (cf. (7)). For our purpose, we define

the differential operators

Ljf =
d

dx

(
f

wj

)

, Lj = Lj · · ·L1, j = 1, . . . , m,

7



as in [15, page 365] and take note, that Um is the kernel of Lm. Furthermore,
these operators can also be written as

Lj = e−λjx

j
∏

k=1

(
d

dx
− λk id

)

.

Up to normalization, L1BΛ denotes the first reduced EB-spline and is given by

B{λ2−λ1,...,λm−λ1} = e(λ2−λ1)(·)χ[0,1) ∗ . . . ∗ e(λm−λ1)(·)χ[0,1).

3. The Zak transform of totally positive functions

The Zak transform is an important tool in Gabor analysis which is commonly
applied in spline theory. For a parameter α > 0 and a function f : R → C it
is defined by

Zαf(x, ω) :=
∑

k∈Z

f(x+ αk)e−2πikαω,

whenever this series exists. In the following we need the properties below of
this transform. More facts can be found in [4].

Lemma 3.1. Let f be an element of the Wiener space W (R).

a) Zαf(x, ω) is bounded in R2, and if f is continuous, then Zαf is contin-
uous.

b) For every n ∈ Z, we have the identities for periodicity

Zαf(x, ω + n
α
) = Zαf(x, ω)

and quasi-periodicity

Zαf(x+ nα, ω) = e2πinαω Zαf(x, ω).

c) If f̂ ∈ W (R) as well, then

α · Zαf(x, ω) = e2πixω Z1/αf̂(ω,−x).

d) Let fα = f(α·) be the scaled function of f . Then

Zαf(x, ω) = Z1fα(
x
α
, αω).

Because of the last property and since the considered function spaces are scal-
ing invariant, we restrict ourselves to the case α = 1 and therefore write Zf ,
instead of Z1f . We also use the following connection of the Zak transform of
TP functions of finite type and EB-splines, which was found recently in [10].
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Theorem 3.2 ([10, Theorem 3.4]). Let g ∈ L1(R) be a TP function of finite
type, defined by its Fourier transform

ĝ(ω) =
m∏

ν=1

(1 + 2πi ω
aν
)−1,

where a1, . . . , am ∈ R\{0}. With λν := −aν and BΛ defined as in (8), we have

Zg(x, ω) =
m∏

ν=1

aν
1− e−(aν+2πiω)

ZBΛ(x, ω), (x, ω) ∈ [0, 1)× [0, 1).

Note that this factorization of the Zak transform of TP functions of finite type
holds on R2 by quasi-periodicity of the transform.

Next, we complexify the argument ω of the Zak transform and show the con-
vergence of the transforms of TP functions of finite type to the transforms of
the related TP functions of infinite type.

Definition 3.3. The complexified Zak transform of a function f ∈ L2(R) is
given by

Zf(x, s) =
∑

k∈Z

f(x+ k) e−2πiks =
∑

k∈Z

f(x+ k) e−2πikωe2πkτ ,

where x, ω, τ ∈ R, s = ω + iτ ∈ C are chosen, such that the series converges.

Schoenberg proved in [13], that integrable TP functions g̃ decay exponentially,

lim
x→±∞

exsg̃(x) = 0, −a0 < s < a0.

Hence, their complexified Zak transforms exist for all |τ | < a0
2π
.

Theorem 3.4. Let g be a TP function of infinite type and gn the TP function
of type n as in (4). Then for a fixed x0 ∈ [0, 1) the transforms Zgn(x0, ·) and
Zg(x0, ·) are holomorphic in the strip Sξ = {s ∈ C | |Im(s)| ≤ ξ}, whenever
0 ≤ ξ < a0

2π
, and

lim
n→∞

|Zg(x, s)− Zgn(x, s)| = 0,

uniformly for all s = ω + iτ in the strip Sξ, 0 ≤ ξ < a0
2π
, and all x ∈ [0, 1).

Proof. The holomorphism of Zgn(x0, ·) of TP functions of finite type easily
follows from Theorem 3.2, which provides an expression as a finite sum of
exponentials, multiplied with a function with singularities outside of Sξ. The
holomorphism in the case of TP functions of infinite type is given by the
uniform convergence, which we prove next.
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Let x ∈ [0, 1) and c ∈ R with 2πξ < 2πc < a0. By Theorem 1.4, for a given
ε > 0, there exists n0 ∈ N, such that for every n ≥ n0

|Zg(x, s)− Zgn(x, s)| ≤
∑

k∈Z

|g(x+ k)− gn(x+ k)| e2π|kτ |

≤ ε
∑

k∈Z

e−2πc|x+k| e2π|kτ |

≤ ε

(
∞∑

k=1

e2πk(|τ |−c) + e−2πcx + e2πc
−1∑

k=−∞

e2πk(c−|τ |)

)

≤ ε
(
1 + e2πc

)
∞∑

k=0

e2πk(|τ |−c) ≤ ε
(
1 + e2πc

) e2π(c−|τ |)

2π(c− |τ |)
.

This proves the second part of the Theorem and implies, that the Zak transform
of a TP function Zg(x0, ·) of infinite type is the uniform limit of holomorphic
functions, in Sξ, which completes the first part of the proof.

Next, we will use this convergence property to show, by arguments of com-
plex analysis, that the transforms have exactly one zero in their fundamental
domain. For this we will use the Theorem of Hurwitz.

Lemma 3.5 (Hurwitz). Let D ⊂ C be a domain and (fn) be a sequence of
holomorphic functions in D, which converges locally uniformly to a function f .
If every fn has at most k zeros in D, then f has at most k zeros or f(z) = 0,
for all z ∈ D.

The following result in [10] shows, that the Zak transform of TP functions of
finite type m ≥ 2 has exactly one zero in the fundamental domain.

Theorem 3.6 ([10, Corollary 3.5]). Let gn be a totally positive function of
finite type n ≥ 2. Then there exists x̃ ∈ [0, 1), such that Zgn(x̃,

1
2
) = 0, and

Zgn(x, ω) 6= 0 for all (x, ω) ∈ [0, 1)2 \ {(x̃, 1
2
)}.

Next, we extend this result and show, that the complexified Zak transform has
no zero in [0, 1) × {s = ω + iτ | |ω| < 1

2
, |τ | < a0

2π
}. Then Lemma 3.5 implies

that this property holds for TP functions of infinite type. The main idea of
the proof is counting sign changes and using the quasi-periodicity to construct
a contradiction of having a zero in the given domain. Following [2], we say
that a function f : [a, b] → R has at least p strong sign changes, if there exists
a nondecreasing sequence (τj)0≤j≤p in [a, b] with f(τ0) 6= 0 and, in case p ≥ 1,
f(τj−1)f(τj) < 0 for all j = 1, . . . , p. The supremum of the number of strong
sign changes of f is denoted by S−(f). Similarly, we define the total number
of sign changes S−(c) of a sequence of real numbers c = (ck)0≤k≤N .

Theorem 3.7. Let g̃ be a continuous TP function, defined by (4), including
the infinite type. Then for the complexified Zak transform, it holds that

Zg̃(x, s) 6= 0 , for x ∈ [0, 1) and s ∈ (−1
2
, 1
2
)× i(− a0

2π
, a0
2π
).
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Proof. With Theorem 3.2, the finite case g̃ = gn, n ∈ N, results by proving
the same property for the Zak transform of the associated EB-spline BΛ. We
will show this by following the proof in [10]. Again we use the notation

Λ = (η1, . . . , η1, . . . , ηr, . . . , ηr)

with multiplicities µj of the pairwise distinct weights ηj. For a fixed s ∈
(−1

2
, 1
2
) × (− a0

2π
, a0
2π
), we consider the complex valued function h := ZBΛ(·, s).

By (9), we obtain for x ∈ [0, 1)

h(x) =
n−1∑

k=0

BΛ(x+ k)e−2πiks =
n∑

k=1

r∑

j=1

p
(k)
j (x)eηjxe−2πiks

=

r∑

j=1

n∑

k=1

p
(k)
j (x)e−2πiks

︸ ︷︷ ︸

:=qj(x)

eηjx, (10)

where qj are complex polynomials of degree σj−1 ≤ µj−1. Some of the qj are
nonzero, since the shifts of EB-splines are locally linearly independent. This
means that, if Re(h) vanishes on an interval (a, b) ∈ R, then all coefficients
Re(e−2πiks) with suppBΛ(· + k) ∩ (a, b) 6= ∅ vanish as well. Since |Re(s)| < 1

2
,

no consecutive coefficients of Re(h) vanish simultaneously. Therefore there is
no non-empty interval where Re(h) is identically zero. We let σj = 0 if qj = 0
and define γ = σ1+ . . .+σr. Without loss of generality, we can assume σ1 ≥ 1,
that is, the term q1(x)e

η1x in h|[0,1) is nonzero. We use the identity

eηjx
d

dx

(
e−ηjxh(x)

)
= q′j(x)e

ηjx +
∑

k 6=j

((ηk − ηj)qk(x) + q′k(x)))e
ηkx.

Writing Dj for the differential operator on the left hand side and
D := Dσ1−1

1

∏r
j=2D

σj

j , we obtain

Dh(x) = beη1x, x ∈ (0, 1),

with a nonzero constant b ∈ C. The quasi-periodicity of h leads directly to

Dh(x) = beη1(x−k) e2πiks, x ∈ (k, k + 1),

for all k ∈ Z.

Now we assume that there exists x̃ ∈ [0, 1) with ZBΛ(x̃, s) = 0. By quasi-
periodicity of h = ZBΛ(·, s), the function f = Reh vanishes at all points x̃+k,
k ∈ Z, and these points are isolated zeros of f by local linear independence
again. This guarantees that f has at least N ∈ N isolated zeros in [0, N ]. Note
that D is a differential operator of order γ − 1 ≤ m− 1. Since f ∈ Cm−2(R),
with f (m−2) absolutely continuous, we obtain by Rolle’s theorem that

S−(Df) ≥ N − γ + 1 on [0, N ]. (11)
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However, on each interval [k, k + 1) with k ∈ Z and s = ω + iτ , ω, τ ∈ R, the
sign of Df is fixed by

sign (Df)(x) = signRe
(
b e2πik(ω+iτ)

)
= signRe

(
b e2πikω

)
, x ∈ [k, k + 1).

This implies
S−(Df) ≤ 2N |ω| on [0, N ],

which is a contradiction to (11) for |ω| < 1
2
and large N . This completes the

proof for TP functions of finite type (and their associated EB-splines).

The Zak transform of TP functions of infinite type is not identically zero on
(−1

2
, 1
2
)× i(− a0

2π
, a0
2π
), because g is positive and Zg(x, 0) =

∑

k∈Z g(x+ k) > 0.
Hence, Theorem 3.4 and Lemma 3.5 implies, that it can not have any zero in
this domain, since it is the uniform limit of holomorphic functions Zgn(x, ·)
without any zeros, which completes the proof.

This Theorem especially implies, that Zg has no zero in [0, 1)×(−1
2
, 1
2
). Since it

is well-known, that Zak transforms of continuous functions do have a zero, we
are left to show, that they have exactly one zero in their fundamental domain,
whenever g is a TP function of infinite type without a Gaussian factor. For
this, we need some preparations.

Lemma 3.8. Let g̃ be a continuous TP function, defined by (4), including the
infinite type. Then Zg̃(·, 1

2
) is real, 2-periodic and not identically zero.

Proof. By the definition it is easy to see, that

Zg̃(x, 1
2
) =

∑

k∈Z

g̃(x+ k) e−2πik
1
2 =

∑

k∈Z

g̃(x+ k)(−1)k

is a real valued function. Since it is quasi-periodic,

Zg̃(x+ n, 1
2
) = e2πin

1
2 Zg̃(x, 1

2
) = (−1)n Zg̃(x, 1

2
),

obviously Zg̃(·, 1
2
) is a 2-periodic function. Moreover, the Inversion Formula

for Zak transforms,

∫ 1

0

Zg̃(x, ω)e−2πixω dx =

∫ 1

0

(
∑

k∈Z

g̃(x− k)e2πiω(k−x)

)

dx

=
∑

k∈Z

∫ 1

0

g̃(x− k)e−2πiω(x−k) dx

= ˆ̃g(ω),

implies that Zg̃(·, 1
2
) cannot be identically zero.
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Lemma 3.9. Let η1, . . . , ηr ∈ R be some pairwise distinct numbers, q1, . . . , qr
some real nonzero polynomials of degree σj − 1. Let γ = σ1+ . . .+σr and con-
sider a real valued function h ∈ Cγ−2(R), where h(γ−2) is absolutely continuous,
h(x+ 1) = −h(x) and

h(x) =

r∑

j=1

qj(x) e
ηjx, x ∈ [0, 1).

Then there exists x0 ∈ R, such that h is monotone on each interval [x0+k, x0+
k + 1), k ∈ Z.

Proof. Analogously to the proof of Theorem 3.7, consider the differential op-
erator D = Dσ1−1

1

∏r
j=2D

σj

j . Due to continuity and periodicity, h(x + 2) =
−h(x + 1) = h(x), the range of h is bounded and so h has at least one maxi-
mum at a point x0 (and one minimum) in the interval [0, 2) of a period. If h
is not monotonously decreasing on [x0, x0 + 1), the 2-periodicity implies, that
there is a number c ∈ R, such that the function hc := h(·)+ c has at least four
zeros in [0, 2). If we apply D to this function we get

Dhc(x) = beη1x +
r∏

j=2

(−ηj)
σj (−η1)

σ1−1 c

︸ ︷︷ ︸

=:c̃

, b ∈ R, x ∈ (0, 1),

and since h(x+ 1) = −h(x), we have

Dhc(x) = (−1)k beη1x + c̃, x ∈ (k, k + 1), k ∈ Z.

For large N ∈ N we get a contradiction, by counting sign changes again:

4N − γ + 1 ≤ S−(Dhc) ≤ 2N on [0, 2N ].

This shows, that h is monotone on every interval [x0 + k, x0 + k + 1), k ∈ Z,
where x0 + k are the extrema of h.

Corollary 3.10. Let Λ = (η1, . . . , η1, . . . , ηr, . . . , ηr) ∈ Rm, ηj 6= ηi, and BΛ be
the associated EB-spline as defined in (8). Then there exist numbers x0, y0 ∈ R,
such that ZBΛ(·,

1
2
) is monotone on [x0 + k, x0 + k + 1) and the derivative

DnZBΛ(·,
1
2
), 1 ≤ n ≤ r, is monotone on [y0 + k, y0 + k + 1), for all k ∈ Z.

Proof. With the notations as in equation (10) these functions can be written
as a sum of exponentials with polynomial coefficients,

ZBΛ(x,
1
2
) =

r∑

j=1

qj(x) e
ηjx,

DnZBΛ(x,
1
2
) =

(

Dn

(
r∑

j=1

qj e
ηj ·

))

(x) = eηnx
d

dx

(

e−ηnx
r∑

j=1

qj(x) e
ηjx

)

= q′n(x)e
ηnx +

∑

j 6=n

((ηj − ηn)qk(x) + q′k(x)))e
ηkx.

Therefore the Corollary follows directly from Lemma 3.8 and Lemma 3.9.
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Corollary 3.11. Let g be a TP function of infinite type as defined in (4).
Then there exists x0 ∈ [0, 1), such that Zg(·, 1

2
) is monotone on every interval

[x0 + k, x0 + k + 1), k ∈ Z, of length one.

Proof. Because of continuity and periodicity the range of f := Zg(·, 1
2
) is

bounded and there is at least one maximum (and one minimum) in the in-
terval [0, 2). Without loss of generality, let there be a maximum at x0 ∈ [0, 1)
(and at x0+1 a minimum). If f is not monotonously decreasing on [x0, x0+1),
there exist δ > 0 and points z1 < z2 < z3 ∈ [x0 + δ, x0 + 1− δ], such that f is
monotone on [x0, x0 + δ) and

f(z1) < f(z2) , f(z3) < f(z2).

With ε := 1
4
· min{f(x0) − f(z1), f(z2) − f(z1), f(z2) − f(z3)} the uniform

convergence of the Zak transforms of TP functions implies, that there is a
number n0 ∈ N, such that for every n ≥ n0 the function fn := Zgn(·,

1
2
) fulfills

fn(x0) > fn(z1), fn(z2) > fn(z1), fn(z2) > fn(z3).

Therefore there is also no interval of length one, where fn is monotone. Be-
cause of Theorem 3.2, the same property holds for the Zak transform of the
associated EB-spline ZBΛ(·,

1
2
) = C ·Zgn(·,

1
2
), C ∈ R, which is a contradiction

to Lemma 3.10.

Now we can prove the last part of our main result.

Theorem 3.12. Let g be a TP function of infinite type as defined in (4).
Then there exists x̃ ∈ [0, 1), such that Zg(x̃, 1

2
) = 0, and Zg(x, 1

2
) 6= 0 for all

x ∈ [0, 1) \ {x̃}.

Proof. It was first pointed out in [17] that if the Zak transform Zg is continuous,
then it has a zero in [0, 1)× [0, 1). Since g is real, we know from the results in
[7], that there exists x̃ ∈ [0, 1), such that Zg(x̃, 1

2
) = 0. Now, we assume that

there exist at least two zeros in an interval of monotonicity [x0, x0 +1), where
Zg(·, 1

2
) has a maximum at x0 again. If there are some isolated zeros or more

than one zero intervals, Zg(·, 1
2
) can not be monotone, which is a contradiction

to Corollary 3.11. Therefore we suppose, that there is one single zero interval
[z1, z2] ⊂ [x0, x0 + 1). First we assume that a1 < 0, where

ĝ(ω) =

∞∏

ν=1

e2πi
ω
aν

1 + 2πi ω
aν

,

and we let f := Zg(·, 1
2
). Since f is monotonously decreasing on [x0, x0 + 1),

the mean-value theorem implies, that for 0 < ε < −a−1
1 there is 0 < θ < ε

with

|f ′(z2 + θ)| =
|f(z2 + ε)|

ε
>

|f(z2 + θ)|

ε
> −a1 |f(z2 + θ)| .

14



On the other hand, f ′(x0 + 1) = 0, f(x0 + 1) < 0 and therefore the derivative

D1f =

(
d

dx
+ a1 id

)

f = f ′ + a1 f (12)

fulfills D1f(x0)< 0, D1f(z2)= 0, D1f(z2 + θ)< 0 and D1f(x0 + 1)> 0, which
implies, that D1f is not monotone on any interval of length one. Analogously
to the proof of Corollary 3.11, the convergence property of Theorem 3.4 implies,
that there is a number n0 ∈ N, such that for every n ≥ n0 the derivative
D1Zgn(·,

1
2
) also is not monotone on any interval of length one. Hence, because

of Theorem 3.2, the same holds for the Zak transform of the associated EB-
spline D1ZBΛ(·,

1
2
), which is a contradiction to Lemma 3.10 again. Considering

the interval [x0, z1], instead of [z2, x0 + 1], the case a1 > 0 follows analogously.

In [1] the information about the location of the zero of the Zak transform
of TP functions of finite type is used to construct discrete Gabor frames in
several cases. Now, with Theorem 3.7, we can extend the result to the class
of all TP functions without a Gaussian factor in its Fourier transform. With
the periodization operator PK : L1(R) → L1(TK) and the sampling operator
S : L2(R) → ℓ2(Z),

PKg =
∑

k∈Z

g(· − kK), Sg = (g(k))k∈Z,

the following holds.

Corollary 3.13 (cf. [1, Theorem 8]). Let g̃ be a continuous TP function,
defined by (4), including the infinite type. Assume α = M ∈ N and let β =
1/M and k ∈ N such that K/M ∈ N.

• If K/M is odd, then G(PK g̃, α, β) is a Gabor frame for L2(Tk).

• If K/M is odd, then G(PKSg̃, α, β) is a Gabor frame for CK.

In addition, assume that g̃ is even, which means, that {aν | aν > 0} = {−aν |
aν < 0}.

• If M is odd, then G(Sg̃, α, β) is a Gabor frame for L2(Tk).

• If M is odd, then G(PKSg̃, α, β) is a Gabor frame for CK.

Proof. For the proof see [1, Theorem 8].
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